UNIVERSITY of TORONTO SCARBOROUGH
January 2023
Department of Physical & Environmental Sciences

Environmental Science EESC18
The Great Lakes: An Introduction to Limnology

Instructor: Zachary Diloreto
Email: zach.diloreto@utoronto.ca
Office: ESCB457

Teaching assistant: Nigarsan Kokilathasan
Email: nigarsan.kokilathasan@mail.utoronto.ca

Lectures: Thursdays 2 pm – 4 pm
Tutorials: Tuesdays 5 pm – 6 pm
In person office hours: Tuesdays 2-4pm
 Wednesdays 2-4pm

Office hours can also be made by appointment or can be changed by referendum during the course depending on students’ schedules.

A Brief Introduction

Welcome to Limnology or EESC18, if you have any questions about the course start by checking the course syllabus and Quercus discussion boards. If you still do not see an answer to your question please feel free to email me at anytime. You are encouraged to use the discussion boards to ask questions and they will also be used in evaluating your participation in the course. I will make my best effort to reply to emails and discussion boards within 24 hours, however if you do not see a response by then please send me a gentle reminder.

Course Format and Delivery

The course consists of a 2-hour lecture each week; designated readings, coupled with a tutorial to help you navigate completion of assignments and understanding the designated readings. Each lecture will be accompanied by a PPT file of the lectures, it will be posted on the web usually the day before the lectures. The online discussion board will be maintained and I will post topics of interest, as well as demonstrations and articles to supplement lecture materials and also assist with understanding of designated readings.
Course Themes and Objectives

North America is endowed with eight of the twelve largest fresh-water lakes in the world. The origin and geological history, cycles of carbon, nitrogen and phosphorus, and structures of ecosystems of the North American Great Lakes will be used as examples of large lacustrine systems. Fundamental concepts in limnology will be related to features found in the Great Lakes. Topics include: lake origins, lake classification, lake temperature structure and heat budgets, seasonal water circulations, productivity, plankton ecology, food-web dynamics, exotic species invasions, eutrophication-related phenomena and water quality/fisheries management. Specific anthropogenic influences will be illustrated using case studies from the local environment, and students will be allowed to pursue their own interests through a series of short seminars. Through this course students will be able to critically apply their understanding to current and emerging issues facing the great lakes today.

Assignments and Evaluation

<table>
<thead>
<tr>
<th>Course Grade:</th>
<th>Assignments</th>
<th>4 Assignments</th>
<th>20 %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Term Test</td>
<td>25 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Participation in the course</td>
<td>5 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group Presentation/Individual Report</td>
<td>20 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Final Exam</td>
<td>30 %</td>
<td></td>
</tr>
</tbody>
</table>

Assignments: 20% of Final Grade

4 assignments weighted at 5% each with the topics described below in the table. Assignments can be submitted in person or online.

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Details: Topic of the assignment</th>
<th>Due date, 12pm</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment 1</td>
<td>Physical structure of lakes</td>
<td>Feb. 3rd, 2022</td>
<td>5%</td>
</tr>
<tr>
<td>Assignment 2</td>
<td>Nutrient Dynamics and Lake Ecology</td>
<td>Feb. 17th, 2022</td>
<td>5%</td>
</tr>
<tr>
<td>Assignment 3</td>
<td>The Nitrogen Cycle, Food-Webs and Planktonic Communities</td>
<td>March 10th, 2022</td>
<td>5%</td>
</tr>
<tr>
<td>Assignment 4</td>
<td>Iron and Sulfur Cycles and Eutrophication</td>
<td>March 24th, 2022</td>
<td>5%</td>
</tr>
</tbody>
</table>

HANDBING IN ASSIGNMENTS: You are responsible for making sure that your TA/Instructor receives your work.

LOST OR MISPLACED ASSIGNMENT: It is your responsibility to keep a photocopy of your work, and to make more than one copy of your work. I understand online submissions can run into technical issues. Please keep all receipts of online submitted work. Lost or misplaced assignments (on your part) will be subject to late policies.

Term Test: 25% of Final Grade

There will be one term test covering all content from the course up until the test date. The term test will consist of multiple choice, short answer, essay and calculations. The exact breakdown of each
component as well as test details will be announced closer to the date. Currently it is planned as an in-
class test to take place on February 16th.

Participation: 5% of Final Grade

Participation in the course will be evaluated through use of discussion boards and engagement in the
course. Students will be expected to contribute a minimum of **10 times** to the discussion board
throughout the course with a **maximum of 2 posts per week/topic** contributing to the participation
grade. Contributions to the discussion include posting and answering questions or commenting on
topics demonstrating knowledge gained from the course. Students are also encouraged to attend the
last lectures and tutorials to provide feedback on student presentations. **Feedback for group
presentations can be used as an equivalent to 50% of the participation grade.**

Group Presentation or Individual Report: 20% of Final Grade

Students have the option of creating a group presentation or submitting a short report on a topic of their
choice. A list of possible topics will be made available the first week of lectures and groups or students
must provide me their topic at the latest the week of February 7th. Groups can have a maximum of 4
students and presentations can be done in person or submitted in a video file and they will be evaluated
during the last lecture and tutorial sessions. Individual reports can be submitted in person or online.
Presentation and report details such as length and suggested structure will be given during the lecture
and tutorials the week of February 7th.

Final Exam: 30% of Final Grade

There will be an **in-person** final exam. The final exam is **cumulative** and will consist of multiple
choice, short answer, essay and calculations. The exact breakdown of each component as well as test
details will be announced closer to the date.
COURSE OUTLINE

<table>
<thead>
<tr>
<th>Date</th>
<th>Week</th>
<th>Lecture Topic</th>
<th>Lecturer</th>
<th>Tutorial/ TA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan-12</td>
<td>1</td>
<td>• Introduction: Structure of Aquatic Ecosystems</td>
<td>MD</td>
<td>No tutorial</td>
</tr>
<tr>
<td>Jan-19</td>
<td>2</td>
<td>• Thermal Structure of the Great Lakes</td>
<td>MD</td>
<td>Jan-17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assignment 1 due Week 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan-26</td>
<td>3</td>
<td>• Productivity of Aquatic Ecosystems</td>
<td>MD</td>
<td>Jan-24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Carbon and Nitrogen cycles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb-2</td>
<td>4</td>
<td>• Phosphorus Cycle</td>
<td>MD</td>
<td>Jan-31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Assignment 2 due on Week 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb-9</td>
<td>5</td>
<td>• Food Web / Planktonic Communities/Case studies</td>
<td>MD</td>
<td>Feb-7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Discussion of the students presentations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb-16</td>
<td>6</td>
<td>• Assignment 3 due on Week 8</td>
<td>MD</td>
<td>Feb-14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• In-class Term Test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb-23</td>
<td></td>
<td>• Reading week</td>
<td></td>
<td></td>
</tr>
<tr>
<td>March-2</td>
<td>7</td>
<td>• Cycling of micronutrients: Iron, Sulfur and Silica</td>
<td>MD</td>
<td>Feb-28</td>
</tr>
<tr>
<td>March-9</td>
<td>8</td>
<td>• Eutrophication in Great Lakes</td>
<td>MD</td>
<td>March-7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Assignment 4 due on Week 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>March-16</td>
<td>9</td>
<td>• Water-Land-Interfaces</td>
<td>MD</td>
<td>March-14</td>
</tr>
<tr>
<td>March-23</td>
<td>10</td>
<td>• Invasive species</td>
<td>MD</td>
<td>March-21</td>
</tr>
<tr>
<td>March-30</td>
<td>11</td>
<td>• Pollutants in Great Lakes</td>
<td>MD</td>
<td>March-28</td>
</tr>
<tr>
<td>Apr-6</td>
<td>12</td>
<td>• Students presentations</td>
<td>MD</td>
<td>Apr-4</td>
</tr>
</tbody>
</table>

Week 1 ORIENTATION/GREAT LAKES IN A GLOBAL CONTEXT/ STRUCTURE OF GREAT LAKES

Course Outline; Lecture Schedule
Thermal Layering & Lake Overturning
Thermal Classification of Lakes; Vertical Stability. Examples from the North American Great Lakes,
Dynamic Forcing of the Lakes, Coastal upwelling; Thermal bar revisited, Great Lakes Circulation, Thermocline Development
Lake Ecological Concept Ecosystem Interrelationships

Week 2 THERMAL STRUCTURE OF THE GREAT LAKES

Week 3 PRODUCTIVITY OF GREAT LAKES CARBON AND NITROGEN CYCLES

Algal Productivity. The occurrence of inorganic carbon in freshwater systems, utilization of carbon by algae. Sources and transformation of nitrogen in water, nitrogen loading
Week 4 PHOSPHORUS CYCLE
Phosphorus in freshwater systems, Phosphorus diagenesis, internal loading, sediment

Week 5 FOOD WEB, PLANKTONIC COMMUNITIES
Composition of the Algae of Phytoplankton, Importance of size
Phytoplanktonic Communities, Growth Characteristics and Mortality of Phytoplankton
Heterotrophy of organic carbon by algae and cyanobacteria
Seasonal succession of Phytoplankton

Week 6 – In class Term Test

Week 7 CYCLING OF MICRONUTRIENTS: IRON, SULFUR AND SILICA

Week 8 EUTROPHICATION PROBLEMS IN THE GREAT LAKES
Basic Concepts of Eutrophication Natural and Cultural Processes of Eutrophication
Relationships among Nutrients, Water Clarity, and Phytoplankton
Eutrophication Problems in: (i) Lake Erie; (ii) Lake Superior; (iii) Lake Michigan, (iv) Lake Huron; (v) Lake Ontario.

Week 9 WATER-LAND-INTERFACES
The littoral zone: aquatic macrophytes, their metabolism and primary production
Productivity of littoral algae Periphyton, littoral zooplankton communities Importance of wetlands and estuaries.

Week 10 INVASIVE SPECIES
Stressors and Induced Ecological Changes

Week 11 POLLUTANTS IN THE GREAT LAKES
Toxic Substances, Sources of Contaminants, The Fate of Contaminants, The Sediment Record
Physical and Chemical Characteristics of Contaminants and Their Distribution in Nature,
Toxicity and Its Prediction, Bioaccumulation and Biomagnification, Mercury and the Mercury Cycle, Toxic Chemicals, Environmental Health

Week 12 STUDENTS PRESENTATIONS

READINGS

There is no required text for this course, since there is no book that covers all the course material, while several books cover much more material than is required. Thus, specific readings will be given out during each lecture and/or practical sessions; however, a number of texts cover the course material in part and there is one journal devoted specifically to research on large lakes of the world, but with a dominance of papers on North American Great Lakes research:
This journal and the reference sources below will be used for course readings and as starting points for student seminars.

Books:

Late Penalties
The late policies: 5% penalty per day, and an assignment will not be accepted more than 1 week after due date.
Extensions without penalty will be granted for reasons of accommodation, illness or emergencies when appropriate documentation is submitted to the instructor. Reweighting of assignments/grades is not permitted.

Recording/electronics usage
Some lectures may be recorded. If recording:

Notice of video recording and sharing (download and re-use prohibited)
This course, including your participation, will be recorded on video and will be available to students in the course for viewing remotely and after each session.
Course videos and materials belong to your instructor, the University, and/or other sources depending on the specific facts of each situation and are protected by copyright. Do not download, copy, or share any course or student materials or videos without the explicit permission of the instructor.
For questions about the recording and use of videos in which you appear, please contact your instructor.

Academic Integrity

All suspected cases of academic dishonesty will be investigated following procedures outlined in the Code of Behaviour on Academic Matters. If you have questions or concerns about what constitutes appropriate academic behaviour or appropriate research and citation methods, please reach out to me. Note that you are expected to seek out additional information on academic integrity from me or from other institutional resources (for example, the University of Toronto website on Academic Integrity).

Academic integrity is essential to the pursuit of learning and scholarship in a university, and to ensuring that a degree from the University of Toronto is a strong signal of each student’s individual academic achievement. As a result, the University treats cases of cheating and plagiarism very seriously. The University of Toronto’s Code of Behaviour on Academic Matters outlines the behaviours that constitute academic dishonesty and the processes for addressing academic offences. Potential offences include, but are not limited to:
In papers and assignments:

- Using someone else’s ideas or words without appropriate acknowledgement.
- Submitting your own work in more than one course without the permission of the instructor in all relevant courses
- Making up sources or facts
- Obtaining or providing unauthorized assistance on any assignment

On tests and exams:

- Using or possessing unauthorized aids
- Looking at someone else’s answers during an exam or test
- Misrepresenting your identity

In academic work:

- Falsifying institutional documents or grades
- Falsifying or altering any documentation required by the University, including (but not limited to) doctor’s notes

Plagiarism

Students will be required to submit their course essays to the University’s plagiarism detection tool for a review of textual similarity and detection of possible plagiarism. In doing so, students will allow their essays to be included as source documents in the tool’s reference database, where they will be used solely for the purpose of detecting plagiarism. The terms that apply to the University’s use of this tool are described on the Centre for Teaching Support & Innovation web site (https://uoft.me/pdt-faq).

Accommodations and Accessibility

Students with diverse learning styles and needs are welcome in this course. In particular, if you have a disability/health consideration that may require accommodations, please feel free to approach me and/or the AccessAbility Services Office as soon as possible. The UTSC AccessAbility Services staff (located in S302) are available by appointment to assess specific needs, provide referrals and arrange appropriate accommodations (416) 287-7560 or ability@utsc.utoronto.ca. The sooner you let us know your needs the quicker we can assist you in achieving your learning goals in this course.

Religious Observances

Students at UTSC hold a wide range of religious beliefs. In accordance with the University [Policy on Scheduling of Classes and Examinations and Other Accommodations for Religious Observances](https://uoft.me/policy-religious) (June 2005) reasonable accommodation must be arranged for students who observe religious holy days other than those already accommodated by ordinary scheduling and statutory holidays.
Accommodations for term work in a course are the responsibility of the instructor. If the date of a final examination falls on a holy day observed by a student, the student should submit, through eService, a request for accommodation no later than two full weeks before the commencement of examinations. This will normally be granted with an explanation.

A ready reference on issues related to this topic can be found on the Accommodations for Religious Observances website.

Services, such as the writing centre
Please use the support of the writing centre at the UTSC.

Mental Health Statement

Supporting Mental Health in the U of T Community
As a student at U of T, you may experience circumstances and challenges that can affect your academic performance and/or reduce your ability to participate fully in daily activities. An important part of the University experience is learning how and when to ask for help. There is no wrong time to reach out, which is why there are resources available for every situation and every level of stress. Please take the time to inform yourself of available resources, including:

- Your College Registrar
- Student Life Safety & Support
- Student Life Health & Wellness
- Mental Health Resources
- Emergency support if you’re feeling distressed

An important part of the University experience is learning how and when to ask for help. Please take the time to inform yourself of available resources.