SYLLABUS
Introduction to Inorganic Chemistry
CHMB31H3, Fall 2021

Instructor Information
Instructor Email Office
Alen Hadzovic alen.hadzovic@utoronto.ca EV568

Office hours will be announced on Quercus early in the semester.

Introduction
Welcome to the amazing, complex and colorful world of inorganic chemistry, a chemistry discipline that deals with all chemical elements (natural and artificial), their properties, reactivities and compounds. Of currently known 118 elements, 92 occur in nature, while the rest were made in the laboratories. These 118 elements, these 118 LEGO blocks, are what all the stuff is made of: from the most distant stars and galaxies to the tiniest grain of dust in my office. This means that inorganic chemistry is everywhere.

Inorganic chemistry has a lot to cover, and material can be rather overwhelming. Essential for successful mastering of the inorganic chemistry is solid understanding and knowledge of material from introductory chemistry courses (CHMA10H3 and CHMA11H3 or equivalent). Using this knowledge as a basis, inorganic chemistry can be turned into a piece of cake (a somewhat big piece, but still a piece...).

A Note on Course Delivery for Fall 2021
As you are probably aware, this Fall our course will be delivered on-line (again), both lectures and labs. The course will be delivered in synchronous mode. There is a strong evidence indicating that having a schedule and well-defined timetable enhances knowledge retention and overall performance in a course. Hence, synchronous delivery was chosen. Our course always had a WebOption – lectures were videotaped in the classroom and then posted online for future viewing. To keep with this tradition, our online synchronous sessions will be recorded and posted for
asynchronous, remote viewing. I still, however, encourage you to come to the lectures to grab this important learning schedule and be a part of our online community.

The on-line delivery of labs is still something new to many of us. While you will not be able to do the experiments yourself in the actual lab setting, you will get the pedagogical content and critical thinking skills that each experiment is designed to provide. The labs are also going to be delivered synchronous and every attempt (as much as scheduling permits) will be made for lecture and lab content to run next to each other. The actual “how-to” for approach to the lab will be communicated to you before the labs begin (for example, how to maintain lab book from a distance, how to make notes of observations, submitting your reports etc.) A bit of a challenge will be providing you with quick, on-the-spot instruction and help you fix the mistakes as you go. But, we have to do our best. Certain degree of understanding and flexibility is expected from all of us (me, your Tas and you my friends). The labs WILL NOT have a asynchronous option.

Please keep in mind that course videos and materials belong to your instructor, the University, and/or other sources depending on the specific facts of each situation and are protected by copyright. **Do not download, copy, or share any course or student materials or videos** without the explicit permission of the instructor.

If any of you are in the different time zone and are worried about synchronous delivery – rest assured that your situation will be addressed.

Course Content

To make our early journey easier, our course is divided in two parts. The first part will cover introductory topics. You have already encountered most of this material in CHMA10H3 and CHMA11H3 and it would be a good idea to refresh your memory (the detailed topic list is given below). We shall not only review these basic concepts but also further expand and apply them to the problems closely related to the inorganic chemistry material. The second part of the course will cover the descriptive inorganic chemistry—the chemistry of the elements—of hydrogen and elements of Groups 1, 2 and 13-18 (or the main group chemistry).

Upon completion of this course, you should:
• Have a clear understanding of the periodic law and navigate through the periodic table;
• Be able to apply the periodic trends to predict the reactivities and properties of elements and their compounds;
• Discuss molecular and solid state structures;
• Apply your knowledge to solve simple reactivity and structural problems from the main group chemistry.
• Connect inorganic chemistry material and society at large (industry, environment, history of science etc.);

A detailed list of our topics is (the chapter numbers are from our textbook Atkins’ Inorganic Chemistry 7th edition):

Part I: Fundamental concepts

1. Inorganic chemistry – a general introduction to the discipline and our course
2. The Elements – what are they? (Chapter 1 and on-line materials)
 a. Atoms and their structure
 b. Structure of nucleus, radioactivity, fission and fusion
 c. Nucleosynthesis: the birth of elements in stars and laboratory (basics of stellar and interstellar inorganic chemistry and artificial nuclear reactions)
 d. Electronic structure of the atom
 e. The periodic table of the elements: Overview

NOTE: Topics 2a, 2b, 2d and 2e are related to the first-year chemistry material and it would be a good idea to refresh your old knowledge early!

3. Molecules, compounds and bonding (Chapter 2 and on-line materials)
 a. Lewis bonding model and VSEPR theory
 b. Valence bond (VB) theory
 c. Basics of molecular orbital (MO) theory

NOTE: Topics 3a, and 3b have been covered in detail in the first year. In this case, solid prior knowledge is expected!

4. Structure of simple solids (Chapter 4 and on-line materials)
a. Describing the structure of solids
b. Metals and alloys; metallic bonding
c. Ionic solids; ionic bonding
d. Thermochemistry and energetics of solid formation

5. Reactions:
a. Chemical equilibrium
b. Thermodynamics
c. Types of inorganic reactions
d. Redox reactions and electrochemistry (Chapter 6)
e. Acids, bases and their reactions (Chapter 7)

NOTE: Topics 5a, 5b, and 5c are not covered in the textbook but we really need them. You can use your CHMA10H3 and CHMA11H3 textbook and/or notes as sources (that should be adequate) to review this important material; solid prior knowledge is expected! Topics 4d and 4e are covered in the textbook but as you’ll see most of it is again an important revision of CHMA10H3/CHM11H3 material with some new concepts added.

Part II: Main group chemistry

6. Periodic table revisited (Chapter 9)
a. Periodic trends
b. Basic classes of inorganic compounds and their periodic characteristics

7. Hydrogen (Chapter 10)

8. The Group 1 elements (Chapter 11)

9. The Group 2 elements (Chapter 12)

10. The Group 13 elements (Chapter 13)

11. The Group 14 elements (Chapter 14)

12. The Group 15 elements (Chapter 15)

13. The Group 16 elements (Chapter 16)

14. The Group 17 elements (Chapter 17)

15. The Group 18 elements (Chapter 18)
I am deliberately avoiding assigning topics to a particular week of the semester because this gives us flexibility to slow down for topics that are more complex and repeat if needed what needs to be repeated as well as insert tutorial and practice as time allows.

The readings and practice problems from your textbook (textbook details are given later in the syllabus) will be given to you at the end of each lecture in your lecture notes. The lecture notes for each module will available on Quercus in pdf format. The modules will contain other useful materials to help you expand your knowledge, test it and challenge it. The lecture notes provide you with the overview of important concepts, ideas etc. and are the basis for class discussions and lectures. They will be your primary source - master them first and after move to the textbook to expand your knowledge and then (only if you want to) check other sources.

Knowledge of material from both lecture notes and relevant textbook readings is expected.

This course (unfortunately) does not have tutorials in the program. However, just like during previous years, we shall have some practice time. We can also organize tutorial/discussion/help sessions at the same time when practicals are scheduled but during weeks you skip.

Laboratory Component of CHMB31H3

The laboratory component starts during the week of September 13th and runs every other week. There are five experiments to be performed; all designed to demonstrate basic points from the lectures:

- Experiment 1: Acid-base and redox chemistry
- Experiment 2: The chemistry of groups 1 and 2
- Experiment 3: The chemistry of groups 13 and 14
- Experiment 4: The chemistry of groups 15 and 16
- Experiment 5: The chemistry of group 17 and inorganic analysis

Experiment/lab schedule
Evaluation Methods and Marking Scheme

<table>
<thead>
<tr>
<th>Laboratory component</th>
<th>= 25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 term tests, 20% each</td>
<td>= 40%</td>
</tr>
<tr>
<td>Final exam</td>
<td>= 35%</td>
</tr>
</tbody>
</table>

Both term tests will be composed of short answer questions and this year conducted on-line. For each you'll have 90 min to write with extra time for exam submission through Quercus. Additional
details will be communicated through Quercus prior to each exam. The time/date will be announced once the scheduling is completed, but the first term test is generally around the reading week while the second one is in late November. The first term test will cover all material from the lecture 1 up to the week of the test or reading week (depends on which one is first). The second term test covers the material between first term test and second term test. The final exam is cumulative with about 1/3 of questions covering material from the first half of the course (material from the first term test) and 2/3 of questions covering the second part of the course (material covered after the first term test). The final will have both multiple choice and short answer questions and will take three hours to write plus extra time for exam submission on Quercus.

You have examples of old term tests and final exams posted on Quercus. *Considering current health crisis, your tests might have slightly different format, but the focus is the same.* Use these as extra practice problems.

Missed term test policies

If you **miss a term test**, you must declare your absence using ACORN tool available at: https://www.utsc.utoronto.ca/registrar/acorn-absence-declaration-tool

You are also required to fill the departmental absence form available at: https://forms.office.com/Pages/ResponsePage.aspx?id=JsKqeAMvTUuQN7RtVsVSEDviET3jw6RMpzkP4YcBb0RUNkdDVFA5WVFZENN MVdRWlpNWJIVYRkNRMy4u

Note that this web address is expected to change so please keep an eye on the announcement on our Quercus page for updated web address. If clicking on the link above does not work, please copy the address, and paste it in your browser.

After you complete the declarations, you have two choices:

a) add the value of the missed test to your final exam (for example, if you miss a term test for a valid reason and chose this option, your final exam will be worth 35% + 20% = 55% of your final mark), or
b) a make-up test which this year is going to be in a form of oral (NOT written) exam due to scheduling issues.

Achieving Success in Inorganic Chemistry

As mentioned previously, **stay on the top of your material**: read, practice and take notes on regular basis. Much of the material requires knowledge from CHMA10 and CHMA11—**do not be shy** to go back and refresh your memory. **Take advantage of office hours**—note the questions that come up as you study, come to the office hours and discuss them. **Ask questions during the lectures**—while the question is fresh in your mind and the material is still new. Attend Facilitated Study Groups—they help a lot!

CHMB31H3 Resources

Your required textbook:

(Note: the previous, sixth, edition is also acceptable!)

Not required, but recommended:

(Note: the previous, sixth, edition is also acceptable!)

I do understand that it is going to be challenging to obtain the textbooks these days. Our UTSC bookstore has ordered the copies for you. If you cannot obtain the book from the bookstore, any other way is acceptable. The textbook publishers are not very cooperative to provide e-copies to the university libraries, unfortunately. One point is important to mention: these two textbooks are **used in all four inorganic chemistry courses**. So, if you plan on taking any remaining three (CHMC31, CHMD39 and/or CHMD69) it is worth to invest and have your own copies. Some lectures have alternative readings posted on Quercus (I think the first five), so you are good for the first two or three weeks of our course! If I manage to produce more material, you will be notified, of course. Speaking of these, if you use these readings, I would like your honest opinion.
Other suggested books

This is an excellent inorganic chemistry textbook. Importantly for us, it has a very good coverage of nucleosynthesis and formation of elements in the stars. The rest of it is an advanced reading. If you would like to explore and learn more about the elements, their properties and compounds, this book is a great starting point. It covers in particular detail the elements, their properties and compounds.

Some popular books (non-textbooks) on chemical elements:

There are many other popular science books dealing with the elements, their birth and occurrence, their compounds and history. Some of them can be found in UTSC library!

On the web

Visual Elements Periodic Table:
http://www.rsc.org/chemsoc/visualelements/pages/periodic_table.html
- A beautiful and artistic representation of periodic table and the elements

WebElements www.webelements.com
- Provides a lot of data for each element (but I find it a bit messy)

WebMineral www.webmineral.com
Minerals are only one place where we can find inorganic chemistry in nature.

The Guided Tours of Metalloproteins http://www.chem.utoronto.ca/coursenotes/GTM/main.htm
The other place where we find inorganic chemistry is in us and all other living creatures!

Office hours and contact info

I can be reached via e-mail: alen.hadzovic@utoronto.ca.

My office is located in the Environmental Sciences and Chemistry Building, 5th floor, room EV568. However, our office hours will be scheduled virtually. The office hours’ schedule will be posted on Quercus as soon as my schedule is finalized, hopefully prior to the start of the semester, but a lot of flexibility will be applied (in line with current situation). **If you would like to get in touch outside the office hours (for any reason), please e-mail me and we’ll schedule the time.**

Academic Integrity

Academic integrity is one of the cornerstones of the University of Toronto. It is critically important both to maintain our community which honors the values of honesty, trust, respect, fairness and responsibility. It also protects you, the student within our community as well as the value of the degree towards which you are all working so diligently. Detailed information about how to act with academic integrity, the Code of Behavior on Academic Matters, and the processes by which allegations of academic misconduct are resolved can be found online: [Student Academic Integrity | Faculty of Arts & Science (utoronto.ca)](http://www.utoronto.ca) and [FAQ | Vice Principal Academic & Dean (utoronto.ca)](http://www.utoronto.ca)
Section B of the University of Toronto's Code of Behaviour on Academic Matters (http://www.governingcouncil.utoronto.ca/policies/behaveac.htm) lists actions that are considered academic offences. Some of the most common offences are:

- To use someone else's ideas or words in their own work without acknowledging that those ideas/words are not their own with a citation and quotation marks, i.e. to commit plagiarism.
- To include false, misleading or concocted citations in their work.
- To obtain unauthorized assistance on any assignment.
- To provide unauthorized assistance to another student. This includes showing another student completed work.
- To submit their own work for credit in more than one course without the permission of the instructor.
- To falsify or alter any documentation required by the University. This includes, but is not limited to, doctor's notes.
- To use or possess an unauthorized aid in any test or exam.

There are other offences covered under the Code, but these are by far the most common. Please respect these rules and the values which they protect. Offences against academic integrity will be dealt with according to the procedures outlined in the Code of Behavior on Academic Matters.

Accessibility

Students with diverse learning styles and needs are welcome in this course. In particular, if you have a disability/health consideration that may require accommodations, please feel free to approach me and/or the AccessAbility Services Office (ability@utsc.utoronto.ca) as soon as possible. I will work with you and AccessAbility Services to ensure you can achieve your learning goals in this course. Enquiries are confidential. The UTSC AccessAbility Services staff are available by appointment to assess specific needs, provide referrals and arrange appropriate accommodations. More details are available at: http://www.utsc.utoronto.ca/ability/.

GOOD LUCK AND SEE YOU SOON!!

AH