
THE SUNNY COLLAPSING PROCEDURE

ALEXANDER KUPERS

Abstract. We explain Goodwillie’s sunny collapsing procedure, and a result that con-
structs its input.

In this talk we explain §I.C of [Goo90].

1. Context

Let’s recall what we are trying to prove, and what the strategy is. We let CE(P,N) denote
the space (or simplicial set) of concordance embeddings; embeddings e : I × P → I ×N that
are equal to idI × e0 on {0} × P ∪ ∂I × and satisfy e−1({1} ×N) = {1} × P .

Theorem 1.1 (Multiple disjunction). Suppose that Q1, . . . , Qk ⊂ N is a collection of k
disjoint submanifolds of dimension qi. Writing k = {1, . . . , k}, then we can produce a cubical
diagram of spaces (based at idI × inc)

k ⊃ I 7−→ CE(P,N \ ∪i/∈IMi) ∈ Top∗
with maps in the diagram given by the inclusions. This cube is r-cartesian for r = n− p− 3 +∑k

i=1(n− qi − 1), as long as n− p ≥ 3 and n− qi ≥ 3 for all 1 ≤ i ≤ k.
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Figure 1. A concordance embedding.
1



2 ALEXANDER KUPERS

For k = 1, this says that CE(P,N \M)→ CE(P,N) is (2n− p− q− 4)-connected. Manuel
outlined the argument for it, and Mauricio explained some generalisations of Blakers–Massey
which will serve a role in proving the general case.

To motivate the sunny collapsing procedure, we take another look at Manuel’s outline,
which specialises to k = 1. A homotopy class of pairs (Ds, ∂Ds)→ (CE(P,N),CE(P,N \M))
can be represented by a map

F : I × P ×Ds → I × P ×N

which (a) is smooth and over Ds, (b) yields a concordance embedding Fy for fixed y ∈ Ds, (c)
Fy avoids M for y ∈ ∂Ds. A map F satisfying just (a) and (b) is called a fibered concordance.
The definition of a fibered isotopy of concordances is the obvious one: replace Ds by Ds× [0, 1].

Notation 1.2. Sometimes, to recall that Ds is the parameter in a fibered concordance, I
will denote a point in it by Fy instead of y.

The plan is to give a stratification {Σ} of P ×Ds (morally, pulled back from some universal
stratification on P ×CE(P,N) but no need to do so in practice), with the following properties:

(1) there are good and bad strata,
(2) bad strata have codimension ≥ n− 2,
(3) good strata admit an inductive construction: say F is “nice” on a stratum Σ if

(z, Fy) ∈ Σ ⊂ P ×Ds then Fy(I × {z}) ∩Q = ∅. The inductive construction says
that if F is nice on Σ′ for all Σ′ of greater codimension, then we can find a fibered
isotopy of concordances so that F is nice on Σ as well.

The construction of the stratification is quite involved, but the idea is that it keeps of
whether for (z1, z2, Fy) ∈ (I × P )(2) ×Ds (here (−)(r) is Goodwillie’s notation for ordered
configuration spaces, it is the case that Fy(z1) is below Fy(z2). This means that Fy(zi) =
(ti, xi) ∈ I ×N with x1 = x2 and t1 < t2. In fact, the first candidates for strata are pπiS0
with

S0 = {(z1, z2, Fy) ∈ (I × P )(2) ×Ds | F (z1) below F (z2)}
and πi : S0 → I × P ×Ds and p : I × P ×Ds → P ×Ds the projections.

Example 1.3. (x, Fy) ∈ pπ1S0 if there is a point x′ ∈ P and t, t′ ∈ I such that Fy(t, x) is
below Fy(t′, x′). For (x, Fy) ∈ pπ2S0 replace “below” by “above” (defined analogously).

The strata of greater codimension are built as projections pπiWα of subsets Wα of sets Sα
built from S0. These are generated by:

· Operation A: relegate non-manifold points to new strata.
· Operation B: keep track of more complicated “coincidence patterns”: more compli-

cation in N for example means there are points x ∈ P such that Fy(t, x) is below
Fy(t′, x′) which in turn is below Fy(t′′, x′′), and more complication in P for example
means there are two distinct points Fy(t1, x) and Fy(t2, x) which are below Fy(t′1, x′)
and Fy(t′′1 , x′′) respectively.

· Operation C: to be explained momentarily.
· Operation D: add limits points of strata as new strata.
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Figure 2. An example of (z1, z2, Fy) ∈ S0, zi = (xi, ti) ∈ P × I.

We obtain a collection {Sα} of subsets of (I ×P )(rα)×Ds. We want to use the projections
of Sα as strata, but they may intersect. To amend this, we take

Wα = {z ∈ Sα | ∀i ∈ rα, pπiz is not in any set pπjSβ ( pπiSα},

making them evidently disjoint in P ×Ds. Intuitively, Wα ⊂ Sα is the subset of points that
satisfy no finer pattern and are not degenerate in the sense addressed by operations A, C,
and D.

Recall that Sα in particular keeps track of various “coincidence patterns”: whether Fy(t, x)
is below some other Fy(t′, x′) and whether some such pairs Fy(t1, x1) and Fy(t2, x2) of
overlying points satisfy x1 = x2. In Wα, these patterns can’t change when moving through
Wα; otherwise some points would be relegated to a deeper Wβ . However, there are multiple
components because for pairs Fy(t1, x1) and Fy(t2, x2) which satisfy x1 = x2, we did not
keep track of whether t1 < t2 or t2 > t1. This allow us to decompose Wα further into along
certain binary relations:

W (D,R)
α = {z ∈Wα | ∀i, j ∈ rα πiz is below πjz if iDj and πiFy(z) is below πjFy(z) if iRj}.

The strata are then the sets pπiW (D,R)
α .

One of the conditions defining good strata will be that Σ = pπiW
(D,R)
α ⊂ P × Ds has

an “uppermost lifting” Σ̃ ⊂ I × P ×Ds. A condition that guarantees its existence can be
given in terms of D and R; it not being satisfied is one of the two ways a stratum can be bad
(W (D,R)

α “contains a loop”). We define

Σ̃↑ := {(t, x, Fy) ∈ I × P ×Ds | ∃t′ < t with (t′, x, Fy) ∈ Σ̃.}
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Figure 3. Σ̃, Σ̃↑, T and T ↑.

The fact that Σ̃ is an uppermost lifting means that Σ̃ ∪ Σ̃↑ is disjoint π1S0, or equivalently
that when we define

T = {(Fy(t, x), Fy) ∈ I ×N ×Ds | (t, x, F ) ∈ Σ̃ ∪ Σ̃↑}

we have that

T ↑ = {(t, x, Fy) ∈ I ×N ×Ds | ∃t′ < t with (t′, x, Fy) ∈ T}

is disjoint from the image of F .
We now reach the pictures that Manuel drew before: we want to remove the set K of

points on the highest sheet over a good stratum Σ of greatest codimension on which F is
not yet nice. We intent to do this by pushing up the image of F over T ↑, removing K in the
process. This is possible since there are no points of the image of F above it, and it is this
procedure that I want to describe.

We will see it is given by simultaneously pushing down a surface G(φu) in I × P ×Ds

and G(ψu) in I ×N ×Ds, so that F (G(ψu)) is the transverse intersection of G(ψu) with the
image of F .

There is two subtleties. Firstly, this pushing procedure needs a more space: it is performed
in a neighborhood of T ∪ T ↑. This will not play a role in this talk. Secondly, we will need
more than just that Σ̃ ∪ Σ̃↑ avoids π1S0 (so no points lie above it): we also want to avoid
an infinitesimal version; the infinitesimal version of lying in π1S0 is that the image of F is
vertical (i.e. ∂

∂t is tangent to it). Not all such points are a problem, but only those points
where the locus in I × P ×Ds of points whose image under F is vertical is itself vertical.
Operation C records derivative data to allow us to introduce second way in which a stratum
can be bad: if it is the image under p of Wα with D(pF )xi( ∂∂t ) = 0 for some xi, with
pF : I × P ×Ds → I ×N ×Ds → N ×Ds.

2. The sunny collapsing procedure

I will now give the technical details of the sunny collapsing procedure sketched above.
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Figure 4. The surfaces G(φu) sliding down in I × P .

Figure 5. Removing K by restricting to the part below G(φu), and then pushing
upwards.

Definition 2.1. Suppose that F = (h, f, p3) : I × P × Ds → I × N × Ds is a fibered
concordance. Then fibered sunny collapse data consists of smooth homotopies

φu : P ×Ds → (0, 1] ψu : N ×Ds → (0, 1]

satisfying:
(i) φu(x, y) = 1 if u = 0 or x ∈ ∂P , ψu(z, y) = 1 if u = 0 or z ∈ ∂N ,
(ii) if t = φu(x, y), then h(t, x, y) = ψu(f(t, x, y), y),
(iii) if t < φu(x, y), then h(t, x, y) < ψu(f(t, x, y), y),
(iv) if t = φu(x, y), then ∂

∂t (h(t, x, y)− ψu(f(t, x, y), y)) > 0.

From this data, the fibered sunny collapse is the fibered isotopy of concordances given by

Fu(t, x, y) =
(

h(tφu(x, y), x, y)
ψu(f(tφu(x, y)), x, y) , f(tφu(x, y), x, y)

)
.

That is, we restrict F to {(t, x, y) | t ≤ φu(x, y)} ⊂ I × P ×Ds, and scale the intervals in
the I-direction of the domain to have length 1 by dividing by φu(x, y), hence identifying the
domain with I × P × Ds once more. The result is not a fibered concordance because “it
doesn’t hit the top,” and we scale intervals in the I-direction of the target by dividing by
ψu(x, y) to fix this. By (i) we start at the identity aand nothing happens near the boundary
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Figure 6. G(φu), G(φu)↓, G(ψu), and G(ψu)↓.

of P . Using (ii) this hits the top, and using (iii) nothing gets pushed out the top. It remains
to interpret (iv).

Geometrically, we consider the graphs

G(φu) = {(t, x, y) ∈ I × P ×Ds | t = φu(x, y)}
G(ψu) = {(t, x, y) ∈ I ×N ×Ds | t = ψu(x, y)}

and the regions

G(φu)↓ = {(t, x, y) ∈ I × P ×Ds | t < φu(x, y)}

G(ψu)↓ = {(t, x, y) ∈ I ×N ×Ds | t < ψu(x, y)}.

Then (ii) is equivalent to F (G(φu)) ⊂ G(ψu) and (iii) to F (G(φu)↓) ⊂ G(ψu)↓. Moreover,
(iv) says that F is transverse to G(ψu).

We want to construct ψu given by φu. On the way to this, we observe:

Lemma 2.2. Conditions (i)–(iv) on φu and ψu imply
(i’) For 0 ≤ t ≤ φu(x, y), no F (φu(x′, y), x′, y) is below F (t, x, y).

(ii’) If v is a tangent vector to (t, x, y) ∈ I × P × Ds such that t = φu(x, y), and
D(φup2,3)(v) ≥ D(p1)(v), then DF (v) is not upward vertical.

Geometrically, (i’) says no point in F (G(φu)) is below a point of cl(F (G(φu)↓)) = F (G(φu)∪
G(φu)↓); if F (t, x, y) is below F (t′, x′, y) then the moving surface G(φu) may not sweep
through (t, x, y) unless it has already swept through (t′, x′, y). Similarly, (ii’) says that no
inward pointing vector of cl(F (G(φu))↓)) at F (G(φu)) may be upward vertical. These are of
course necessary consequences of the fact that G(ψu) is a graph transverse to F .

Remark 2.3. Let us give the sunny interpretation: think of cl(F (M(φu))) as subsurface of
I ×N ×Ds melting away, then (i’) says only parts in the sun may melt, and (ii’) says you are
not in the sunshine if the ray of light hitting a point is outward tangent to this subsurface.

Remark 2.4. In terms of good/bad strata: to eventually verify (i’) we don’t want points over
the uppermost sheet, and to eventually verify (ii’) we want to rule out certain type of vertical
points. (It does not seem to me that the condition defining the “bad strata” in the latter case
is the same as (ii’), but presumably the link between them will become clear in the proof.)
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Figure 7. Sunny parts of a concordance embedding.

Figure 8. A reason for including condition (ii’).

The converse is that given φu satisfying (i), (i’), and (ii’) we can construct ψu:

Proposition 2.5. If φu : P ×Ds → (0, 1] satisfies (i), (i’), and (ii’), there exists a ψu : N ×
Ds → (0, 1] satisfying (i)–(iv).

Proof. We first reduce to a local problem, in I ×N ×Ds (note I is now the time parameter
of the homotopy, so we use the notation u ∈ I). We also write ψu(x, y) = ψ(u, x, y). The
crucial observation is that (i), (ii), and (iii) and preserved by convex combinations. More
precisely, let {Uα} be an open cover I ×N ×Ds and {ρα} be a subordinate partition of unity.
Then we have ψα : Uα → (0, 1] satisfies (i), (ii), and (iii), so does

∑
α µαψα. This is obvious

for (i) and (ii). For (iii) we note that for t < φu(x, y) we have∑
α

µα(f(t, x, y), x, y)ψα(u, f(t, x, y), x, y) >
∑
α

µα(f(t, x, y), x, y)h(t, x, y) = h(t, x, y)
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since in the first inequality all terms are non-negative, and at least one is smaller. The
argument for (iv) is similar.

Now we solve the local problem. Fix (u0, z0, y0) ∈ I ×N ×Ds, then we will construct ψu
in a neighborhood of this set (suppressing α). Of course (i) is easy to arrange and we’ll ignore
it. We start with an observation simplifying the verification of (iii) and (iv). Since (iii) and
(iv) are equivalent to

g(u, t, x, y) =
{
h(t,x,y)−ψ(u,f(t,x,y),y)

t−φu(x,y) if t 6= φu(x, y)
∂
∂t (h(t, x, y)− ψ(u, f(t, x, y), y) if t = φu(x, y)

being positive on (u, z, y) of the form (u, f(t, x, y), y) with t ≤ φu(x, y), this is true near
(u0, z0, y0) if it is true at this point.

Now there are two cases:

Case 1. If z0 6= f(φu0(x0, y0), x0, y0), then we can just set ψ(u, z, y) = 1: (ii) and (iv) are
vacuous, and (iii) is true because t < φu(x, y) =⇒ t < 1 ⇒ h(t, x, y) < 1.

Case 2. If z0 = f(φu0(x0, y0), x0, y0) consider the map

E : I × P ×Ds −→ I ×N ×Ds

(u, x, y) 7−→ (u, f(φu(x, y), x, y), y).

We claim it is a proper injective immersion, so an embedding (its image is the graph swept
out by the projection of F (G(φu)) to N). We will use (i’) to prove it is an injection: if
E(u′, x′, y′) = E(u, x, y) then it must be true u′ = u and y′ = y but x′ 6= x, and also
f(φu(x′, y), x′, y) = f(φu(x, y), x, y) ∈ N . Since F is injective, it must be true without loss
of generality that h(φu(x′, y), x′, y) < h(φu(x, y), x, y) ∈ I. That is, F (φu(x′, y), x′, y) is
below F (t, x, y) with t = φu(x, y). By (i’) this is only possible if φu(x, y) = t > φu(x, y),
contradiction. Similarly, (ii’) is used to prove it is an immersion.

Since E is an embedding and (u0, z0, y0) is in the image of E there is a smooth function ψ
defined near (u0, z0, y0) so that ψ(E(u, x, y)) = h(φu(x, y), x, y). This definition guarantees
that (ii) holds:

ψu(f(φu(x, y), x, y), y) = ψ(u, f(φu(x, y), x, y), y) = ψ(E(u, x, y)) = h(φu(x, y), x, y).

Next we claim that (iii) and (iv) are true at (u0, z0, y0), i.e. when (u, z, y) = (u, f(φu(x, y), x, y), y)
is equal to (u0, z0, y0). For (iii), note that if t < φu(x, y) = φu0(x, y0) and f(t, x, y0) = z0
then firstly we must have that

(t, x, y0) 6= (φu0(x0, y0), x0, y0)

because if this were true then x = x0 and we get a contradiction from t < φu0(x, y0) =
φu0(x0, y0). Since F is injective and f(t, x, y0) = z0 = f(t0, x0, y0) we must have that
h(t, x, y0) 6= h(φu0(x0, y0), x0, y0). By (i’), we then must have

h(t, x, y0) < h(φu0(x0, y0), x0, y0) = ψ(f(φu0(x0, y0), x0, y0).

which is (iii). We’ll leave (iv) to the motivated reader. �
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Figure 9. An example of K ⊂ N × I which sunny collapses.

In practice, φu(x, y) = 1− u(1− φ(x, y)) for some φ : P ×Ds × (0, 1], so we are linearly
interpolating between 1 and φ(x, y). In this case, the assumptions (i), (i’), and (ii’) are
satisfied if:

(i”) φ(x, y) = 1 if x ∈ ∂P ,
(ii”) if F (t, x, y) is below F (t′, x′, y′), then φ(x, y) > t or (1− t)(1− φ(x′, y)) > (1− t′)(1−

φ(x, y)),
(iii”) if φ(x0, y0) ≤ t0 < 1 and DF (v) = ∂

∂t for v a tangent vector at (t0, v0, y0), then
(dφ)(Dp2,3(v)) < 1−φ(x0,y0)

1−t0 dp1(v).

3. Sunny collapsing in PL topology

In PL topology, the role of “sunny collapse data” is the following:

Definition 3.1. We say K ⊂ N × I sunny collapses if N × I can be triangulated such that
K is a subcomplex and there is a sequence of elementary collapse M = Kn ↘ Kn−1 ↘ · · · ↘
K0 = M ×{0}∪∂M × I so that sh(Ki)∩Kn ⊂ Ki−1 with sh(Ki) = {(x, t) ∈ N × I | (x, t′) ∈
Ki for some t′ > t}.

The closed to a “sunny collapsing procedure” I have seen is when K is the image of a
concordance embedding, and we take iterated application of the disc unknotting theorems
make the concordance increasingly straight. This occurs in the proof of concordance-implies-
isotopy [Hud70]. Generically, K sunny collapses, by combining [Hud69, Lemma’s 4.9 and
5.4]:

Theorem 3.2. Given a PL embedding f : X × I ↪→ N × I of codimension ≥ 2 so that
f−1(N ×{0}∪∂N × I) = X×{0}. Then there is a homeomorphism h : N × I → N × I which
is the identity on N × {0} ∪ ∂N × I and arbitrary close to the identity such that hf(X × I)
sunny collapses.

Let me illustrate its use by a different result in PL-topology, which is input to proving
sphere and disc unknotting in codimension ≥ 3.
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Proposition 3.3. If K ⊂ N×I sunny collapses, then N×I collapses to N×{0}∪∂N×I∪K.

Proof. Step 1: collapse downwards onto K ∪ sh(K). Step 2: collapse away the pieces
sh(Ki) \ sh(Ki−1) “sideways”, starting with i = n. �
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