
Z AND THE STRATIFICATION

ALEXANDER KUPERS

Abstract. We complete the last step before the proof of multiple disjunction for concor-
dance embeddings: the construction of Z and the associated stratification of P ×Ds for a
fibered concordance I × P ×Ds → I ×N ×Ds.

In this lecture we discuss Chapters II.C and II.D of [Goo90].

1. Context

As mentioned in the previous talk, recall we are trying to modify a fibered concordance

F : I × P ×Ds −→ I ×N ×Ds

through a fibered isotopy of concordances, so as to avoid some submanifold I×M of I×N (or
at least one in a collection of these). Our plan is to give, after putting F in general position,
a stratification of P × Ds with good and bad strata such that the bad strata have large
codimension and on good strata we can inductively remove the intersections with I ×M .

In this talk we define this stratification. It will arise from a collection Z of invariant
algebraic sets of complex multijets; these are certain sets of jets of locally holomorphic maps
Cp+1 → Cn near r points that describe these strata in (complexified) local coordinates; they
are produced by the four operations A, B, C, and D from a basic one Z0, which records when
the images of two points are on the same vertical line in the target.

2. Defining Z

2.1. Recap and the definition of Z. Last lecture we defined invariant algebraic sets of
complex multijets (IASCMs), which are subsets Z ⊂ rJ∞C (Cp+1,Cn) =: rJ∞ such that

· Z = (p∞m )−1(p∞m (Z)) with p∞m : J∞ → Jm,
· p∞m (Z) is closed algebraic defined over R,
· Z is domain-invariant,
· Z is range-invariant.

The number r is called the rank and m is called the level. The latter two conditions are such
that it makes sense to write

z ∈ S(Z,P,N)⇐⇒ there exists z̃ ∈ Z such that r∞j (ψ)(tz) ◦ z = z̃ ◦ rj∞(id× φ)(sz),

for charts φ of R× P and ψ of N .
The basic IASCM is Z0 = {(z1, z2) ∈ 2J∞ | t(z1) = t(z2)} recording vertical coincidence

in the target. Further ones are produced from these by operations:
A. “Relegate non-manifold to deeper strata.”
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B. “Relegate intersections of strata to deeper strata.”
C. “Relegate to deeper strata those points where an outwards pointing vertical tangent

vector exists.”
D. “Relegate to deeper strata those points obtained by collisions of points in previous

strata.”
The reader should consult the previous lecture for an outline of their definition.

Definition 2.1. The collection Z of IASCM’s is given by iteratively applying operations A,
B, C, and D to Z0.

2.2. Codimension. Our goal in this section is to define the “codimension” c(Z) of a stratum,
and prove that under the assumption n− p ≥ 3 there are only finitely many strata of a given
codimension.

2.2.1. A partial order of strata. This result will follow by relating codimension to a more
combinatorially defined partial order:

Definition 2.2. Define a category CZ by
· Objects are Z ∈ Z,
· Morphisms Z → Z ′ are injective maps φ : I(Z)→ I(Z ′) such that φ∗(Z ′) ⊂ Z.

All endomorphisms are automorphisms, so the following defines a partial order:

Definition 2.3. Let [Z] denote the isomorphism class of Z in CZ , and write [Z] ≤ [Z ′] if
and only if there is a morphism Z → Z ′.

Lemma 2.4. For Z,Z ′ ∈ Z we have

[Z] ≤ [A(Z)] [Z], [Z ′] ≤ [Bφ,φ′,i,i′(Z,Z ′)] [Z] ≤ [Ci(Z)].

Proof. By construction of operations A, B, and C. �

Remark 2.5. Of course, no analogous statement is true for operation D because it involves
collision of points and thus strictly decreases the rank.

2.2.2. Equivalence relations for vertical coincidence. The result about the number of strata
of a given codimension will to proceed by induction over the partial order ≤, by an internal
induction over a stratification of source points of the target Z ′. To that end, we introduce a
pair of equivalence relations and a subset. (These will also play a role when defining bad
strata.) Recall that if Z has rank r, it consists of jets at r ordered points, that is, its source is
indexed by the set {1, . . . , r(Z)}. Because injections between these sets will play an important
role, we will introduce the notation:

I(Z) := {1, . . . , r(Z)}.

Recall we write z ∈ Z as (z1, . . . , zr(Z)) and s, resp. t, denote the source or target of a jet.

Definition 2.6. Given Z ∈ Z, we define two equivalence relation ∼ and ≈ on I(Z), and a
subset ∆ ⊂ I(Z) by

i ∼ j ⇐⇒ for all z ∈ Z, p2szi = p2szj ,
i ≈ j ⇐⇒ for all z ∈ Z, tzi = tzj ,
i ∈ ∆⇐⇒ for all z ∈ Z, ker(Dzi) 6= 0.



Z AND THE STRATIFICATION 3

Lemma 2.7.
(i) The equivalence relation generated by ∼ and ≈ is the unique equivalence relation with

one equivalence class.
(ii) For each i ∈ I(Z) either (I) i ∈ ∆ or (II) there exists j ∈ I(Z) such that j 6= i and

j ≈ i.

Sketch of proof. This is true for Z0 and preserved by operations A, B, C, and D. �

2.2.3. Codimension. If Z is an IASCM then by definition we have Z = (p∞m )−1(p∞m (Z)) with
p∞m (Z) a closed algebraic subset of some rJm. As such p∞m (Z) has a codimension, and it is
easy to verify that this is independent of m.

Definition 2.8. For a IASCM Z of rank r, we set

c(Z) := codim(p∞m (Z))− r(p+ 1).

Remark 2.9. The motivation is that later, when we use Z to define the singular set S∗α for
fibered concordance F : I × P × Ds → I × N × Ds, this will generically have dimension
s− c(Z).

Lemma 2.10. Suppose n − p ≥ 3. If [Z] ≤ [Z ′] then c(Z) ≤ c(Z ′). Moreover either
c(Z) < c(Z ′) or r(Z) = r(Z ′) and Z ′ is isomorphic to a subset of Z.

Proof. If [Z] ≤ [Z ′] there is an injection φ : I(Z) ↪→ I(Z ′) such that φ∗(Z ′) ⊂ Z. As a
consequence of Lemma 2.7, there is a sequence

φ(I(Z)) = I0 ⊂ I1 ⊂ · · · ⊂ Ih = I(Z)

for h ≥ 0, where in each step on the following holds:
(1) Ik is obtained from Ik−1 by adding i with i ∼ j for j ∈ Ik−1 and i ∈ ∆.
(2) Ik is obtained from Ik−1 by adding i, i′ with i′ ≈ i ∼ j for j ∈ Ik−1.
(3) Ik is obtained from Ik−1 by adding i with i ≈ j for j ∈ Ik−1.

For simplicity, we assume that Ik = {1, . . . , rk} and φ is the standard inclusion. (The general
case follows by modifying notation.) We then define Zk, starting with Z0 = Z and obtaining
Zk from Zk−1 by (depending on the above case)

(1) Zk consists of (z1, . . . , zrk−1+1) with (z1, . . . , zrk−1) ∈ Zr−1 and kerDzrk−1+1 6= 0,
p2szrk−1+1 = p2szj .

(2) Zk consists of (z1, . . . , zrk−1+1, zrk−1+2) with (z1, . . . , zrk−1) ∈ Zk−1 and tzrk−1+1 =
tzrk−1+2, p2szrk−1+1 = p2szj .

(3) Zk consists of (z1, . . . , zrk−1+1) with (z1, . . . , zrk−1) ∈ Zr−1 and tzrk−1+1 = tzj .
Then we can estimate that

(1) c(Zk) = codim(Zk)− (rk−1 + 1)(p+ 1) = codim(Zk−1) + (n− p) + p− rk−1(p+ 1)−
(p+ 1) = c(Zk−1) + (n− p− 1).

(2) c(Zk) = codim(Zk)−(rk−1 +2)(p+1) = codim(Zk−1)+n+p−rk−1(p+1)−2(p+1) =
c(Zk−1) + (n− p− 2).

(3) c(Zk) = codim(Zk)− (rk−1 + 1)(p+ 1) = codim(Zk−1) + n− rk−1(p+ 1)− (p+ 1) =
c(Zk−1) + (n− p− 1).



4 ALEXANDER KUPERS

Since Z ′ ⊂ Zh, we have that c(Z ′) ≥ c(Zh).
The result follows once we observe that equality can only occur if h = 0, and then φ is a

bijection and φ∗(Z ′) ⊂ Z with φ∗ an isomorphism. �

How do the operations A, B, C, and D, affect codimension?

Lemma 2.11. Operations A, C and D strictly increase codimension. For operation B we
have

c(Bφ,φ′,i,i′(Z,Z ′)) ≥ c(Z) with equality only if the r(Bφ,φ′,i,i′(Z,Z ′)) = r(Z)

and similarly for Z ′.

Sketch of proof. For A this is trivial, for B this follows from the previous lemma. For C and
D this is more involved (this uses various facts about algebraic varieties).

Let us outline the proof for D. To do so, we need to recall its precise description: you give
a surjection φ : {1, . . . , r(Z)} → {1, . . . , r′} which is not a bijection, and let Kn denote the
space of all complex polynomials maps Cp+1 → Cn of degree < r

(
p+1+m
m

)
. Then you let X be

the Zariski closure in (Cp+1)r ×Kn of X = {(x, f) ∈ (Cp+1)(r) ×Kn | rjm(f)(x) ∈ p∞m (Z)},
and set Y = {(y, f) ∈ (Cp+1)r′ ×Kn | (y ◦ φ, f) ∈ X}. Finally Dφ(Z) ⊂ rJ∞ is given by
those (z1, . . . , zr′) such that p∞(m+1)#φ−1(i′)−1(zi′) = j(m+1)#φ−1(i′)−1(f)(yi′).

Let j′ : (Cp+1)r′ ×Kn →
∏r′

i′=1 J (m+1)#φ−1(i′)−1 be the projection onto the corresponding
jets. If last time we had done the proof that Dφ(Z) is an IASCM, we would have learned
that this is a submersion/ Then we have that

c(Dφ(Z)) = codim(j′(Y ),
r′∏
i′=1
J (m+1)#φ−1(i′)−1)− r′(p+ 1)

= codim(Y, (Cp+1)r
′
×Kn)− r′(p+ 1)

= dim(Kn)− dim(Y )

≥ dim(Kn)− dim(X −X)
> dim(Kn)− dim(X)
= codim(Z, rJm)− r(p+ 1)
= c(Z),

where we used that Y is isomorphic to a subset of X − X, and that X is isomorphic to
p∞m (Z). �

Corollary 2.12. For any N there are only finitely many Z ∈ Z such that c(Z) ≤ N .

Proof. This is a proof by contradiction. Since c(Z) ≥ c(Z0), there is a smallest N where this
fails. By construction, we may write the Z ∈ Z with c(Z) ≤ N as a sequence Z0, Z1, . . . such
that Z0 = Z0 and for all ν > 0 either Zν is obtained from Zµ for µ < ν by operations A, C,
and D, or Zν is obtained from Zµ1 , Zµ2 for µ1, µ2 < ν by operation B.

Since operations A, C, and D strictly increase codimension, we may upon deleting elements
from the sequence suppose that either Zν+1 is obtained from Zν by operation A, C, or D, or
Zν+1 is obtained from Zµ for µ < ν and Zν by operation B.
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Among the Z with c(Z) < N only finitely many levels (the degree of the Taylor polynomials)
m appear. Operations A, C, and D strictly increase codimension, only operations C and D
increase level, and operation B takes the maximum of the input levels; this means that there
is a uniform bound on the levels in the sequence. By further deleting finitely many elements
from the sequence we may assume that D does not occur and c(Zν) = N for all ν. Since
operation A and C do not increase rank (the number of particles) and operation B strictly
increases codimension when it increases rank, by deleting finitely many elements from the
sequence we may further assume that the rank is constant with value r. When the rank and
codimension are constant, so is the level with value m.

By construction, there is an injection φ : I(Zν)→ I(Zν+1) such that φ∗(Zν+1) ⊂ Zν . Since
I(Zν) and I(Zν+1) have the same cardinality, φ is a bijection and we may assume that the
Zν are an infinite descending sequence of Zariski closed subsets of mJ r. By Noetherianness
we get that it is eventually constant; this is a contradiction. �

2.3. Goodness and badness. There are two ways in which an IASCM can be “bad”: it
has a cycle of vertical coincidences in domain and target (there is nowhere to start resolving
this by sunny collapsing) or its derivative annihilates ∂

∂x1
(the sunny collapsing procedure

can not be performed).

Definition 2.13. Let Z̃k for k ≥ 1 be given by those (z1, . . . , z2k) ∈ 2kJ∞ such that
p2sz2i+1 = p2sz2i+2 and tz2i = tz2i+1 (where the indices wrap around).

Definition 2.14. Let Z̃ be given by those z ∈ 1J∞ such that Dz ◦ ∂
∂x1

.

Clearly, these lie in Z (Z̃k is obtained from Z0 by just operation B, and Z̃ = Dφ(Z0),
called Z1 in the previous lecture) and satisfy c(Z̃k) = k(n− p− 2) and c(Z̃) = n− p− 1.

Definition 2.15. We say that Z ∈ Z is bad if [Z] ≥ [Z̃k] or [Z] ≥ [Z̃]. Otherwise Z is good.

Notation 2.16. We will order the Z in Z as Z0, Z1, . . . with Z0 = Z0, Z1 = Z̃, and otherwise
such that [Zα] � [Zβ ] implies α < β and α ≤ β implies c(Zα) ≤ c(Zβ).

3. Obtaining the stratification of P ×Ds

We can now apply the transversality results described by Nils to Z. Recall that if Z ∈ Z
had level m and rank r, S(Z,P,N) ⊂ rJ∞(P × R, N) meant those jets that lie in Z with
respect to some chart. Similarly, last time we saw S∗(Z,P,N) ⊂ rJ∞(P × R, N), defined
similarly but replacing Z by Z \Σ(Z) (where Σ(Z) ⊂ Z is the singular part). This is definition
so as the open stratum on which p∞m (S(Z,P,N)) is a submanifold.

Proposition 3.1. Each fibered concordance

F = (h, f, p3) : I × P ×Ds −→ I ×N ×Ds

can be isotoped so that for each Z ∈ Z of level m and rank r, rjm(f) t p∞mS∗(Z,P,N).

The singular sets are the locations in configuration spaces of the domain where the jets lie
in S(Z,P,N) or S∗(Z,P,N):
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Definition 3.2. For Zα ∈ Z and F as above, we set

Sα = (rJ∞(f))−1(S(Zα, P,N)) ⊂ (I × P )(r) ×Ds,

S∗α = (rJ∞(f))−1(S(Z∗α, P,N)) ⊂ (I × P )(r) ×Ds.

The latter is a submanifold (up to some issues near the boundary that are easily resolved
by conditioning F beforehand). We again proceed to replace Sα by Wα by removing points
in earlier strata. Let πi : Sα → I × P denote the projection to its ith.

Definition 3.3. Wα ⊂ Sα consists of those x such that for all β > α and i ∈ I(Zα), j ∈ I(Zβ)
we have πi(x) /∈ πj(Sβ).

This has the following properties:
· Our inclusion of operation A implies Wα ⊂ S∗α.
· Our inclusion of operation D implies that Wα is open.
· Our inclusion of operation B implies that p2,3πiWα ∩ π2,3πjWβ = ∅ with p2,3 : I ×
P ×Ds → I × P the projection.

· Our inclusion of operation C implies that p2,3πi : Wα → P ×Ds is an immersion.
The vertical coincidences of Wα in the domain and target are encoded by ∼ and ≈. They

however do not encode which point lies above which other point. To do so, we add a pair
(D,R) of binary relations on I(Z) satisfying i ∼ j if and only if iDj, i = j, or jDi, and i ≈ j
if and only if iRj, i = j, or jRi; such pairs of binary relations are called admissible.

Definition 3.4. For (D,R) admissible on I(Zα), we let W (D,R)
α ⊂ Wα consist of those x

where iDj if and only if πix is below πjx in I × P × Ds and iRj if and only if F (πix) if
below F (πjx).

This is open and as long as Zα is good has the property that

p2,3πi : W (D,R)
α → P ×Ds

is injective and upon varying i and (D,R) either yields a disjoint subsets or there is an
automorphism of I(Zα) relating them. We can now finally give the stratification of P ×Ds:
it will by the images of W (D,R)

α .
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