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ALEXANDER KUPERS

Abstract. We outline the proof of Morlet’s lemma of disjunction, deduced from concordance-
implies-isotopy.

1. Context

The goal of this seminar will be to understand Goodwillie’s proof of multiple disjunction
for concordance embeddings [Goo90]. In this talk we discuss an earlier disjunction lemma for
cocordance embeddings, due to Morlet and proven in [BLR75]. Some of the techniques will
appear in Goodwillie’s proof as well, but other do not, as this result unlike Goodwillie’s also
holds for PL and topological manifolds.

For now, let’s work with smooth manifolds. The objects of interest will be manifold triads
M = (M ; ∂0M,∂1M): a manifold with corners M with boundary ∂M = ∂0M ∪ ∂1M the
union of two codimension submanifolds, meeting at the corners ∂01M . We will consider
embeddings of triads e : (M ; ∂0M,∂1M)→ (N ; ∂0N0, ∂1N1): embeddings of manifolds with
corners such that e−1(∂iN) = ∂iM .

Example 1.1. Let M be a manifold with boundary, then we consider M × I as a manifold
triad with ∂0(M × I) = M × {0, 1} and ∂1(M × I) = ∂M × I.

Definition 1.2. Fix an embedding e0 of manifolds with boundary M → N . Then a
concordance embedding is an embedding of triads e : M × I → N × I such that on M × {0} ∪
∂M × I the embedding e coincides with e0 × id.

We let CE(M,N) denote the space (or simplicial set) of concordance embeddings. This is
not the best notation, since it depends on e0. This is (partially) justified by identifying M
with a submanifold of N through e0.

Suppose that M1, . . . ,Mk ⊂ N is a collection of k disjoint submanifolds. Writing k =
{1, . . . , k}, then we can produce a cubical diagram

k ⊃ I 7−→ CE(∪i∈IMi, N)

with maps in the diagram given by restriction. Goodwillie’s result tells you this cube is
r-cartesian for r = −2 +

∑k
i=1(n−mi − 1), as long as n−mi ≥ 3 for all 1 ≤ i ≤ k.

1.1. Concordance-implies-isotopy. For k = 1, we obtain that the map

CE(M,N) −→ ∗
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is (n−m− 3)-connected. In particular, it is path-connected as long as n−m ≥ 4. A stronger
result was obtained much earlier, by Hudson for smooth and PL manifolds [Hud70] and by
Pedersen for topological manifolds [Ped77], and will be used as input:

Theorem 1.3 (Concordance-implies-isotopy). If f : M × I ↪→ N × I is an embedding of
triads such that f−1(N × {i}) = M × {i} for i = 0, 1 and n−m ≥ 3, then f is isotopic to
f |M×{0} × id rel M × {0}.

2. Morlet’s lemma

Morlet’s lemma of disjunction for concordance embeddings concerns the case k = 2:

Theorem 2.1 (Morlet). The square

CE(M1 ∪M2, N) CE(M1, N)

CE(M2, N) ∗.

is (2n− p− q − 5)-cartesian if M1 has handle dimension p and M2 has handle dimension q,
with n− p ≥ 3 and n− q ≥ 3.

Remark 2.2. Taking Goodwillie’s result for k = 2 gives Morlet’s lemma with slightly improved
range: it says this square is (2n− p− q − 4)-cartesian.

In our discussion of this result, it will helpful to observe that the following are equivalent
· The square is r-cartesian.
· The map CE(M1 ∪M2, N)→ CE(M1, N)× CE(M2, N) is r-connected.
· The map CE(M1, N \M2)→ CE(M1, N) is r-connected.
· The map CE(M2, N \M1)→ CE(M2, N) is r-connected.

The last two of these use isotopy extension.
Suppose that we add a handle, so M ′1 = M1 ∪∂Di×Dm−i Di ×Dm−i. This is considered

as a triad, with ∂0M
′
1 = ∂M1 \ ∂Di ×Dm−i and ∂1M ′1 = Di × ∂Dm−i. Its product with an

interval M ′1 × I is a 4-ad: the part ∂1M
′
1 × I is considered “free-moving.” Then there is a

map of fibration sequences

CE(Di ×Dm−i, N \ (M2 ∪M1)) CE(Di ×Dm−i, N \M1)

CE(M ′1, N \M2) CE(M ′1, N)

CE(M1, N \M2) CE(M1, N)

so the the middle map is r-connected when the top and bottom map are. Since the maps

CE(Di ×Dm−i, N) −→ CE(Di × {0}, N)

is a weak equivalence and similarly for N \Dq in place of N , we see that it suffices to consider
the case that M1 is a disc. Using the equivalent formulation in terms of a square, we may
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then also assume that M2 is a disc. Once we resolve this case, the result for general M1 and
M2 in terms of their handle dimensions follows:

Proposition 2.3. If n− p ≥ 3 and n− q ≥ 3, then the square

CE(Dp ∪Dq, N) CE(Dp, N)

CE(Dq, N) ∗.

is (2n− p− q − 5)-cartesian.

Proof. The proof will be an inductive argument: the statement (i, p, q) says that the square
is i-cartesian. We intend to prove this for i ≤ 2n− p− q− 5, n− p ≥ 3, n− q ≥ 2. Note that
our discussion of equivalent statement tells us that (i, p, q) ⇔ (i, q, p).

Initial case. The initial cases (0, p, q) follow by looking at the equivalent statement concerning

CE(Dp, N \Dq) −→ CE(Dp, N)

where by symmetry we may assume p ≤ q. Observe that both terms are path-connected by
concordance-implies-isotopy. As no condition is imposed on q, we may also take n− q = 2.

Reduction under a hypothesis. We will now prove that the case (i− 1, p+ 1, q) implies the
case (i, p, q) under the condition that g : Dp → N \Dq extends to a map Dp+1

+ → N \Dq

where Dp+1
+ = Dp+1 ∩ {x ∈ Rp+1 | x1 ≥ 0} is the upper hemisphere and Dp+1

+ ∩ Sp goes to
the boundary ∂N \ ∂Dq. In this case, we can compare the fibration sequences

CE(Dp+1, N \ (Dp ∪Dq)) CE(Dp+1, N \Dp)

CE(Dp+1
+ , N \Dq) ' ∗ CE(Dp+1

+ , N) ' ∗

CE(Dp, N \Dq) CE(Dp, N)

to get that

πi(CE(Dp, N),CE(Dp, N \Dq)) = πi−1(CE(Dp+1, N \Dp),CE(Dp+1, N \ (Dp ∪Dq)))

for i ≥ 1. The inductive hypothesis (i − 1, p + 1, q) gives the desired case (i, p, q). The
remainder of this proof will be removing concerned with removing the hypothesis.

A weaker hypothesis. We say Dp ⊂ N is a parallel copy of Dp ⊂ N if there is an embedding
Dp×[0, 1] ↪→ N\Dq restricting to Dp at 0 and Dp at t = 1. We will also refer to Dp×I ⊂ N×I
as a parallel copy of Dp × I.

Recall that a α ∈ πi(CE(Dp, N),CE(Dp, N \ Dq) is represented by a map of pairs
(∆i, ∂∆i)→ (CE(Dp, N),CE(Dp, N \Dq)). Suppose we have a representative such that there
exists a parallel copy Dp of Dp so that α avoids Dq×I. Then α ∈ πi(CE(Dp, N),CE(Dp, N \
Dq)) is in the image of

πi(CE(Dp, N \Dp),CE(Dp, N \ (Dp ∪Dq))
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and we are done, as the desired extension of g : Dp \N \ (Dp ∪Dq) to Dp+1
+ obviously exists,

and hence α is the image of 0 by the previous step.
Given a representative of α as a map of pairs (∆i, ∂∆i)→ (CE(Dp, N),CE(Dp, N \Dq))

we may be not be able to find a parallel copy for all s ∈ ∆i. However, they do exist locally
up to an isotopy of α, using concordance-implies-isotopy and isotopy extension. The strategy
will now be to use these local parallel copies and the case (j, p, q) for j < i to write α as a
sum of elements which have a parallel copy. More precisely, we will give a subdivision of ∆i,
and construct an isotopy αt of α by induction over the skeleton which avoids Dq for s ∈ ∂∆i

and that on each m-simplex σ of the subdivision we have

(1) α1|∂σ lands in N \Dq,
(2) α1|σ admits a parallel copy.

We can then invoke the case (i, p, q) in presence of a parallel copy.

Invoking isotopy extension We start with some preparation: we claim that α : ∆i ×Dp × I →
∆×N × I is the restriction to ∆i×Dp× I of a concordance diffeomorphism A : ∆i×N × I →
∆×N × I. That is, A is the identity on ∆i × (N × {0} ∪ ∂N × I).

For i = 0, we note that concordance-implies-isotopy implies α is isotopic to idDp×I and
hence the restriction of a diffeomorphism; by applying isotopy extension, so is α. For the
general case, we now that α restricted to a vertex of ∆i is the restriction of a diffeomorphism
and by isotopy extension the same result follows for α.

Arranging the local parallel copies. Take A is as in the previous part. We pick one embedding
Dp × [0, 1] ↪→ N \Dq and we subdivide ∆i finely enough so that:

· A({s} ×Dp × [0, 1/2] × I) and A({s′} ×Dp × {0} × I) are disjoint for s, s′ in the
same i-simplex.

· A({s}×Dp×{1/2 + j/3i−1}× I) is disjoint from A({s′}×Dp×{1/2 + j′/3i−1}× I)
when 1 ≤ j 6= j′ ≤ 3i−1 and s, s′ are in the star of the same vertex.

· A({s}×Dp× [0, 1]×I) ⊂ (N \Dq)×I when s is in the star of a vertex in the induced
subdivision of ∂∆i.

The number 3i−1 is chosen so that there exists an assignment of numbers 1 ≤ j ≤ 3i−1 to the
vertices of the triangulation so that no two vertices in the star of a given vertex share the
same number. Pick such an assignment and denote 1/2 + j(x)/3i−1 by r(x).

As suggested before, we want for each vertex x of the subdivision an isotopy φxt of
A({x}×Dp×{r(x)}× I) to idDp×{r(x)}×I . Thus we refer to the former as candidate parallel
copies. These isotopies will be constructed to have the following properties:

· φxt = φ1
t for t ≥ 1

i+1 .
· If a candidate parallel copy A({x} ×Dp × {r(x)} × I) is disjoint from another one
A({y} ×Dp × {r(y)} × I), then this remains true during simultaneous isotopies.

· If x is in the star of a vertex in the induced subdivision of ∂∆i, then the image of φtx
remains within N \Dq.

For now we assume these exist, and finish the proof.
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The desired isotopy of α will be constructed inductively over the skeleta of the subdivision.
That is, we will construct inductively for 0 ≤ m ≤ i an isotopy

αmt : skm(subdivision of ∆i) −→ CE(Dp, N)

starting at α|skm which satisfies

(a) αmt = αm1 for t ≥ m+1
i+1 .

(b) remains within (N \Dq)× I when x is the star of a vertex of ∂∆i,
(c) lands in (N \Dq)× I at t = 1,
(d) on a simplex σ ∈ skm it remains disjoint from the image of φxt for all x ∈ Star(σ).

Supposing αm−1
t exists, we construct αmt over σ. To do so, we apply isotopy extension to

αm−1
t |∂σ ∪{φxt | x ∈ Star(σ)}. This yields in particular an isotopy of αmt for t ≤ m

i+1 . At t =
m
i+1 we are in the situation that on σ we have an element of πm(CE(Dp, N),CE(Dp, N \Dq))
with has many disjoint parallel copies, one for any vertex in the star of σ. Thus we can
consider it is an element of πm(CE(Dp, N \

⋃
xD

p×{r(x)}),CE(Dp, N \Dq
⋃
xD

p×{r(x)})).
We may use one of these to exhibit this element as 0; this gives the desired extension of the
isotopy, which may be performed for m

i+1 ≤ t ≤
m+1
i+1 .

Finding the φxt . It remains to prove we can find the isotopies φtx straightening the candidate
parallel copies A({x} ×Dp × {r(x)} × I), which we will shorten to Wi for i ∈ I the set of
vertices. This would be easy if all were disjoint; use concordance-implies-isotopy and isotopy
extension to construct them inductively.

In general, we need to handle the intersections. Then if it were possible to show that after
simultaneous isotopies preserving disjointness, they are all transverse and in the image of
the single concordance diffeomorphims H : N × I → N × I we would be done: to straighten
all Wi × I in this case, we observe that their union is stratified by concordance embeddings
of lower-dimensional manifolds, which can be straightened inductively using concordance-
implies-isotopy.

Making the intersections products. Thus it remains to show that given transverse Wi × I ⊂
N × I we can isotope these simultaneously preserving disjointness so that at they are all
transverse and in the image of a single concordance. As the above argument suggests, we want
to inductively isotope the Wi× I so that the intersections

⋃
i∈IWi× I look like (

⋃
i∈IWi)× I

for |I| ≤ s. This is done by embedded Whitney and half-Whitney moves, and as it is
complicated let me just explain the case that |I| = 2.

That is, we have concordance embeddings W1 × I,W2 × I ↪→ N × I which we may
assume transverse. Suppose that W1 ∩W2 6= ∅, necessarily of dimension w1 + w2 − n (this
is less familiar than the case W1 ∩W2 = ∅). Then we want to modify the intersection
(W1 × I) ∩ (W2 × I) until they are the product. It is a (w1 + w2 − n + 1)-dimensional
cobordism, and we are trying to remove all its handles rel (W1 ∩W2)× {0}. This is by done
by exchanging i-handles for (i+ 1)-handles below the middle dimension and (i+ 1)-handles
for i-handles in the middle dimension.

For example, for j is the smallest such that πk((W1×I)∩(W2×I), (W1∩W2)×{0}) is non-
zero then we can represent a generator of it by an embedded (Dk, Sk−1). These may then be
extended to embeddings of Dk+1 →Wi×I with Sk+ hitting the Dk ⊂ (W1×I)∩ (W2×I) and
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Sk− hitting Wi×{0}. These glue to a map (Dk+1, Sk)→ ((W1×I)∪(W2×I), (W1∪W2)×{0})
which in turn extends to a map Dk+2 → N × I intersecting (W1 × I) ∪ (W2 × I) only in
Sk+1

+ hitting the Dk+1 and Sk+1
− in N × {0}. This is the guide for a half-Whitney move

sliding W1 × I over W2 × I to kill the generator. As you can imagine, this requires a careful
bookkeeping of various connectivities and a number of embedding/disjunction results. �

Remark 2.4. There are improvements to concordance-implies-isotopy when N is 1-connected,
due to Rourke and Perron. These allow you to prove the square is (2n− p− q − 4)-cartesian.

Question 2.5. One approach for getting multiple disjunction for topological or PL embeddings
involves puncturing handles so as to get a smoothable manifold. Can the techniques in the
proof of Morlet’s lemma be used for this?

2.1. A recasting in more modern terms. We shall give a strategy for a different proof,
starting at the point of the weaker hypothesis. There we make one further observation: let us
call a concordance embedding η : Dp×I → (N \Dq)×I which avoids Dp starting at a parallel
copy of Dp a bent parallel copy. It is enough to find these: by concordance-implies-isotopy
and isotopy extension there is a concordance diffemorphism N × I → N × I fixing Dq × I
sending the bent parallel copy to a parallel copy.

We now define a semisimplicial resolution CE(Dp, N \ Dq)• of CE(Dp, N \ Dq) and
CE(Dp, N)• of CE(Dp, N). In both cases, the k-simplices will be a disjoint union indexed by
(k+1)-tuples of a0, . . . , ak ∈ [1/2, 1] and bent parallel copies η0, . . . , ηk : Dp

ai
×I → (N \Dq)×I

which are all disjoint. Then we set

CE(Dp, N \Dq)k =
⊔
~a,~η

{x ∈ CE(Dp, N \Dq) disjoint from η0, . . . , ηk}

CE(Dp, N)k =
⊔
~a,~η

{x ∈ CE(Dp, N) disjoint from η0, . . . , ηk}

There are evident face maps and augmentations, as well as a semisimplicial map

CE(Dp, N \Dq)• −→ CE(Dp, N)•
which is levelwise i-connected due to the existence of at least one bent parallel copy. Thus it
remains to show that in

||CE(Dp, N \Dq)•|| ||CE(Dp, N)•||

CE(Dp, N \Dq) CE(Dp, N)

the vertical maps are weak equivalences. They are microfibrations, so it suffices to prove
their fibers are weakly contractible. This is trivial for the left term (just use a small push-off
from the given x ∈ CE(Dp, N \Dq)). For the right term, we need to prove that given an
x ∈ CE(Dp, N) and a collection

η0, . . . , ηN

of bent parallel copies disjoint from x and Dq × I, we can find a further one disjoint from all
of them. This is difficult only when x and Dq × I intersect. Using the usual tricks, we may
assume η0, . . . , ηN are transverse to each other. Here the argument gets stuck though.
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3. Concordance-implies-isotopy

Let us recall the statement of concordance-implies-isotopy:

Theorem 3.1 (Concordance-implies-isotopy). If f : M × I ↪→ N × I is an embedding of
triads such that f−1(N × {i}) = M × {i} for i = 0, 1 and n−m ≥ 3, then f is isotopic to
f |M×{0} × id rel M × {0}.

This is of course equivalent to π0(CE(M,N)) = 0 (with boundary condition f |M×{0}).

Remark 3.2. All the early arguments for this work in the PL category, using various approx-
imation tricks to get the smooth case. For a direct proof in the smooth category, I would
suggest following Rourke’s outline using embedded handle theory [?]. Below I will give the
PL proof since I believe some tools may be useful in Goodwillie’s argument. Note that it is
enough to prove the PL case for the disjunction lemma, since the square

CEDiff(M1 ∪M2, N) CEDiff(M1, N)× CEDiff(M2, N)

CEPL(M1 ∪M2, N) CEPL(M1, N)× CEPL(M2, N)

is ∞-cartesian by smoothing theory.

The PL proof of concordance-implies-isotopy has two main ingredients:
· Unknotting of balls [Zee63]: any PL-embedding Dm ↪→ Dn that is the standard

inclusion on the boundary is isotopic to the standard inclusion when n−m ≥ 3.
· Sunny collapsing [Hud69]: given f : M × I ↪→ N × I, there is a homeomorphism

of N × I fixed on N × {0} ∪ ∂N × I and arbitrary close to the identity such that
(i) the projection hf(M ×N)→ N × {0} is non-degenerate, (ii) hf(M × I) can be
triangulated as Kn allowing a sequence of elementary collapse M = Kn ↘ Kn−1 ↘
· · · ↘ K0 = M × {0} ∪ ∂M × I so that sh(Ki) ∩Kn ⊂ Ki−1 with sh(Ki) = {(x, t) ∈
N × I | (x, t′) ∈ Ki for some t′ > t}. That is, we only collapse things visible from
above.

Sketch of proof. As usual, it suffices to prove this when M is a PL-disc Dm by induction
over a triangulation; in particular, on ∂Dm × I the concordance embedding is already a
product. There is a subtlety here: for the induction to work you need to rather straighten a
neighborhood of Dm.

Then there are essentially two steps, which are similar in flavor. (The reason there are
two steps is that in the sunny collapsing it is not guaranteed to you that h is isotopic to the
identity.)

Moving into a tube. First, we will prove that there is a neighborhood U ⊂ N such that
U ∼= Dm×Dn−m = Dn and there is an isotopy of concordance embeddings moving f(Dm×I)
into U × I. We will do so by not straightening f(Dm × I) but hf(Dm × I) for h as in
sunny collapsing. Doing so is enough; since h is small if we straighten hf(Dm × I) then
h−1hf(Dm × I) = f(Dm × I) ends up in a neighborhood U × I. (Of course, this requires me
to keep track of some “smallness’, which I shall forego.)
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Let Ui ⊂ Ki be obtained by adding a small closed collar on Ki−1 with boundary fr(Ui).
and set Xi := Ui∪(fr(Ui))↑ with (A)↑ = {(x, t) ∈ N×I | (x, t′) ∈ A and t ≥ t′} for A ⊂ N×I.
The sunny part of sunny collapsing implies that Xi is a PL submanifold of N × I again. We
also set Kn+1 = hf(Dm × I) and K−1 = (Dm × {0})↑. Then we will construct a sequences
of PL isotopies fixing N × {0} ∪ ∂N × I moving Xi onto Xi−1.

This is done as follows: take a neighborhood V in Kn of the simplex added to Ki−1 to
obtain Ki. Then Xi and Xi−1 only differ within the interior of (V )↑. Furthermore, (V )↑ is a
ball by the non-degeneracy of the projection of the simplex and the collapsing part of sunny
collapsing (to see how this might be used, recall that Whitehead proved that a PL manifold
is collapsible to a point if and only it is a PL ball), as are Xi ∩ (V )↑ and Xi−1 ∩ (V )↑. Now
first use local unknotting in (V )↑ ∩ (N × {1}) and then local unknotting in (V )↑ to move
Xi ∩ (V )↑ onto Xi−1 ∩ (V )↑ fixing the boundary.

Straightening within tube. Once this is achieved, we can first apply local unknotting of
f(Dm × {1}) in U × {1} and then local unknotting of f(Dm × I) in U × I. �
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