POINCARE STRUCTURES ON CATEGORIES OF MODULES

ALEXANDER KUPERS

ABSTRACT. We give an overview of Poincaré structures on categories of modules.

1. INTRODUCTION

To motivate studying hermitian K-theory, we discussed quadratic forms on finitely-generated
projective modules and several variants of these. In the previous two lectures we say the definitions
of hermitian and Poincaré categories, as well as hermitian and Poincaré objects in them. Today
our goal is to focus on the case of R-modules: we will explain how hermitian structures on DP(R)
are given by R-modules with genuine involution. We will see that

QU(X) =Map(X ® X, R)nc, and  9°(X) = Map(X ® X, R)"“?

are the extreme cases of a collection 2" (X), namely n = w0 and n = —o0. The cases n = 0,1, 2
will be “genuine” variants mentioned later, and we will motivate them from the perspective of
non-abelian derived functors.

2. CLASSIFICATION OF HERMITIAN STRUCTURES

2.1. Recollection. Recall that a hermitian structure on a stable co-category € is a reduced 2-
excisive functor ?: C°P? — 8p; reduced means ?(0) = 0 and 2-excisive then means that the cross
effect functor
Bo: CP x CP — §p
determined by the formula
AXBY)=2X)®Y)® Be(X,Y),

is bilinear, i.e. exact in both entries.
Given such a @, there are Cs-equivariant maps

Ba(X, X) — X ®X) 25 9(X) 5 (X @ X) —> By(X, X)

with Cs-action trivial on the middle term and given by flipping on the outer terms. This induces
maps

Bo(X, X)ne, — 2X) — Bo(X, X)"
where (—)c, are the Ca-coinvariants (the left adjoint to the inclusion Sp — SpP©2 as spectra with
trivial action) and (—)"“2 are the Cs-fixed points (the right adjoint). The composition is the norm
map: in ordinary algebra, for a G-module M with G a finite group there is a map Mg — MY
sending the class of m to >’ gec 9 and there is a lift of this construction to G-spectra.

Remark 2.1. Let’s demystify the norm a bit, following a construction by Lurie. Let us start with
the diagram of spaces or equivalently co-groupoids,

BG —2 BG x BG ™ BG
B,k
BG%*
1
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and map it into spectra to get a diagram of stable co-categories

SpBG e SpBGxBG : BG

T
5 T p’ﬁ
P
with (—)* given by pullback, (=), by left Kan extension, and (—)4 by right Kan extension. In
particular, (=) = (=)ng and (—)y = (—)"C.

Since the square of spaces was a pullback, by a version of Lurie’s proper base-change theorem the
Beck—Chevalley transformation p*p, — (m1)47¥ is an equivalence; informally, M considered as a
trivial G-module can also be obtained by considering M as a G x G-space through 75 and taking
the fixed points with respect to ker(m: G x G — G) to get a G-module. Now we compute that
Ay — Ay is an equivalence if G is finite: on a G-spectrum X it is given by B X — [[,cc X
and finite coproducts are finite products in 8p. Now write the natural transformation

(m1)* = AL A*(m)* = Ay ~ Ay > AJA*(m2)* — (m2)*,
in turn adjoint to id — (71)4(m2)*. This is equivalent to id — p*p,, which is in turn equivalent to
P = Dx.
We define
AQ(X) = COﬁb(BQ(X, X)hC2 — Q(X))
Because this map induces an equivalences on cross effects, the functor Ae is exact. It is in fact the
initial exact functor under ¢, so should be thought of as the linear part of ¢ in analogy with Be

being the quadratic part. It remains to understand how the part is glued to the bilinear part. This
is the content of the following theorem:

Proposition 2.2. There is a pullback square

QX) —————— Ae(X)

BQ(X7X)h02 — BQ(X7X)t027
where Bo(X, X)'“2 := cofib(Nm: Bo(X, X)nc, — Be(X, X)"“2) is the Tate construction.
Proof. Both horizontal fibres are Bo(X, X )pc,- O
This is natural in X, yielding an pullback of functors of C°P — 8:
@ ——— A¢
(BQA)hCZ —_— (BQA)tCZ.

In other words, the data of a hermitian structure is the same as a triple (B, A, @) where B: C°P x
€°P — 8p is symmetric bilinear, A: C°P — 8p is exact, and a: A — (BA)!? is a natural
transformation.

Remark 2.3. X — (X ® X)'2 is exact. It is clearly reduced and 2-excisive, the latter because the
category of 2-excisive functors is closed under finite limits and colimits. This means it suffices to see
that its cross effect vanishes: we compute (X@Y)®(X DY) = XQXPY QY DB(X,Y)[C2] as a Co-
space, and the Tate construction preserves finite sums and vanishes on induced Cs-objects; informally
for an induced module M[C>] the norm map is the isomorphism (—)-(e+0): M{e ~ o} - M{e+o}.
More generally, this argument yields that X — Bo(X, X)!“? is exact.
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The fact that is exact has the following consequence, using that evaluating at the sphere gives an
equivalence between the category of exact functors Sp* — Sp and Sp. Thus, natural transformations
from idgp to X — (X ® X )t are determined by maps S — S*“2 and the one corresponding to
S — §hC2 — St is the Tate diagonal; it is a natural map X — (X ® X)*“2 that serves as a
spectral substitute for a diagonal map. It is in fact lax symmetric monoidal.

FEzample 2.4. In general, the Tate construction is not connective. For example, for an ordinary
module M thought of as an Eilenberg—Mac Lane spectrum H M we have that

Hy1(Co; M) if +>1,

ker(Mc, — M©?) if =1,

coker(Mg, — M) if x =0,

H*(Cq; M) if = < 0.

Te(HM)C2 =

On the other hand, the now-proven Segal conjecture implies that S*© is the 2-completion of S.

3. POINCARE STRUCTURES ON CATEGORIES OF MODULES

3.1. Ring spectra and categories of modules. The co-category Sp of spectra admits a closed
symmetric monoidal structure whose unit is the sphere spectrum S. It is produced by constructing
a tensor product of presentable stable oo-categories, and proving that Sp is its unit; the unit of any
symmetric monoidal category is canonically a commutative algebra and a commutative algebra
structure on a category is a symmetric monoidal structure. If we prefer to think of a spectrum as a
sequence (Xg, X1, --) of pointed spaces such that Xy — QX is an equivalence, then the tensor
product X ® Y can be computed from the smash products X A Y;; see Adams’ book.

In particular, we can make sense of associative algebras in Sp, known as Ei-ring spectra for
historical reasons. For such a Ej-ring spectrum R, we let Mod(R) denote the oo-category of
(left) R-modules. The subcategory Mod?(R) of perfect modules is its smallest stable subcategory
containing R and closed under retracts; an object is perfect if and only if it is compact (mapping
out of it preserves filtered colimits).

Ezample 3.1. The Eilenberg-Mac Lane spectrum lifts to a lax-monoidal functor H: (Ab,®) —
(8p,®). In particular, it takes ordinary rings to Fj-ring spectra. In this case Mod(R) is equivalent
to the derived oco-category D(R), obtained by taking chain complexes of projective R-modules and
inverting the quasi-isomorphisms, and a chain perfect is perfect if it is quasi-isomorphism to a
bounded chain complex of finitely-generated projective R-modules.

Example 3.2. The topological K-theory spectra KU and KO are commutative ring spectra, known
as Fy-spectra for historical reasons.

3.2. Morita theory and modules with genuine involution. Morita theory says that colimit-
preserving functors between module categories are classified in terms of certain bimodules. Using
this will lead us to the notion of a module with genuine involution, classifying the hermitian
structures on Mod?(R) along the way.

Theorem 3.3 (Morita theory). There is an equivalence of categories
Fun™(Mod(R), Mod(R)) — Mod(R°" ® S)
F+— F(R),
where FunL(f, —) denotes the colimit-preserving functor.

Proof sketch. We can an inverse by sending R°P? ® S-module P to the functor M — P®r M. O

This allows us translate the data (B, A, @) of a hermitian structure in more concrete language:
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- We start with the linear part given by an exact functor A: Mod?(R)°? — Sp. Using the
duality equivalence Mapg(—, R): Mod?(R)°? — Mod?(R°P) we can interpret this as an
exact functor Mod?(R°P) — 8p and Mod?(R°?) — Mod(R°P) exhibits the latter as the
ind-completion, this is equivalent to a colimit-preserving functor Mod(R°P) — 8p, so by
Morita theory corresponds is given by tensoring with a unique R-module N. Composing
all maps we see that

A(X) ~ Mapg(X,R) ®g N ~ Mapg (X, N),

the latter equivalence following because it is true on R and both are exact.

- Similarly, one deduces that the bilinear part B: Mod? (R)°P x Mod?(R)°? — 8p is of the

form

B(X,Y) ~ Maprgr(X ®Y, M)
for a unique R ® R-bimodule M. That it is symmetric means that M € Mod(R x R)"C?
where the action of C5 flips the two copies of R.

- It remains to understand the gluing map «. As for A, R-module corresponding to the
exact functor X — B(X, X)!? is given by M*“2 made an R-module via the Tate diagonal
R — (R® R)*“2. Thus through the Morita theory, the gluing map « is encoded by an
R-module map N — M*C2,

Definition 3.4. A module with genuine involution is a triple (M, N, a) of M € Mod(R ® R)"“2,
N € Mod(N) and a: N — M?C2,

Thus concretely, not only can we define a hermitian structure on Mod? (R) by taking the pullback

Q¥(X) Map per(X ® X, M)hC-

J |

Mapg(X,N) — MapR®R(X®X7 M)’EC2 ~ Mapg(X, M?tCz),

but all hermitian structures are of this form.

When is this a Poincaré structure? The bilinear part of 2 is by construction Map pg (X ®Y, M)
and the equivalence Mappgr(X ® Y, M) ~ Mapg (X, Mapg(Y, M)) shows that 2“ is Poincaré if
(1) Y — Mapg (Y, M): Mod(R)°® — Mod(R) restricts to a functor Mod?(R)°? — Mod?(R) and
(2) the evaluation map is an equivalence. Item (1) is the case if M is perfect and item (2) holds if
and only if it holds for R, i.e. R — Mapp(Mapp (R, M), M) ~ Mapr(M, M) is an equivalence. If
this is the case, we say that M is invertible.

Theorem 3.5. Hermitian structures on Mod?(R) are classified by invertible modules with genuine
involution.

3.3. Examples.

Example 3.6 (Modules with involution). Let us start with an M € Mod(R ® R)"“2. Using this we
can define symmetric and quadratic hermitian structures

Q1/(X) i=Mapror(X ® X, M)pc, and  93(X) = Mapgegr(X ® X, M)".
These are given by taking the genuine modules with involution (M, 0,0) and (M, M*C2,id) respec-
tively.

Ezample 3.7 (Interpolating between quadratic and symmetric). We can define further Poincaré
structures 25;,"(X) by replacing 0 — M*“2 and M2 — M'C2 by the connective cover 7=, M*“2 —
M2 for n € Z. For m = o we get 94, and for m = —o0 we get 93,. Note that the definition of ¢
as a pullback gives fibre sequences

Q1 (X) —> /(X)) —> Mapp(X, 75, M'°2).
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(X)) — 954(X) — Mapp(X, Tem—1 M'?)
allowing us to compare these intermediate hermitian structures to the quadratic and symmetric
ones.

Ezample 3.8. How do you describe M € Mod(R® R)"“? when if R is an ordinary ring and M is an
ordinary projective R ® R-module? In this case being a Cs-fixed point means we have an involution
m — m satisfying mymry = romr.

What if we want M = R, which is the easiest way to get an invertible module with genuine
involution? If R admits an anti-homomorphism 7: R — R°P then we can consider R as an
R ® R-module via a(r)b = ar7(b) with involution 7 = 7(r). Examples include:

- A commutative ring with automorphism of order 2, e.g. C with complex conjugation.

- A group ring Z[G] admits an anti-homomorphism determined uniquely by 7(g) = g~*.
More generally, these can be given by specifying an anti-homomorphism r — 7(r) and a unit €
of R such that 72(r) = e lre and 7(¢) = e !; a Wall anti-structure. Then we can make R into a
R ® R-module by a(b)c = abr(c) with involution given by b = eb. It turns out all involutions on R
are of this form.

FEzample 3.9. The hermitian structures associated to a module with genuine involution interacts
nicely with suspension. First we can do post-compose with X™: ¢ is associated to (M, N, a) then
¥"Q(X) is associated to (X" M, X" N, X ).

Second we can combine this with pre-composition with ¥™: Q is associated to (M, N, a) then
YrHm(Yn X)) is associated to (X" M, XN, ¥ «) where o is the sign representation of Cy. We
say M is no-oriented if X" "M ~ M; for example, if R is a Z-algebra it is 20-oriented, by proving
this in the universal case R = Z. Thus for such R, we have an equivalence

O 2405, (X) > 94, (X),
and this induces the 4-fold periodicity of L-theory groups, if we recall that L, (C,?%) is defined is
defined as coker(m,Pn’(€,9%) — m,Pn(€,9%)).

4. GENUINE POINCARE STRUCTURES

The genuine Poincaré structures on Mod?(R) are given by
9N(X) =957 (X), (X)) =97 (X) and  9(X) =97 (X).

In this section, we will outline why these particular cases are special.

The starting point is with the ordinary additive category Proj(R) of finitely-generated projective
R-modules. A reduced functor Proj(R) — € is 2-polynomial if its cross effect is additive in each
entry separately.

Theorem 4.1. The inclusion Proj(R) — ModP(R) induces an equivalence
Map®*<(Mod? (R)°®, $p) —» Map®*(Proj(R)®, Sp).
Proof sketch. The inverse is given by first extending to Mod?(R)>¢ through the Dold—Kan equiva-

lence Mod”(R)s¢ =~ Proj(R)>" and applying the functor levelwise, and extending it to Mod?(R)
by right Kan extension. O

Consider now the 2-polynomial functors Proj(R)°? — 8p given by
F{1(P) := Homprgr(P ® P,M)c,,
Fi*(P) := Hompgr(P ® P, M)®2,
F{/(P) :=im(Nm: F9(P) — F9(P)).

The first of these are nothing but classical quadratic and symmetric forms, an easy exercise you
should do. The previous theorem extracts “non-abelian derived” Hermitian structures from these:

Il
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Theorem 4.2. The 2-excisive reduced functors associated to Fyf, Fi;, Fyj are 937, 9%, 97

Proof sketch. Let us focus on the symmetric case. It suffices to verify the functor associated to Fy;
agrees with 997 on finitely-generated projective R-modules P. We have that Map g r (P ® P, M) is
concentrated in degree zero, so ?,(P) = Mappgr(P ® P, M )PC2 is concentrated in non-positive
degrees and agrees with Fy; in degree 0. Then the fibre sequence

937 (P) — 93,(P) — Mapp(P, <1 M"?)
kills off what remains of the linear part. O
The reason we can about these is the following theorem:

Theorem 4.3 (Hebestreit-Steimle). GW*(R) ~ GW(Mod?(R),99*) for X € {q, e, s}, where the
superscript (—)°! denotes we take the group-completion of the symmetric monoidal category of
unimodular forms.
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