
POINCARÉ STRUCTURES ON CATEGORIES OF MODULES

ALEXANDER KUPERS

Abstract. We give an overview of Poincaré structures on categories of modules.

1. Introduction

To motivate studying hermitian K-theory, we discussed quadratic forms on finitely-generated
projective modules and several variants of these. In the previous two lectures we say the definitions
of hermitian and Poincaré categories, as well as hermitian and Poincaré objects in them. Today
our goal is to focus on the case of R-modules: we will explain how hermitian structures on DppRq
are given by R-modules with genuine involution. We will see that

Ϙ
q
pXq “ MappX bX,RqhC2 and Ϙ

s
pXq “ MappX bX,RqhC2

are the extreme cases of a collection ϘěnpXq, namely n “ 8 and n “ ´8. The cases n “ 0, 1, 2
will be “genuine” variants mentioned later, and we will motivate them from the perspective of
non-abelian derived functors.

2. Classification of hermitian structures

2.1. Recollection. Recall that a hermitian structure on a stable 8-category C is a reduced 2-
excisive functor Ϙ : Cop Ñ Sp; reduced means Ϙp0q “ 0 and 2-excisive then means that the cross
effect functor

BϘ : Cop ˆ Cop ÝÑ Sp
determined by the formula

ϘpX ‘ Y q “ ϘpXq ‘ ϘpY q ‘BϘpX,Y q,

is bilinear, i.e. exact in both entries.
Given such a Ϙ, there are C2-equivariant maps

BϘpX,Xq ÝÑ ϘpX ‘Xq
∆˚

ÝÝÑ ϘpXq
∇˚

ÝÝÑ ϘpX ‘Xq ÝÑ BϘpX,Xq

with C2-action trivial on the middle term and given by flipping on the outer terms. This induces
maps

BϘpX,XqhC2 ÝÑ ϘpXq ÝÑ BϘpX,Xq
hC2

where p´qhC2 are the C2-coinvariants (the left adjoint to the inclusion Sp Ñ SpBC2 as spectra with
trivial action) and p´qhC2 are the C2-fixed points (the right adjoint). The composition is the norm
map: in ordinary algebra, for a G-module M with G a finite group there is a map MG Ñ MG

sending the class of m to
ř

gPG gm and there is a lift of this construction to G-spectra.

Remark 2.1. Let’s demystify the norm a bit, following a construction by Lurie. Let us start with
the diagram of spaces or equivalently 8-groupoids,

BG BGˆBG BG

BG ˚

∆ π1

π2 p

p

1
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and map it into spectra to get a diagram of stable 8-categories

SpBG SpBGˆBG BG

BG ˚

∆˚ π˚
1

π˚
2 p˚

p˚

with p´q˚ given by pullback, p´q! by left Kan extension, and p´q˚ by right Kan extension. In
particular, p´q! “ p´qhG and p´q˚ “ p´qhG.

Since the square of spaces was a pullback, by a version of Lurie’s proper base-change theorem the
Beck–Chevalley transformation p˚p˚ Ñ pπ1q˚π

˚
2 is an equivalence; informally, MG considered as a

trivial G-module can also be obtained by considering M as a GˆG-space through π2 and taking
the fixed points with respect to kerpπ1 : GˆG Ñ Gq to get a G-module. Now we compute that
∆! Ñ ∆˚ is an equivalence if G is finite: on a G-spectrum X it is given by

À

gPGX Ñ
ś

gPGX
and finite coproducts are finite products in Sp. Now write the natural transformation

pπ1q
˚ Ñ ∆˚∆˚pπ1q

˚ “ ∆˚ » ∆! Ñ ∆!∆˚pπ2q
˚ Ñ pπ2q

˚,

in turn adjoint to id Ñ pπ1q˚pπ2q
˚. This is equivalent to id Ñ p˚p˚, which is in turn equivalent to

p! Ñ p˚.

We define
ΛϘpXq :“ cofibpBϘpX,XqhC2 ÝÑ ϘpXqq.

Because this map induces an equivalences on cross effects, the functor ΛϘ is exact. It is in fact the
initial exact functor under Ϙ, so should be thought of as the linear part of Ϙ in analogy with BϘ
being the quadratic part. It remains to understand how the part is glued to the bilinear part. This
is the content of the following theorem:

Proposition 2.2. There is a pullback square

ϘpXq ΛϘpXq

BϘpX,Xq
hC2 BϘpX,Xq

tC2 ,

where BϘpX,XqtC2 :“ cofibpNm: BϘpX,XqhC2 Ñ BϘpX,Xq
hC2q is the Tate construction.

Proof. Both horizontal fibres are BϘpX,XqhC2 . �

This is natural in X, yielding an pullback of functors of Cop Ñ S:

Ϙ ΛϘ

pBϘ∆qhC2 pBϘ∆qtC2 .

In other words, the data of a hermitian structure is the same as a triple pB,Λ, αq where B : Cop ˆ
Cop Ñ Sp is symmetric bilinear, Λ: Cop Ñ Sp is exact, and α : Λ Ñ pB∆qtC2 is a natural
transformation.

Remark 2.3. X ÞÑ pX bXqtC2 is exact. It is clearly reduced and 2-excisive, the latter because the
category of 2-excisive functors is closed under finite limits and colimits. This means it suffices to see
that its cross effect vanishes: we compute pX‘Y qbpX‘Y q “ XbX‘Y bY ‘BpX,Y qrC2s as a C2-
space, and the Tate construction preserves finite sums and vanishes on induced C2-objects; informally
for an induced module M rC2s the norm map is the isomorphism p´q¨pe`σq : Mte „ σu ÑMte`σu.
More generally, this argument yields that X ÞÑ BϘpX,Xq

tC2 is exact.
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The fact that is exact has the following consequence, using that evaluating at the sphere gives an
equivalence between the category of exact functors Spω Ñ Sp and Sp. Thus, natural transformations
from idSp to X ÞÑ pX bXqtC2 are determined by maps S Ñ StC2 and the one corresponding to
S Ñ ShC2 Ñ StC2 is the Tate diagonal; it is a natural map X Ñ pX b XqtC2 that serves as a
spectral substitute for a diagonal map. It is in fact lax symmetric monoidal.

Example 2.4. In general, the Tate construction is not connective. For example, for an ordinary
module M thought of as an Eilenberg–Mac Lane spectrum HM we have that

π˚pHMq
tC2 “

$

’

’

’

&

’

’

’

%

H˚`1pC2;Mq if ˚ ą 1,
kerpMC2 ÑMC2q if ˚ “ 1,
cokerpMC2 ÑMC2q if ˚ “ 0,
H´˚pC2;Mq if ˚ ă 0.

On the other hand, the now-proven Segal conjecture implies that StC2 is the 2-completion of S.

3. Poincaré structures on categories of modules

3.1. Ring spectra and categories of modules. The 8-category Sp of spectra admits a closed
symmetric monoidal structure whose unit is the sphere spectrum S. It is produced by constructing
a tensor product of presentable stable 8-categories, and proving that Sp is its unit; the unit of any
symmetric monoidal category is canonically a commutative algebra and a commutative algebra
structure on a category is a symmetric monoidal structure. If we prefer to think of a spectrum as a
sequence pX0, X1, ¨ ¨ ¨ q of pointed spaces such that X0 Ñ ΩX1 is an equivalence, then the tensor
product X b Y can be computed from the smash products Xk ^ Yl; see Adams’ book.

In particular, we can make sense of associative algebras in Sp, known as E1-ring spectra for
historical reasons. For such a E1-ring spectrum R, we let ModpRq denote the 8-category of
(left) R-modules. The subcategory ModppRq of perfect modules is its smallest stable subcategory
containing R and closed under retracts; an object is perfect if and only if it is compact (mapping
out of it preserves filtered colimits).

Example 3.1. The Eilenberg–Mac Lane spectrum lifts to a lax-monoidal functor H : pAb,bq Ñ
pSp,bq. In particular, it takes ordinary rings to E1-ring spectra. In this case ModpRq is equivalent
to the derived 8-category DpRq, obtained by taking chain complexes of projective R-modules and
inverting the quasi-isomorphisms, and a chain perfect is perfect if it is quasi-isomorphism to a
bounded chain complex of finitely-generated projective R-modules.

Example 3.2. The topological K-theory spectra KU and KO are commutative ring spectra, known
as E8-spectra for historical reasons.

3.2. Morita theory and modules with genuine involution. Morita theory says that colimit-
preserving functors between module categories are classified in terms of certain bimodules. Using
this will lead us to the notion of a module with genuine involution, classifying the hermitian
structures on ModppRq along the way.

Theorem 3.3 (Morita theory). There is an equivalence of categories

FunL
pModpRq,ModpRqq ÝÑ ModpRop b Sq

F ÞÝÑ F pRq,

where FunL
p´,´q denotes the colimit-preserving functor.

Proof sketch. We can an inverse by sending Rop b S-module P to the functor M ÞÑ P bRM . �

This allows us translate the data pB,Λ, αq of a hermitian structure in more concrete language:
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¨ We start with the linear part given by an exact functor Λ: ModppRqop Ñ Sp. Using the
duality equivalence MapRp´, Rq : ModppRqop Ñ ModppRopq we can interpret this as an
exact functor ModppRopq Ñ Sp and ModppRopq Ñ ModpRopq exhibits the latter as the
ind-completion, this is equivalent to a colimit-preserving functor ModpRopq Ñ Sp, so by
Morita theory corresponds is given by tensoring with a unique R-module N . Composing
all maps we see that

ΛpXq » MapRpX,Rq bR N » MapRpX,Nq,
the latter equivalence following because it is true on R and both are exact.

¨ Similarly, one deduces that the bilinear part B : ModppRqop ˆModppRqop Ñ Sp is of the
form

BpX,Y q » MapRbRpX b Y,Mq
for a unique R bR-bimodule M . That it is symmetric means that M P ModpRˆRqhC2

where the action of C2 flips the two copies of R.
¨ It remains to understand the gluing map α. As for Λ, R-module corresponding to the

exact functor X ÞÑ BpX,XqtC2 is given by M tC2 , made an R-module via the Tate diagonal
R ÞÑ pR b RqtC2 . Thus through the Morita theory, the gluing map α is encoded by an
R-module map N ÑM tC2 .

Definition 3.4. A module with genuine involution is a triple pM,N,αq of M P ModpRbRqhC2 ,
N P ModpNq and α : N ÑM tC2 .

Thus concretely, not only can we define a hermitian structure on ModppRq by taking the pullback

Ϙ
α
pXq MapRbRpX bX,MqhC2

MapRpX,Nq MapRbRpX bX,MqtC2 » MapRpX,M tC2q,

but all hermitian structures are of this form.
When is this a Poincaré structure? The bilinear part of Ϙα is by construction MapRbRpXbY,Mq

and the equivalence MapRbRpX b Y,Mq » MapRpX,MapRpY,Mqq shows that Ϙα is Poincaré if
(1) Y ÞÑ MapRpY,Mq : ModpRqop Ñ ModpRq restricts to a functor ModppRqop Ñ ModppRq and
(2) the evaluation map is an equivalence. Item (1) is the case if M is perfect and item (2) holds if
and only if it holds for R, i.e. RÑ MapRpMapRpR,Mq,Mq » MapRpM,Mq is an equivalence. If
this is the case, we say that M is invertible.

Theorem 3.5. Hermitian structures on ModppRq are classified by invertible modules with genuine
involution.

3.3. Examples.

Example 3.6 (Modules with involution). Let us start with an M P ModpRbRqhC2 . Using this we
can define symmetric and quadratic hermitian structures

Ϙ
q
M pXq :“ MapRbRpX bX,MqhC2 and Ϙ

s
M pXq :“ MapRbRpX bX,MqhC2 .

These are given by taking the genuine modules with involution pM, 0, 0q and pM,M tC2 , idq respec-
tively.

Example 3.7 (Interpolating between quadratic and symmetric). We can define further Poincaré
structures ϘěmM pXq by replacing 0 ÑM tC2 and M tC2 ÑM tC2 by the connective cover τěnM tC2 Ñ

M tC2 for n P Z. For m “ 8 we get ϘqM and for m “ ´8 we get ϘsM . Note that the definition of Ϙ
as a pullback gives fibre sequences

Ϙ
q
M pXq ÝÑ Ϙ

ěm
M pXq ÝÑ MapRpX, τěmM tC2q.
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Ϙ
ěm
M pXq ÝÑ ϘsM pXq ÝÑ MapRpX, τďm´1M

tC2q

allowing us to compare these intermediate hermitian structures to the quadratic and symmetric
ones.

Example 3.8. How do you describe M P ModpRbRqhC2 when if R is an ordinary ring and M is an
ordinary projective RbR-module? In this case being a C2-fixed point means we have an involution
m ÞÑ m satisfying r1mr2 “ r2mr1.

What if we want M “ R, which is the easiest way to get an invertible module with genuine
involution? If R admits an anti-homomorphism τ : R Ñ Rop then we can consider R as an
RbR-module via aprqb “ arτpbq with involution r “ τprq. Examples include:

¨ A commutative ring with automorphism of order 2, e.g. C with complex conjugation.
¨ A group ring ZrGs admits an anti-homomorphism determined uniquely by τpgq “ g´1.

More generally, these can be given by specifying an anti-homomorphism r ÞÑ τprq and a unit ε
of R such that τ2prq “ ε´1rε and τpεq “ ε´1; a Wall anti-structure. Then we can make R into a
RbR-module by apbqc “ abτpcq with involution given by b “ εb. It turns out all involutions on R
are of this form.

Example 3.9. The hermitian structures associated to a module with genuine involution interacts
nicely with suspension. First we can do post-compose with Σn: Ϙ is associated to pM,N,αq then
ΣnϘpXq is associated to pΣnM,ΣnN,Σnαq.

Second we can combine this with pre-composition with Σm: Ϙ is associated to pM,N,αq then
Σn`mϘpΣnXq is associated to pΣm´nσM,ΣmN,Σmαq where σ is the sign representation of C2. We
say M is nσ-oriented if Σnσ´nM »M ; for example, if R is a Z-algebra it is 2σ-oriented, by proving
this in the universal case R “ Z. Thus for such R, we have an equivalence

Ω4 : Σ4
Ϙ
α
M pXq

»
ÝÑ Ϙ

α
M pXq,

and this induces the 4-fold periodicity of L-theory groups, if we recall that LnpC, Ϙαq is defined is
defined as cokerpπnPnBpC, Ϙαq Ñ πnPnpC, Ϙαqq.

4. Genuine Poincaré structures

The genuine Poincaré structures on ModppRq are given by
Ϙ
gq
M pXq :“ Ϙě2

M pXq, Ϙ
ge
M pXq :“ Ϙě1

M pXq and Ϙ
gs
M pXq :“ Ϙě0

M pXq.

In this section, we will outline why these particular cases are special.
The starting point is with the ordinary additive category ProjpRq of finitely-generated projective

R-modules. A reduced functor ProjpRq Ñ C is 2-polynomial if its cross effect is additive in each
entry separately.

Theorem 4.1. The inclusion ProjpRq Ñ ModppRq induces an equivalence
Map2-exc

pModppRqop, Spq ÝÑ Map2-poly
pProjpRqop, Spq.

Proof sketch. The inverse is given by first extending to ModppRqě0 through the Dold–Kan equiva-
lence ModppRqě0 » ProjpRq∆op and applying the functor levelwise, and extending it to ModppRq
by right Kan extension. �

Consider now the 2-polynomial functors ProjpRqop Ñ Sp given by
F gqM pP q :“ HomRbRpP b P,MqC2 ,

F qsM pP q :“ HomRbRpP b P,Mq
C2 ,

F geM pP q :“ impNm: F gppP q Ñ F gspP qq.

The first of these are nothing but classical quadratic and symmetric forms, an easy exercise you
should do. The previous theorem extracts “non-abelian derived” Hermitian structures from these:
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Theorem 4.2. The 2-excisive reduced functors associated to F gqM , F geM , F gsM are ϘgqM , ϘgeM , ϘgsM .

Proof sketch. Let us focus on the symmetric case. It suffices to verify the functor associated to F gsM
agrees with ϘgsM on finitely-generated projective R-modules P . We have that MapRbRpP bP,Mq is
concentrated in degree zero, so ϘqM pP q “ MapRbRpP b P,MqhC2 is concentrated in non-positive
degrees and agrees with F qsM in degree 0. Then the fibre sequence

Ϙ
ě0
M pP q ÝÑ Ϙ

s
M pP q ÝÑ MapRpP, τď´1M

tC2q

kills off what remains of the linear part. �

The reason we can about these is the following theorem:

Theorem 4.3 (Hebestreit–Steimle). GWλ
pRqcl » GWpModppRq, Ϙgλq for λ P tq, e, su, where the

superscript p´qcl denotes we take the group-completion of the symmetric monoidal category of
unimodular forms.


	1. Introduction
	2. Classification of hermitian structures
	3. Poincaré structures on categories of modules
	4. Genuine Poincaré structures

