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Abstract

These are the lectures notes for the Copenhagen workshop on homotopical
methods in manifolds theory in 2024.

Several recent applications of homotopy theory to manifold theory rely
on Goodwillie—Weiss’ embedding calculus, which is a homotopy-theoretic
tool to study spaces of smooth embeddings. This series of lectures introduces
from scratch a unifying higher-categorical setup for embedding calculus and
its variants (such as a version for topological embeddings or Boavida de
Brito–Weiss‘ theory of configuration categories), ready to be used for further
applications (as exemplified by the accompanying lectures series). Everything
discussed is joint with Manuel Krannich unless mentioned otherwise; this is
based on [KK24b, KK24c, KK24d].

Contents

Contents 1

1 Calculus of embeddings 3
1.1 Spaces of embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Calculus of embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Operadic calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Boundary conditions and bordism categories 13
2.1 Day convolution of presheaves . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Calculus of embeddings with boundary . . . . . . . . . . . . . . . . . . . . . 14
2.3 Bordism categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1



2 Contents

3 Tools in operadic calculus 21
3.1 Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Smoothing theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Application to topological convergence . . . . . . . . . . . . . . . . . . . . . 25
3.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 The Disc-structure space 28
4.1 Structure spaces and the Disc-structure space . . . . . . . . . . . . . . . . . 28
4.2 Independence of smooth structure . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Non-triviality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Bibliography 33



Chapter 1

Calculus of embeddings

1.1 Spaces of embeddings

Let M and N be smooth manifolds of dimension d, for the moment without boundary. A
continuous map M Ñ N is an embedding if it is a homeomorphism onto its image and
locally, with respect to charts in the domain and target, it is given by the identity map
idRd : Rd Ñ Rd of Euclidean spaces. The latter implies implies that an embedding it is
smooth with invertible derivatives, and conversely, by the inverse function theorem, a smooth
map with invertible derivatives is locally of the form idRd : Rd Ñ Rd.

Definition 1.1.1. EmbopM,Nq is the space of smooth embeddings, topologised as a
subspace of the space of smooth maps C8pM,Nq in the smooth topology.

We can also allow the manifolds to have boundary or corners. Convenient for our
purposes is the notion of a triad: a manifold M with its boundary BM divided into two
codimension zero submanifolds B0M, B1M meeting at corners B01M “ B0M X B1M . For an
embedding of a triad we then require that:

¨ B0M goes into BN (locally modelled on the inclusion Rě0 ˆRd´1 ãÑ Rě0 ˆRd´1),
¨ int B1M goes into intN (locally modelled on the inclusion Rě0 ˆRd´1 ãÑ Rd), and
¨ B01M necessarily goes into BN (locally modelled on the inclusion R2

ě0 ˆ Rd´2 ãÑ

Rě0 ˆRd´1).
In this lecture, for simplicity we will have B0M “ ∅ unless stated otherwise, but later we
will need the above generality.
Example 1.1.2. ForM “ N , the topological group of diffeomorphisms DiffpNq Ă EmbopN,Nq
agrees with the subspace of smooth embeddings admitting a strict inverse. If N is closed, or
more generally compact and B0N “ BN , all embeddings do and the inclusion is an equality.
Example 1.1.3. The set of path components of EmbopS1 ˆ D2, S3q is the set of framed
knots up to isotopy. More generally, high-dimensional knot theory is about the set of path
components of EmbopSd ˆD2, Sd`2q.
Example 1.1.4. The inclusions

GLdpRq ÝÑ DiffpRdq ÝÑ EmbopRd,Rdq

are equivalences, with inverse r given by taking the derivative at the origin.
Even if we are only interested in manifolds or moduli spaces thereof, we can not avoid

studying embeddings. A manifold can be understood through embeddings into it, and its
diffeomorphisms by letting these act on embeddings. The latter frequently uses the isotopy
extension theorem: if M is compact, and N has no boundary, then the map

DiffpNq ÝÑ EmbopM,Nq,

3



4 Chapter 1 Calculus of embeddings

given by acting on a fixed embedding e0 : M Ñ N , is a Serre fibration. Its fibre over an
embedding e : M Ñ N is non-empty if and only if there exists a diffeomorphism ϕ of N so
that ϕe0 “ e. If so, the fibre is given by the group DiffBpN ´ int epMqq of diffeomorphisms
of the complement of the interior of epMq that agree with the identity on BepMq (with all
derivatives, strictly speaking), and the fibre-inclusion map

DiffBpN ´ int epMqq ÝÑ DiffpNq

is given by extension-by-identity. Thus an informal interpretation of embedding spaces is as
“differences between diffeomorphism groups.”

Topological variant

The definition of an embedding makes sense for topological manifolds as well, and is
historically known as a “locally flat” embedding. We can then define a topological space
EmbtpM,Nq as the subspace of the space of continuous maps C0pM,Nq in the compact-open
topology. Topological embeddings are to homeomorphisms as smooth embeddings are to
diffeomorphisms, as the isotopy extension theorem holds by [EK71].
Example 1.1.5. Kister’s theorem says that the following inclusions are equivalences [Kis64]:

Toppdq ÝÑ HomeopRdq ÝÑ EmbtpRd,Rdq

where Toppdq is the space of germs of homeomorphisms of Rd near the origin. A problem
for the third lecture concerns its proof (not Kister’s original one but one due to Siebenmann
that casts it as a uniqueness result).
Remark 1.1.6. There is of course a continuous map EmbopM,Nq Ñ EmbtpM,Nq, forgetting
that a smooth embedding is smooth. Understanding this in homotopy-theoretic terms is
part of smoothing theory, which will make an appearance in the third lecture.

1.2 Calculus of embeddings

Goodwillie–Weiss’ calculus of embedding attempts—and often succeeds—to give a homotopy-
theoretic description of EmbcpM,Nq for c P to, tu; the original references are [Wei99,
BdBW13]. We now give a crash-course on it, only to reinterpret it in the next section.

1.2.1 Setup

As a starting point, we gather all d-dimensional manifolds and embeddings between these
into a topologically-enriched 1-category Mancd:

¨ The objects are d-dimensional manifolds M .
¨ The mapping space MapManc

d
pM,Nq is the space of embeddings EmbcpM,Nq.

¨ The composition is given by composition of embeddings.
Taking coherent nerve, this yields an 8-category Mancd.

Convention 1.2.1. In this lecture series we will always work 8-categorically unless stated
otherwise, as this is the most convenient setting for our higher-algebraic techniques. Thus,
category means 8-category, operad means 8-operad, etc. If you are not familiar with this,
not much is lost by pretending 8-categories are topologically-enriched 1-categories and
8-operad are topologically-enriched 1-operads.

To a d-dimensional manifold M we can associate a space-valued presheaf

EM : pMancdqop ÝÑ S

M 1 ÞÝÑ MapManc
d
pM 1,Mq “ EmbcpM 1,Mq,
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which tautologically recovers spaces of embeddings into M . This is of course nothing but
the image of M under the Yoneda embedding

Mancd
y
ÝÑ PShpMancdq

and the Yoneda lemma says that the functoriality of y induces an equivalence

EmbcpM,Nq
»
ÝÑ MapPShpManc

d
qpEM , EN q

with inverse given by evaluation at idM P EM pMq “ EmbcpM,Mq.
Embedding calculus then asks to what extend we can recover EM and maps into it—

which is all there is to know about embeddings into M—from its restriction to finite disjoint
unions of open discs. Weiss once called it a “pointillistic” point of view of manifolds, per
the following example:
Example 1.2.2. The value of EM on S ˆRd for a finite set S is given by the map

EM pS ˆRdq » EmbpS ˆRd,Mq
»
ÝÑ ConfSpMq ˆMS FrcpTMqS

taking the value and derivative at S ˆ t0u. Here we define FrcpTMq to be the space of
germs of embeddings Rd Ñ M , a convenient model for the frame bundle, and the target
is the space of S-labelled configuration of points in M , each labelled by a frame in the
corresponding smooth or topological tangent space. In particular, for S “ ∅ we get that
EM » ˚; we say that EM is a reduced presheaf.

More precisely, we let Disccd ĂMancd be the full subcategory on all objects equivalent to
S ˆRd for a finite set S, and we consider the image of M under the composition of the
Yoneda embedding and restriction along i : Disccd ÑMancd:

Manc y
ÝÑ PShpMancdq

i˚
ÝÑ PShpDisccdq, (1.1)

where we can add superscript p´qred indicating the full subcategories reduced presheaves if
we prefer.

Definition 1.2.3. The embedding calculus approximation is the map

EmbcpM,Nq “ MapManc
d
pM,Nq ÝÑ T8EmbcpM,Nq :“ MapPShpDiscc

d
qpEM , EN q

induced by (1.1) on mapping spaces.

Let us now discuss some of the important features of this construction; others appear in
the problems.

1.2.2 Universal property

There are many presheaves F in PShpMancdq that are not of the form EM , e.g. P ÞÑ

MappP,Mq, and it is interesting and useful to also consider

T8F pMq :“ MapPShpDiscc
d
qpEM , F q.

Moreover, one may recognise this as the right Kan extension along i,

Disccd S

Mancd

i˚F

i
i˚i

˚F»T8F

and the natural transformation F Ñ i˚i
˚F as the unit of the adjunction i˚ % i˚. This is the

first characterisations of T8, the second one identifies it with J8-sheafification [BdBW13].
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1.2.3 Convergence

The theorem that makes considering (1.1) worthwhile, is the following improvement of the
celebrated convergence result of Goodwillie–Klein–Weiss [GW99, GK15]. They proved the
result when M has handle dimension ď d´ 3, and the improvement is obtained by handle
arguments using the isotopy extension for embedding calculus [KK24a].

Definition 1.2.4. We say that a smooth embedding P Ñ Q is an equivalence on tangential
k-types if there is a factorisation QÑ B Ñ BO or BTop of the stable tangent classifier so
that QÑ B and P Ñ B are both k-connected.

Remark 1.2.5. A factorisation QÑ B Ñ BO so that QÑ B is k-connected always exists,
by taking a Moore–Postnikov factorisation.

Example 1.2.6. If Q is 1-connected spin, then P Ñ Q is an equivalence on tangential 2-types
if and only if P is also 1-connected spin.

Theorem 1.2.7 (Goodwillie–Klein–Weiss, Krannich–K., improved smooth convergence). If
d ě 5, M is compact, and BM ÑM is an equivalence on tangential 2-types, then the map

EmbopM,Nq ÝÑ T8EmbopM,Nq

is equivalence. We say that embedding calculus converges.

The problems explain how to reduce the original Goodwillie–Klein–Weiss result to this.

Example 1.2.8. CP 2n`1 ´ intD4n`2 satisfies the hypothesis for the theorem but has handle
dimension 4n so does not satisfy the hypothesis for the original Goodwillie–Klein–Weiss
convergence result.

Remark 1.2.9. In low dimensions the state of the art is as follows: embedding calculus always
converges in dimension d ď 2 [KK21], and in dimension d “ 3, 4 if the handle dimension of
M is ď d´ 3, the Goodwillie–Klein–Weiss result.

The same result is true for topological embeddings as long as the target admits a smooth
structure (this hypothesis is conjectured to be unnecessary), as we will explain in the third
lecture.

1.2.4 Tower and layers

Given the above convergence result and its announced topological counterpart, to understand
EmbcpM,Nq one can compute T8EmbcpM,Nq instead. To do so, we uses that as the
subscript 8 indicates, T8EmbcpM,Nq is a limit of finite approximations. Let Disccďk Ă
Discc be the full subcategory on objects equivalent to S ˆRd for a finite set of cardinality
ď k. Then we have a sequence of subcategory inclusions

Disccď1 Ă Disccď2 Ă ¨ ¨ ¨ Ă Disccď8 “ Discc

exhibiting Discc as the colimit of the Disccďk for finite k. Hence there is a corresponding
tower of restriction functors between presheaf categories

PShpDisccď1q ÐÝ PShpDisccď2q ÐÝ ¨ ¨ ¨ ÐÝ PShpDisccď8q “ PShpDisccq,



1.3 Operadic calculus 7

exhibiting PShpDisccq as the limit of PShpDisccďkq for finite k. On mapping spaces we get a
tower of finite approximations

T8EmbcpM,Nq :“
MapPShpDisccqpEM , EN q

...

T2EmbcpM,Nq :“
MapPShpDiscc

ď2q
pEM , EN q

EmbcpM,Nq
T1EmbcpM,Nq :“

MapPShpDiscc
ď1q
pEM , EN q

satisfying
T8EmbcpM,Nq

»
ÝÑ lim

kÑ8
TkEmbcpM,Mq.

These satisfy the analogous universal properties: the natural transformation F Ñ TkF “
MapPShpDiscc

ďk
qpEM , F q is the unit of the adjunction pikq˚ % pikq˚ for the inclusion ik : Disccďk Ñ

Manc, and can be interpreted as Jk-sheafification.
This focuses our attention on the first stage T1EmbcpM,Mq and the layers

fibx
“

TkEmbcpM,Nq Ñ Tk´1EmbcpM,Nq
‰

for x P Tk´1EmbcpM,Nq.

If we could understand these, we could inductively compute TkEmbcpM,Nq and take a limit
to compute T8EmbcpM,Nq. This is indeed possible: the higher layers are covered in the
third lecture, but the first stage we can do now.

Right Kan extension identifies PShpDiscc“1q, where Discc“1 Ă Disc is the full subcategory
on objects equivalent to Rd, with PShred

pDisccď1q. Since EM is always reduced, we get that

MapPShpDiscc
“1q
pEM , EN q » MapPShpDiscc

ď1q
pEM , EN q.

The category Discc“1 is equivalent to the groupoid with a single object and morphisms given
by either GLdpRq » Opdq or Toppdq, and by unstraightening the presheaf categories are
equivalent to the categories S{BOpdq or S{BToppdq of spaces over BOpdq or BToppdq. That is,

PShred
pDisccď1q »

#

S{BOpdq if c “ o,
S{BToppdq if c “ t.

Under this equivalence, EM corresponds to M with its tangent classifier and the first stage
can be identified with

T1EmbcpM,Nq
»
ÝÑ

#

Map{BOpdq
pM,Nq if c “ o,

Map{BToppdq
pM,Nq if c “ t,

and equivalently spaces of bundle maps.

1.3 Operadic calculus

Having gotten a first look at embedding calculus, we will reinterpret it as a construction
associated to the framed little d-discs operad.
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1.3.1 Operads and envelopes

Operads encode certain types of algebraic structures. A prototypical example is the operad
Eod , unfortunately known as the (topologically) framed little d-discs operad. Working in
the simplest model of (single-coloured) 1-operads, it has for each k ě 0 a space of k-ary
operations given by

Ecdpkq :“ Embcp\kRd,Rdq.

Permuting the input induces a Σk-action, composition of embeddings induces composition
maps

Ecdpkq ˆ
k
ź

i“1
Ecdp`iq ÝÑ Ecdp`1 ` ¨ ¨ ¨ ` `kq

that are suitably equivariant, and idRd P Eodp1q acts a unit for these. By taking Lurie’s
operadic nerve, one extracts from this an operad Ecd.
Remark 1.3.1. Ecd is the endomorphism operad of Rd in Mancd.
Example 1.3.2. Eodpkq is equivalent to ConfkpRdq ˆ Opdqk and Etdpkq is equivalent to
ConfkpRdq ˆ Toppdqk, and during operadic composition the Opdq and Toppdq act on the
spaces of configurations. We will see momentarily that they are in a precise sense “semi-direct
product” operads.

In general, an operad O can have more “colours” to serve as inputs and outputs: for all
collections of colours c1, . . . , ck, c, one has a space of multi-operations MulOppc1, . . . , ckq; cq
and composition is only possible if the colours line up. This generality is necessary if we
want to interpret a symmetric monoidal category pC,bq as an operad: the colours are the
objects of C and multi-operations are MulCppx1, . . . , xkq;xq “ MapCpx1 b ¨ ¨ ¨ b xk, xq.

This gives an inclusion
CMonpCatq ÝÑ Op

of symmetric monoidal categories into operads, which admits a left adjoint Env: Op Ñ
CMonpCatq, known as the symmetric monoidal envelope. Informally, the objects of EnvpOq
are pairs pcsqsPS of a finite set S and a colour cs for each elements s P S and the mapping
spaces decompose as

MapEnvpOqppcsqsPS , pctqtPT q »
ğ

φ : SÑT

ź

tPT

MulOppcsqsPφ´1ptq, ctq,

with composition induced by the operad composition. The symmetric monoidal structure
is given on object by formal disjoint union and on morphisms by taking products. The
following is the crucial observation:

Proposition 1.3.3. There is an equivalence of symmetric monoidal 8-categories

EnvpEcdq
»
ÝÑ Discc.

Proof. Recognising Ecd as the endomorphism operad of Rd in the symmetric monoidal
category Discc, where the monoidal structure is given by disjoint union, the universal property
of the symmetric monoidal envelope induces a symmetric monoidal functor EnvpEcdq Ñ Discc.
This is essentially surjective since both have objects corresponding by finite sets and fully
faithful because the map

ğ

φ : SÑT

ź

tPT

Embp\φ´1ptqRd,Rdq ÝÑ Embp\SRd,\TRdq

is an equivalence, dividing the right into terms corresponding to the underlying map of finite
sets of path components.
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1.3.2 Operadic calculus

The previous observation leads us to consider for an operad O the category of “right modules”

RModpOq :“ PShpEnvpOqq,

and develop a “calculus” satisfying the following desiderata:
(A) A tower.
(B) A description of the first stage.
(C) A description of the layers.
(D) All the above natural as natural as possible.

Desideratum (A) is straightforward to satisfy: the commutative operad Com has a single
colour and all multi-operations given by a point, and hence is the terminal operad. It
satisfies EnvpComq » Fin, the category of finite sets and all maps between these, so there is
a canonical symmetric monoidal functor EnvpOq Ñ Fin. Letting Finďk Ă Fin be the full
subcategory of finite sets of cardinality ď k, we can form

EnvpOqďk :“ EnvpOq ˆFin Finďk and RModkpOq :“ PShpEnvpOqďkq.

The inclusions Finď1 Ă Finď2 Ă ¨ ¨ ¨ Ă Finď8 “ Fin then induce a tower

RMod1pOq ÐÝ RMod2pOq ÐÝ ¨ ¨ ¨ ÐÝ RModpOq.

Similarly, Desideratum (B) is straightforward to satisfy if O is groupoid-coloured (that is,
spaces of 0-ary operations are contractible and all 1-ary operations invertible) and we restrict
to reduced right modules RModred

1 pOq :“ PShred
pEnvpOqď1q, as the latter can be identified

with PShpOcolq where Ocol is the groupoid of colours of O, and using unstraightening we get

RModred
1 pOq » S{Ocol .

1.3.3 More operads

The operadic approach will be powerful for two reasons. Firstly, phrasing everything more
generally in terms of operads and right modules is clarifying. Secondly, there are many
operads related to Ecd that lack a geometric incarnation. We will describe two constructions
of such.

You may be more familiar with Ed, the little d-discs operad, than Ecd; here we only allow
embeddings that preserve a framing or equivalently are rectilinear. There is a general theory
of tangential structures for reduced operads O, i.e. those where the spaces of 0-ary and 1-ary
multioperations are contractible: for any map θ : B Ñ BAutOppOq (we will suppress the
subscript Op from now on if it is clear from the context we consider automorphisms of an
operad) one can form the colimit

Oθ :“ colim
B

O P Op,

which one should interpret as a semi-direct product ΩB ˙ O, if B is connected, because
MulO

θ

pkq » Opkq ˆ ΩBk.
Example 1.3.4. We have

Eod » pEdq
o for o : BOpdq Ñ BAutpEdq,

Etd » pEdq
t for t : BToppdq Ñ BAutpEdq

for maps o, t constructed as follows, doing only the latter for brevity. If we take the definition
of Etd but no longer require the discs to be disjointly embedded, we get an operad E

t,\
d
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with E
t,\
d pkq “

ś

k EmbtpRd,Rdq, which is equivalent to
ś

k Toppdq. There is inclusion of
operads

Etd ÝÑ E
t,\
d

and taking fibres over the identity elements we recover an operad equivalent to Ed. Now we
observe that this map is equivariant for the action of Toppdq on Etd and Et\d by conjugation,
given by sending e P Etdpkq “ Embtp\kRd,Rdq to φ ˝ e ˝ p\kφ´1q and similarly for E

t,\
d pkq.

This fixes the points pidRd , . . . , idRdq so we get an induced action Toppdq on Ed.
However, in the accompanying lecture we will need the follow novel variant:

E
p
d » pEdq

id for p :“ id : BAutpEdq Ñ BAutpEdq.

Here the superscript p stands for “particle” because of its close relationship to configuration
categories as in [BdBW18], to be explained in [KK24c].
Remark 1.3.5. An operad is unital if its spaces of 0-ary multioperations are contractible.
Lurie’s work of disintegration and assembly allows one to prove that any unital operad O

whose category of colours Ocol (given by taking the objects and 1-ary operations between
these) is an 8-groupoid arises by adding a tangential structure to a reduced operad. More
precisely, there is an equivalence

Opgc
»

ż

S

Funp´,Opred
q,

where p´qgc denotes “groupoid-coloured” operads (unital so that Ocol is a groupoid) and
p´qred reduced operads.

Secondly, we can k-truncate operads by discarding multi-operations of arity exceeding
k. When we restrict to unital operads, i.e. those where the spaces of 0-ary operations are
contractible, there are functors

Opun
“ Opun

ď8 ÝÑ ¨ ¨ ¨ ÝÑ Opun
ď2 ÝÑ Opun

ď1,

which admit both left and right adjoints. By truncating and applying the right adjoint
we can form the reduced operads pEdqďk and then we can modify these by taking tan-
gential structures. The operads obtained this way do not necessarily arise by taking a
tangential structure on Ed and truncating, e.g. when we taking the tangential structure
id : BAutppEdqďkq Ñ BAutppEdqďkq.

1.4 Problems

The following problems are intended to illustrate or extend the material of the lectures.
Parts labelled by (˚) require concepts not explained in the lectures or the problems.

Problem 1 (Isotopy equivalence). We say that M and M 1 are isotopy-equivalent if there
are embeddings M ãÑM 1 and M 1 ãÑM that are inverse up to isotopy (i.e. M and M 1 are
isomorphic in Mancd).
(a) Use a collar to prove that every compact manifold M is isotopy equivalent to its interior.
(b) Prove that if M and M 1 are isotopy equivalent then

EmbcpM,Nq » EmbcpM 1, Nq.

Problem 2 (Smooth Kister’s theorem). Prove Example 1.1.4.

Problem 3 (The micro-extension trick). There is of course no issue with defining embed-
dings between manifolds that are not of the same dimension. However, considering only
codimension zero embeddings comes at little loss of generality by the following arguments:
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(a) Using the tubular neighbourhood theorem, prove for every smooth embedding e : M Ñ N
between manifolds of dimension d and d1 respectively, there is a unique vector bundle
ξ over M so that e extends to an embedding E : Dpξq Ñ N of the total space of a
pd1 ´ dq-disc bundle in ξ.

(b) Let Bunp´,´q denote the space of bundle monomorphisms. Prove there is a pullback
square

EmbpDpξq, Nq BunpTM ‘ ξ, TNq

EmbpM,Nq BunpTM, TNq.

(c) (˚) What happens in the topological setting?

Problem 4.
(a) Defining FrcpTMq as the space of germs near the origin of embeddings Rd ÑM as in

Example 1.2.2, use the isotopy extension theorem to establish a fibre sequence

M ÐÝ FrcpTMq ÐÝ
#

Opdq if c “ o,
Toppdq if c “ t.

(b) Extend this to k ą 1.

Problem 5 (Jk-covers and Jk-descent). Fix 1 ď k ď 8. An open cover U of a topological
space X is a Jk-cover if every finite subset of X of cardinality ď k is contained in some
U P U.
(a) Prove that an open cover U is a Jk-cover if and only if for all j ď k we have that

tConfjpUq | U P Uu is an open cover of ConfjpXq.
(b) (˚) Prove that every smooth manifold admits a J8-cover so that all finite intersections

are finite disjoint unions of open discs. Is the same true topologically?1

Let NU denote the nerve of the open cover U; the poset of ordered finite collections
pU1, . . . , Unq of elements of U, ordered by inclusion. Dugger–Isaksen proved that the map

colim
pU1,...,UnqPNU

pU1 X ¨ ¨ ¨ X Unq ÝÑ X

is an equivalence (here we use an 8-categorical colimit, i.e. a homotopy colimit).
(c) Prove that for a Jk-cover U of a d-dimensional manifold M , we have an equivalence in

PShpDisccďkq
colim

pU1,...,UnqPNU
EU1X¨¨¨XUn ÝÑ EM .

(d) Prove that if U is a Jk-cover of M then for any F P PShpMancq the map

TkF pMq ÝÑ lim
pU1,...,UnqPNU

TkF pU1 X ¨ ¨ ¨ X Unq

is an equivalence.
(e) (˚) Extend the above to hypercovers.
Part (d) says that TkF satisfies a sheaf property for Jk-property. [BdBW13] proves is that
it is the initial Jk-sheaf, i.e. F Ñ TkF is Jk-sheafification; we suggest the interested reader
peruse the paper, as it is instructive.

Problem 6 (Examples of J8-covers).
(a) Prove that tDkztxuuxPintDk is a J8-cover of Dk.

1This seems to be an open problem.
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(b) Prove that if tUiuiPI is a J8-cover of X then tUi ˆ Y uiPI is a J8-cover of X ˆ Y .
(c) Deduce that tDd´k ˆ pDkztxuquxPintDk is a J8-cover of Dd´k ˆDk.
(d) Use (d) to prove that if M is a d-dimensional manifold with r handles of top index

k ě 1, then it admits a J8-cover with ă r-handles of top index k.

Problem 7 (Equivalences on tangential k-type).
(a) Prove that if an embedding P Ñ Q is k-connected then it is an equivalence on tangential

k-types.
(b) Prove that if an embedding P Ñ Q is an equivalence on tangential k-types then it is

pk ´ 1q-connected.
(c) Prove that an embedding Dd ãÑ Q is an equivalence on tangential 2-types if and only if

Q is 1-connected spin.
(d) Justify Example 1.2.6.

Problem 8 (Handle dimension).
(a) Suppose that a d-dimensional manifold M admits a handle decomposition with only

ď d´ k ´ 1-handles. Prove that BM ÑM is k-connected.
(b) Conclude that if M has handle dimension ď d´ 3 then BM ÑM is an equivalence on

tangential 2-types.

Problem 9 (Smale–Hirsch–Lees). The immersion Immc
pM,Nq differ from the embeddings

EmbcpM,Nq by still requiring that maps are locally given by idRd : Rd Ñ Rd but no longer
that it is a homeomorphism onto its image.
(a) Prove that EmbcpRd, Nq Ñ Immc

pRd, Nq is an equivalence.
The technical core of the Smale–Hirsch–Lees theorem is that the presheaf Immc

p´, Nq P
PShpMancdq satisfies descent for J1-covers of manifolds that have no closed components.
(b) Use this to prove that the maps T1EmbcpM,Nq Ñ T1Immc

pM,Nq Ð Immc
pM,Nq are

equivalences if M has no closed components.



Chapter 2

Boundary conditions and bordism categories

In many applications we want to restrict our attention to those embeddings agree with a fixed
embedding on the boundary. In this lecture we explain how to adapt embedding calculus
as explained in the previous lecture to such restricted embeddings, using the language of
algebras and modules.

2.1 Day convolution of presheaves

Recall that we advocated a perspective on embedding calculus as being about the category

RModpEθdq :“ PShpEnvpEθdqq

for a tangential structure θ : B Ñ BAutpEdq, e.g. take θ “ o, t, p to get the (smooth, topolog-
ical, “particle”) framed little d-discs operads, and where EnvpEcdq is the symmetric monoidal
envelope. In fact, more generally one may as well consider RModpOq :“ PShpEnvpOqq for
any operad O.

We also explained that the existence of a functor EnvpEθdq Ñ Fin allows one construct
a tower of truncated right module categories RModkpEθdq, but we did not yet use that
symmetric monoidal envelopes are symmetric monoidal (as the name and definition make
clear): this will make RModpEθdq symmetric monoidal as well, which can be used to model
gluing of manifolds in embedding calculus.

2.1.1 Day convolution

Lurie proved that if C is a symmetric monoidal category then PShpCq is also, with a
symmetric monoidal structure known as Day convolution.

Its universal property—that it the corepresents MapCMonlaxpCatqp´ ˆ Cop, Sq—is useful
for establishing formal properties but not so much for computations. Fortunately, Lurie also
gave a formula for the Day convolution monoidal product in terms of left Kan extension

Cop ˆ Cop S

Cop.

FˆG

b
FbG

For the symmetric monoidal envelope EnvpOq you can simplify this formula using a cofinality
argument: the result is that for F,G P RModpOq (assuming for simplicity there is only one
colour for brevity) one has

pF bGqpSq :“
ğ

S“S1\S2

F pS1q ˆGpS2q.

One feature of Day convolution, visible from the formula, is that it commutes with small
colimits in each entry separately, so in particular with geometric realisations; we say the
symmetric monoidal structure is compatible with geometric realisations.

13
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This formula make sense also for RModkpOq “ PShpEnvpOqďkq, but this does not fit
into the above framework because EnvpOqďk is not symmetric monoidal (we can’t disjoint
union of discs whose total number exceeds k). The solution is to recognise the formula as
j˚pj˚F b j˚Gq for j : EnvpOqďk Ñ EnvpOq the inclusion, where j˚ is the restriction functor
and j˚ its fully faithful right adjoint given by right Kan extension. and think of RModkpOq
as a localisation of RModpOq and its symmetric monoidal structure as the localisation of the
Day convolution symmetric monoidal structure on RModpOq. With this construction, the
restriction functors RModpOq Ñ RModkpOq and RModkpOq Ñ RModk´1pOq are symmetric
monoidal; they also preserve colimits and in particular geometric realisations because they
admit a right adjoint; we say they are compatible with geometric realisations.

We can further restrict Day convolution to reduced presheaves, motived by the observation
that EM is always reduced. This is interesting especially in the case k “ 1, as then the
formula reduces to a coproduct

pF bGqp˚q » F p˚q ˆGp∅q \ F p∅q ˆGp˚q » F p˚q \Gp˚q,

and we get an equivalence pRModred
1 pOq, dayq » pPShpOcolq,\q of symmetric monoidal

categories.
The upshot of this discussion is that:

Proposition 2.1.1. The tower of (truncated) module categories lifts a tower

pRModpOq, dayq ÝÑ ¨ ¨ ¨ ÝÑ pRMod2pOq, dayq ÝÑ pRMod1pOq, dayq

of symmetric monoidal categories and symmetric monoidal functors compatible with geometric
realisations, and similarly for reduced right modules.

2.1.2 Presheaf of a disjoint union

To see how the Day convolution symmetric monoidal structures on RModpEcdq for c P to, tu
relate to the geometry of manifolds, we consider a d-dimensional manifold of the form
M \M 1 and the associated presheaf EM\M 1 P RModpEcdq. We can compute directly its
values

EM\M 1pS ˆRdq » EmbpS ˆRd,M \M 1q

by observing the term on the right decomposes as a disjoint union over decompositions
S “ S1 \ S2,

EmbpS ˆRd,M \M 1q –
ğ

S“S1\S2

EmbpS1 ˆRd,Mq ˆ EmbpS2 ˆRd,M 1q

because an S-labelled collection of open discs in M \M 1 decomposes uniquely as a pair
of of a collection of open discs in M and a collection of open discs in M 1. This is exactly
the formulate for Day convolution, and indeed E is the composition of symmetric monoidal
functors

pManc,\q ÝÑ pPShpMancq, dayq ÝÑ pPShpDisccq, dayq.

2.2 Calculus of embeddings with boundary

Recall from the first lecture that it is convenient to consider a manifold triad M , its boundary
decomposed as B0M YB01M B1M .

Definition 2.2.1. Suppose M be a triad and we are given an embedding eB : B0M Ñ BN .
Then EmbcB0

pM,Nq Ă EmbcpM,Nq denotes the embeddings agreeing with eB on B0M .
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On the one hand, this has the advantage that we can define extension-by-identity maps
(strictly speaking, in the smooth case this requires that the embedding agrees with a fixed
collar near the boundary, but imposing this condition does not change the homotopy type).
On the other hand, this is closely related to embedding spaces considered previously, as it
fits in a fibre sequence

EmbcB0
pM,Nq ÝÑ EmbcpM,Nq ÝÑ EmbcpB0M, BNq

where in the middle term we require, per our convention for triads, that B0M is mapped
into BN . We now explain how to adapt embedding calculus to this setting.

2.2.1 Algebras and modules

In any symmetric monoidal category C one can define (associative) algebras as a map of
operads E1 Ñ C where E1 is the little 1-disc operad:

AlgpCq “ FunOppE1,Cq.

Remark 2.2.2. To justify calling these associative algebras, note passing to path components
induces an equivalence

E1
»
ÝÑ Ass

to the associative operad, so one can think of E1 as a “thickening” of Ass more suitable for
interacting with manifolds.

Informally, the value on the unique colour of E1 specifies the underlying object A of the
algebra, the value on the unique 0-ary operation a unit map 1Ñ A, and the value on the
2-ary operations specifies a multiplication map

AbA ÝÑ A.

The k-ary operations are obtained from this by iterated composition and the relations
between these enforce associativity and unitality.

Similarly, one can define pairs of an algebra and left module over it as maps out of the
variant LE1 of the E1-operad. This variant has two colours, I “ p0, 1q and L “ p0, 1s, and
multioperations with target L given by Embrec

BLpS ˆ I \ L,Lq (note we always require a
single L be present). Informally, a map out of LE1 is a map out of E1 specifying an algebra
and the following additional data: the value on the colour L specifies the underlying object
M of the module, and the 2-ary operations into L specify an action map

AbM ÝÑM

satisfying associativity and unitality. The inclusion E1 Ñ LE1 induces a restriction map
which one may use to fix the algebra and define an 8-category of A-modules:

ModApCq “ fibA
“

FunOppLE1,Cq Ñ FunOppE1,Cq
‰

.

A symmetric monoidal functor C Ñ D is in particular a map of operads so in particular
takes algebras, resp. left modules, in C to such objects in D.

2.2.2 Algebras and modules in manifolds

Let us consider the case C “ Manc, whose symmetric monoidal structure has monoidal
product given by disjoint union and monoidal unit given by the empty manifold. Any triad
gives rise to an algebra and module over it as follows. We start by observing that the open
interval I “ p0, 1q is canonically an E1-algebra in Manc for d “ 1: the k-ary operations in
E1pkq where by definition given by embeddings \k Ñ I that on each term are a composition
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of scaling and translation. Taking the product with B0M , we see that B0M ˆ I is also an
E1-algebra in Manc. E.g. for B0M “ BM “ S1, the multiplication on S1 ˆ I is represented
by the embedding

picture

Pick a collar B0M ˆ r0, 1s ãÑ M on B0M in M—the space of collars is contractible by
[Con71]—we can make M into a left B0M ˆ r0, 1s-module. E.g. for B0M “ BM “ S1 and
M “ D2, the action of S2 ˆ I on D2 ˆ I is represented by the embedding

picture

2.2.3 Boundary conditions in embedding calculus

Let us collect what we have done above:
(1) A triad M yields a pair of an algebra B0M ˆ I and a left module M over it in pManc,\q.
(2) The embedding calculus construction

pManc,\q y
ÝÑ pPShpMancq, dayq i˚

ÝÑ pRModpEcdq, dayq

is symmetric monoidal.
(3) Symmetric monoidal functors preserve algebras and left modules.
Combining these, we find that a triad M yields a pair of an algebra EB0MˆI and a left
module EM over it in pRModpEcdq, dayq. The analogous statement goes through in the
truncated setting, as the restriction pRModpEcdq, dayq Ñ pRModkpEcdq, dayq is symmetric
monoidal.

A self-embedding e : M ÑM that fixes not only B0M but also the collar B0M ˆ r0, 1s
pointwise, preserves the B0M ˆ I-module structure described above. Thus the map

e ˝ p´q : EM ÝÑ EM

of presheaves it induces is one of EB0MˆI -modules in RModpEcdq. However, by contractibility
of space of collars, the hypothesis that it fixes the collar is homotopically vacuous. More
generally, if we have a manifold N and an embedding eB : B0M Ñ BN , we can identify its
image with B0M to N into a triad with B0N “ B0M and hence into a B0M ˆ I-module.
Doing so, any embedding M Ñ N agreeing with eB on B0M induces a map EM Ñ EN of
EB0MˆI -modules in RModpEcdq.

The conclusion is that if we let MancP denote the category of d-dimensional triads M
with B0M identified with P and whose mapping spaces are embeddings fixing P pointwise,
then there are functors

MancP ÝÑModPˆIpMancq ÝÑModEPˆI pRModpEcdqq.

Definition 2.2.3. Suppose M and N are triads with B0M “ P “ B0N . Then the embedding
calculus approximation with boundary P is the map

EmbcB0
pM,Nq ÝÑ T8EmbcB0

pM,Nq :“ MapModEPˆI pRModpEc
d
qqpEM , EN q.

One can similarly define TkEmbcB0
pM,Nq by replacing RModpEcdq with RModkpEcdq,

using that restriction is symmetric monoidal. In fact, such a treatment boundary conditions
in a tower makes sense for any operad O by replacing RModpEcdq or RModkpEcdq with
RModpOq or RModkpOq, again with Day convolution symmetric monoidal structure.

The first piece of evidence that this is a good way to treat boundary conditions is the
following convergence result.
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Theorem 2.2.4 (Goodwillie–Klein–Weiss, Krannich–K., improved smooth convergence). If
d ě 5, M is compact, and B1M ÑM is an equivalence on tangential 2-types, then the map

EmboB0
pM,Nq ÝÑ T8EmboB0

pM,Nq

is equivalence.

Remark 2.2.5. As the case without boundary, we will eventually establish a topological
variant as long as N is smoothable.

2.2.4 Gluing of manifolds

If we have a left module M and a right module N over an algebra A in a symmetric monoidal
category that has geometric realisations, we can form the relative tensor product

M bA N “ |Bar‚pM,A,Nq|.

The relationship of this relative tensor product to gluing of manifolds is the second piece
of evidence that we found a good way to treat boundary conditions. Two triads M and N
with B0M “ P “ B1M can be glued along P to form a manifold M YP N and the following
is left for the problem session:

Proposition 2.2.6. There is an equivalence in RModpEcdq

EMYPN » EM bEPˆI EN .

2.3 Bordism categories

These gluing maps are part of a larger coherent structure. Indeed, a usable form of embedding
calculus should have compatible and coherent analogues of geometric constructions on
embeddings:

(1) Composition of embeddings.
(2) Gluing of embeddings.
(3) Disjoint unions of embeddings.

How does one encode all this data conveniently? For embeddings, this may be done by
constructing a symmetric monoidal non-compact bordism double 8-category ncBordcd, as
was done in [KK22]. This is an object in CMonpCatpCatqq, an definition I will unwind now,
illustrating it with ncBordc.

The starting point is a double 8-category, an object of CatpCatq so by definition a
category object in Cat. This is a functor D : ∆op Ñ Cat satisfying a Segal condition

Drns
»
ÝÑ Dr1s ˆDr0s ¨ ¨ ¨ ˆDr0s Dr1s

looooooooooooooomooooooooooooooon

n

.

Informally, it has a category of objects Dr0s, a category of morphisms Dr1s, and a composition
functor Dr1s ˆDr0s Dr1s Ñ Dr1s. The Segal condition says Drns is a category of strings of n
composable morphisms. For the non-compact bordism category we have:

¨ pncBordcdqr0s has objects (possibly non-compact) pd´ 1q-dimensional manifolds P and
mapping spaces given by embeddings between these.

¨ pncBordcdqr1s has objects (possibly non-compact) bordisms and mapping spaces given
by embeddings between these.

¨ pncBordcdqrns has as objects (possibly non-compact) bordisms written as a composition
of n bordisms and mapping spaces given by embeddings between these preserving the
decomposition.
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¨ The composition in pncBordcdqc is given by gluing of bordisms.
In particular, the mapping category

ncBordcdpP,Qq :“ fibpP,Qq
“

pncBordcdqr1s Ñ pncBordcdqr0s ˆ pncBordcdqr0s
‰

has objects given by bordisms from P to Q and mapping spaces given by embeddings
between these fixing P and Q pointwise. In terms of these, the composition functor

ncBordcdpP,Qq ˆ ncBordcdpQ,Rq ÝÑ ncBordcdpP,Rq

is giving by gluing of bordisms and embeddings.
Example 2.3.1. Picking objects W and W 1 of ncBordcdpP,Qq and ncBordcdpQ,Rq and setting
B0W “ P \Q, B0W

1 “ Q\R, the induced map on endomorphism spaces is the gluing map

EmbcB0
pW,W q ˆ EmbcB0

pW 1,W 1q ÝÑ EmbcB0
pW YQW

1,W YQW
1q

where B0pW YQ W 1q “ P \ R. Restricting to the identity in EmbcB0
pW 1,W 1q gives an

extension-by-identity map

EmbcB0
pW,W q ÝÑ EmbcB0

pW YQW
1,W YQW

1q.

Remark 2.3.2. Closed pd´ 1q-manifolds and compact d-dimensional bordisms gives a sub-
category Bordcd Ă ncBordcd. It has the feature that the mapping categories in the object
and morphisms categories are groupoids because embeddings between closed manifolds,
or embeddings between compact manifold relative the boundary, are diffeomorphisms or
homeomorphisms.

Just like symmetric monoidal categories are commutative monoid objects in Cat, symmet-
ric monoidal double categories are commutative monoid objects in CatpCatq. This amounts
to giving symmetric monoidal structures on all pncBordcdqrns so that all functors between
them are symmetric monoidal. In the case of ncBordcd, this is given by disjoint unions.

To reflect this structure on side of embedding calculus, we need a symmetric monoidal
double 8-category of algebras and bimodules. Bimodules appear here rather than modules
because bordism have they boundary divided into three pieces: an incoming boundary, an
outgoing boundary, and a free part. To recover triads take null-bordisms, where the outgoing
boundary is empty.

Such a construction was provided by Haugseng [Hau17], in the form of a symmetric
monoidal double 8-category Morita category ALGpCq, defined for any symmetric monoidal
8-category compatible with geometric realisations.

¨ ALGpCqr0s has objects given by algebras in C and mapping spaces given by maps of
algebras.

¨ ALGpCqr1s has objects triples pA,M,Bq of two algebras A,B and an pA,Bq-bimodule
and mapping spaces given by maps of such.

¨ ALGpCqrns has as objects given by string of pn ` 1q-algebras and n bimodules and
mapping spaces given by maps of such.

¨ The composition in ALGpCq is given by relative tensor products.
¨ The symmetric monoidal structure is given by external tensor product of algebras and

bimodules.
This construction in particular applies to RModpEcdq or RModkpEcdq

A strong statement of the naturality of embedding calculus is as follows (proven for
k “ 8 in the smooth case in [KK22] and in general in [KK24b]), which informally says
that (truncated) embedding calculus with boundary conditions has composition, gluing, and
disjoint unions operations, as compatible as one could hope for.
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Theorem 2.3.3 (Krannich–K., naturality of embedding calculus). There are maps

ncBordcd ÝÑ ALGpRModpEcdqq ÝÑ ¨ ¨ ¨ ÝÑ ALGpRMod2pE
c
dqq ÝÑ ALGpRMod1pE

c
dqq

of symmetric monoidal double 8-categories, and similarly for reduced modules.

Remark 2.3.4. There is a stronger statement that is provable with our techniques: taking
an extended non-compact bordism category as the domain, there ought to be a map of
symmetric monoidal pd` 1q-fold 8-categories. We did not write down the details because
we do not know of a use for this.
Example 2.3.5. As in Example 2.3.1, the existence of the Morita category can be used to
produce extension-by-identity map

T8EmbcB0
pW,W q ÝÑ T8EmbcB0

pW YQW
1,W YQW

1q,

which by previous theorem fit into a commutative square

EmbcB0
pW,W q EmbcB0

pW YQW
1,W YQW

1q

T8EmbcB0
pW,W q T8EmbcB0

pW YQW
1,W YQW

1q.

Example 2.3.6. It is a result of Haugseng that ALGpCq where C has a cocartesian symmetric
monoidal structure is given by a cospan symmetric monoidal double8-category COSPANpCq.
Thus we get

ALGpRModred
1 pEcdqq »

#

COSPANpS{BOpdqq if c “ o,
COSPANpS{BToppdqq if c “ t.

2.4 Problems

Problem 10 (Gluing as relative tensor product). The relative tensor product EMbEPˆI EN
can computed by the following semisimplicial object in RModpEcdq: using collars we can
write M YP N –M YP P ˆ r0, 1s YP N , and then X‚ is given

rps ÞÝÑ
ğ

0ăt0ă¨¨¨ătpă1
EMYPPˆpr0,1sztt0,...,tpuqYPN .

(a) Prove that tP ˆ pIztxuquxPI is a Weiss J8-cover.
(b) Give an augmentation X‚ Ñ EMYPN–MYPPˆr0,1sYPN and combine (a) with a problem

from the last lecture to prove it realises to an equivalence.

Problem 11 (Ad-hoc boundary conditions). One can also treat boundary conditions
as follows. Fixing a pd ´ 1q-dimensional manifold P , recall that MancP is the category
of d-dimensional manifolds BM with inclusion P ãÑ BM and mapping spaces given by
embeddings that are the identity on P . Let DisccP Ă MancP be the full subcategory on
objects equivalent to P ˆ r0, 1q \ S ˆRd and embedding calculus with boundary P through
the functor

MancP
y
ÝÑ PShpMancP q

i˚
ÝÑ PShpDisccP q.

(a) Construct analogously to the case with empty boundary a tower

T adhoc
8 EmbP pM,Nq ÝÑ ¨ ¨ ¨ ÝÑ T adhoc

2 EmbP pM,Nq ÝÑ T adhoc
1 EmbP pM,Nq

for M,N PMancP .
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(b) Prove that DisccP is equivalent to the full subcategory of ModEPˆI pRModpEcdqq on free
EPˆI -modules on representables.

(c) Use (b) to construct a functor

ModEPˆI pRModpEcdqq ÝÑ PShpDisccP q

(d) Extend (b) and (c) to the truncated setting.
(e) (˚) Prove that (c) and its generalisations in (d) are fully faithful.

Problem 12 (Contractibility of collars). As usual in manifold theory, one proves relative
uniqueness and then deduces existence; uniqueness is just foliated uniqueness.
(a) Let U be an open neighbourhood of M ˆ Rď0 in M ˆ R and h0 : U Ñ M ˆ R be

an embedding that is the identity on M ˆRď0. Prove that there exists an isotopy
ht : U ÑM ˆR of embeddings fixing M ˆRď0 so that h1 “ inc. (Hint: conjugate by
a “slide.”)

(b) Formulate a relative version of (a) and prove the existence of collars.
(c) Formulate a foliated version of (a) and prove the contractibility of spaces of collars.
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Tools in operadic calculus

In the previous lectures we discussed that to an operad O one can associate a tower of
truncated reduced right O-modules

RModred
pOq ÝÑ ¨ ¨ ¨ ÝÑ RModred

2 pOq ÝÑ RModred
1 pOq,

consisting of symmetric monoidal categories and symmetric monoidal functors, which for
the operads Ecd with c P to, tu yields embedding calculus with boundary conditions through
maps of symmetric monoidal double 8-categories

ncBordod Ñ ALGpRModred
pEodqq Ñ ¨ ¨ ¨ Ñ ALGpRModred

2 pEodqq Ñ
ALGpRModred

1 pEodqq

» COSPANpS{BOpdqq

and similarly in the topological setting. Today we discuss the two remaining desiderata:
(C) a description of the layers, (D) naturality in the operad. As an application we deduce
convergence of topological embedding calculus from smooth embedding calculus.

3.1 Layers

The layers of the embedding calculus tower were given by

fibx
“

TkEmbcpM,Nq Ñ Tk´1EmbcpM,Nq
‰

for x P Tk´1EmbcpM,Nq

and to describe these we will explain how to obtain for a groupoid-coloured operad O a
pullback square

RModkpOq Sr2s

RModk´1pOq Sr1s

d1

for concrete horizontal functors; a pullback square of 8-categories induces pullback squares
of mapping spaces and the description of the layers amounts to noting that the vertical
fibres on mapping spaces agree.

3.1.1 A recollement theorem

When we have full subcategory inclusion i : C0 ãÑ C the restriction functor i˚ : PShpCq Ñ
PShpC0q has both a left and right adjoint, given respectively by left and right Kan extension

PShpC0q PShpCq
i!

i˚

,

21
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with a counit natural transformation ε for i! % i˚ and the unit natural transformation η for
i˚ % i˚ of endofunctors of PShpCq

i!i
˚ ε
ÝÑ idPShpCq

η
ÝÑ i˚i

˚. (3.1)

Similarly, we have a natural transformation of functors PShpC0q Ñ PShpCq

i!
i!η
ÐÝ
»

i!i
˚i˚

εi˚
ÝÑ i˚, (3.2)

which agrees with the composition of (3.1) upon precomposition with i˚. That is, we have
a commutative diagram

PShpCq PShpCqr2s

PShpC0q PShpCqr1s.

(3.1)

d1

(3.2)

Now let j : C‰0 ãÑ C be the inclusion of subcategory of objects not equivalent to those
to C0 and morphisms that do factor through C0. For this to make sense, the latter need to
be closed under composition. Using this we can extend the previous square to

PShpCq PShpCqr2s PShpC‰0q
r2s

PShpC0q PShpCqr1s PShpC‰0q
r1s.

(3.1)

d1

j˚

(3.2) j˚

Several groups independently obtained the following result; Krannich–K., Ayala–Mazel-Gee–
Moldstad–Rozenbluym, and Ramzi–Steinebruner.

Theorem 3.1.1 (Recollement for presheaves). Let C0 Ă C be as above and suppose that for
all c P C‰0 the counit map

i!i
˚yCpcq ÝÑ yCpcq

is an equivalence onto sub-presheaf of those path components that factor through C0. Then
the following is a pullback square

PShpCq PShpC‰0q
r2s

PShpC0q PShpC‰0q
r1s.

We can simplify this further if C‰0 is a groupoid, we can use unstraightening and extend
this square by a pullback square

PShpCq PShpC‰0q
r2s » pS{C‰0q

r2s » pSr2sq{constC‰0
Sr2s

PShpC0q PShpC‰0q
r1s » pS{C‰0q

r1s » pSr1sq{constC‰0
Sr1s

c

d1

c

where the horizontal arrows on the right amount to taking a colimit over C‰0 (actually lax
colimit, but these agree for groupoids).
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3.1.2 A recollement theorem for right modules

We will apply this C0 ãÑ CÐâ C‰0 given by

EnvpOqďk´1 ãÝÑ EnvpOqďk ÐÝâ EnvpOqΣk ,

where the right term is the subcategory whose objects whose underlying finite set has
cardinality k and whose morphisms are bijections on underlying finite sets. The verification
of the hypothesis is a computation of a relatively straightforward coend; we will see this
explicitly for Eod momentarily. For the addendum, we note that EnvpOqΣk is a groupoid
if and only if the category Ocol of colours is a groupoid. The conclusion is that there is a
pullback square

RModkpOq Sr2s

RModk´1pOq Sr1s

d1

for groupoid-coloured O, so in particular Ecd and more generally Eθd for a tangential structure
θ : B Ñ BAutpEdq.

3.1.3 The latching and matching spaces for Eod

We will now make this as explicit as possible when the operad is Eod and the right module is
of the form EM . Let us start by understanding the middle functor of the top arrow, i.e.

RModkpEodq Q EM ÞÝÑ cj˚EM P S.

The computation EmbopRd,Rdq » Opdq allow us to identify EnvpOqΣk as being equivalent
to the category with a single object and automorphisms Σk oOpdq, and under this equivalence
j˚EM P PShpEnvpEodqΣkq is the Σk o Opdq-space given by the framed configuration space

ConfkpMq ˆMk FrpTMqk,

and applying c takes Σk o Opdq-orbits so we get the unordered configuration space CkpMq :“
ConfkpMq{Σk. For later use we recall that this admits a compactification CkpMq with the
same homotopy type, where points are allowed to be infinitesimally close. Next we need to
know the left and right functor of the top arrow, i.e.

EM Q RModkpEodq ÞÝÑ cj˚i!i
˚EM , or cj˚i˚i˚EM P S.

Some of the details are given in the problems, but the answer is as follows:

Lemma 3.1.2. We have that

cj˚i!i
˚EM » BCkpMq and cj˚i˚i

˚EM » lim
IĹt1,...,ku

CIpMq.

Theorem 3.1.3. The layers of the embedding calculus tower fibx
“

TkEmbopM,Nq Ñ

Tk´1EmbopM,Nq
‰

for x P Tk´1EmbopM,Nq are given by the space of dashed fillers

BCkpMq BCkpNq

CkpNq CkpNq

lim
IĹt1,...,ku

CIpMq lim
IĹt1,...,ku

CIpNq.
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Remark 3.1.4. There is a similar description in the topological case, but it is harder to state
because there exists no natural compactification of the configuration spaces [Kup20]. Instead
of adding a boundary BCkpMq to CkpMq one takes limit over regular open neighbourhoods
of the removed fat diagonal (see problems).

Let us return to a promised point: that we verify the hypothesis that for the recollement
theorem in the case of Eod. What we need to check is that for k “ t1, . . . , ku, the map

i!i
˚EkˆRd Ñ EkˆRd

hits upon evaluation those components that factors through an inclusion of ă k open discs.
This is automatic when we evaluate at S ˆ Rd for |S| ă k (then both sides agree with
EmbpS ˆRd, k ˆRdq. For the case |S| “ k, we use a step in the proof of the lemma: there
is a commutative diagram

i!i
˚EM pS ˆRdq EM pS ˆRdq

BCkpMq ˆMk FropTMqk CkpMq ˆMk FropTMqk
» »

Taking M “ k ˆRd, the bottom map is the inclusion of the boundary into the compactifi-
cation of framed S-labelled configuration of points in k ˆRd. By pushing configurations
towards the origins in k ˆRd, the components where one of the open disc contains at least
two points of the configuration deformation retract onto the boundary.

3.2 Smoothing theory

Let us remark on one crucial feature of the previous result: the groupoid of colours BOpdq
makes no appearance. This is a general result: if ϕ : Eαd Ñ E

β
d is a map of operads induced

by the map of tangential structures for a reduced operad Ed

A B

BAutpEdq,

φ

α β

then the induced map on layers for calculus between right Eαd -modules M,N and right
E
β
d -modules ϕ!M,ϕ!N is an equivalence.

This generalises to say that

RModkpEαd q RModkpEβd q

RModk´1pE
α
d q RModk´1pE

β
d q

ϕ!

ϕ!

is a pullback, and by induction over k and restricting to reduced modules, we get:

Theorem 3.2.1 (Smoothing theory for right modules). There is a pullback square

RModred
pEαd q RModred

pE
β
d q

S{A S{B

ϕ!

ϕ!

The same is true with Ed replaced by any reduced operad U.
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The categories and maps in this square are symmetric monoidal compatible, so this
is also a pullback of symmetric monoidal categories. They are moreover with geometric
realisation so we can apply the Morita category construction ALGp´q, which takes pullbacks
in CMonpCatqgrtp to pullbacks in CMonpCatpCatqq:

Corollary 3.2.2 (Smoothing theory for Morita categories). is a pullback square

ALGpRModred
pEαd qq ALGpRModred

pE
β
d qq

COSPANpS{Aq COSPANpS{Bq

ϕ!

ϕ!

The same is true with Ed replaced by any reduced operad U.

Example 3.2.3. In terms of mapping categories from B0M to ∅ (i.e. triads), this means that
there are pullback squares

ModEB0MˆI
pRModpEαd qq ModEB0MˆI

pRModpEβd qq

pS{Aq
B0M{ pS{Bq

B0M

and then on mapping spaces

T8EmbαB0
pM,Nq T8EmbβB0

pM,Nq

Map{AB0
pM,Nq Map{BB0

pM,Nq.

3.3 Application to topological convergence

Taking A “ BOpdq and B “ BToppdq, passing to mapping spaces between EM , EN for
smooth d-manifold triads M,N the previous example in particular gives a comparison
between smooth embedding calculus and topological embedding calculus in the form of a
pullback square

T8EmboB0
pM,Nq T8EmbtB0

pM,Nq

Map{BOpdq
B0

pM,Nq Map{BToppdq
B0

pM,Nq.

We can add on top of this the map from embedding spaces to embedding calculus:

EmboB0
pM,Nq EmbtB0

pM,Nq

T8EmboB0
pM,Nq T8EmbtB0

pM,Nq

Map{BOpdq
B0

pM,Nq Map{BToppdq
B0

pM,Nq

and it is a result of Lashof, deduced from smoothing theory for moduli spaces of manifolds,
that the outer square is a pullback as long as the dimension d ě 5. We conclude from the
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pullback square
EmboB0

pM,Nq EmbtB0
pM,Nq

T8EmboB0
pM,Nq T8EmbtB0

pM,Nq

if the left map is an equivalence, the same is true for all path components in the image of
the horizontal maps. The claim is now that by varying the smooth structure of M you can
exhaust all path components; a convenient feature of the codimension zero situation. Since
smoothing theory is not just true on the level of spaces of automorphisms of manifolds but
also for moduli spaces, to give a smooth structure on M amounts to giving a lift of the
tangent classifier M Ñ BToppdq to BOpdq, and any component of T8EmbtpM,Nq provides
such a lift through the induced map

M N

BOpdq

BToppdq

Theorem 3.3.1 (Krannich–K., topological convergence). If d ě 5, M is compact, B1M ÑM
is an equivalence on tangential 2-types, and N is smoothable, then the map

EmbtB0
pM,Nq ÝÑ T8EmbtB0

pM,Nq

is equivalence.

Remark 3.3.2. In the next lecture we will prove that the hypothesis is necessary in the case
of 1-connected spin manifolds.

In fact, going up two levels we have that in the commutative diagram of double 8-
categories

Bordod ncBordod ALGpRModred
pEodqq COSPANpS{BOpdqq

Bordtd ncBordtd ALGpRModred
pEtdqq COSPANpS{BToppdqq,

the middle square induces a pullback on mapping categories, as do the outer squares since
they are even pullbacks of double 8-categories.

3.4 Problems

Problem 13 (Computation of matching spaces). Let P0pSq be the poset of proper subsets
of S.
(a) Construct a functor P0pSq Ñ EnvpEcdqďk´1 ˆEnvpEc

d
qďk pEnvpEcdqďkq{SˆRd .

(b) Prove it is cofinal.
(c) Deduce that j˚i!i˚EM can be computed as a limit over a punctured k-cubical diagram.

Problem 14 (Computation of latching spaces).
(a) Extend cj˚i!i

˚EM to a functor cj˚i!i˚Ep´q : OpMq Ñ S, where OpMq is the poset of
open subsets of M , and prove it satisfies codescent for Jk´1-covers.
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(b) Extend BCkpMq to a functor BCkp´q : OpMq Ñ S and prove it also satisfies codescent
for Jk´1-covers.

(c) Prove that cj˚i!i˚ESˆRd » BCkpS ˆRdq for |S| ď k.
(d) (˚) Use (a), (b), (c) to prove that cj˚i!i˚EM » BCkpMq.

Problem 15 (Regular open neighbourhoods). We start with some definitions due to
Siebenmann [Sie73, SGH73]. Y be a topological space, X Ă Y be a subspace, and V Ă U Ă
Y be neighbourhoods of X. Then V is I-compressible to X in U (we write V ŒU X) if for
all neighbourhoods W Ă Y of X there exists an isotopy ht of Y satisfying

1. h0 “ idY ,
2. h1pV q ĂW , and
3. ht for t P r0, 1s fixes pointwise Y zU and a neighbourhood of X.

An open neighbourhood E Ă X is regular if there is a sequence E0 Ă E1 Ă E2 Ă ¨ ¨ ¨ of
neighbourhoods of X such that Ei ŒEi`1 X and

Ť

iě0Ei “ E.
(a) Prove that if X has a regular open neighbourhood, then any neighbourhood of X

contains a regular open neighbourhood.
(b) Prove that if E and E1 are regular open neighbourhood of X then there is an isotopy

ϕt of embedding E Ñ Y fixing X pointwise so that ϕ0 “ incE and ϕ1 induces a
homeomorphism of E onto E1. (Hint: it is a swindle.)

Problem 16 (Kister’s theorem).
(a) Prove that if e : Rd Ñ Rd is an embedding fixing the origin then E “ epRdq is a regular

open neighbourhood of the origin.
(b) Use the uniqueness result for regular open neighbourhoods to prove that e is isotopic to

a homeomorphism.
(c) (˚) Use a foliated variant of regular open neighbourhoods to prove that the inclusion

HomeopRdq Ñ EmbpRd,Rdq is an equivalence.

Problem 17 (Layers with boundary conditions). Combine the ad-hoc variant of boundary
conditions from the problems of the last lecture with the recollement theorem to describe
the layers when there are boundary conditions.
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The Disc-structure space

4.1 Structure spaces and the Disc-structure space

The philosophy of “structure spaces” is that you could understand moduli spaces of manifolds
by understanding moduli spaces of manifold structures on objects you understand better.

4.1.1 Structure spaces in surgery theory

The first example is to look at manifold structure on spaces (i.e. homotopy types). We will
work with smooth manifolds but the same goes through topologically. Recall that Manod is
the category whose objects are d-dimensional smooth manifolds and whose mapping spaces
are given by spaces of embeddings. Taking the underlying spaces yields a functor Manod Ñ S

to the category of spaces. Passing to groupoid cores and then restricting to the subcategory
Mano,–d ĂMano,»d of closed manifolds, so that all self-embeddings are diffeomorphisms, we
get a map of spaces

Mano,–d ÝÑ S». (4.1)

Definition 4.1.1. For a space X, the structure space is given by

SS,opXq :“ fibX
“

Mano,–d Ñ S»s.

As the name indicates, this should be interpreted as the space of manifold structures
on the space X; the set π0 S

S,opXq of path components is given by equivalence classes of
pairs pM,φq of a closed d-dimensional smooth manifold M and a homotopy equivalence
M Ñ X, up to diffeomorphism of M , so is empty unless X is homotopy equivalent to a
smooth manifold. So we might as well take X “M , and then we further have that the path
component of pM, idq is given by the path component of AutpMq{DiffpMq containing idM .

Classically, one makes two observations. Firstly, closed manifolds have a preferred
simple homotopy type and diffeomorphisms are simple homotopy equivalences. Secondly,
the map from diffeomorphisms to simple homotopy automorphisms factors over the block
diffeomorphisms. That is, we have a factorisation of (4.1) as

Mano,–d ÝÑ ĆMan
o,–

d ÝÑ S»s ÝÑ S».

The classical simple structure space of surgery theory is

Ss,opXq :“ fibX
“

ĆMan
o,–

d Ñ S»s s

and the space-level surgery exact sequence expresses it as the fibre of a map between two
infinite loop spaces, namely of normal invariants and L-theory. Pseudoisotopy theory is
then concerned with the remaining map

fibM
“

Mano,–d ÝÑ ĆMan
o,–

d s,

28
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and work of Igusa and Weiss–Williams says it has an roughly d{3-connected map to an
infinite loop space, namely of the C2-orbits of the smooth Whitehead spectrum.

We can add boundary conditions to this story: fix a closed pd´ 1q-dimensional P , let
Mano,–P denote the subcategory of the groupoid core of ManoP of compact manifolds with
boundary P , and consider the map

Mano,–P ÝÑ pSP {q»,

and the fibres
SS
B pXq :“ fibX

“

Mano,–P ÝÑ pSP {q»
‰

.

Surgery theory and pseudoisotopy theory generalise to this setting, and taking P “ ∅ we
recover the previous story.

4.1.2 The Disc-structure space

The proposal of our paper [KK22] is to rather factor (4.1), or better its enhancement with
boundary conditions, as

Mano,–P ÝÑModEPˆI pRModpEodqq» ÝÑ S»P {

and defining the smooth Disc-structure space of a EPˆI -module X as

SDisc
B pXq :“ fibX

“

Mano,–P ÑModEPˆI pRModpEodqq»s.

It should be interpreted as a space of manifold structure relative to P on the presheaf X;
the set π0 S

DiscpXq of path components is given by equivalence classes of pairs pM,ϕq of a
closed d-dimensional smooth manifold M with boundary P and an equivalence EM Ñ X
of EMˆI -modules, up to diffeomorphism of M relative to the boundary, so is empty
unless X is equivalent to a presheaf of a smooth manifold. So we might as well take
X “ EM , and then we further have that the path component of pM, idq is given by the path
component of T8EmboBpM,Mqˆ{DiffBpMq containing idM where we let T8EmboBpM,Mqˆ Ă
T8EmboBpM,Mq denote the set of invertible path components.

The following theorem suggests that this is an interesting object to consider:

Theorem 4.1.2 (Krannich–K.). In high dimensions d (d ě 8 suffices for all), the Disc-
structure spaces have the following properties:
(A) SDisc

B pMq is an infinite loop space,

(B) SDisc
B pMq only depends on the tangential 2-type of M ,

(C) SDisc
B pMq does not depend on the smooth structure,

(D) SDisc
B pMq is non-trivial if M has a finite cover which is spin.

We think of (A) and (B) as indications that the Disc-structure space SDisc
B pMq is closer

to homotopical algebra. Firstly, instead of being related to several different infinite loop
spaces through fibre sequences and in a range, like SBpMq, (A) says it actually is. an infinite
loop space. Secondly, (B) says it behaves more like L-theory or the fibre of the cyclotomic
trace, which also depend on weakly on the input space. The crucial input is that there is a
version of the isotopy extension theorem for T8EmbcpM,Nq as long as embedding calculus
converges whenever the domain is M \ S ˆRd for any finite set S.

In the remainder of this talk, I will explain why (C) and (D) are true using results from
the previous and accompanying lectures.
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4.2 Independence of smooth structure

By definition, the Disc-structure spaces are fibres of the top horizontal map in the commu-
tative square

Mano,–P ModEPˆI pRModpEodqq»

Mant,–P ModEPˆI pRModpEtdqq».

(4.2)

This can be obtained from the commutative diagram of symmetric monoidal double 8-
categories

Bordod ALGpRModred
pEodqq

Bordtd ALGpRModred
pEtdqq,

by considering mapping categories from P to ∅ and taking groupoid cores. We saw before
that left square induces pullbacks on mapping categories if d ‰ 4, and groupoid core is a
right adjoint, so (4.2) is a pullback square. Thus the horizontal fibres agree and we conclude:

Theorem 4.2.1. If d ‰ 4, then SDisc
B pMq does not depend on the smooth structure.

Remark 4.2.2. It does depend on the smooth structure if d “ 4. This is because smoothing
theory for embedding calculus goes through in dimension 4, and if the above theorem held
in dimension 4 one could essentially deduce smoothing theory for moduli spaces of manifolds
4, which is known to be false.

4.3 Non-triviality

We will now prove that SDisc
B pMq is non-trivial if M is 1-connected spin of dimension d ě 6,

even after looping arbitrarily many times. For the more general statement one uses naturality
and transfer tricks.

This non-triviality result implies that embedding calculus for such manifolds converges
neither smoothly nor topologically, since there is an inclusion of components

fibrBDiffBpMq Ñ BT8EmboBpM,Mqˆs » fibrBHomeoBpMq Ñ BT8EmbtBpM,Mqˆs

SDisc
B pMq.

By the 2-type invariance (A), this follows from the crucial case M “ Dd, as in the problems
we discussed the hypothesis is equivalent to any inclusion Dd ÑM being an equivalence on
tangential 2-types.

4.3.1 A delooping result

To understand SDisc
B pDdq we may as well use topological manifolds and take advantage of

some results particular to that setting: using the topological Poincaré conjecture and the
Alexander trick, it is given by fibre of

˚ » BHomeoBpDdq ÝÑ BT8EmbtBpDd, Ddqˆ,

where as before the superscript p´qˆ indicates we take the invertible components. We
conclude that

SDisc
B pDdq » T8EmbtBpDd, Ddqˆ.
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The left term being non-trivial is thus equivalent to the Alexander trick failing for topological
embedding calculus. To understand it, we can invoke another smoothing theory once more,
comparing topological embedding calculus to particle embedding calculus and yielding a
pullback square

T8EmbtBpDd, Ddqˆ T8EmbpBpDd, Ddqˆ

Ωd`1BToppdq Ωd`1BAutpEdq.

To understand the top-right corner, we use the following “Alexander trick for configuration
categories” (by [KK24c], it will be equivalent to theorem of this name by Boavida de Brito–
Weiss [BdBW18]):

Lemma 4.3.1. T8EmbpBpDd, Ddqˆ is contractible.

Proof. We need understand

T8EmbpBpD
d, Ddqˆ “ AutModE

BDdˆI
pRModpEp

d
qqpEDd , EDdq.

This can be done by a concatenation of results of Lurie, which for a general tangential
structure θ : B Ñ BAutpEdq yield that

AutModE
BDdˆI

pRModpEθ
d
qqpEDd , EDdq » Ωd`1fibpB Ñ BAutpEdqq.

This makes clear why one might care about particle embedding calculus: then we take the
fibre of the identity map and this is of course contractible.

We conclude the following, variants of which were proven by Boavida de Brito–Weiss [?]
and Ducolombier–Turchin [DT22]:

Theorem 4.3.2. For d ‰ 4, SDisc
B pDdq » Ωd`1AutpEdq{Toppdq where AutpEdq{Toppdq :“

fibpBToppdq Ñ BAutpEdqq.

Remark 4.3.3. This is true even for d “ 4 for the topological variant of the Disc-structure
space, which in this dimension does not need agree with the smooth variant.

4.3.2 The question of Dwyer–Hess

This relates the non-triviality of the Disc-structure space for Dd (and by some naturality
and transfer tricks, of a manifold with a finite cover which is cover) to the following:
Question 4.3.4 (Dwyer–Hess). Is the map Toppdq Ñ AutpEdq an equivalence?
Remark 4.3.5. This is true for d ď 2 by work of Horel.

Theorem 4.3.6 (Krannich–K.). This is false for d ě 3.

We will now give a proof that applies for d ě 8 and show that AutpEdq{Toppdq remains
non-trivial after looping arbitrarily many times. For the contradiction we assume that map
BToppdq Ñ BAutpEdq becomes an equivalence after looping n times. The idea is to consider
the commutative diagram

BSToppd´ 2q BSAutpEd´2q BSAutpEQ
d´2q

BSToppdq BSAutpEdq BSAutpEQ
d q,

sTop sAut sAutQ

r
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where SToppdq Ă Toppdq denotes the orientation-preserving homeomorphisms and SAutpEdq Ă
AutpEdq denotes the components that preserve the orientation of Edp2q » Sd´1, and similarly
rationally. Let us first assume that the bottom map r is a rationalisations (this is not clear,
because you can not in general commute taking automorphisms and rationalising). Then on
the one hand, the accompanying lectures proved that the map sAutQ is null-homotopic and
hence so is

sTop : BSToppd´ 2q ÝÑ BSToppdq

after rationalising and looping n times. But on the other hand, in those lectures we proved
that the composition

BSToppd´ 2q ÝÑ BSToppdq ÝÑ BSTop »Q
ź

iě1
KpQ, 4iq,

is a surjection on rational homotopy groups and hence is non-trivial after looping n times.
This is a clear contradiction.

Let us now look at the assumption that the map r is a rationalisations. It is possible
to give conditions under which this is true: in the accompanying lectures we say that
BAutpEdq » limkÑ8 BAutppEdqďkq is a limit of nilpotent spaces with countable homotopy
groups. The homotopy groups are then computed by a Milnor exact sequence

0 ÝÑ lim
kÑ8

1π˚`1 BAutppEdqďkq ÝÑ π˚ BAutpEdq ÝÑ lim
kÑ8

π˚ BAutppEdqďkq ÝÑ 0.

There is a dichotomy. On the one hand, some homotopy group of BAutpEdq could be
uncountable. Then BToppdq Ñ BAutpEdq can not be an equivalence for easy reasons:
Toppdq is a second-countable locally contractible space so has countable homotopy groups.
On the other hand, all homotopy groups of BAutpEdq could be countable. Then the lim1-
terms are non-trivial, as non-trivial lim1’s of inverse systems of countable groups are, and
by an induction over the layers of the tower for mapping spaces of operads explained in the
previous lecture all homotopy groups of AutppEdqďkq are countable. This in turns applies
the inverse systems are Mittag–Leffler with countable limit, hence pro-constant, and thus
the limit commutes with rationalisation, implying that r is a rationalisation. This argument
is clearly quite robust, and also applies after looping n times.
Remark 4.3.7. For 3 ď d ď 7 one needs to argue differently, using that if BSAutpEdq Ñ
BSAutpEQ

d q were a rationalisation, we would know the rational homotopy groups by [FW20].

4.4 Problems

Problem 18. Use smoothing theory for embedding calculus to deduce that for d ‰ 4 we
have

T8EmboBpDd, Ddqˆ » Ωd`1AutpEdq{Opdq.

Problem 19 (A weaker version of Horel’s result).
(a) Prove that ConfkpD2q is a Kpπ, 1q.
(b) Prove C2pD

2q can be obtained from the subspace given by the union of BC2pD
2q and

those configurations where at least one point lies in BD2 by only attaching ě 2-cells.
For the remainder of this problem you may assume the same is true for k ě 2 replacing
2.

(c) Prove that T1EmboBpD2, D2q is contractible.
(d) Prove that the layers of the embedding calculus tower for TkEmboBpD2, D2q are con-

tractible.
(e) Prove that Ω2AutpE2q{Op2q » ˚
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