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JONATHAN SEJR PEDERSEN

Notes from my talk on Poincaré categories. Covers a user’s guide to stable ∞-categories,
bilinear and quadratic functors and hermtiian and Poincaré categories and finally a classification
of these. All categories will be (∞, 1)-categories (i.e quasi-categories), and all constructions are
homotopy invariant notions (i.e. derived) unless otherwise mentioned. Refer to [Lur09, Chapter
1] and [Lur17, Chapter 1] for rigorous explanations of stable ∞-categories.

1. A User’s Guide to Stable ∞-categories

This section is meant to guide you towards comfortably manipulating and working with stable
categories. It is not meant as an explanation of what these mathematical structures are, but
rather what they do.

Definition 1.1. A category C is called pointed if it contains an object 0 ∈ C which is both initial
and terminal which we call the zero object.

Definition 1.2. A pointed category C is stable if the following two conditions are satisfied:
(1) Every morphism in C admits a fiber or cofiber, i.e. the two diagrams always exist

fib(f) X X Y

0 Y, 0 cofib(f).

f

f

(2) A sequence X → Y → Z is a fiber sequence if and only if it is a cofiber sequence. We
call it an exact sequence if either (hence both) of these conditions are satisfied.

The main examples are C = Sp the category of spectra and D(R) which is the derived category
of R. We will return to both of these examples in more detail later on.

There are two important functors defined on any stable category. They are the suspension
functor Σ : C → C and loop functor Ω : C → C. They are constructed through the fiber and
cofiber sequnces

ΩX 0 X 0

0 X, 0 ΣX.

By property (2) in the definition of stability, they are also respectively pushouts and pullback
squares. Hence we conclude that ΣΩX ≃ X and ΩΣX ≃ X, i.e. loop and suspension are inverse
equivalences.

We can also detect whether a morphism f : X → Y is an equivalence on (co)fibers. This is so,
if and only if cofib(f) ≃ 0 if and only if fib(f) ≃ 0. This last if and only if uses Σfib(f) ≃ cofib(f),
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and the first follows from considering the (co)fibers of f

Y

X Y 0 X

0 0 0 Y

X

f

idY∃!g

f
idX

∃g′

The maps g and g′ are constructed using the universal properties, and provide a two sided inverse
to f .

We can also detect whether squares are pushout or pullback sqaures, in fact these turn out to
be equivalent, and we therefore call a square that is either (and hence both) an exact square.

Proposition 1.3. A square

X Y

Z W

f

gh

k

is exact ⇐⇒ cofib(f) ≃ cofib(k) ⇐⇒ cofib(h) ≃ cofib(g) ⇐⇒ fib(f) ≃ fib(k)⇐⇒ fib(h) ≃ fib(g)
⇐⇒ totfib ≃ 0.

Proof. Here the total fiber is any of the equivalent combinations of taking fibers and then cofibers
of horizontal or vertical maps. The total fiber then vanishes precisely when any of the (co)fibers
of the various maps are equivalences. To connect exactness with any of the other properties,
consider e.g. taking the cofiber of g, giving the diagram

X Y 0

Z W cofib(g)

f

gh

k

By the pasting lemma, the inner left square is exact if and only if the outer square is exact. But
the outer squrare computes the cofiber of h, hence exactness is equivalent to cofib(h) ≃ cofib(g)
by uniqueness of (co)limits. □

There is also a splitting lemma, namely given an exact sequence

X
f−→ Y

g−→ Z

it is split Y ≃ X ⊕ Z if and only if there is a map r : Z → Y with gr = idZ if and only if
t : Y → X with tf = idX . This is occasionally useful.

Any exact sequence also extends infinitely in both directions into exact sequences, meaning
each three consecutive terms form an exact sequence,

· · · → ΩY → ΩZ → X
f−→ Y

g−→ Z → ΣX → ΣY → . . .
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One sees this by patching together diagrams of succesive cofiber sequences, and applying the
pasting lemma succesively

X Y 0

0 Z ΣX . . .

0 ΣY . . .

This is where the various long exact sequences in (co)homology and stable homotopy come from!
Finally, let us state some equivalent characterisations of stable categories.

Proposition 1.4. Let C be pointed. The following are equivalent:
(1) C is stable.
(2) Loop and suspension functors are inverse equivalences.
(3) Finite (co)limits exist and squares are pushouts if and only if they are pullbacks.
(4) finite (co)limits exist and commute.

1.1. Examples: Sp and D(R). The prototypical example of a stable category is the category
of spectra Sp. Let me give a high-tech construction of this category.

Consider the category of based spaces Spc∗. Taking loop spaces defines a functor Ω : Spc∗ →
Spc∗ succesively applying the functor yields a diagram in Cat∞ the category of ∞-categories
and we consider the limit in Cat∞

lim(. . .
Ω−→ Spc∗

Ω−→ Spc∗) =: Sp(Spc∗)

This is a general construction for categories C that admit finite limits, and the output of the
above process is always a stable category called the spectrification of C. Then the category of
spectra is Sp := Sp(Spc∗).

A 0-simplex of Sp then consists of a sequence of spaces {Xn}n∈N along with homotopy equi-
valences ΩXn+1 ≃ Xn. Some might recognize these under the name of Ω-spectra. The category
of spectra plays the same role for stable categories that Spc does for categories. That means
that every stable category is enriched over Sp in the sense that there is a spectrum mapC(x, y)
such that

Ω∞mapC(x, y) ≃ MapC(x, y)

for every pair of objects x, y ∈ C.

The second (related of course) example is the derived category of a ring D(R). One way of
constructing categories is starting with a (Kan) simplicially enriched 1-category and applying the
coherent nerve construction. If one instead starts with a differential graded (dg) 1-category, for
instance chain complexes of an additive category A, there is also a dg nerve Ndg whose output
is a category. This will be how we construct the derived category.

Definition 1.5. Let A be an abelian 1-category with enough projectives. Let Ch− denote the
chain complexes bounded below and Aproj denotes the 1-category of projective objects. Define

D(A) := Ndg(Ch−(Aproj)),

This is also equivalent to the localization at the quasi-isomorphisms D(A) ≃ Ch(A)[q.i.−1].
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We can describe somewhat what this category looks like: A 0-simplex is an element X ∈
Ch−(Aproj), a 1-simplex is a chain map X → Y , and a 2-simplex is a triangle

y

X Z
h

f g

ℓ

where f, g, h are chain maps and ℓ is a chain homotopy with d(ℓ) = (gf)− h, and so on. It is a
non-trivial fact that in this case the output D(A) is a stable category.

There is a close relationship between Sp and D(Z). There is a t-structure on Sp consisting of
two subcategories Sp≥0 and Sp≤0 consisting of connective and coconnective spectra, respectively.
The intersection of these two subcategories is called the heart, and is always a 1-category. For
Sp, the result is

Sp� = Ab

The resulting functor from the heart Ab → Sp is the Eilenberg-MacLane functor sneding an
abelian group A to the Eilenberg-MacLane spectrum HA.

Furthermore, both of these categories have symmetric monoidal structures (Ab,⊗) and (Sp,⊗)
where ⊗ on Sp is also known as the smash product (and is highly non-trivial to construct!). With
respect to these monoidal structure the Eilenberg-MacLane functor is oplax monoidal in the sense
that there is a map

H(A⊗B)→ HA⊗HB.

2. Bilinear and Quadratic Functors

Let us now dive into the main topic of this talk, namely Poincaré categories. This will require
a slew of definitions, but let us first try to motivate what we are trying to do. From now on
every category will be a stable category unless otherwise indicated.

Motivation. We are interested in various flavours of forms on a ring R. We take our inspiration
for their higher generalizations from two observations. The first is the obvious correspondence

{Symmetric forms on R} ←→ HomR(X ⊗R X,R)C2

where C2 acts on by flipping the input variables, and we are considering the fixed points. Likewise
(though less obvious) we have a correspondence

{Quadratic forms on R} ←→ HomR(X ⊗R X,R)C2

qb(x) = b(x, x)←− [ [b]

where we now consider the orbits or coinvariants. Figuring this out is left as an exercise for the
reader.

The most important Poincaré structures are homotopical counterparts of the above, where we
consider elements of Dp(R) along with homotopy fixed points and homotopy orbits instead

Ϙ
s
R(X) := HomR(X ⊗R X,R)hC2 , Ϙ

q
R(X) := HomR(X ⊗R X,R)hC2 .

A functor f : C → D is reduced if f(0) = 0. If it preserves exact squares as well it is exact.
However, if it only preservers exact square it is 1-excisive.
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Definition 2.1. A 3-cube ρ : (∆1)3 → C is called exact if ρ(0, 0, 0) is the limit of ρ restricted to
the subsimplicial set (∆1)3 \ {0, 0, 0}. A 3-cube is called strongly exact if in addition each face is
exact (and strongly exact implies exact). A functor f : C → D is 2-excisive if it maps strongly
exact cubes to exact cubes.

Quadratic functors will be reduced 2-excisive functors, but we will develop criteria for verifying
the above condition that is easier in practice. First we need a digression on bireduced functors.

Given a reduced functor B : Cop × Cop → Sp (i.e. B(0, 0) ≃ 0) there is a retract diagram

B(x, 0)⊕B(0, y)→ B(x, y)→ B(x, 0)⊕B(0, y)

whose composite is the identity, where the various maps are induced by the unique maps 0 →
x→ 0 and 0→ y → 0. By the splitting lemma, we obtain an equivalence

B(x, y) ≃ Bred(x, y)⊕B(x, 0)⊕B(0, y)

where Bred(x, y) is either the fiber or cofiber of the maps in the above retract diagram. It might
be useful to think of it in a slightly silly form as

Bred(x, y) ≃ B(x, y)

B(x, 0)⊕B(0, y)

This new functor is new bireduced in the sense that Bred(x, 0) ≃ Bred(0, y) ≃ 0.

Definition 2.2. Given a reduced functor Ϙ : Cop → Sp, let BϘ := Ϙ((−)⊕(−))red : Cop×Cop → Sp
denote the cross effect. This gives a functor B(−) : Fun∗(Cop,Sp)→ BiFun(C)

Definition 2.3. Let C,D and E be stable and b : C × D → E is bilinear if it is exact in each
variable separately. It is symmetric if it is an element of Funs(C) = [Funb(C)]hC2 under the flip
action.

This might all seem very abstract and confusing, but we are trying to caputure the following
elementary situation: If we have a quadratic function, the simplest one being q(x) = x2 we can
extract a symmetric and a bilinear part using q(x + y) = (x + y)2 = x2 + y2 + 2xy. Here the
symmetric part is x2 + y2 and the bilinear part is q(x + y) − q(x) − q(y) = 2xy. The bilinear
part is exactly what the cross effect is picking up

BϘ(X,Y ) = Ϙ((X)⊕ (Y ))red ≃ Ϙ(X ⊕ Y )

Ϙ(X)⊕ Ϙ(Y )

Example 2.4. If (C,⊗) is a monoidal category, we obtain a bilinear functor Ba(x, y) = homC(x⊗
y, a). If ⊗ refines to a symmetric monoidal structure Ba is a symmetric bilinear functor.

Proposition 2.5. Let Ϙ : Cop → Sp be reduced functor. The following are equivalent:
(1) Ϙ is 2-excisive.
(2) BϘ is bilinear and fib(Ϙ(x)→ BϘ(x, x)

hC2) is exact in x.
(3) BϘ is bilinear and cofib(BϘ(x, x)hC2 → Ϙ(x)) is exact in x.

Definition 2.6. Any reduced Ϙ : Cop → Sp satisfying any of the conditions of Proposition 2.5 is
called quadratic.

Example 2.7. Let us return to our central example. Let B ∈ Funs(C). Consider ϘsB(X) :=
B(X,X)hC2 and Ϙ

q
B(X) := B(X,X)hC2 . We clam that these are both quadratic functors. This

follows by calculating their symmetric bilinear parts1

1In the calculation we use the fact that if we have a finite group G then the spectrum ⊕GX with G-action
permuting the entries (the (co)induced action) has homotopy fixed points (⊕g∈GX)hG ≃ X. This follows from
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BϘsB (x, y) := Ϙ
s
B(x⊕ y)red ≃ Ϙ

s
B(x⊕ y)

Ϙ
s
B(x)⊕ ϘsB(y)

≃ B(x⊕ y, x⊕ y)hC2

B(x, x)hC2 ⊕B(y, y)hC2

≃ (B(x, x)⊕B(x, y)⊕B(y, x)⊕B(y, y))hC2

B(x, x)hC2 ⊕B(y, y)hC2

≃
(
B(x, x)⊕ IndC2

e (B(x, y))⊕B(y, y)
)hC2

B(x, x)hC2 ⊕B(y, y)hC2

≃ B(x, x)hC2 ⊕B(x, y)⊕B(y, y)hC2

B(x, x)hC2 ⊕B(y, y)hC2

≃ B(x, y).

This is certainly bilinear and conditions 2 and 3 are satisfied for ϘsB and ϘqB respectively, as the
0 functor is exact.

The superscripts (−)q and (−)s remind of classical quadratic and symmetric forms. For the
perfect derived category

Dp(R) = [bounded, levelwise f.g. projective complexes][q.i.−1]

we have the bilinear functor BR(X,Y ) := Hom(X ⊗R Y,R). Points in Ω∞BR(X,Y ) are then
bilinear forms b : X ⊗ Y → R if X,Y are projective and concentrated in a single degree.
Similarly, we get the motivating identifications of π0(BR(X,X))C2 with symmetric forms on X
and π0(BR(X,X))C2 with quadratic forms on X.

Definition 2.8. For quadratic functors Ϙ : Cop → Sp define the linear part ΛϘ = cofib(BϘ(X,X)hC2 →
Ϙ(X)). This is exact by Proposition 2.5 (3).

3. Hermitian and Poincaré Categories

We will begin with the weaker definition of a hermitian category. It is in fact the stronger
notion of a Poincaré category which is of primary interest, but many constructions only use the
weaker notion of a hermitian category, and can be more transparently done in this setting.

Definition 3.1. A hermitian category is a pair (C, Ϙ) where C category and Ϙ : Cop → Sp is a
quadratic functor. The morphisms between hermitiancategories are hermitian functors. These
are given by a pair (f, η) : (C, Ϙ) → (C′, Ϙ′) where f : C → C′ is an exact functor and η : Ϙ →
f∗
Ϙ
′ := Ϙ′ ◦ fop is a natural transformation.

These assemble to an category Cath∞ with objects hermitian categories (C, Ϙ) and morphisms
the hermitian functors.

Given a hermitian functor (f, η) : (C, Ϙ)→ (C′, Ϙ′), we can also relate the bilinear functors BϘ
and B′

Ϙ
, as η gives rise to a natural transformation βη : BϘ → Bf∗Ϙ′ ≃ Bf∗Ϙ′ .

Poincaré categories will be hermitian categories subject to two non-degenracy assumptions.

the two adjunctions Sp SpBG Sp
triv

(−)hG

forget

⊕G(−)
, as composing the two left adjoints give the identity, hence the

composition (⊕G(−))hG is right adjoint to the identity and thus the identity itself.
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Definition 3.2. A bilinear functor B ∈ Funb(C), is called right non-degenerate if the presheaf
of spectra c 7→ B(−, y) is representable for every y ∈ C, i.e.

B(−, y) ≃ homC(−, DBy)

where DB : Cop → C is the duality associated to B. There is a similar notion of right non-
degenerate. If B is symmetric and satisfies either notion, we say it is non-degenerate.

If (C, Ϙ) is a hermitian category, we say that it is non-degenerate if BϘ is non-degenerate.
The two dualities obtained from a non-degenerate bilinear functor are adjoints, using the

equivalences

hom C(x,DBy) ≃ B(x, y) ≃ BK(y, x) ≃ hom C(y,DBx) ≃ mapCop(D
op
B x, y).

The unit of the adjunction is ev : id→ DDop.

Example 3.3. For BR(X,Y ) = homR(X ⊗ Y,R) ≃ homR(X,homcx
R (Y,R)) where we have used

the tensor-hom adjunction, we see that DR(Y ) = homcx
R (Y,R) is the internal mapping complex.

Hence ev really is evaluation, and in fact an equivalence.

Lemma 3.4. Let (C, Ϙ) and (C′, tK ′) be two non-degenerate hermitian categories with dualities
DϘ and D

Ϙ
′. Then for f, g : C → D exact we have

nat(BϘ, (f × g)∗B
Ϙ
′) ≃ nat(fDϘ, DϘ′g

op)).

Proof. Using that left Kan extensions are adjoint to restriction and that they preserve repres-
entable functors and the Yoneda lemma, we have the following equivalences

nat(BϘ, (f × g)∗B
Ϙ
′) ≃ nat(BϘ, (f × id)∗(id×g)∗B

Ϙ
′)

nat((f × id)!BϘ, (id×g)∗BϘ′) ≃ nat(hom(−, fDϘ)), hom(−, D
Ϙ
′gop))

≃ nat(fDϘ, DϘ′g
op))

□

Given a hermitian functor (f, η) : (C, Ϙ) → (C′, Ϙ′) denote by τη : fDϘ → D
Ϙ
′fop the natural

transformation corresponding to βη under the above equivalences.

Definition 3.5. A hermitian functor (f, η) is duality preserving if τη is an equivalence

Definition 3.6. A symmetric bilinear functor B is called perfect if the evaluation map ev : idC ⇒
DBD

op
B is an equivalence. A hermitian structure Ϙ is called Poincaré if the underlying symmetric

bilinear form BϘ is perfect. If this is the case, we declare (C, Ϙ) to be a Poincaré category. These
assemble into a category Catp∞ with morphisms the duality preserving hermitian functors.

Remark 3.7. A perfect symmetric bilinear functor implies that it is in particular non-degenerate,
as the unit and counit being equivalences is equivalent to the dualities being equivalences.

Example 3.8. We already verified that BR(X,Y ) on Dp(R) was perfect. Hence both ϘsR and
Ϙ
q
R give rise to Poincaré categories.

4. Classificiation of hermitian and Poincaré Categories

The classification will be in the style of Goodwillie calculus. We will show that quadratic
functors can be recovered from a homogeneous and cohomogeneous part.

Lemma 4.1. Let Ϙ : Cop → Sp be quadratic. The following are equivalent:
(1) BϘ(x, x)hC2 → Ϙ(x) is an equivalence.
(2) Ϙ is equivalent to ϘqB for some B ∈ Funs(C).
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(3) The spectrum of natural transformation nat(Ϙ, L) ≃ 0 for any exact functor L.

Condition (3) is the definition of a functor being homogeneous. Similarly, if nat(L, Ϙ) ≃ 0
for any exact functor L we say that Ϙ is cohomogeneous. We can now state the classification of
hermitian structures on C.

Proposition 4.2. The following square is a pullback square

Funq(C) Ar(Funex(Cop, Sp)

Funs(C) Funex(Cop,Sp).

τ

B t

(B∆)tC2

The maps are: τ(Ϙ) = (ΛϘ → (B∆)tC2), t is the target and (−)tC2 denotes the Tate construc-
tion, which is the cofiber of the norm map.

A similar classification for Poincaré structures also exists.

Proposition 4.3. The following square is a pullback square

Funp(C) Ar(Funex(Cop, Sp)

Funps(C) Funex(Cop,Sp).

τ

B t

(B∆)tC2

Here (−)ps denotes perfect symmetric bilinear functors and duality preserving morphisms
between them.

Example 4.4. The squares being pullbacks tells us that specifying a hermitian structure is
essentially the same as specifying a natural transformation L→ (B∆)tC2 from an exact functor
and some B ∈ Funs(C). There are two obvious choices, namely id : (B∆)tC2 → (B∆)tC2 (which
corresponds uniquely to the Poincaré structure ϘsB) and 0 : 0 → (B∆)tC2 (which corresponds
uniquely to the Poincaré structure ϘqB).
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