
INTRODUCTION TO HERMITIAN K-THEORY

ALEXANDER KUPERS

1. K0-, GW0-, and W0-groups

1.1. K0. To understand a commutative ring R or situations in mathematics where it plays a role,
one wants to classify R-modules. Of particular interest are the “small” ones: finitely generated
projective R-modules. If R is commutative, one can interpret these as vector bundles over SpecpRq.
Example 1.1. Every finitely-generated projective F-module for a field F is free.
Example 1.2. Every finitely-generated projective Z-module is free.
Example 1.3 (Serre–Swan). For a compact Hausdorff space X, there is an equivalence of categories
between finite-dimensional vector bundles over X and finitely generated projective CpX,Rq-modules.

Direct sum makes the set

ProjpRq :“ tfinitely generated projective R-modulesu
isomorphism

into an abelian monoid. These are hard to understand and we can formally adjoin inverses by
“group completing”. Group completion is the left adjoint to the inclusion AbGrp Ñ AbMon, in the
sense that it is the initial map M Ñ Mgc of into an abelian group. In other words, every map
M Ñ A with A an abelian group factors uniquely over M ÑMgc

M A

Mgc.

!D

Explicitly, we can construct it as

Mgc :“ ZrM s
tras ` rbs “ rabsu

.

Definition 1.4. The zeroth K-group of R is given by
K0pRq :“ ProjpRqgc.

Example 1.5. Using that every finitely-generated projective F-module for a field F is free, we get an
isomorphism

dim: K0pFq
–
ÝÑ Z.

Example 1.6. Similarly as for fields, we get an isomorphism

rk : K0pZq
–
ÝÑ Z.

More generally, if O is a Dedekind domain then the classification of finitely-generated O-modules
yields K0pOq – Z‘ ClpOq, where the second term is the class group of fractional ideals modulo
principal ideals.
Example 1.7. For compact Hausdorff X, the Serre–Swan correspondence gives an isomorphism
K0pCpX,Rqq – K0pXq, with the latter the (real) topological K-theory of X defined as the group
completion VectpXqgc of the abelian monoid of isomorphism classes of finite-dimensional real vector
bundles over X under direct sum.
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1.2. GW0. Often we are interested in modules with additional structure. Drawing inspiration from
Poincaré duality, a common one is a quadratic form.

Definition 1.8. A quadratic form on a finitely-generated projective R-module P is a map q : P Ñ R
satisfying:

(1) qprxq “ r2qpxq,
(2) bpx, yq :“ qpx` yq ´ qpxq ´ qpyq is a symmetric bilinear form.

It is unimodular if the induced map b7 : P Ñ P˚ is an isomorphism.

Remark 1.9. If 2 is invertible in R then q can be recovered from b by qpxq “ 1
2bpx, xq. This shows a

general feature of this learning seminar: a lot of the subtleties arise from dealing with the case that
2 is not invertible.

Orthogonal direct sum makes the set

UnimodpRq :“ tfinitely-generated projective R-modules with unimoudlar quadratic formu
isomorphism

into an abelian monoid.

Definition 1.10. The zeroth Grothendieck–Witt group of R is given by
GW0pRq :“ UnimodpRqgc.

Example 1.11 (Sylvester). A quadratic form over R is determined uniquely up to isomorphism by
its dimension and its signature, inducing an isomorphism

pdim, σq : GW0pRq
–
ÝÑ Z‘ Z.

However, over C (or any algebraically closed field) we have an isomorphism

dim: GW0pCq
–
ÝÑ Z.

1.3. W0. The computation of Grothendieck–Witt groups can be approached through the compu-
tation of so-called Witt groups. Their definition uses that for any finitely-generated projective
R-module P , not only is its dual P˚ is also a finitely-generated projective R-module, but P ‘ P˚
has a canonical unimodular quadratic form given by qhyppx, αq “ αpxq, referred to as a hyperbolic
form. Indeed, we have

(1) qhypprpx, αqq “ prαqprxq “ r2αpxq,
(2) qhypppx, αq ` py, βqq ´ qhyppx, αq ´ qhyppy, βq “ αpyq ` βpxq.

This gives a map
K0pRq ÝÑ GW0pRq

P ÞÝÑ pP ‘ P˚, qhypq.

This sends P and P˚ to isomorphic quadratic modules, so factors over the coinvariants K0pRqC2

for the involution on K0pRq given by P ÞÑ P˚. For some rings this action is trivial—when P is
always isomorphic to its own dual—and we have that K0pRq Ñ K0pRqC2 is an isomorphism. At
any rate, the result is a map

hyp: K0pRqC2 ÝÑ GW0pRq.

Definition 1.12. The zeroth Witt group of R is given by
W0pRq :“ cokerphyp: K0pRqC2 Ñ GW0pRqq.

That is, the Witt group is obtained by taking the quotient of the Grothendieck–Witt group by
the subgroup generated by hyperbolic forms. There is a tautological exact sequence
(1) K0pRqC2 ÝÑ GW0pRq ÝÑW0pRq ÝÑ 0.
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Example 1.13. Since hyperbolic forms are always even-dimensional, over C the exact sequence (1)
is given by

0 ÝÑ K0pCqC2 – Z 2¨´
ÝÑ GW0pCq – Z ÝÑW0pCq – Z{2 ÝÑ 0.

Example 1.14. The classification of unimodular quadratic forms over Z is the same as the classifica-
tion of even unimodular symmetric forms. The latter is hard in general, but it is easier once we
allow them to be replaced by indefinite ones by direct sum with hyperbolic forms. It is a result of
Serre that even indefinite unimodular symmetric forms over Z are all isomorphic to direct sums of
H “ pZ2, r 0 1

1 0 sq and E8. We conclude that (1) is given by

0 ÝÑ K0pZqC2 – Z hyp
ÝÑ GW0pZq ÑW0pZq

–
ÝÑ
σ{8

Z ÝÑ 0

where injectivity of the left map follows by considering the dimension and the existence of the
E8-form given a splitting of the right map, yielding GW0pZq – Z‘ Z.

Question 1.15. Can we extend (1) to a long exact sequence?

1.4. More generality. There are several generalisations that a useful theory of modules with
forms should encompass:

¨ Allow involutions. Over C, we tend not to care about symmetric bilinear forms but hermitian
ones, i.e. those that are C-linear in the second entry and satisfying bpx, yq “ bpx, yq. We
would hence like to allow rings with involutions.
¨ More general rings. For a group ring R “ ZrGs, the Witt group W0pZrGsq (involving

the involution a1g1 ` ¨ ¨ ¨ ` angn “ a1g
´1
1 ` ¨ ¨ ¨ ` ang

´1
n ) is the same as Wall’s quadratic

L-group Lq0pZrGsq from surgery theory. We would hence like to allow non-commutative
rings.

¨ More general forms. In manifold theory, Poincaré duality endows the middle-dimensional
homology group of an oriented closed manifold of dimension 2n into a bilinear form, which
is symmetric if n is even but anti-symmetric if n is odd. We would hence like to allow other
types of “quadratic” forms.

Question 1.16. What is a convenient framework allowing all these generalisations?

2. K-, GW -, and L-spectra

The above two questions go together, as we will see by first considering a related situation in
algebraic K-theory.

2.1. K-spectra. Let us start with a digression on a method to compute algebraic K-theory groups.
If s P R is not a zero-divisor we can form the localisation s´1R and localising induces a surjective
map K0pRq Ñ K0ps

´1Rq. Let me momentarily ignore that modules needed to be projective;
suppose the ring is regular Noetherian will allow you to deal with this. Then in its kernel are
finitely-generated modules obtained from R{sR-modules by restriction along RÑ R{sR. It turns
out that

K0pR{sRq ÝÑ K0pRq ÝÑ K0ps
´1Rq ÝÑ 0

is exact when R satisfies certain hypotheses. Given an element A P GLnps´1pRqq, we can represent
it as A{sn with A P MnpRq a matrix that becomes invertible after inverting s, and then construct a
well-defined element of K0pR{psqq as rcokerpAqs ´ nrR{sRs. One may check that this factors over

K1ps
´1Rq :“ colim

nÑ8
H1pBGLnps´1Rqq

and extends to an exact sequence

K1pR{sRq ÝÑ K1pRq ÝÑ K1ps
´1Rq ÝÑ K0pR{sRq ÝÑ K0pRq ÝÑ K0ps

´1Rq ÝÑ 0.
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This exact sequence strongly resembles part of a long exact sequence of homotopy groups of
a fibre sequence, and it indeed is. Stating this requires the construction of algebraic K-theory
spectra, and one way to do so is to simply repeat the construction of K0pRq in a homotopy-theoretic
manner.

Our starting point is to replace the set ProjpRq of isomorphism classes of finitely-generated
projective R-modules with the groupoid ProjpRq whose objects are finitely-generated projective
R-modules and whose morphisms are isomorphisms. Direct sum makes this into a symmetric
monoidal groupoid, i.e. a commutative algebra object in groupoid. A groupoid G is special case
of an 8-groupoid or equivalently space—the classifying space BG—and a commutative algebra
object in 8-groupoids is an E8-space. We say that an E8-space is an E8-group if its path
components form a group. The inclusion AlgE8

pSqgrp Ñ AlgE8
pSq has an 8-categorical left adjoint

p´qgc, a homotopy-theoretic form of group completion, which can be explicitly modelled by Segal’s
ΩB-construction. We can then define an algebraic K-theory space as

Ω8KpRq :“ pBProjpRqqgc.

As the notation suggests, this is the infinite loop space of an algebraic K-theory spectrum KpRq.
One way to obtain this is to use that there is an equivalence of 8-categories AlgE8

pSqgrp » Spconn

between E8-groups and connective spectra.
Example 2.1. If X is an E8-space then π0pX

gcq – pπ0pXqq
gcq. Thus π0pKpRqq – K0pRq.

Given this construction, we have:
Theorem 2.2 (Localisation). If R is regular Noetherian and s is not a zero-divisor then there is a
fibre sequence

KpR{sRq ÝÑ KpRq ÝÑ Kps´1Rq.

Relaxing the conditions on R involves the following observation: the construction of the spectrum
KpRq depends on R through the category ProjpRq. More generally, you can define algebraic K-
theory of certain categories, e.g. for abelian categories through Quillen’s Q-construction. In fact,
the input can be the 8-categorical analogue of an abelian category, a stable 8-category. We can
recover KpRq in this manner from the derived perfect stable 8-category DppRq. This will be our
official definition of algebraic K-theory, because it is the one used to establish most important
formal properties.

2.2. GW -spectra. We can similarly define a classical Grothendieck–Witt spectrum as the connective
spectrum associated to the classical Grothendieck–Witt space

Ω8GWpRqcl :“ pBUnimodpRqqgc,

where Unimod is the symmetric monoidal groupoid of finitely-generated projective R-modules with
unimodular quadratic form under orthogonal sum.
Example 2.3. π0pGWpRqclq – GW0pRq.

The reason I am calling this a “classical” Grothendieck–Witt spectrum, is that it is a theorem
that it coincides with our official definition of a Grothendieck–Witt spectrum: we will associate
a spectrum GWpC, Ϙq to a stable 8-category with an additional structure known as a Poincaré
structure.

A Poincaré structure is akin to a quadratic form on C and encodes the type of forms we want to
consider. More precisely, it is a functor Ϙ : Cop Ñ Sp which is quadratic in the sense of Goodwillie
calculus (its third cross-effect vanishes) and inducing a duality equivalence DϘ : Cop Ñ C. A
Poincaré object is then an object x P C with an q P Ϙpxq such that q7 : xÑ DϘpxq is an equivalence
and from we can extract the Grothendieck–Witt space as the group completion of the space of
Poincaré objects under orthogonal sum

Ω8GWpC, Ϙq :“ PoincpC, Ϙqgp
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and the spectrum GWpC, Ϙq directly via the hermitian Q-construction.
Allowing slightly more general types of forms—(anti-)quadratic or (anti-)symmetric—we have:

Theorem 2.4 (Hebestreit–Steimle). GWλ
pRqcl » GWpDppRq, Ϙgλq for λ P tq,´q, s,´su.

The subtlety here is in the definition of the “genuine” Poincaré structures Ϙgλ. These are related
to more straightforward guesses by natural transformations

Ϙ
q
“ Homp´ b ´, RqhC2 ùñ Ϙ

gq
ùñ Ϙ

gs
ùñ Ϙ

s
“ Homp´ b ´, RqhC2

which are equivalences if 2 is invertible in R. This is one of the reasons that the development of
hermitian K-theory had to wait until higher category theory was in place.

This will in fact be the last theorem we discuss in this learning seminar. Instead, we will in
detail set up the framework of Grothendieck–Witt spectra leading to an fibre sequence inducing (1).

2.3. L-spectra. At this point we know the spectrum-level analogues of K0pRq and GW0pRq in
(1) but not yet of W0pRq. This turns out to be an L-theory spectrum LpC, Ϙq, satisfying not only
π0 LpDppRq, Ϙgqq “W0pRq and also featuring in the following theorem:

Theorem 2.5 (Fundamental theorem). There is a fibre sequence
KpCqhC2 ÝÑ GWpC, Ϙq ÝÑ LpC, Ϙq

which is split after inverting 2.

Idea of the proof. We will establish a universal property of Lp´q and prove that cofibrKp´qhC2 Ñ

GWp´qs has the same universal property. �

This theorem is useful, because it allows one to compute Grothendieck–Witt groups in terms of
algebraic K-theory groups. The crucial input for this is that L-theory groups are easy to compute
because they are often 4-periodic. For example, that the homotopy groups of LpDppRq, Ϙsq are
4-periodic is due to Ranicki and the difference between this L-theory spectrum and those for other
Poincaré structures can be analysed.

Remark 2.6. There will be a strong analogy between the constructions and proofs in hermitian
K-theory and those in study of cobordism categories. This is not coincidental; one of the eventual
goals is to study stable moduli spaces of odd-dimensional manifolds. We know these are infinite
loop spaces of spectra but do not know what these spectra are. The few results that are known
suggest they are similar but not equal to fibres of maps from Thom spectra to L-theory spectra.
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