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ALEXANDER KUPERS

Abstract. In the first part of this talk we define the type of sets of multijets which is used
to produce the stratification in Goodwillie’s proof: IASCMs. These will be constructed
from a single such set Z0 by operations A, B, C, and D, which we will discuss in the
second part of this talk.

In these notes, we discuss Chapters II.A and II.B of [Goo90].

1. Context

Recall that we are trying to modify a fibered concordance

F : I × P ×Ds −→ I ×N ×Ds

through a fibered isotopy of concordances, so as to avoid some submanifold I ×M of I ×N
(or at least one in a collection of these). Our strategy is to give, after putting F in general
position, a stratification of P ×Ds with good and bad strata such that the bad strata have
large codimension and on good strata we can inductively remove the intersections with I ×M
by a sunny collapsing procedure.

In the next talk we define this stratification. In this talk we define the sets of jets of locally
holomorphic maps Cp+1 → Cn near r points that describe these strata in (complexified) local
coordinates. They will be produced by the four operations A, B, C, and D we have heard so
much about already, from a basic set Z0.

2. Invariant algebraic sets of complex multijets

Let JmC (Cp+1,Cn) be the set of equivalence classes z of pairs of a point sz ∈ Cp+1

and a jet of order ≤ m of a holomorphic function Cp+1 ⊂ U → Cn for U near sz ∈ U .
(As the dimensions indicate, we will be looking at the fiberwise jets of the composition
pF : I × P ×Ds → I ×N ×Ds → N ×Ds eventually.) Think of sz as the source of z, and
let tz := z(sz) ∈ Cn be its target.

Multijets are then given by jets at a configuration of distinct points:

rJmC (Cp+1,Cn) := {(z1, . . . , zr) | szi 6= szj if i 6= j} ⊂ JmC (Cp+1,Cn)r.

Forgetting from order m′ to m, yields a map

pm
′

m : rJm
′

C (Cp+1,Cn) −→ rJmC (Cp+1,Cn) for m ≤ m′,

and we let rJ∞(Cp+1,Cn) be the limit over these maps, which comes with induced maps
p∞m : rJ∞C (Cp+1,Cn)→ rJmC (Cp+1,Cn).
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Notation 2.1. We shorten rJmC (Cp+1,Cn) to rJm.

Then rJm is a smooth complex algebraic variety (a Zariski open subset of affine space, in
fact) defined over R.

Definition 2.2. A subset Z ⊂ rJ∞ is algebraic of level m and rank r if

Z = (p∞m )−1(p∞m (Z))

and p∞m (Z) is a closed algebraic subset of rJm defined over R.

Remark 2.3. If Z has level m it also has level m′ for m′ > m.

Here are the two most important examples:

Example 2.4. The set Z0 := {(z1, z2) ∈ 2J∞ | t(z1) = t(z2)} is algebraic of level 0 and rank
2.

Example 2.5. The set Z1 := {z ∈ 2J∞ | ker(Dz) 6= 0} is algebraic of level 1 and rank 1.

If an algebraic set Z of level m and rank r is invariant under suitable coordinate changes
in the domain and target, it can be used to construct sets

S(Z,P,N) ⊂ rJ∞R (R× P,N).

Describing this construction will lead us to the correct notion of invariance. Using charts,
we cover rJ∞R (R× P,N) by rJ∞R (R× U, V ) with U ⊂ P and V ⊂ N open and coming with
embeddings φ : U ↪→ Rp and ψ : V ↪→ Rn. Then we say

z ∈ S(Z,P,N)⇐⇒ there exists z̃ ∈ Z such that rj∞(ψ)(tz) ◦ z = z̃ ◦ rj∞(id× φ)(sz),

where we identify rJ
m
R (Rp+1,Rn) with a subset of rJ

m
C (Cp+1,Cn) for 0 ≤ m ≤ ∞ by

identifying Taylor polynomials with real coefficients as a subset of the Taylor polynomials
with complex coefficients. A correct notion of independence is the one that makes the right
side independent of U, V .

2.1. Invariance in the domain. We start with invariance in the domain. Suppose we are
given a commutative diagram

Cp+1 ⊃ Ω1 Ω2 ⊂ Cp+1

Cp ⊃ Ω3 Ω4 ⊂ Cp+1

U

p2 p2

V

with horizontal maps complex diffeomorphisms, and p2 given by the projection Cp+1 =
C× Cp → Cp. Then precomposition by U gives an induced map

U∗ : rJmC (Ω2,Cn) −→ rJmC (Ω1,Cn).

Definition 2.6. An algebraic set Z ⊂ rJ∞ of level m is domain-invariant if for each diagram
of the above form we have

U∗(p∞m (Z) ∩ rJmC (Ω2,Cn)) = p∞m (Z) ∩ rJmC (Ω1,Cn).
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Let us give a more local description of domain-invariance. For any (x1, . . . , xr) ∈ Ω(r)
1 , the

jets of U and V given by

ui := j∞(U)(xi) ∈ J∞(Ω1,Ω2) and vi := j∞(V)(p2xi) ∈ J∞C (Ω3,Ω4)

have the following properties:
· ui and vi are invertible,
· sui 6= suj if i 6= j,
· tui 6= tuj if i 6= j,
· j∞(p2)(tui) ◦ ui = vi ◦ j∞(p2)(sui) for all i,
· svi = svj if and only if tvi = tvj if and only if vi = vj for all i, j.

Using the complex version of the inverse function theorem, these conditions on multijets
suffice to construct a commutative diagram as above (for very small Ωi, i = 1, 2, 3, 4 around
the source and target of the multijets). This implies:

Lemma 2.7. An algebraic set Z is domain-invariant if and only if for all u1, . . . , ur ∈
J∞C (Cp+1,Cp+1) and v1, . . . , vr ∈ J∞C (Cp,Cp) with the above properties and z ∈ Z such that
szi = tui, the multijet z ◦ u lies in Z.

As a jet in JmR (Rp+1,Rn) is invertible if and only if its image in JmC (Cp+1,Cn) is, we
conclude that given a commutative diagram

Rp+1 ⊃ Ω1 Ω2 ⊂ Rp+1

Rp ⊃ Ω3 Ω4 ⊂ Rp+1

U

p2 p2

V

with horizontal maps diffeomorphisms, we have that

U∗(p∞m (Z) ∩ rJmR (Ω2,Rn)) = p∞m (Z) ∩ rJmR (Ω1,Rn).

2.2. Invariance in the range. Invariance in the range is even easier. Suppose we have a
complex diffeomorphism

Cn ⊃ Ω1
W−→ Ω2 ⊂ Cp+1,

then postcomposition by W gives an induced map

W∗ : rJmC (Cp+1,Ω1) −→ rJmC (Cp+1,Ω2).

Definition 2.8. An algebraic set Z ⊂ rJ∞ of level m is range-invariant if for each diagram
of the above form we have

W∗(p∞m (Z) ∩ rJmC (Cp+1,Ω1)) = p∞m (Z) ∩ rJmC (Cp+1,Ω2).

We can give a similar local characterisation. For any (y1, . . . , yr) ∈ Ω(r)
1 , the jets of W

given by
wi := j∞(W)(yi) ∈ J∞(Ω1,Ω2)

have the following properties:
· wi are invertible,
· swi = swj if and only if twi = twj if and only if wi = wj for all i, j.
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As above, these are sufficient conditions for constructing a complex diffeomorphism on
small open neighborhoods of the source and target of the multijet. We thus have a real
version as above.

2.3. IASCM’s.

Definition 2.9. An invariant algebraic set of complex multijets (IASCM) is an algebraic set
of complex multijets that is both domain-invariant and range-invariant.

All algebraic sets of multijets that appear in the proof of multiple disjunction are of this
type. By construction, for any IASCM Z we may define a set S(Z,P,N) ⊂ rJ∞(R× P,N)
as those multijets which lie in Z when using charts in the domain and target.

Example 2.10. For the set Z0 = {(z1, z2) ∈ 2J∞ | t(z1) = t(z2)} we have

S(Z0, P,N) = {(z1, z2) | tz1 = tz2} ⊂ 2J∞(R× P,N).

For the set Z1 = {z ∈ 1J∞ | ker(Dz) 6= 0} we have

S(Z1, P,N) = {z | ker(Dz) 6= 0} ⊂ 1J∞(R× P,N).

The sets S(Z,P,N) are well-behaved. Let me list some of their properties, all of which
are proven by straightfoward verifications which do not hold any surprises. For Z of level m
we have

(1) S(Z,P,N) = (p∞m )−1(p∞m (S(Z,P,N))) and p∞m (S(Z,P,N)) is a closed subset of
rJm(R× P,N).

(2) We will define operation A later, but it produces the “singular subset” A(Z) ⊂ Z,
which is again an IASCM. When we set S∗(Z,P,N) := S(Z,P,N) \ S(A(Z), P,N),
this has the following properties: S∗(Z,P,N) = (p∞m )−1(p∞m (S∗(Z,P,N))) and
p∞m (S∗(Z,P,N)) is a smooth submanifold of rJm(R× P,N).

(3) S(Z,P,N) is preserved by fibered diffeomorphisms of the domain and target. Let me
spell this out for the domain: given a diffeomorphism U : R× P ×Ds → R× P ×Ds

fibered over Ds, we have

U∗(p∞m (S(Z,P,N))×Ds) = p∞m (S(Z,P,N))×Ds.

(4) S(Z,P,N) is preserved by a sunny collapsing: if Fu = (hu, fu, p3) : I×P ×Ds → I×
N×Ds is the fibered isotopy arising from a sunny collapsing data φu : P ×Ds → (0, 1]
then we have1

rj
∞(fu)−1(S(Z,P,N))

= {(t1, x1, . . . , tr, xr, y) | (t1φu(x1, y), x1, . . . , y) ∈ rj
∞(f)−1(S(Z,P,N))}.

3. The operations A, B, C, and D

We now define the operations A, B, C, and D, which produce new IASCM’s from old ones.
We will focus on a few illustrative examples.

1Recall that we intend to project the target onto N × Ds before taking multijets, hence hu does not appear.
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3.1. Operation A. We saw this operation before. Its slogan is:
Relegate non-manifold points of strata to deeper strata.

In Goodwillie’s paper, an algebraic variety is a quasi-projective variety over C (i.e. a
subset of some complex projective space defined by homogeneous polynomial equations and
inequalities). For an algebraic variety X, the tangent space TxX to x ∈ X is the linear dual
to mx/m

2
x, where mx is the maximal ideal of the local ring OX,x.

Recall that the dimension of an algebraic variety is the maximal length of a chain V0 ⊂
V1 ⊂ . . . ⊂ Vd = X of distinct non-empty subvarieties.

Definition 3.1. If X is a d-dimensional algebraic variety, then the singular set Σ(X) is
given those x ∈ X such that dim(TxX) > d and those points which lies on components of
dimension < d.

Example 3.2. The following example illustrates that the dimension of this tangent space can
be larger than d:

The singular set Σ(X) is once more an algebraic variety, and it is Zariski closed in X.
It can in fact be defined for a complex analytic variety and is invariant under complex
diffeomorphisms.

Definition 3.3. Operation A replaces an IASCM Z of levelm and rank k by (p∞m )−1(Σ(p∞m (Z))).

Lemma 3.4. A(Z) is an IASCM.

Proof. Let us prove it is domain-invariant. Given a complex diffeomorphism U : Rp+1 ⊃ : Ω1 →
Ω2 ⊂ Rp+1, the domain-invariance of Z says that

U∗(p∞m (Z) ∩ rJmC (Ω2,Cn)) = p∞m (Z) ∩ rJmC (Ω1,Cn).

Then we get

U∗(p∞m (A(Z)) ∩ rJmC (Ω2,Cn)) = U∗(Σ(p∞m (Z)) ∩ rJmC (Ω2,Cn))
= Σ(p∞m (Z) ∩ rJmC (Ω1,Cn))
= p∞m (A(Z)) ∩ rJmC (Ω1,Cn))

The important step is the second one: this is the invariance of singular sets under complex
diffeomorphisms. The proof that it is range-invariant is similar. �

3.2. Operation B. Recall that the strata will be subsets of P × Ds and are eventually
defined by projecting configurations in I × P ×Ds to P ×Ds. The slogan for operation B is:

Relegate intersections of strata to deeper strata.
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This is done by defining new strata which encode when the phenomena measured by
previous strata coincide vertically in I × P . This is a binary operation: its input is two
IASCMs Z and Z ′ of rank r(Z) and r(Z ′), two injections

φ : {1, . . . , r(Z)} −→ {1, . . . , r} φ′ : {1, . . . , r(Z ′)} −→ {1, . . . , r}

such that im(φ) ∪ im(φ′) = {1, . . . , r}, and a pair of i ∈ {1, . . . , r(Z)} and i′ ∈ {1, . . . , r(Z ′)}.
The latter are the indices of points to vertically coincide in the domain.

Definition 3.5. Operation B takes this input to

Bφ,φ′,i,i′(Z,Z ′) = {z ∈ rJ
∞ | z ◦ φ ∈ Z, z ◦ φ′ ∈ Z ′, p2szφ(i) = p2szφ′(i′)}.

Lemma 3.6. This is an IASCM of rank r and level max(level(Z), level(Z ′)).

3.3. Operation C. Recall that the construction of sunny collapses runs into difficulty when
a certain subset we want to remove has an outwards pointing tangent vector which is vertical
(really, only upwards is a problem). The slogan for operation C is:

Relegate to deeper strata those points in a stratum where such a tangent
vector exists.

Suppose that Z is an IASCM of level m and rank r.

Definition 3.7. For z ∈ p∞m+1(Z) we say that v ∈ Tsz((Cp+1)(r)) is along Z if for some
(or equivalently any) holomorphic map f : Cp+1 ⊃ Ω → Cn with sz1, . . . , szr ∈ Ω and
rj
m+1(f)(sz) = z we have

D(rjm(f))(sz) ◦ v ∈ T (p∞m (Z)),

the latter being the Zariski tangent space.

Definition 3.8. We define C̃i(Z) = {(z, v, c)} ⊂ rJm+1 × (T ((Cp+1)(r)) \ 0-section) × C
satisfying z ∈ p∞m+1(Z), v ∈ Tsz((Cp+1)(r)) non-zero and along Z, c ∈ C, and Dzi ◦ (vi −
c ∂
∂x1

) = 0.

Definition 3.9. Operation C takes Z to the image of C̃i(Z) under the map (z, v, c) 7→ z.

Lemma 3.10. This is an IASCM of rank r and level m+ 1.

3.4. Operation D. The final operation we will spend more time on, as it is the most
interesting one:

Relegate to deeper strata those points obtained by collisions of points in
previous strata.

Suppose that Z is an IASCM of level m and rank r, and there is a surjection

φ : {1, . . . , r} −→ {1, . . . , r′}

which is not a bijection. We will produce from this an IASCM Dφ(Z) of rank r′ and level
maxr′i=1((m+ 1)#φ−1(i′)− 1).

Take Kn to be the space of all complex polynomial maps Cp+1 → Cn of degrees < r
(
p+1+m
m

)
.

Then we define

X = {(x, f) ∈ (Cp+1)(r) ×Kn | rjm(f)(x) ∈ p∞m (Z)}
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and letting X denote the Zariski closure of X in (Cp+1)r ×Kn (note that we added the fat
diagonal back), we define

Y = {(y, f) ∈ (Cp+1)(r′) ×Kn | (y ◦ φ, f) ∈ X}.

We will need a fact from algebraic geometry: if f : X → Y is a map of algebraic varieties
(here the inclusion of (Cp+1)(r) ×Kn into (Cp+1)r ×Kn, then the Zariski closure of f(X)
equals the closure in the usual complex topology.

Definition 3.11. Operation D takes the above data to Dφ(Z) ⊂ r′J
∞ given by those

(z1, . . . , zr′) such that there exists a (y, f) ∈ Y satisfying the equation p∞(m+1)#φ−1(i′)−1(zi′) =
j(m+1)#φ−1(i′)−1(f)(yi′).

Proving that this is an algebraic set is one of the places where it is useful to work over the
complex numbers. But instead of giving this proof, let me state the result which should help
you understand this operation. It is consequence of the results discussed in Nils’ lecture:

Lemma 3.12. Let Z and φ be as above, U ⊂ Rn+1 be open, {fν} a convergent sequence in
C∞(U,Rn) with limit f and {xν} a sequence in U (r) which converges to x = y ◦ φ in Ur for
y ∈ U (r′). Then we have

rj
∞(fν)(xν) ∈ Z =⇒ r′j

∞(f)(y) ∈ Dφ(Z).

Now, rather than proving Dφ(Z) is an IASCM (this amounts to proving that Y is an
algebraic vector bundle over Dφ(Z)), we will look at an example.

Example 3.13. Let us take Z = Z0 = {(z1, z2) ∈ 2J∞ | tz1 = tz2} and φ : {1, 2} → {1} the
unique map. We have r = 2, m = 0, r′ = 1, and so we are taking polynomials of degree < 2.
Thus f ∈ Kn can be concretely described as

f = A+
p+1∑
j=1

BjXj A,Bj ∈ Cn

for variables Xj . Then we have

X = {(x1, x2, A+
p+1∑
j=1

BjXj) | A+
p+1∑
j=1

Bjx1,j = A+
p+1∑
j=1

Bjx2,j} ⊂ (Cp+1)(2) ×Kn.

Then (y,A +
∑p+1
j=1 BjXj) ∈ Y if and only if (x, x,A +

∑p+1
j=1 BjXj) ∈ X. We claim this

happens if and only if there is a non-zero vector v ∈ Cp+1 such that
∑
j Bjvj = 0. The

direction ⇐ is easy: given such a v, the sequence (y, y + v/n,A+
∑p+1
j=1 BjXj) will lie in X

and converge to (y, y, A+
∑p+1
j=1 BjXj).

For the converse, suppose that (xν1 , xν2 , Aν +
∑p+1
j=1 B

ν
jXj) ∈ X converges to (y, y, A +∑p+1

j=1 BjXj). Writing xν2 = xν1 + vν , we get that vν → 0 and
∑
j B

ν
j = 0 for all ν. Passing

to a subsequence, we may assume that v̂ν = vν/||vν || converges to some non-zero vector v̂
which satisfies

∑
j Bj v̂j = 0.

Thus we have that

Y = {(y,A+
∑
J

BjXj) ∈ Cp+1 ×Kn | ∃v 6= 0 such that
∑
j

Bjvj = 0}.
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Now (m+ 1)φ−1(1)− 1 = 1 and thus we get that Dφ(Z0) is given by those z ∈ 1J∞ such
that p∞1 (z) = j1(A+

∑
j BjXj)(y) for (y,A+

∑
j BjXj) ∈ Y . That is, Dφ(Z0) consists of

those z with ker(Dz) 6= 0. We conclude that

Dφ(Z0) = S(Z1, P,N).
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