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Chapter 1

The homology of symmetric groups

In the first lecture of this minicourse, we introduce the phenomenon of homological
stability through the example of the symmetric groups Σn. We also explain what one
use can these homological stability results for.

1.1 Homology groups of symmetric groups

The symmetric group Σn is the group of bijections of the finite set n = {1, . . . , n},
under composition. The classifying space BG of a discrete group G, such as Σn, is the
connected space determined uniquely up to weak homotopy equivalence by the property

π∗(BG) =
{
G if ∗ = 1,
0 otherwise.

It can be constructed by extracting from G the groupoid ∗ �G given by:
· a single object ∗,

· morphisms given by ∗ g−→ ∗ for g ∈ G, and

· composition given by multiplication.
We then take its nerve to obtain a simplicial set, and take the geometric realisation to get
a topological space |N(∗ �G)|; this is a model for BG. Exercise 1.3.1 proves it indeed
has the desired property.

Question 1.1.1. What are the homology groups H∗(BΣn;Z)?

Remark 1.1.2. This is the same as computing the group homology of Σn with coefficients
in Z in the sense of [Bro94], see Exercise 1.3.2.

Let us compute these groups and the homology of their classifying spaces for the first
few values of n.

Example 1.1.3. For n = 0, 1, the group Σn is trivial so its classifying space is weakly
contractible and hence has trivial homology.
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2 Chapter 1 The homology of symmetric groups

Example 1.1.4. For n = 2, Σ2 is isomorphic to the cyclic abelian group Z/2. Then BZ/2,
as constructed above, is homotopy equivalent to RP∞. We conclude that

H∗(BZ/2;Z) = H∗(RP∞;Z) =


Z if ∗ = 0
Z/2 if ∗ > 0 is odd,
0 if ∗ > 0 is even.

For an alternative argument, see Exercise 1.3.3.
Example 1.1.5. For n = 3, the group Σ3 is the dihedral group D3 with 6 elements (i.e. the
symmetries of a triangle). A more complicated computation given in Exercise 1.3.5 yields
the homology of D3:

H∗(BD3;Z) =


Z if ∗ = 0,
Z/2 if ∗ > 0 and ∗ ≡ 1 (mod 4),
Z/6 if ∗ > 0 and ∗ ≡ 3 (mod 4),
0 otherwise.

As the previous example indicates, direct computation of homology becomes increas-
ingly difficult. However, it is certainly possible by computer.1 Let’s look at Fig. 1.1 to
see whether we can discern some patterns:
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Figure 1.1: The homology groups Hd(BΣn;Z). To keep this table readable, some compromises
had to be made: we wrote Zrd for (Z/d)⊕r, + for ⊕, and combined some summands. The stable
range from Theorem 1.1.8 is shaded.

Here some things one might conjecture after looking at these computations:
(1) Each reduced homology group H̃d(BΣn;Z) is finite and has small exponent.

1We in fact know all homology groups of all symmetric groups, in the sense that there is a mechanical
procedure for determining them. This can be done combining the work of Nakoaka with that of May
[CLM76].



1.1 Homology groups of symmetric groups 3

(2) The homology in fixed degree ∗ = d becomes independent of n as n→∞.
(3) Before becoming independent of n, the homology only increases in size.
(4) The p-power torsion only changes when p|n.

If we want to attempt to prove (2)–(4), we need a better way to compare the homology
groups for different n than just as abstract abelian groups. This is done by observing
that the inclusion n ↪→ n+ 1 of finite sets gives a homomorphism

σ : Σn −→ Σn+1,

by extending a permutation of n by the identity on n + 1 ∈ n+ 1 to a permutation
of n+ 1. Our construction of BG is natural in groups and homomorphisms, so this
homomorphism induces a map

σ : BΣn −→ BΣn+1,

which in turn induces a map σ∗ : H∗(BΣn;Z) → H∗(BΣn+1;Z) on homology. We can
then give sharper formulations of (2)–(4) in terms of these stabilisation maps:
(2’) The maps σ∗ are isomorphisms in a range increasing with n.
(3’) The maps σ∗ are injective.
(4’) The maps σ∗ are isomorphisms on p-power torsion unless p|n+ 1.

Property (1) holds for all finite groups, and the result which proves it also implies (4’):

Proposition 1.1.6. For a finite group G, H̃∗(BG;Z[1/|G|]) = 0. More generally, for
H ⊂ G the map ι∗ : H∗(BH;Z[1/[G : H]]) → H∗(BG;Z[1/[G : H]]) admits a right
inverse τ (i.e. ι∗ ◦ τ = id).

Proof. The first statement follows from the second by taking H = {e}. The second is
proven in Exercise 1.3.4 using transfer maps.

To deduce (4’) from Proposition 1.1.6, note that [Σn+1 : Σn] = n+ 1 so by the long
exact sequence on homology groups so that H∗(BΣn;Z)→ H∗(BΣn+1;Z) is surjective
after inverting n+ 1. Now set n+ 1 equal to p and invoke (3’).

It is phenomenon indicated by (2’) that is the subject of this minicourse:

Definition 1.1.7. A sequence X0
σ−→ X1

σ−→ X2
σ−→ · · · exhibits homological stability

if the maps σ∗ : H∗(Xn;Z) → H∗(Xn+1;Z) are isomorphisms in a range of degrees ∗
increasing with n.

In the next two lectures we will prove the following result, due to Nakaoka [Nak60]
(though he proved much more):

Theorem 1.1.8. The sequence BΣ0
σ−→ BΣ1

σ−→ BΣ2
σ−→ · · · exhibits homological

stability. More precisely, the induced map

σ∗ : H∗(BΣn;Z) −→ H∗(BΣn+1;Z)

is surjective if ∗ ≤ n
2 and an isomorphism if ∗ ≤ n−1

2 .



4 Chapter 1 The homology of symmetric groups

Remark 1.1.9. Of course, if we know property (3’) holds then the range in the previous
theorem in which σ∗ is an isomorphism improves to ∗ ≤ n

2 . However, property (3’) is
rather special—related to the existence of transfer maps—and you should not expect it
to hold for general sequences of classifying spaces of groups. We will not comment on it
again, but see Exercise 1.3.6.
Remark 1.1.10. The ranges in the previous remark are optimal among those of the form
∗ ≤ an+ b with a, b ∈ Q.

1.2 Using homological stability for symmetric groups

Homological stability is a structural property of a sequence of groups, or more
generally topological spaces, but it is also useful tool. In fact, many homological stability
theorems are proven in service of obtaining other mathematical results. To illustrate
this, I now want to explain some straightforward applications of Theorem 1.1.8. These
concern the transfer of information from low n to high n and vice-versa. They can be
obtained by other methods as well, but their generalisations to other sequences of groups
often can not.

1.2.1 Alternating groups

Recall that for path-connected X, the Hurewicz map π1(X)→ H1(X;Z) coincides
with abelianisation (we are suppressing the basepoint). In particular, the map G →
H1(BG;Z) induces an isomorphism Gab → H1(BG;Z) naturally in G. Thus we can
understand the abelianisation of Σn by computing its first homology group.

The sign homomorphism sign : Σn → Z/2 yields a map

sign : BΣn −→ BZ/2,

which induces a map on homology. This is compatible with stabilisation, in the sense
that sign ◦ σ = sign, so we get a commutative squares

H1(BΣn−1;Z) H1(BΣn;Z)

Z/2 Z/2.

σ∗

sign sign

The map H1(BΣ2;Z) → Z/2 is an isomorphism because sign : Σ2 → Z/2 is. By Theo-
rem 1.1.8, in the commutative diagram

H1(BΣ2;Z) H1(BΣ3;Z) H1(BΣ4;Z) · · ·

Z/2 Z/2 Z/2 · · ·

∼=

∼= ∼=

the right-most top horizontal map is surjective and the other top horizontal maps are
isomorphisms. A single diagram chase then deduces from the fact that the left-most
vertical map is an isomorphism that all other vertical maps are.
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Thus we have used homological stability to prove that

sign : Σn −→ Z/2

is the abelianisation for n ≥ 2, or equivalently that the kernel of the sign homomorphism
is exactly the subgroup [Σn,Σn] generated by commutators. Recalling that this kernel is
exactly the alternating group An, we conclude that:

Theorem 1.2.1. [Σn,Σn] = An.

Remark 1.2.2. This is a fact you likely knew already, and elementary group-theoretic
arguments exist. We could have used this fact instead to give an elementary proof of
Theorem 1.1.8 in degree ∗ = 1.

1.2.2 Group completion

Homological stability implies that for in fixed degree ∗, for n sufficienty large the
canonical map

H∗(BΣn;Z) −→ colim
n→∞

H∗(BΣn;Z)

is an isomorphism; the right hand side is known as the stable homology. This has two
somewhat tautological consequences:

1. We can compute the right side from the left side.
2. We can compute the left side from the right side.

This is particularly interesting because the stable homology on the right side has a more
familiar description.

When we constructed the stabilisation map, we used that inclusion n→ n+ 1 yields
a homomorphism Σn → Σn+1. More generally, disjoint union induces a homomorphism
Σn × Σm → Σn+m, which yields “multiplication” maps

BΣn ×BΣm −→ BΣn+m,

making the space ⊔n≥0BΣn into a unital topological monoid (these are associative but not
commutative, and it is probably better to say E1-space since that is a homotopy-invariant
notion).
Example 1.2.3. The topological monoid structure makes π0 := π0(⊔n≥0BΣn) into a
unital monoid, and this can be identified with N with its usual addition. That addition
is commutative reflects the fact that ⊔n≥0BΣn is homotopy-commutative.

The stabilisation maps assemble to a map tn≥0BΣn → tn≥0BΣn, mapping the
nth component to the (n + 1)st, which can equivalently be described a multiplica-
tion by an element of BΣ1. This makes H∗(tn≥0BΣn;Z) into Z[π0]-module. On
colimσH∗(tn≥0BΣn;Z) multiplication by σ is invertible (this map induces a pro-isomorphism
on diagrams), so there is a map

H∗(tn≥0BΣn;Z)[π−1
0 ] −→ colimσH∗(tn≥0BΣn;Z), (1.1)

and it is an algebraic fact about computing localisations that this is an isomorphism.
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The right hand side of (1.1) is nothing but a Z-indexed direct sum of copies of
colimnH∗(BΣn;Z). Thus the stable homology is equal to one of these summands of
H∗(tn≥0BΣn;Z)[π−1

0 ]. The McDuff–Segal group completion theorem tells us when we
can equivalently make the path-components into a group before passing to homology
[MS76, Proposition 1] (see also [ERW19, Section 6]):

Theorem 1.2.4 (McDuff–Segal). If M is a homotopy-commutative unital associative
topological monoid, then H∗(M ;Z)[π−1

0 ] ∼= H∗(ΩBM ;Z).

Here Ω denote the based loop space construction, and BM is the bar construction of
M obtained as |N(∗ �M)|, where ∗ �M is the category enriched in topological spaces
given by:

· a single object ∗,
· space of morphisms given by M ,
· composition given by multiplication.

(Strictly speaking, for this to have the correct homotopy type, the inclusion {id} ↪→M
needs to be a cofibration, a condition satisfied in particular when M = ⊔

n≥0BGn with
each Gn discrete.) The bar construction BM has a canonical basepoint provided by the
object ∗, and that is where our loops are based. There are many techniques, known
as infinite loop space machines [MT78], to compute the homotopy type of BM . In
particular, these apply to M = ⊔

n≥0BΣn [BP72, Seg74]:

Theorem 1.2.5 (Barratt–Priddy–Quillen–Segal). There is a homotopy equivalence
ΩB(⊔n≥0BΣn) ' Ω∞S.

Here S is the sphere spectrum, described by saying its nth stage is Sn = Sn and the
map ΣSn → Sn+1 is the usual identification of ΣSn with Sn+1. In particular πi(S) is the
ith stable homotopy group of spheres given explicitly as colimk→∞πi+k(Sk).

Corollary 1.2.6. Let Ω∞0 S ⊂ Ω∞S denote the basepoint component, then

colim
n→∞

H∗(BΣn;Z) ∼= H∗(Ω∞0 S;Z).

Remark 1.2.7. A fancier way of stating the Barratt–Priddy–Quillen–Segal theorem is
that the sphere spectrum S is the algebraic K-theory spectrum of the category of finite
sets. An even fancier way of stating this would involve the “field with one element”.

1.2.3 Serre’s finiteness theorem and variations

Let us now use Corollary 1.2.6. By (1) the groups H∗(BΣn;Z) are finite for ∗ > 0.
By Theorem 1.1.8 the same is true for the stable homology as long as restrict to degrees
∗ ≤ n

2 . Since n is arbitrary, the stable homology is finite in all positive degrees. This has
the following consequence:

Theorem 1.2.8 (Serre). π∗(S) is finite for all ∗ > 0.
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Proof. By construction, the path-component Ω∞0 S ⊂ Ω∞S corresponding to 0 ∈ π0(S) ∼=
Z (all are homotopy-equivalent) is an infinite loop space and hence a so-called simple
space (i.e. π1 is abelian and acts trivially on the higher homotopy groups). Thus we can
apply the Hurewicz theorem modulo the Serre class C of finite abelian groups. This in
particular says that π∗(Ω∞0 S) is finite for ∗ ≤ d if and only if H̃∗(Ω∞0 S;Z) is finite for
∗ ≤ d. Now use that Corollary 1.2.6 identifies H∗(Ω∞0 S;Z) with the stable homology of
symmetric groups.

We can say something similar about torsion: by (4’) the groups H∗(BΣn;Z) contain
no p-torsion for when n < p. By Theorem 1.1.8 we conclude that same is true for
the stable homology as long as we restrict to degrees ∗ ≤ p−1

2 . This has the following
consequence, working modulo the Serre class C of finite abelian groups which only have
`-torsion for primes ` 6= p:

Proposition 1.2.9. π∗(S) has no p-torsion for ∗ ≤ p−1
2 .

In fact, the following better result is known (and this range is optimal):

Theorem 1.2.10 (Serre). π∗(S) has no p-torsion for ∗ < 2p− 3.

Arguing in the other direction, we obtain that the stable homology of symmetric
groups has no p-torsion for ∗ < 2p− 3 and conclude using Corollary 1.2.6 and property
(3’) that:

Proposition 1.2.11. H∗(BΣn;Z) has no p-torsion for ∗ < 2p− 3.

Proof. If there were p-torsion for ∗ < 2p−3 in H∗(BΣn;Z), by (3’) the same would be true
for the stable homology. But by a Sere class argument this contradicts Theorem 1.2.10.

1.3 Exercises

Exercise 1.3.1 (Recognizing BG). One way to recognize that a topological space
is weakly homotopy equivalent to BG is to exhibit it as a quotient of a contractible
topological space by G acting freely and properly discontinuously. In this exercise we use
this to prove |N(∗ �G)| arises this way.

(i) Consider the groupoid G �G given by:
· objects given by G,
· morphisms given by h g−→ gh for g ∈ G,
· composition given by multiplication.

Prove that |N∗(G � G)| is contractible by using the fact that if η : F ⇒ F ′ is a
natural transformation, then |NF | and |NF ′| are homotopic. (Hint: construct a
natural transformation from the identity functor on G �G to a constant functor.)

(ii) Multiplication on the right gives an action of G on G�G and hence on |N(G�G)|.
Prove that this action is free, properly discontinuous, and that |N(G �G)|/G ∼=
|N(∗ �G)|.
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Exercise 1.3.2 (Group homology). The definition of group homology of G with coef-
ficients in a Z[G]-module M is H∗(G;M) := TorZ[G]

∗ (Z,M). That is, it is computed by
the homology of P∗ ⊗Z[G] M where P∗ → Z is a projective Z[G]-module resolution.

(i) As the geometric realisation of a simplicial set, |N(G � G)| has a canonical CW
structure with a single cell for each non-degenerate simplex. Using the cellular
chains on |N(G/G)| to construct a free Z[G]-module resolution of Z.

(ii) Prove that H∗(BG;Z) ∼= TorZ[G]
∗ (Z,Z) and conclude that the homology of BG is

the group homology of G with coefficients in Z.

(iii) How do you obtain TorZ[G]
∗ (Z,M) in terms of BG?

Exercise 1.3.3 (Homology of BZ/2). Use cellular homology of |N(∗�Z/2)| to compute
H∗(BZ/2;Z).

Exercise 1.3.4 (Transfer maps).
(i) Prove that p : X → B is a k-fold cover, there is a map τ : H̃∗(B;Z)→ H̃∗(X;Z) so

that p∗ ◦ τ = k · id. (Hint: send a singular simplex ∆n → B to its k distinct lifts.)
(ii) Prove that if G is a discrete group and H ⊂ G is a subgroup of finite index, there

is a model of BH which is a [G : H]-fold cover of BG.
(iii) Conclude that Proposition 1.1.6 holds.

Exercise 1.3.5 (Homology of BD3).
(i) Use the arguments of Exercise 1.3.4 to deduce that H̃∗(BD3;Z) is annihilated by

multiplication with 6.
(ii) Use universal coefficient theorems to show that Example 1.1.5 follows once one

proves that

H∗(BD3;Z/2) ∼= Z/2[x] and H∗(BD3;Z/3) ∼= Z/3[y]

with |x| = 1 and |y| = 2.
(iii) Prove (ii) using the cohomological Serre spectral sequence for the fibration sequence

BZ/3 −→ BD3 −→ BZ/2 associated to the extension

1 −→ Z/3 −→ D3 −→ Z/2 −→ 1

with coefficients in Z/2 and Z/3. (Hint: this extension is a semi-direct product
with the non-trivial element of Z/2 acting on Z/3 by multiplication with −1.)

Exercise 1.3.6 (Dold’s lemma). We will prove [Dol62, Lemma 2].
(i) Suppose we have a sequence of abelian groups and homomorphisms

0 σ0−→ A0
σ1−→ A1

σ2−→ · · · σn−→ An

and homomorphisms τk,m : Am → Ak for k ≤ m ≤ n such that
(a) τk,k = id,



1.3 Exercises 9

(b) τk,m ◦ σm = τk,m−1 (mod im(σk)) for k < m.
Prove by induction over m that the map

Tm : Am −→
⊕
k≤m

Ak/im(σk)

with kth component given by proj◦τm,k, is an isomorphism and σm has a left inverse.
(Hint: the left inverse to σm will be T−1

m−1◦p◦Tm◦σm where p : ⊕k≤mAk/im(σk)→⊕
k≤m−1Ak/im(σk) is the projection onto the first m− 1 summands.)

(ii) In the sequence

0 σ0−→ Hd(BΣ0;Z) σ1−→ Hd(BΣ1;Z) σ2−→ · · · σn−→ Hd(BΣn;Z),

use transfers to construct maps τk,m : Hd(BΣm;Z) → Hd(BΣk;Z) satisfying (a)
and (b). Conclude that σ is always injective.

Exercise 1.3.7 (Some stable homotopy groups of spheres).
(i) Use the results in Section 1.2.1 to prove that π1(S) = Z/2.
(ii) Can you also compute π2(S)? (Hint: [Arl90].)

Exercise 1.3.8 (Using Serre’s finiteness theorem). Serre proved that π∗(S) is finite for
∗ > 0. Combine this with Corollary 1.2.6 and Exercise 1.3.6 to prove that the sequence
BΣ0

σ−→ BΣ1
σ−→ BΣ2

σ−→ · · · exhibits homological stability. (Hint: you will not be
able to give an explicit range.)

Remark 1.3.9. See [McD75] for a similar qualitative argument for configuration spaces of
manifolds.



Chapter 2

Homological stability for symmetric groups

In the second lecture of this minicourse, we prove homological stability for the
symmetric groups Σn.

2.1 The strategy

In this lecture we will prove, following the strategy in [RWW17, Section 3] which
originally goes back to Quillen:1

Theorem 2.1.1 ([Nak60]). The sequence BΣ0
σ−→ BΣ1

σ−→ BΣ2
σ−→ · · · exhibits

homological stability. More precisely,

σ∗ : H∗(BΣn;Z) −→ H∗(BΣn+1;Z)

is surjective if ∗ ≤ n
2 and an isomorphism if ∗ ≤ n−1

2 .

Recall that we constructed BG as the geometric realisation of the nerve of a category
∗ �G. As the notation suggests, this can be interpreted as a quotient, or more precisely
a homotopy quotient. One can construct the homotopy quotient X � G of any space
X with G-action by a group G, and here we just take X = ∗. By abuse of notation
∗ �G = |N(∗ �G)|.2 A reference for its construction and properties is [Rie14], but we
will only need the following facts:

1. Homotopy quotients are natural. If X → Y is an equivariant map between G-spaces
then there is an induced map X �G→ Y �G.

2. Homotopy quotients preserve homological connectivity. If X → Y is an equivariant
map between G-spaces which is homologically d-connected then X �G→ Y �G is
also homologically d-connected. (Recall that a map is homologically d-connected if
it is an isomorphism on Hi for i < d and surjection on Hd.)

1Quillen used it to study the homology of general linear groups over finite fields. His argument was
not published by Quillen, but appears in his notebooks [Qui74]. Unfortunately, the first few pages were
left in the sun and were bleached. The argument was reconstructed and generalised in [SW20].

2This reflects that in modern homotopy theory, one does not really make a distinction between a
category, its nerve, and the geometric realisation of its nerve.

10
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3. Homotopy quotients commute with geometric realisation. If X• is a semi-simplicial
G-space, then ||X•||�G ' ||X•�G||. (We will explain the terminology and notation
later.)

4. Homotopy quotients of transitive G-sets. If S is a transitive G-set, then S �G '
BStabG(s) for any s ∈ S.

When proving Theorem 2.1.1 we are only interested in the homology of BΣn in
a range, so by (1) and (2) we may replace ∗ with the trivial Σn-action by a different
Σn-space X as long as X is homologically highly-connected. As (3) and (4) suggest,
our desired X is of the form ||X•|| with each Xk a transitive G-set. Why is this a good
idea? A geometric realisation ||X•|| comes with a canonical filtration, yielding a spectral
sequence that will relate the homology of BΣn to that of the classifying spaces BΣn−p of
various stabiliser groups. This will allow for an inductive argument.

2.2 Injective words

Recall that ∆ is the category whose objects are non-empty ordered finite sets and
whose morphisms are order-preserving maps; this has a skeleton given by the ordered finite
sets [p] = (0 < . . . < p) for p ≥ 0. The combinatorics of this category encodes various
maps between the standard simplices ∆p = {(t0, . . . , tp) ∈ [0, 1]n | t0 + · · ·+ tp = 1}: we
can construct a functor

∆• : ∆ −→ Top,
which sends the morphism δi : [p − 1] → [p] for 0 ≤ i ≤ p which skips the ith element
to the affine-linear inclusion ∆p−1 → ∆p opposite the ith vertex, and the morphism
σj : [p] → [p − 1] for 0 ≤ j ≤ p − 1 which doubles the jth element to the affine-linear
surjection ∆p → ∆p−1 which collapses to the jth and (j + 1)st vertices to same point.
These morphisms generate all morphisms in the category ∆.

A simplicial set is a functor ∆op → Set and a simplicial space is a functor ∆op → Top.
The value Xp := X([p]) is called the space of p-simplices. The morphism δi induces a
face map di : Xp → Xp−1, and the morphism σi a degeneracy map sj : Xp−1 → Xp. The
geometric realisation is the coend

|X•| := ∆• ⊗∆ X• =

⊔
p≥0

∆p ×Xp

 /∼
with ∼ the equivalence relation generated by (δit, x) ∼ (t, dix) and (σit, x) ∼ (t, six).
Example 2.2.1. In the previous lecture, we already used the simplicial set NC for a
category C (we took the groupoid ∗ � G). Interpreting [p] has a poset, which is a
particular type of category, we get a functor [•] : ∆→ Cat. Then NCp = HomC([p],C),
or more concretely, NCp is the set of composable sequences of morphisms

C0
f0−→ C1

f1−→ · · · fp−→ Cp.

The face maps are induced by precomposition, and explicitly given by composing or
forgetting morphisms. Thhe degeneracy maps are also induced by precomposition, and
explicitly given by inserting identity morphisms.
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It will suffice for our purposes to keep track of less structure, and replace ∆ by its
subcategory ∆inj with the same objects but morphisms only injective order-preserving
maps. A semi-simplicial set is a functor ∆op

inj → Set and a semi-simplicial space is a
functor ∆op

inj → Top. That, it is the analogue of a simplicial space which only face maps
and no degeneracy maps. We can restrict ∆• to ∆inj and once more take the coend to
get a geometric realisation

||X•|| := ∆• ⊗∆inj X• =

⊔
p≥0

∆p ×Xp

 /∼
with ∼ the equivalence relation generated by (δit, x) ∼ (t, dix). A reference for semi-
simplicial spaces and their properties is [ERW19].
Remark 2.2.2. Under suitable cofibrancy conditions, for a simplicial space X• we have
|X•| ' hocolim∆op X•. One advantage for semi-simplicial spaces, is that for a semi-
simplicial space X• we always have ||X•|| ' hocolim∆op

inj
X•. This is a consequence of

[ERW19, Theorem 2.2], as this theorem implies cofibrantly replacing X• does not affect
the weak homotopy type of the geometric realisation.

We now define the semi-simpicial set with Σn-action which will replace ∗. Let FI be
the category whose objects are finite sets and whose morphisms are injections.

Definition 2.2.3. Wn(1)• is the semi-simplicial set with p-simplices given by

Wn(1)• = HomFI([p], n)

and face maps di given by precomposition with δi : [p− 1]→ [p].

That is, Wn(1)p has as p-simplices the ordered words (m0m1 · · · mp) of elements of
n and no letter duplicated. The ith face map forgets the ith letter mi. This explains why
we call this the semi-simplicial set of injective words. The notation is rather complicated,
but will become clear in the next lecture.
Example 2.2.4. W2(1)• has:

· two 0-simplices given by the words (1) and (2),
· two 1-simplices given by the words (1 2) and (2 1).

Its geometric realisation is a circle.
Example 2.2.5. W3(1)• has:

· three 0-simplices (1), (2), (3),
· six 1-simplices (1 2), (2 1), (1 3), (3 1), (2 3), (3 2),
· six 2-simplices (1 2 3), (2 1 3), (1 3 2), (3 1 2), (2 3 1), (3 2 1).

We will see this is 1-connected. Let us just pick the loop given by the 1-simplices
corresponding to (1 2) and (2 1) and see this null-homotopic: it is the boundary obtained
when we glue the 2-simplices corresponding to (1 2 3) and (2 1 3) along their common
1-simplices.
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The group Σn acts on Wn(1)• by post-composition, and hence on the geometric
realisation. We have that:

Proposition 2.2.6.
(i) ||Wn(1)•|| is homologically n−1

2 -connected.
(ii) Wn(1)p is a transitive Σn-set, and the stabiliser of x ∈ Wn(1)p is the group of

permutations of n \ im(x).

Here ( (ii)) is evident, but ( (i)) requires a proof which we postpone to the
next lecture. The upshot is that ||Wn(1)•|| � Σn can serve a replacement for ∗ � Σn for
computing the homology in a range.

2.3 The geometric realisation spectral sequence

A filtration F0X ⊂ F1X ⊂ . . . on a space X makes the singular chains C∗(X) into a
filtered chain complex by setting FrC∗(X) := im(C∗(FrX) → C∗(X)). Assuming that
Fr−1X → FrX is a cofibration and FrX/Fr−1X is at least (r − 1)-connected, this gives
a strongly-convergent first-quadrant spectral sequence

E1
p,q = H̃p+q(FpX/Fp−1X;Z) =⇒ Hp+q(X;Z)

with differentials given by dr : Erp,q → Erp−r,q+r−1.
Remark 2.3.1. If you are unfamiliar with these notions, I recommend you look at
[McC01, Hat]. Roughly, a spectral sequence is an algebraic object that conveniently
packages all long exact sequences in homology for the pairs (FsX,FrX) with s ≥ r with
the goal of compute the homology of X.

We can in particular apply this to the geometric realisation ||X•||. This has a filtration

Fr||X•|| :=

 ⊔
0≤p≤r

∆p ×Xp

 /∼
with equivalence relation ∼ as before, all of whose maps are cofibrations under a mild
condition on X• that will be satisfied in examples in these notes. The associated graded
is given by

Fr||X•||
Fr−1||X•||

= ∆r

∂∆r
∧ (Xr)+ (2.1)

so is at least (r − 1)-connected. Thus we get [Seg68] (see also [ERW19, Section 1.4]):

Theorem 2.3.2. There is a strongly convergent first quadrant spectral sequence

E1
p,q = Hq(Xp;Z) =⇒ Hp+q(||X•||;Z)

with differentials given by dr : Erp,q → Erp−r,q+r−1. Moreover d1 : E1
p,q → E1

p−1,q is given
by
∑p
i=0(−1)i(di)∗, and the edge homomorphism E1

0,q → E∞0,q → Hq(X;Z) is equal to the
map induced on homology by the inclusion X0 → ||X•||.



14 Chapter 2 Homological stability for symmetric groups

Proof. The identification of the E1-page follows from (2.1) and the suspension iso-
morphism. The description of the abutment and edge homomorphism is as for any
spectral sequence of a filtered space. For the identification of the d1-differential, see the
references.

2.4 The proof of Theorem 2.1.1

We have now gathered all ingredients for the proof of Theorem 2.1.1. It is a proof by
strong induction, so we assume we have proven the result for m ≤ n and we will prove it
for n+ 1. There is nothing to prove when n+ 1 ≤ 2, so we may assume that n+ 1 ≥ 3.

Step 1: Replacing ∗ by ||Wn+1(1)•||

By Proposition 2.2.6, ||Wn+1(1)•|| is homologically n
2 -connected so the map ||Wn+1(1)•|| →

∗ is (n2 + 1)-connected. Taking homotopy quotients by Σn+1, (1) yields a map

||Wn+1(1)•|| � Σn+1 −→ ∗ � Σn+1

which is homologically (n2 + 1)-connected by (2). To prove Theorem 2.1.1, we may thus
replace ∗ � Σn by ||Wn+1(1)•|| � Σn+1.

Step 2: The E1-page of the geometric realisation spectral sequence

Next, (3) provides a weak homotopy equivalence

||Wn+1(1)•|| � Σn+1 ' ||Wn+1(1)• � Σn+1||.

Then Theorem 2.3.2 provides a spectral sequence

E1
p,q = Hq(Wn+1(1)p � Σn+1;Z) =⇒ Hp+q(X;Z).

Let us now identify the E1-page more explicitly, as well as the d1-differential. Since
Wn+1(1)p is a transitive Σn+1, for any injective map f : [p] → n+ 1, (4) says that the
map

∗ � StabΣn+1(f) −→Wn+1(1)p � Σn+1

sending ∗ to f is a weak homotopy equivalence. Taking f to be the inclusion ιp of the
last p+ 1 elements, StabΣ(n+1)(ιp) ↪→ Σn+1 is the usual inclusion Σn−p ↪→ Σn+1 as acting
on the first n− p elements. This allows us to make the identification

E1
p,q
∼= Hq(BΣn−p;Z), (2.2)

but it is important to recall how this identification is made when we next compute the
d1-differential.

Indeed, d1 = ∑(−1)i(di)∗ and even though the diagram

∗ � StabΣn+1(f) Wn+1(1)p � Σn+1

∗ � StabΣn+1(dif) Wn+1(1)p−1 � Σn+1

'

di�Σn+1

'
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commutes it is not true in general that diιp = ιp−1. Rather, we have hidiιp = ιp−1 where
hi is an element of Σn+1 that sends diιp to ιp−1 (there is more than one such element).
The correct commuting diagram involving only standard inclusions is

∗ � StabΣn+1(ιp) Wn+1(1)p � Σn+1

∗ � StabΣn+1(diιp) Wn+1(1)p−1 � Σn+1

∗ � StabΣn+1(ιp−1) Wn+1(1)p−1 � Σn+1

'

di�Σn+1

'

chi c′hi
'

'

where chi
: StabΣn+1(diιp)→ StabΣn+1(ιp−1) is induced by conjugation in Σn+1 with hi,

and c′hi
is induced by the map of Σn+1-sets Wn+1(1)p−1 →Wn+1(1)p−1 sending given by

multiplication with hi (one also needs to then twist the action by conjugation by hi).
The map c′hi

is homotopic to the identity, so the upshot is that the following diagram
commutes

H∗(BΣn−p;Z) H∗(Wn+1(1)p � Σn+1;Z)

H∗(BΣn−p+1;Z) H∗(Wn+1(1)p−1 � Σn+1;Z).

ιp
∼=

(chi
◦inc)∗ (di)∗

ιp+1
∼=

We are free to choose hi, and we shall make a fortunate choice: we take it to be the
transposition swapping n− p+ 1 and n− p+ i. This has the advantage of commuting
with the image of Σn−p, so that the left map is equal to just σ∗. The upshot is that
under the identification of (2.2), we can identify the d1-differential as

d1 =
p∑
i=0

(−1)iσ∗ =
{
σ∗ if p > 0 is even,
0 otherwise.

0 1 2 3

0 H0(BΣn) H0(BΣn−1) H0(BΣn−2) H0(BΣn−3)

1 H1(BΣn) H1(BΣn−1) H1(BΣn−2) H1(BΣn−3)

2 H2(BΣn) H2(BΣn−1) H2(BΣn−2) H2(BΣn−3)

3 H3(BΣn) H3(BΣn−1) H3(BΣn−2) H3(BΣn−3)

4 H4(BΣn) H4(BΣn−1) H4(BΣn−2) H4(BΣn−3)

0

0

0

0

0

σ

σ

σ

σ

σ

0

0

0

0

0

Figure 2.1: The E1-page entries E1
p,q and the d1-differentials (we drop the coefficients from

homology for the sake of readability).
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Step 3: A spectral sequence argument

We want to show that the edge homomorphism

E1
0,q = Hq(BΣn;Z) −→ Hq(||Wn+1(1)• � Σn+1||;Z)

∼=−→ Hq(BΣn+1;Z)

is a surjection for ∗ ≤ n
2 and an isomorphism for ∗ ≤ n−1

2 . Indeed, in this range the right
map is an isomorphism (as indicated) and it is easy to identify the composition with the
stabilisation map σ.

We will do so by studying the geometric realisation spectral sequence, whose E1-page
looks like Figure 2.1. By the inductive hypothesis, whenever we see a d1-differential equal
to σ it is surjective or even an isomorphism in a range.

Putting in the explicit ranges, we get that the E2-page vanishes in a range for p > 0.
There are two cases, (a) n = 2k + 1 odd and (b) n = 2k + 1 even:

(a) The precise vanishing range is that for r ≥ 0, E2
2r+1,q = E2

2r+2,q = 0 for q ≤ k−r−1.
For example, if n = 9 then E1

2,q = Hq(BΣ7;Z) → Hq(BΣ8;Z) is a surjection for
∗ ≤ 7

2 and an isomorphism for ∗ ≤ 6
2 . That is, two adjacent columns connected

by a σ vanish in a range, the first pair from the left vanishing for q ≤ k − 1 and
this range going down one degree whenever we move two columns to the right. See
Fig. 2.2 for 2k = 9.
Furthermore, the higher differentials are dr : Erp,q → Erp−r,q+r−1 (so upwards and
to the left). Thus no differential with non-zero domain can enter the entries
E2

0,q = Hq(BΣ2k;Z) for q ≤ k, and that no further non-zero groups contribute to
E∞0,q. This implies that Hq(BΣ2k+1;Z) → Hq(BΣ2k+2;Z) is an isomorphism for
q ≤ k = b2k+1−1

2 c = b2k+1
2 c; this what we needed to prove.

(b) The precise vanishing range is that for r ≥ 0, E2
2r+1,q = 0 and q ≤ k − r − 1

and E2
2r+2,q = 0 for q − r − 2. This is the same pattern as in case (a), but in

the right column in each pair the range is one lower. See Fig. 2.2 for 2k = 8.
The result is that no differential with non-zero domain can enter the entries
E2

0,q = Hq(BΣ2k;Z) for q ≤ k − 1, and that no further non-zero groups contribute
to E∞0,q. Furthermore, a single d2-differential with non-zero domain can enter the
entry E2

0,k = Hk(BΣ2k;Z) and again no further non-zero groups can contribute.
This implies that Hq(BΣ2k;Z)→ Hq(BΣ2k+1;Z) is an isomorphism for q ≤ k−1 =
b2k−1

2 c and a surjection for q = b2k
2 c = k; this what we needed to prove.

2.5 Exercises

Exercise 2.5.1 (Simplicial and semi-simplicial spaces).
(i) Let sTop and ssTop denote the categories of simplicial, resp. semi-simplicial, spaces.

Prove that the forgetful functor U : sTop→ ssTop has a left-adjoint F . (Hint: it is
given by “freely adjoining degeneracies”.)

(ii) Prove that |F (X•)| ∼= ||X•|| for X• ∈ ssTop.

Exercise 2.5.2 (The fundamental group of Wn(1)•). Use Seifert–van Kampen to prove
that ||Wn(1)•|| is 1-connected for n ≥ 3.
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0 1 2 3 4 5 6 7 8

0 H0(BΣ9)

1 H1(BΣ9)

2 H2(BΣ9)

3 H3(BΣ9)

4 H4(BΣ9) ∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

Figure 2.2: The E2-page entries E2
p,q for n = 2k + 1 = 9. The empty entries are 0, the ∗ means

unknown groups. We have drawn the higher differentials into the entry E2
0,4 = H4(BΣ9;Z).

0 1 2 3 4 5 6 7 8

0 H0(BΣ8)

1 H1(BΣ8)

2 H2(BΣ8)

3 H3(BΣ8)

4 H4(BΣ8) ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗ ∗

∗

∗

∗

∗

∗

Figure 2.3: The E2-page entries E2
p,q for n = 2k = 8. The empty entries are 0, the ∗ means

unknown groups. We have drawn the higher differentials into the entry E2
0,4 = H4(BΣ8;Z).

Exercise 2.5.3 (Homotopy quotients preserve connectivity). There is a fibration sequence
natural in G-spaces X

X −→ X �G −→ ∗ �G.

Use the associated Serre spectral sequence to prove property (2) of homotopy quotients.

Exercise 2.5.4 (Homotopy quotients of G-sets). If X is a set with G-action, then the
homotopy quotient X �G has a model as the geometric realisation of the nerve of the
category with objects elements x ∈ X and a unique morphism from x to gx. We also
denote this category by X �G.

(i) For x ∈ X construct a functor ιx : ∗ �StabG(x)→ X �G sending ∗ to x.
(ii) Prove that ιx is an equivalence of categories if X is a transitive G-set and conclude

that the map induced by ιx on geometric realisation of nerves is a homotopy
equivalence. This is property (4) of homotopy quotients.

(iii) For h ∈ G construct a functor ch : X �G→ X �G sending x to hx.
(iv) Prove that there is a natural transformation id⇒ ch and conclude that the map

induced by ch on geometric realisation of nerves is homotopic to the identity. This
justifies a claim in Step 2 of Section 2.4.
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(v) Can the homotopy in (iv) be taken to be based?

Exercise 2.5.5 (Homological stability with constant coefficients). Prove that Theo-
rem 2.3.2 goes through when we replace the coefficients Z with another abelian group
A.

Exercise 2.5.6 (Homological stability with abelian coefficients). If M be a Z/2-module,
then we can use the sign homomorphism sign : Σn → Z/2 to make it into a local coefficient
system Mn on BΣn and define H∗(BΣn;Mn).

(i) Prove that the pullback of Mn+1 along σ : BΣn → BΣn+1 is canonically isomorphic
to Mn. Construct a stabilisation map

σ∗ : H∗(BΣn;Mn) −→ H∗(BΣn+1;Mn+1).

(ii) Modify the argument in this lecture to prove that that σ∗ : H∗(BΣn;Mn) →
H∗(BΣn+1;Mn+1) is a surjection if ∗ ≤ n−1

3 and an isomorphism if ∗ ≤ n−3
3 . (Hint:

(chi
◦inc)∗ is no longer equal to σ∗, but it is so on the image of H∗(BΣn−p−1;Mn−p−1)

in H∗(BΣn−p;Mn−p).)

Exercise 2.5.7 (Homological stability for alternating groups). By picking M appropri-
ately and invoking Shapiro’s lemma, use Exercise 2.5.6 to deduce homological stability
for alternating groups.

Remark 2.5.8. Homological stability for alternating groups goes back to Mann [Man85].



Chapter 3

Homological stability for automorphism groups

In the third lecture of this minicourse, we finish the proof of homological stability
for symmetric groups by proving that the semi-simplicial set of injective words is highly-
connected. We then explain the general framework for homological stability due to
Randal-Williams and Wahl, with an application to a result of Dwyer.

3.1 The semi-simplicial set of injective words is highly-connected

Last lecture, we proved that the sequence BΣ0
σ−→ BΣ1

σ−→ BΣ2
σ−→ · · · exhibits

homological stability: more precisely,

σ∗ : H∗(BΣn;Z) −→ H∗(BΣn+1;Z)

is surjective if ∗ ≤ n
2 and an isomorphism if ∗ ≤ n−1

2 . We gave a complete proof, with
the exception of using the following result as input:

Proposition 3.1.1. ||Wn(1)•|| is homologically n−1
2 -connected.

Remark 3.1.2. It is in fact known to be (n− 2)-connected (e.g. [Far79, Ker05, RW13a,
Gan17]), but we will not use this. See Exercise 3.4.2 for a proof which uses a technique
which is useful for proving other semi-simplicial sets are highly-connected.

I want to prove this, after recalling the definition of Wn(1)•, because we will soon
see that the connectivity of semi-simplicial sets like Wn(1) is often the crux for proving
homological stability results. Recall that FI is the category of finite sets and injections.

Definition 3.1.3. Wn(1)• is the semi-simplicial set with p-simplices given by

Wn(1)• = HomFI([p], n)

and face maps di given by precomposition with δi : [p− 1]→ [p].

Proof of Proposition 3.1.1. We will give a proof due to Randal-Williams [RW]. The
proof is by strong induction over n; we did the cases n ≤ 2 before and the case n = 3
was an exercise. So we may assume n ≥ 4, and suppose the cases < n to be known. In

19
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our induction we will use different subsets of n, so it is convenient to temporarily write
W (S)• for the semi-simplicial set obtained by replacing n with S.

The inclusions n \ {i} =: Si ↪→ n for 1 ≤ i ≤ n of all (n− 1)-element subsets give a
cover by subcomplexes of the (n−2)-skeleton of ||W (n)•|| with its canonical CW-structure.
Thus the map

∪ni=1||W (Si)•|| −→ ||W (n)•||
induces an surjection on H∗ for ∗ ≤ n− 2, and n− 2 ≥ n−1

2 when n ≥ 4.
We will now prove that ⊕n

i=1H∗(||W (Si)•)||;Z)→ H∗(∪ni=1||W (Si)•||;Z) is surjective
for ∗ ≤ n−1

2 . To do so, we use the Mayer–Vietoris spectral sequence for this cover:

E1
pq =

⊕
1≤i0<···<ip≤n

Hq(∩pj=1||W (Sij )•||;Z) =⇒ Hp+q(∪ni=1||W (Si)•||;Z).

Since ∩pj=0||W (Sij )•|| ∼= ||W (∩p0=1Sij )•|| is isomorphic to ||W (n− p− 1)•||, the entries
E1
p,q vanish for 0 < q ≤ n−p−2

2 . Furthermore, the chain complex (E1
p,0, d

1) is the cellular
chain complex of ∂∆n−1 and hence on the E2-page, we get that the bottom row E2

p,0
vanishes for 0 < p < n − 2. Since n ≥ 4, this implies that the edge homomorphism is
surjective for ∗ ≤ n−1

2 , which proves the desired statement.
Now we observe that composition

E1
0,q −→ Hq(∪ni=1||W (Si)•||;Z)

∼=−→ Hq(||W (n)•||;Z)

is induced by the inclusions ||W (Si)•|| → ||W (n)•||, which are null-homotopic by “coning
off” using the element i ∈ n (see Exercise 3.4.1). Thus in degrees 0 < ∗ ≤ n−1

2

H∗(∪ni=1||W (Si)•||;Z) −→ H∗(||W (n)•||;Z)

is both zero and surjective, and hence the target vanishes. This completes the proof of
the induction step.

Remark 3.1.4. From an exercise in the previous lecture, we know that ||Wn(1)•|| is also
simply-connected for n ≥ 3. Hence in that case, it is not just homologically n−1

2 -connected
but actually n−1

2 -connected.

3.2 The framework of Randal–Williams and Wahl

We did not use much about symmetric groups in our arguments and it is possible to
completely formalise the properties that we did use; doing so yields [RWW17].

A monoidal category C is a category with a functor

⊕ : C× C −→ C

and an object 1 ∈ C serving as a unit. There are associativity and unitality isomorphisms
relating these, see [ML98]. It is a symmetric monoidal if we are additionally given
compatible natural isomorphisms βX,Y : X ⊕ Y → Y ⊕X so that βX,Y ◦ βY,X = id.

When G is a symmetric monoidal groupoid, then given objects A,X ∈ C we can form
the automorphism groups

Gn := AutC(A⊕X⊕n),
and the functor −⊕X induces a stabilisation map σ : Gn → Gn+1 between these.
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Question 3.2.1. When does the sequence BG0
σ−→ BG1

σ−→ BG2
σ−→ · · · exhibit

homological stability?

Theorem 3.2.2 ([RWW17]). Suppose that a symmetric monoidal groupoid G has the
following properties:

(i) the monoid of isomorphism classes of objects of G has cancellation,
(ii) Aut(B)→ Aut(B ⊕X) is injective for all B.

Then we will momentarily describe semi-simplicial sets Wn(A,X)• with the following
property: if there is a k ≥ 2 with ||Wn(A,X)•|| is homologically n−2

k -connected for all
n ≥ 2, then

σ∗ : H∗(BGn;Z) −→ H∗(BGn+1;Z)

is a surjection for ∗ ≤ n
k and an isomorphism for ∗ ≤ n−1

k .

Remark 3.2.3. More generally, [RWW17] allows braided monoidal groupoids as inputs.
Moreover, the classifying space of a symmetric monoidal groupoid is an E2-algebra
which is a disjoint union of Eilenberg–MacLane spaces. In [Kra19], Krannich proved
the analogous result for general E2-algebras, allowing one to drop the cancellation and
injectivity assumptions. This for example allows one to study diffeomorphism groups of
high-dimensional manifolds. The reader may noticed that the assumptions in [RWW17]
are slightly different than those of Theorem 3.2.2. This is explained in [Kra19, Section
7.3].

The construction of Wn(A,X)• uses a construction due to Quillen, which we denote
UG following [RWW17]: this is the category with the same objects as G but morphisms
from X to Y given by an equivalence class of pairs (Z, f) with f : Z⊕X → Y a morphism
in G. Two of these, (Z, f) and (Z ′, f ′), are equivalent if there is a morphism g : Z → Z ′

in G such that the following diagram commutes:

Z ⊕X Z ′ ⊕X

Y.

g⊕id

f f ′

This inherits a symmetric monoidal. Then Wn(X)p = HomUG(X⊕[p], A⊕X⊕n) and the
ith face map is induced by precomposition.
Example 3.2.4. Suppose G is the groupoid FB of finite sets and bijections, on which disjoint
union gives a symmetric monoidal structure. Then UG is the category FI of finite sets and
injections. Taking A = ∅ and X = 1 we get that Gn = Σn and Wn(∅, X)• = Wn(1)• as
above. Thus Theorem 3.2.2 recovers Nakaoka’s theorem.
Example 3.2.5. Suppose that G is the groupoid of finitely-generated abelian groups and
their automorphisms, on which direct sum gives a symmetric monoidal structure. Then
taking A = Z, X = Z we get that Gn = GLn+1(Z). Properties (i) and (ii) hold by the
classification of finitely-generated abelian groups. The semi-simplicial sets Wn(Z,Z)•
were essentially studied by Charney [Cha84]; her proof can be adapted to prove that
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these are n−2
2 -connected (this is the hardest step in the argument). We conclude that

the stabilisation map
σ : BGLn+1(Z) −→ BGLn+2(Z)

induced by the inclusion GLn+1(Z) → GLn+2(Z) in the top-left corner, induces a
surjection on H∗ for ∗ ≤ n

2 and an isomorphism for ∗ ≤ n−1
2 .

Example 3.2.6. Here is an incomplete list of further sequences of groups whose classifying
spaces exhibit homological stability and equally incomplete references (see also Section 5
of [RWW17]):

· General linear groups of rings of finite stable rank (this includes any ring you’re
likely to think of) [vdK80, Cha80, Dwy80, Cha84, Bet86b, NS89, Gui89, Bet92,
HT10, GKRW18, SW20, GKRW20].

· Unitary groups of rings of finite unitary stable rank (again this includes any ring
you’re likely to think of) [Fri76, Pan87, MvdK02, Mir05, Col11, Ess13, SW20]; this
includes symplectic groups [vdKL11] and orthogonal groups [Vog79, Vog81, Vog82,
Bet86a, Cha87, Bet87, Bet90, Cat07].

· Automorphism groups of free groups [Hat95, HV98a, HV98b, RW18] and related
groups [HV04, HW05, HVW06, HW08, Zar14]

· Diffeomorphism groups or mapping class groups of surfaces [Har85, Har90, Iva93,
Wah08, Bol12, Wah13, RW14, RW16, HV17, GKRW19] and 3-manifolds [HW10,
Lam15, Kup20]; this includes braid groups [Arn69, Fuk70, CLM76, Vai78]. The
latter is an example of a configuration space, which we will discuss in more detail
in the next lecture.

· Diffeomorphism groups of high-dimensional manifolds [Per16a, Per16b, GRW17,
Per18, GRW18] and related groups [CM11, RW13b, BM13, Kup15, Til16, Nar17,
Gre19, Kra20].

· Various other groups: automorphism groups of right-angled Artin groups [GW16],
Artin monoids [Boy20], Houghton groups [PW16], Higman–Thompson groups
[SW19], free nilpotent groups [Szy14], and Coxeter groups [Hep16].

A somewhat outdated but still interesting survey of stability phenomena is [Coh09].

3.2.1 When should you expect homological stability?

I have three reasons to introduce Theorem 3.2.2:
I. It abstracts those properties of symmetric groups that we use.

II. It allows me to state a generalisation with local coefficients in the next section.
III. It leads to a heuristic for when one expects a sequence of classifying spaces of

groups to exhibit homological stability.
It is this last point I want to make more explicit by stating Theorem 3.2.2 informally.
Suppose that if you have a natural way to “summing” old objects together to make new
ones (a monoidal structure), which is sufficiently symmetric (this monoidal structure
is symmetric or more generally braided) and somewhat reasonable (properties (i) and
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(ii) in Theorem 3.2.2). Then you should expect homological stability to hold for the
automorphism groups of A⊕X⊕n exactly when the “space of ways of removing copies of
X from A⊕X⊕n” increases in connectivity with n. As this description suggests, the last
property is the hardest one to verify and doing so is more of an art than a science. It
requires new ideas specific to each situation.1

3.3 Local coefficients and a theorem of Dwyer

3.3.1 Homological stability with polynomial coefficients

In an exercise for the previous lecture, we considered replacing the constant coefficients
Z by certain local coefficients. In the general framework of Theorem 3.2.2, these are as
follows:

Definition 3.3.1. Let UGA,X be the full subcategory of UG on objects A⊕X⊕n. Then
a coefficient system is a functor F : UGA,X → Ab.

More concretely, this provides a collection of Fn := F (A⊕X⊕n) of abelian groups
with Gn-action together with Gn-equivariant morphisms Fn → Fn+1. In particular, we
can ask whether the map

σ∗ : H∗(BGn;Fn) −→ H∗(BGn+1;Fn+1)

is an isomorphism in a range. That is, does the sequence BG0
σ−→ BG1

σ−→ · · · exhibit
homological stability with coefficients in F? This is the case for those coefficient system
where he can reduce to trivial coefficients.

There is a functor ΣX : UGA,X → UGA,X given on objects by sending A ⊕X⊕n to
A⊕X⊕n+1 and morphism f to (β−1

A,X ⊕ id) ◦ (X ⊕ f) ◦ (βA,X ⊕ id). There is a natural
transformation σX : id→ ΣX .

Definition 3.3.2.
· coker(F ) := coker(F → ΣXF ) and ker(F ) := ker(F → ΣXF ).
· F is polynomial of degree −1 if F (X ⊕A⊕n) = 0 for sufficiently large n.
· F is polynomial of degree r if coker(F ) is polynomial of degree r − 1 and ker(F ) is

polynomial of degree −1.

Example 3.3.3. F is polynomial of degree 0 if it is eventually constant.
By reduction to the constant coefficients, we can deduce a homological stability with

coefficients in a polynomial functor of finite degree.

Theorem 3.3.4 ([RWW17]). Under the assumptions of Theorem 3.2.2, if F is polynomial
of degree r, there exists an N ≥ 0 such when n ≥ N , the map

σ∗ : H∗(BGn;Fn) −→ H∗(BGn+1;Fn+1)

is a surjection for ∗ ≤ n
k − r and an isomorphism for ∗ ≤ n

k − r − 1.
1This is one of the reasons for including the long list of references above; if you want to prove a

connectivity result for a semi-simplicial set, look at such a result in a related situation.
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3.3.2 Dwyer’s finiteness theorem

Let us give an application of this, due to Dwyer. Recall homological stability for
symmetric groups proved that π∗(S) is finite for ∗ > 0. We can prove a similar result for
K(S), the algebraic K-theory spectrum of the sphere spectrum (also known as A(∗)):

Theorem 3.3.5 ([Dwy80]). π∗(K(S)) is finitely generated for ∗ > 0.

By Waldhausen’s work [Wal85], the infinite loop space Ω∞K(S) can be obtained as
the group completion of the topological monoid⊔

n≥0
hocolim
d→∞

BhAut∗(∨nSd),

with map hAut∗(∨nSd)→ hAut∗(∨nSd+1) induced by suspension and multiplication map
induced by wedging. For the sake of brevity, we abbreviate hocolimd→∞BhAut∗(∨nSd)
to BhAut∗(∨nS).

We may as well assume that d ≥ 2. The action on Hd then induces an isomorphism
π0(hAut∗(∨nSd)) ∼= GLn(Z). We can further understand the higher homotopy groups
with their GLn(Z)-action using the Freudenthal suspension theorem and Hilton–Milnor
theorem: for ∗ ≤ d, the suspension map π∗(hAut∗(∨nSd))→ π∗(hAut∗(∨nSd+1)) is an
isomorphism, and as a Z[GLn(Z)]-module we have

π∗(hAut∗(∨nSd)) ∼= π∗(S)⊗Z Adn for 0 < ∗ ≤ d,

where Adn is given by GLn(Z) acting on (n × n)-matrices with integral entries by
conjugation and the GLn(Z)-action on π∗(S) is trivial. These descriptions are compatible
with stabilisation.

As a consequence, the group π∗(BhAut∗(∨nS)) for ∗ = 1 is GLn(Z) and the coefficient
system π∗(BhAut∗(∨(−)S)) for ∗ > 1 lies in the class P of polynomial functors which are
of finite degree and objectwise finitely-generated. This class is quite well-behaved:

Lemma 3.3.6.
(i) P is closed under passing to subobjects, quotients, and extensions: in an exact

sequence
0 −→ F −→ G −→ Q −→ 0

of coefficients systems, F,Q ∈ P if only if G ∈ P.

(ii) P is closed under tensor products and Tor: if F,G ∈ P then F ⊗ZG and Tor1
Z(F,G)

are in P.

(iii) P is closed under taking homology of Eilenberg–Mac Lane spaces: if F,G ∈ P then
Hq(K(F, n);G) ∈ P for all q, n > 0.

The proof of this lemma is quite involved, and will appear in a forthcoming joint
paper with Manuel Krannich. Dwyer worked with a more restricted class sufficient for
the purpose of proving Theorem 3.3.5.
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We will use Lemma 3.3.6 to prove two qualitative statements about the homology of
BhAut∗(∨nS). Let hAutid

∗ (∨nSd) ⊂ hAut∗(∨nSd) be the path component containing the
identity map. For all n ≥ 0, there is then a fibration sequence

hocolim
d→∞

BhAutid
∗ (∨nSd) −→ hocolim

d→∞
BhAut∗(∨nSd) −→ BGLn(Z),

compatible with stabilisation and suspension. Letting d→∞ we thus get Serre spectral
sequences

Hp(BGLn(Z);Hq(BhAutid
∗ (∨nS);Z)) =⇒ Hp+q(BhAut∗(∨nS);Z)

for all n ≥ 0, connected by stabilisation maps.
A standard Serre class argument over the Postnikov tower of BhAutid

∗ (∨nS) using
Lemma 3.3.6 implies the following, see Exercise 3.4.7:

Lemma 3.3.7. For all q ≥ 0, the coefficient system Hq(BhAutid
∗ (∨(−)S);Z) lies in P.

Proposition 3.3.8. The sequence BhAut∗(∨0S) σ−→ BhAut∗(∨1S) σ−→ · · · exhibits
homological stability.

Proof. Applying spectral sequence comparison to the maps of spectral sequences

Hp(BGLn(Z);Hq(BhAutid
∗ (∨nS);Z)) =⇒ Hp+q(BhAut∗(∨nS);Z)

Hp(BGLn+1(Z);Hq(BhAutid
∗ (∨n+1S);Z)) =⇒ Hp+q(BhAut∗(∨n+1S);Z),

we see it suffices to prove that for all q ≥ 0 the maps

σ∗ : H∗(BGLn;Hq(BhAutid
∗ (∨nS);Z)) −→ H∗(BGLn+1;Hq(BhAutid

∗ (∨n+1S);Z))

are isomorphisms in a range of degrees ∗ tending to ∞ with n. This follows by combining
Theorem 3.2.2 with Example 3.2.5 and Lemma 3.3.7.

The previous argument only uses that the coefficient systems Hq(BhAutid
∗ (∨(−)S);Z)

are polynomial of finite degree, not that they are objectwise finitely generated. This
instead is used to prove:

Proposition 3.3.9. Fixing n, H∗(BhAut∗(∨nS);Z) is finitely-generated for each ∗ ≥ 0.

Proof. This uses once more the spectral sequence

Hp(BGLn(Z);Hq(BhAutid
∗ (∨nS);Z)) =⇒ Hp+q(BhAut∗(∨nS);Z).

Recall that if X is a CW-complex with finitely many cells in each dimension, then
for any local coefficient system A which is finitely generated as an abelian group, the
homology groups H∗(X;A) are finitely generated in each degree. Since each group
Hq(BhAutid

∗ (∨nS);Z) is finitely generated, it suffices to prove that BGLn(Z) has the
homotopy type of a CW-complex with finitely many cells in each dimension. This is a
result of Borel–Serre [BS73, §11.1].
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Proof of Theorem 3.3.5. The space Ω∞0 K(S) is simple, so by a Serre class argument
its homotopy groups are finitely generated if and only if its homology groups are. By
Waldhausen’s work and the group completion theorem, the homology of Ω∞0 K(S) is equal
to the stable homology of BhAut∗(∨nS). By Proposition 3.3.8 the map

H∗(BhAut∗(∨nS);Z) −→ colim
n→∞

H∗(BhAut∗(∨nS);Z)

is an isomorphism in a range tending to∞ with n. That the right side is finitely generated
in all degrees thus follows from Proposition 3.3.9.

3.4 Exercises

Exercise 3.4.1 (Coning off).
(i) Let X• be a semi-simplicial set and simp(X•) be the poset with objects given by the

simplices X• and σ ≤ τ if σ can be obtained from τ be applying face maps. Prove
that ||X•|| is homeomorphic to |N(simp(X•)|. (Hint: Barycentric subdivision.)

(ii) Identify simp(Wn(1)•) with the poset I(n) of ordered non-empty subsets of n,
ordered by order-preserving inclusions.

(iii) For Si = n\{i}, construct a zigzag of natural transformations between the inclusion
I(Si)→ I(n) and the constant map I(Si)→ I(n) with value (i).

(iv) Conclude that ||W (Si)•|| → ||W (n)•|| is null-homotopic, as claimed in the proof of
Proposition 2.2.6.

Exercise 3.4.2 (Simplicial complexes). A simplicial complex X is a set V (called vertices)
and a collection S of unordered finite subsets of V (called simplices) satisfying (a) {v} ∈ S
for all v ∈ V , (b) if σ ∈ S then any subset of X is in S as well. If X ∈ S in S has p+ 1
element we call it a p-simplex. The geometric realisation |X| is defined taking

|X| =
(⊔

k

∆k × {k-simplices of X}
)
/∼

where the equivalence relation ∼ is similar to that for the geometric realisation of a
semi-simplicial space (we leave the details for the reader).

(i) From a simplicial complex X one can extract a semi-simplicial set Xord
• by taking its

p-simplices to be ordered (p+ 1)-element subsets of V whose underlying unordered
set is a p-simplex in X. Describe the face maps and verify this is indeed a semi-
simplicial set.

(ii) For a finite set V , let ∆V be the simplicial complex where each finite subset of V is
a simplex. Prove that |∆V | is homeomorphic to ∆#V−1 and ord•(∆V ) = W#V (1)•.

(iv) A link of a simplex σ of a simplicial complex X consists of all simplices τ such that
σ ∩ τ = ∅ and σ ∪ τ is a simplex. Describe how this can be made into a simplicial
complex linkX(σ) and show that link∆V (Y ) for a subset Y ⊂ V is isomorphic to
∆V \W .
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(v) A simplicial complex X is said to be weakly Cohen–Macaulay of dimension d if
(a) |X| is (d− 1)-connected and (b) for all k-simplices σ and k ≥ 0, |linkX(σ)| is
(d − k − 2)-connected. Show that ∆V is weakly Cohen–Macaulay of dimension
#V − 1.

(vi) By [RWW17, Proposition 2.14], if X is weakly Cohen–Macaulay of dimension d then
||Xord
• || is (d− 1)-connected. Use this to prove that ||Wn(1)•|| is (n− 2)-connected.

Exercise 3.4.3 (An example). Prove that ||W2(Z,Z)•|| from Example 3.2.5 is path-
connected.

Exercise 3.4.4 (Homological stability for hyperoctahedral groups). Let G be the sym-
metric monoidal groupoid of finite free Z/2-sets, with monoidal structure given by disjoint
union.

(i) For X = Z/2, prove that Aut(X⊕n) = Z/2 o Σn, the nth hyperoctahedral group.
(ii) Describe Wn(∅, X)• and prove that it is homologically n−1

2 -connected along the
lines of Proposition 2.2.6.

(iii) Deduce a homological stability result for hyperoctahedral groups.

Exercise 3.4.5 (A non-injective stabilisation map). Theorem 3.2.2 also generalises
to give homological stability with abelian coefficients. You may assume this (with an
unspecified range) in this exercise.

(i) Use this to prove that the sequence BSL0(Z) σ−→ BSL1(Z) σ−→ · · · exhibits
homological stability.

(ii) Use the facts that (a) ±id ⊂ SL2(Z) is the center and (b) SL2(Z)/{±id} ∼= Z/2∗Z/3,
to prove that H1(BSL2(Z);Z) ∼= Z/12.

(iii) Use the fact that SLn(Z) is perfect for n ≥ 3 to prove that the stabilisation map
σ∗ : H1(BSL2(Z);Z)→ H1(BSL3(Z);Z) is not injective.

Exercise 3.4.6 (Algebraic K-theory of the integers). Instead of asking about the
algebraic K-theory of S, one could ask about that ofZ. These are the homotopy groups
of a spectrum K(Z) so that Ω∞K(Z) is the group completion of the topological monoid⊔
n≥0BGLn(Z).
(i) Explain that π∗(K(Z)) is finitely generated for ∗ > 0 if and only if H∗(Ω∞0 K(Z);Z)

is finitely generated for ∗ > 0.
(ii) Explain that there is an isomorphismH∗(Ω∞0 K(Z);Z) ∼= colimn→∞H∗(BGLn(Z);Z).
(iii) Prove that right term in (ii) is finitely generated for all ∗ > 0 using Theorem 3.2.2,

Example 3.2.5, and the result of Borel–Serre.

Exercise 3.4.7 (Some polynomial coefficients systems). Use Lemma 3.3.6 to prove
Lemma 3.3.7.



Chapter 4

More subtle stability phenomena

In this last lecture, we look past homological stability to a pair of more subtle stability
phenomena: representation stability and higher-order homological stability. In either
case we will do so through an illustrative example, and will not attempt to explain the
general theory.

Remark. Other topics of recent interest that we will not discuss is stability phenomena
near the cohomological dimension, e.g. [CFP14], and stable stability, e.g. [GRW17].

4.1 Representation stability

Close cousins of the symmetric groups are the configuration spaces of unordered
points in a Euclidean space Rd. We shall give the definition for a general topological
space X:

Definition 4.1.1. The configuration space of n unordered points in X is given by

Cn(X) := {(x1, . . . , xn) ∈ Xn | xi 6= xj if i 6= j}/Σn,

where the elements of Σn act by permuting the particles.

By construction this is the quotient by the symmetric group Σn of the configuration
space of n ordered points in X given by

Confn(X) := {(x1, . . . , xn) ∈ Xn | xi 6= xj if i 6= j}.

Lemma 4.1.2.
(i) Confn(Rd) is (d− 2)-connected.

(ii) There is a (d− 1)-connected map Cn(Rd)→ BΣn.

Proof. Part (ii) follows from part (i) by observing that the action of Σn on Confn(Rd) is
free and proper, so the quotient by Σn is a homotopy quotient (see Exercise 4.3.3 (i)). To
prove (i) we prove more generally that Confn(Rd \ {k points}) is (d− 2)-connected, by

28
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induction over n. For n = 1, we have Conf1(Rd \{k points}) = Rd \{k points} ' ∨kSd−1.
The induction step uses the fibration sequences

Confn−1(Rd \ {k + 1 points}) −→ Confn(Rd \ {k points}) −→ Rd \ {k points}

for k ≥ 1, with right map obtained by remembering only the location of the first point
[FN62].

There are stabilisation maps σ : Cn(Rd) → Cn+1(Rd) given informally by adding a
new particle far away in the e1-direction (see Exercise 4.3.3 (ii)), fitting into a homotopy-
commutative diagram

Cn(Rd) Cn+1(Rd)

BΣn BΣn+1.

σ

σ

As a consequence, the homological stability result for symmetric groups implies one for
the spaces Cn(Rd) in degrees ∗ < d− 1. In fact, it is true in all degrees:

Theorem 4.1.3. The sequence of spaces C0(Rd) σ−→ C1(Rd) σ−→ · · · exhibits homological
stability. More precisely, the map

σ∗ : H∗(Cn(Rd);Z) −→ H∗(Cn+1(Rd);Z)

is a surjection for ∗ ≤ n
2 and an isomorphism for ∗ ≤ n−1

2 .

Remark 4.1.4. The stabilisation maps are always injective, see Exercise 4.3.5.
Remark 4.1.5. Homological stability for unordered configuration spaces and their variants
is a well-studied topic. Here is an incomplete list of references: [McD75, Seg79, LS01,
Ker05, Chu12, RW13a, BM14, KM15, CP15, KMT16, KM16, EVW16, Knu17, Pal18].
In many cases it is possible to compute the homology of configuration spaces outright
[CLM76, Nap03, FT05, Pet17, BG18, Sch19, Pet20, Pag20].

Is something similar true for the ordered configuration spaces Confn(Rd)? The answer
is no, because in the lowest degree where the reduced homology can be non-trivial by
Lemma 4.1.2 (i), we have

Hd−1(Confn(Rd);Q) ∼= Qn−1.

This computation is more easily interpreted when we recall that Confn(Rd) is a topological
space with Σn-action and we describe this homology group as a rational Σn-representation:
it is the kernel of the augmentation ε : Q[n]→ Q (i.e. the reduced regular representation).
Thus, when we take into account the naturally present group actions, the homology does
admit a uniform description for n sufficiently large (in fact for all n in this particular
case). This notion of stability is known as representation stability [CF13, Far14].

Let us now give a precise statement for the rational cohomology of ordered configu-
ration spaces of a manifold M . Doing so uses that the rational representations of Σn

are classified by partitions of n (or equivalently Young diagrams with n boxes) [FH91,
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Chapter 4], which we list as decreasing sequences (i1, . . . , ik) of positive integers with∑
ik = n. For example, the trivial representation is (n) and the reduced regular repre-

sentation is (n− 1, 1). We can stabilise partitions by adding 1 to the first entry, and can
think of this as an operation taking isomorphism classes of rational Σn-representations to
rational Σn+1-representations. It may be extended to all isomorphism classes of rational
Σn-representations by first decomposing these into irreducibles. We say that a sequence
{Vn}n≥0 of representations of symmetric groups exhibits multiplicity stability if for n
sufficiently larger Vn+1 can be obtained from Vn by this operation. Church proved the
cohomology of ordered configuration spaces of manifolds has this property (though he
proved much more):

Theorem 4.1.6 ([Chu12]). Suppose M is a finite type manifold of dimension ≥ 2. Then
for all d ≥ 0 the representations {Hd(Confn(M);Q)}n≥0 exhibit multiplicity stability.

Remark 4.1.7. By the universal coefficient theorem and self-duality of rational repre-
sentation of symmetric groups, we could also have phrased this in terms of homology.
Here is a reason to prefer cohomology: since M may be closed there are no stabilisation
maps adding a point far away, like we used for Rd. Rather, in contrast with the case of
unordered configuration spaces there are now maps which forget a point. On cohomology
these induce maps H∗(Confn−1(M);Q) → H∗(Confn(M);Q) resembling stabilisation
maps.

In general, representation stability is more subtle because for other sequences of
groups or more complicated coefficients it is not possible to classify all representations and
give them consistent names. This occurs even in such a simple case as the homology of
configuration spaces with integer coefficients. In general, one needs to study the represen-
tation theory of certain categories which combine the groups acting and (de)stabilisation
maps, and phrase the representation stability in terms of finite generation or presentation.
For configuration spaces, the relevant category is FI (objects are non-empty finite sets and
morphisms are injective functions) and the relevant objects are functors FI→ Ab. These
are called FI-modules and, assuming that all homology groups are finitely generated, the
analogue of exhibiting homological stability is being finitely-generated as a FI-module.
The collection {Hd(Confn(M);Z)}n≥0 forms an FI-module using the forgetful maps
discussed in the previous remark. That this is a finitely-presented FI-module for each
d ≥ 0 is proven in [CEF15]. For a proof closer to the ones in the previous lectures, see
[MW19, MW20].
Remark 4.1.8. You can interpret ordinary homological stability as representation stability
with trivial group action. In this case, the categorical representation theory is that of
the poset (N,≤). The category of functors (N,≤)→ Ab is equivalent to the category of
graded Z[x]-modules, and a degreewise finitely-generated graded Z[x]-module is finitely
generated if and only if it is finitely presented (because Z[x] is a noetherian ring) if and
only if it is eventually constant.
Example 4.1.9. There is a lot of literature on representation stability for ordered configu-
ration spaces [AAB15, HR17, KM18, FW18, MW19, MW20, Ram20] and their variants
[JRW19, Gad17, Bib18]. Here is an incomplete list of classifying spaces of groups which
exhibit representation stability and equally incomplete references:
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· Groups related to mapping class groups [JR11, JR15, JRMD18, JR19] and Torelli
groups [BHD12, Pat18, MPW19].

· Groups related to linear groups [Put15, PS17, MPW19].
· Groups related to automorphism groups of free groups [DP17].

4.2 Higher-order homological stability

The mapping class group Γg,1 of a surface Σg,1 with genus g and one boundary
component, is the group of isotopy classes of diffeomorphisms of Σg,1 fixing the boundary
pointwise. This is closely related to algebraic geometry asMg,1, the orbifold moduli space
of curves with marked point and non-zero tangent vector, is homotopy equivalent to BΓg,1.
Taking the boundary connected sum of Σg,1 with Σ1,1 yields a surface diffeomorphic
to Σg+1,1 and extending a diffeomorphism of Σg,1 by the identity to Σ1,1 thus gives a
stabilisation map

σ : BΓg,1 −→ BΓg+1,1.

We mentioned in passing in the previous lecture that this sequence of classifying
spaces exhibits homological stability: the map

σ∗ : H∗(BΓg,1;Z) −→ H∗(BΓg+1,1;Z)

is a surjection for ∗ ≤ 2g
3 and an isomorphism for ∗ ≤ 2g−2

3 . This is the optimal range,
proven in [GKRW19], but a proof of a nearly optimal result is explained in [Wah13].
A similar result with worse range can be obtained from theorem of [RWW17] that we
explained in the previous lecture. (In particular, we note for later use that the mapping
class groups assemble to a braided monoidal groupoid.)

This result informally says that the homology groups Hd(BΓg,1;Z) are independent
of g when g is sufficiently large. In analogy with calculus, we could think of this as a
function which is eventually constant, or equivalently as a function whose first derivative
eventually vanishes. Higher-order homological stability is then analogous to its higher
derivatives eventually vanishing.

To convert this analogy into a precise statement, we observe that the role of the first
derivative can be played by the relative homology groups

H∗(BΓg+1,1, BΓg,1;Z),

which of course depend on the maps σ (even though the notation unfortunately does
not reflect this). Their eventual vanishing is equivalent to homological stability, as
the long exact sequence of a pairs implies that the induced map σ∗ : H∗(BΓg,1;Z) →
H∗(BΓg+1,1;Z) is a surjection for ∗ ≤ d and an isomorphism for ∗ < d if and only if
H∗(BΓg+1,1, BΓg,1;Z) for ∗ ≤ d.

To formulate higher-order homological stability, we need to construct higher-order
stabilisation maps. This is not straightforward—in this example they will not be
unique(!)—but it turns out that there are maps

ϕ∗ : Hd(BΓg,1, BΓg−1,1;Z) −→ Hd+2(BΓg+3,1, BΓg+2,1;Z).

The following is secondary homological stability for mapping class groups:
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Theorem 4.2.1 ([GKRW19]). The maps ϕ∗ are surjections for d ≤ 3g
4 and isomorphisms

for d ≤ 3g−4
4 .

Remark 4.2.2. Sometimes the secondary stabilisation maps are both isomorphisms in a
range and zero, and one obtains an improved homological stability range.

Example 4.2.3. Few higher-order stability results have been proven at the time of writing
these notes: [GKRW18, GKRW19, MW19, MPP19, GKRW20, Ho20, Him21]. One could
ask whether such higher-order stability phenomena exist in any of the examples where
homological stability is known.

4.2.1 The strategy for proving Theorem 4.2.1

We gave the “usual” homological stability result for symmetric groups, and isolated
the crucial ingredients: given a braided monoidal groupoid G with some mild properties
and objects A,X ∈ G, we extracted a semi-simplicial set Wn(A,X)• of “destabilisations”
and given that these are homologically highly connected, homological stability follows
using a spectral sequence argument. Let me now give a brief outline of the proof of
Theorem 4.2.1, as it contains some useful ideas.

The input for the argument as in [RWW17] is a symmetric monoidal, or more generally
braided monoidal, groupoid G. This structure on G endows |NG| with the structure of an
E2-algebra. In homotopy theory algebras can be not only coherently associative (E1) or
coherently commutative (E∞), but there are also intermediate notions of commutativity:
for an Ek-algebra the space of multiplications is a (k − 1)-sphere, see Example 4.2.5. For
k = 1 this means it is disconnected—there is a left and a right multiplication, and these
can be quite different—and for k =∞ this means it is contractible—from a homotopical
viewpoint there is just a single multiplication.

More precisely, these are encoded by the operads of little k-discs [May72]. An
operad O has Σr-spaces O(r) of r-ary operations, with a unit 1 ∈ O(1), and compositions
O(r)×O(k1)×· · ·×O(kr)→ O(k1+· · ·+kr). These have two satisfy suitable equivariance,
unitality, and associativity axioms. An O-algebra is a space A with maps

O(r)×Ar −→ A,

which you should think of as defining operations on r-tuples of elements in A, indexed
by the points of O(r). These should similarly satisfy suitable equivariance, unitality, and
associativity axioms.

For the little k-discs operad, Ek(r) is the space of k-tuples of rectilinear embeddings
Dk ↪→ Dk with disjoint interior, Σr permuting the discs in the domain. The element
1 ∈ Ek(1) is the identity embedding, and composition is given by composition of
embeddings.

Example 4.2.4. E1 is homotopy equivalent to the associative operad, whose r-ary opera-
tions are the linear orders of r. Algebras over the latter are associative algebras. E∞ is
homotopy equivalent to commutative operad, whose r-ary operations are contractible.
Algebras over the latter are commutative algebras.
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Example 4.2.5. The 2-ary operations of the Ek-operad are encoded by the space Ek(2).
This is the space of two k-discs in a k-discs, and is homotopy equivalent to Sk−1.

Since the mapping class groups assemble to a braided monoidal groupoid G, |NG| '⊔
g≥0BΓg,1 admits the structure of an E2-algebra (see Exercise 4.3.7 for a more geometric

approach).
In the homological stability arguments we gave before, we used from this E2-structure

just the multiplication on the right by a point representing X ∈ |NG| and some coherence
from the braiding. Theorem 4.2.1 will need the full E2-algebra structure. This is because
it will build an approximation A to the E2-algebra R := |NG| from free E2-algebras. The
free E2-algebra functor FreeE2 is the left adjoint to the forgetful functor from E2-algebras
to spaces, and the underlying space of its values are of the form

FreeE2(X) '
⊔
r≥0

E2(r)×Σr X
r.

The E2-algebra A will be a good approximation in a sense relevant to Theorem 4.2.1:
it captures the homological stability properties in a range. One should compare this to
how a CW-approximation of a skeleton of a topological space captures its homology in a
range. The proof of Theorem 4.2.1 has the following steps (see [GKRW19] for details):

(1) Understand how many free E2-algebras one needs to build A such that it is a good
enough approximation. This requires two inputs: an understanding of Hd(BΓg,1;Z)
for low d and g, and a connectivity result for certain semi-simplicial set. Unlike
the semi-simplicial set Wn(A,X)•, these E1-splitting semi-simplicial sets SE1(g)•
will be given by decompositions of a surface into boundary connected summands of
lower genus.

(2) Build the small cellular E2-algebra approximation A. This uses techniques similar
to CW-approximation for spaces, but in the category of E2-algebras; it will only
have three “E2-cells.” These are pushouts of the form

FreeE2(Sk−1) X

FreeE2(Dk) Y

in the category of E2-algebras.

(3) Construct the primary and secondary stabilisation maps. The primary stabilisation
maps will be σ as given above, and come from the E2-algebra structure. However,
the secondary stabilisation maps are constructed by obstruction theory.

(4) Prove Theorem 4.2.1. In steps (1) and (2), we made sure that A has the same
homological stability properties as R. In particular, R has (secondary) homological
stability in a range when A does. This reduces the proof to a computation in
A. This is doable because F. Cohen completely computed the homology of free
E2-algebras in terms of certain homology operations [CLM76].
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As a slogan, we call this a “multiplicative” approach to homological stability rather
than an “additive” one, because it uses the full E2-algebra structure instead of just
the stabilisation maps extracted from it. In [GKRW18, GKRW20] we applied the same
techniques to general linear groups.

4.3 Exercises

Exercise 4.3.1 (Interpretations of Cn(C)).
(i) Prove that Cn(C) is an Eilenberg–Mac Lane space. Its fundamental group is the

nth braid group Brn, so Theorem 4.1.3 says that braid groups exhibit homological
stability.

(ii) Prove that Cn(C) is homeomorphic to the space of monic polynomials of degree
≤ n with complex coefficients and distinct roots.

Remark 4.3.2. Exercise 4.3.1 (ii) led to an interesting application of the homology of
configuration spaces to the complexity of root-finding algorithms [Sma87].

Exercise 4.3.3 (Maps between configuration spaces).
(i) Construct a map Cn(Rd)→ Cn(Rd+1) and prove that colimd→∞Cn(Rd) ' BΣn.
(ii) Construct a map σ : Cn(Rd) → Cn+1(Rd) fitting in a homotopy-commutative

diagram
Cn(Rd) Cn+1(Rd)

BΣn BΣn+1.

σ

σ

(iii) What conditions do we need to impose on a manifold M to be able to construct a
similar map σ : Cn(M)→ Cn+1(M)?

Exercise 4.3.4 (Abelianisation of braid groups). Use Exercise 4.3.1 (i) to compute the
abelianisations of the braid groups.

Exercise 4.3.5 (Applying Dold’s Lemma to unordered configuration spaces).
(i) Construct “transfer maps” τn,k : H∗(Cn(Rd);Z)→ H∗(Cn−k(Rd);Z) by summing

over all ways of deleting k of the points.
(ii) Apply Dold’s Lemma (Exercise 1.3.6) to prove that the stabilisation maps σ∗ : H∗(Cn(Rd);Z)→

H∗(Cn+1(Rd);Z) are injective.
(iii) Generalise these results to any connected open manifold M replacing Rd.

Exercise 4.3.6 (Betti numbers of configuration spaces of closed manifolds).
(i) Use the fibration sequence

Confn(M) −→ Cn(M) −→ BΣn

to establish an isomorphism H∗(Cn(M);Q) ∼= H∗(Confn(M);Q)Σn .
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(ii) Deduce from Theorem 4.1.6 that for any connected finite type manifold M of
dimension ≥ 2, the ith rational Betti number of Cn(M) is independent of n for
n� 0.

Exercise 4.3.7. Let M(Σg,1) be the colimit as n → ∞ of the space of surfaces in
D2 × Rn which are diffeomorphic to Σg,1 and coincide with D2 × {0} near ∂D2 × Rn.
(For the topology on this space, see [GRW10]). It is a fact that

BΓg,1 'M(Σg,1).

Endow ⊔
g≥0M(Σg,1) with the structure of an E2-algebra.

Exercise 4.3.8 (The E2-operad and braid groups).
(i) Prove that E2(r) ' Conf2(r), and hence an Eilenberg–Mac Lane space. Its

fundamental group is the rth pure braid group, which is the kernel of the permutation
homomorphism Brn → Σn recording how the strands of a braid permute the
endpoints.

(ii) Prove that the free E2-algebra FreeE2(∗) is homotopy equivalent to ⊔r≥0Cn(r).

(iii) Compute H1(FreeE2(∗);Z) using Exercise 4.3.4.

Exercise 4.3.9 (Stabilisation maps which are never isomorphisms). With rational
coefficients the ranges in Theorem 4.2.1 can be improved to a surjection for d ≤ 4g+1

5 and
an isomorphism for d ≤ 4g−4

5 . It is a fact that H4(BΓ6,1, BΓ5,1;Q) 6= 0 (using relations in
the tautological ring). Prove that H4+2k(BΓ6+3k,1, BΓ5+3k,1;Q) is non-zero for all k ≥ 0.
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