HOMOTOPY EXCISION FOR (a+1)-ADS

ABSTRACT. This a summary of "Preliminaries B. (a + 1)-ads and connectivity" in T. Goodwillie's thesis.

1. WARM-UP: TRIADS

A triad $\mathbf{X} = (X; X_1, X_2)$ is $\mathbf{k} = (k_1, k_2, k_{12})$ -connected if the pairs $(X_1, X_1 \cap X_2), (X_2, X_1 \cap X_2), (X, X_1 \cup X_2)$ are k_1, k_2 and k_{12} -connected respectively, with $k_{12} \leq k_1 + k_2$.

Theorem 1.1. If a CW triad X is k-connected, then $\pi_s(X) = 0$ for all $2 \le s \le k_{12}$.

Remark. The difference between this theorem and Blakers–Massey's is that the in the latter it is assumed that $X = X_1 \cup X_2$, in which case one takes $k_{12} = k_1 + k_2$.

Proof. Consider the following subsets of $I = \{1, 2\}$:

$$T_1 = I, \quad T_2 = \{1\}, \quad T_3 = \{2\}, \quad T_4 = \emptyset.$$

 Set

$$\mathcal{S}^i = \{T_1, \dots, T_i\} \subset 2^I$$
, and $Y^i = \mathcal{S}^i_X$

Furthermore define the following triads

$$\mathbf{Y}^i = (Y^i; Y^i \cap X_1, Y^i \cap X_2).$$

Explicitly, these are

$$\mathbf{Y}^{1} = (X_{1} \cap X_{2}; X_{1} \cap X_{2}, X_{1} \cap X_{2})$$
$$\mathbf{Y}^{2} = (X_{1}; X_{1}, X_{1} \cap X_{2})$$
$$\mathbf{Y}^{3} = (X_{1} \cup X_{2}; X_{1}, X_{2})$$
$$\mathbf{Y}^{4} = (X; X_{1}, X_{2})$$

Observe that by Blakers-Massey $\pi_s(\mathbf{Y}^3) = 0$ for all $2 \leq s \leq k_{12}$. We will use this in order to show that the homotopy groups of \mathbf{Y}^4 vanish in the same range of degrees. Define the following triad

$$\mathbf{Z} = (X; X_1, X_1 \cup X_2).$$

It turns out that there is a long exact sequence

$$\cdots \to \pi_s(\mathbf{Y}^3) \to \pi_s(\mathbf{Y}^4) \to \pi_s(\mathbf{Z}) \to \cdots \to \pi_2(\mathbf{Y}^3) \to \pi_2(\mathbf{Y}^4) \to \pi_2(\mathbf{Z})$$

We want to show that $\pi_s(\mathbf{Z}) = 0$ for all $s \leq k_{12}$. For this we define a dyad

$$\mathbf{W} = (X, X_1 \cup X_2)$$

and note that since $X_1 \subset X_1 \cup X_2$, we can drop the space X_1 from **Z** after taking homotopy groups, that is $\pi_s(\mathbf{W}) \cong \pi_s(\mathbf{Z})$ for $s \ge 2$. Now by assumption the homotopy groups of this dyad vanish up to degrees k_{12} . This completes the proof.

Date: March 1, 2021.

2. The general case: homotopy excision for topological (a + 1)-ads

A topological (a + 1) is a space X together with a subspaces X_1, \ldots, X_a . We typically denote it by $\mathbf{X} = (X; X_1, \ldots, X_a)$. If every X_i is open in X, the **X** is called an open (a+1). If X is a CW-complex and each X_i is a subcomplex, then **X** is called a CW-(a + 1)-ad. If a basepoint $* \in \bigcap_{i=1}^{a} X_i$ has been chosen, then **X** is called a pointed (a + 1)-ad. A map $f : \mathbf{X} \to \mathbf{Y}$ between (a + 1)-ads is a map $f : X \to Y$ such that $f(X_i) \subset Y_i$.

2.1. Notation. For every subset $S \subset I = \{1, \ldots, a\}$ we define

$$X_{S} = \begin{cases} \bigcap_{j \in S} X_{j} & \text{if } S \neq \emptyset \\ X & \text{if } S = \emptyset \end{cases}$$

and

$$X^S = \bigcup_{j \in S} X_j$$

For Ω a subset of 2^{I} (the power set of I) we let

$$\Omega_X = \bigcup_{S \in \Omega} X_S.$$

2.2. Homotopy groups. In order to define the homotopy groups of an (a + 1)-ad X we consider the following (a + 2)-ad

$$\mathbf{I}^a = \left(I^a; F_1^1, \dots, F_a^1, \bigcup_{i=1}^a F_i^0\right)$$

where $\epsilon = 0, 1$ and F_j^{ϵ} denotes the face of the cube consisting of points whose *j*-th coordinate equals ϵ .

Let $\mathbf{X} = (X; X_1, \dots, X_a, *)$ be a pointed (a + 1)-ad. The homotopy groups/sets of \mathbf{X} are defined as

$$\pi_s(\mathbf{X}) := \pi_{s-a}(\operatorname{Map}(\mathbf{I}^a, \mathbf{X}), \operatorname{const}).$$

This makes sense only for $s \ge a$ and they are sets when s = a, groups when s = a + 1 and abelian groups when $s \ge a + 2$. Here are some useful remarks:

- Note that the homotopy groups of a 2-ad $(X; X_1)$ as defined above coincide with those of the pair (X, X_1) .
- "absolute compression": if $X_i = X$ for some *i*, then $\pi_s(\mathbf{X}) = 0$ for all $s \ge a$.
- "relative compression": if X_j ⊂ X_i for some i ≠ j then π_s(**X**) = π_s(X; X₁,..., X_{j-1}, X_{j+1},..., X_a).
 Define

$$D_j^1(\mathbf{X}) = (X; X_1, \dots, X_{j-1}, X_{j+1}, \dots, X_a)$$

and

$$D_{j}^{0}(\mathbf{X}) = (X_{j}; X_{1} \cap X_{j}, \dots, X_{j-1} \cap X_{j}, X_{j+1} \cap X_{j}, \dots, X_{a} \cap X_{j})$$

then there is a long exact sequence

$$\cdots \to \pi_{s+1}(\mathbf{X}) \to \pi_s(D_j^0(\mathbf{X})) \to \pi_s(D_j^1(\mathbf{X})) \to \pi_s(\mathbf{X}) \to \cdots$$

Let I = {1,...,a}. If we define H_{*}(X) = H_{*}(X, X^I) then there is an analog long exact sequence for homology groups which can be easily derived from the LES of the triple (X, X^I, X^I\{j}) and excision.

2.3. Connectivity. Let $a \ge 1$ and $\mathbf{k} = \{k_T\}_{T \subset I} \subset \mathbb{N} \cup \{0\}$, such that if $T \subset \bigcup_i T_i$ then $k_T \le \sum_i k_i$. An (a+1)-ad **X** is **k**-connected if for every nonempty subset $T \subset I$ the pair

$$(X_{I-T}, X_{I-T} \cap X^T)$$

is k_T -connected.

2.4. Homotopy excision for (a + 1)-ads. Here is the main theorem.

Theorem 2.1 (Homotopy excision). If an open or CW (a + 1)-ad \mathbf{X} is \mathbf{k} -connected and $k_T \geq 2$ for all nonempty $T \subset I$, then $\pi_s(\mathbf{X}) = 0$ for all $a \leq s \leq k_I$ and for all basepoints in X_I .

Remark 2.2.

- (1) The statement for open ads follows from the statement for CW-ads using cellular approximation.
- (2) If in addition **X** is a complete (a + 1)-ad, that is

$$X = \bigcup_{i=j}^{a} X_{I \setminus \{j\}}$$

then homotopy excision holds. This is a theorem of Barratt-Whitehead¹.

- (3) Completeness implies that $X_{I\setminus T} \subset X^T$ for all T with more than element. So in checking that a complete (a + 1)-ad has certain connectivity, one has to only analyze the pairs of the form $(X_{I\setminus\{j\}}, X_I)$.
- (4) It is important to have this general form of homotopy excision for (a + 1)-ads that are open and not complete. This is because we want to apply this theorem to an (a + 1)-ad

$$(C(P,N);C(P,N-Q_1),\ldots,C(P,N-Q_a))$$

made out of concordance embedding spaces, with P, and N compact manifolds and $Q_i \subset N$ a compact submanifolds.

Proof of homotopy excision. The proof goes by induction on a. The base case, a = 1, is trivial because CW 2-ads and CW pairs are the same thing and the connectivity of a pair is defined in terms of the vanishing of its homotopy groups.

Now assume that Homotopy Excision holds for all (i + 1)-ads with $1 \le i < a$ and let **X** and **k** be as in the statement of the theorem.

Let $T_1, T_2, \ldots, T_{2^a}$ be the collection of all subsets of $I = \{1, \ldots, a\}$, listed in a way such that

$$1 \le i \le j \le 2^a \Rightarrow |T_i| \ge |T_j|.$$

Let $\Omega^i = \{T_1, \ldots, T_i\} \subset 2^I$. With these subsets of the power set of I we define the following (a+1)-ads

$$\mathbf{Y}^{i} = (Y^{i}; Y_{1}^{i}, \dots, Y_{a}^{i}) = (\Omega_{X}^{i}; \Omega_{X}^{i} \cap X_{1}, \dots, \Omega_{X}^{i} \cap X_{a}).$$

Observe that $\mathbf{Y}^{2^a} = \mathbf{X}$, so if we prove that $\pi_s(\mathbf{Y}^i) = 0$ for all $a \leq s \leq k_I$ and for all $a + 1 \leq i \leq 2^a$ we will be done. We will do this by induction on *i*.

The base case is i = a + 1. By the way we are listing the subsets T_i , we have that T_1 must be all of I, and the subsets T_2, \ldots, T_{a+1} must have a - 1 elements, so they are of the form $I - \{j\}$ for some $j \in I$. It follows that

$$Y^{a+1} = \bigcup_{j=1}^{a} Y^{a+1}_{I-\{j\}}$$

and so it is a complete (a+1)-ad. Furthermore we have that $(Y_{I-\{j\}}^{a+1}, Y_{I}^{a+1}) = (X_{I-\{j\}}, X)$, so these pairs are k_j -connected by hypothesis. Homotopy excision follows in this case from Barratt-Whitehead's theorem (see the remark above.)

¹Actually, I think the vanishing of the homotopy groups for complete ads was announced by Toda. The point of Barratt-Whitehead was to compute the first nontrivial homotopy group in terms of the homotopy groups of the other terms.

Let us now assume that $a + 1 < i \leq 2^a$ and that $\pi_s(\mathbf{Y}^{i-1}) = 0$ for all $a \leq s \leq k_I$. We want to show that $\pi_s(\mathbf{Y}^i) = 0$ in the same range of degrees. We will show this in two steps:

• step 1: we will define an (a + 1)-ad Z such that there is a long exact sequence

$$\cdots \to \pi_s(\mathbf{Y}^{i-1}) \to \pi_s(\mathbf{Y}^i) \to \pi_s(\mathbf{Z}) \to \cdots \to \pi_2(\mathbf{Y}^{i-1}) \to \pi_2(\mathbf{Y}^i) \to \pi_2(\mathbf{Z})$$

• step 2: we will then show that the homotopy groups of Z vanish in the desired range. Combined with the induction hypothesis the result will follow.

The first step is not too bad: firstly, since $i \ge a + 1$, then $|T_i| \le |T_{a+2}|$, but T_{a+2} must have a - 2 elements. So we have

$$0 \le m := |T_i| \le a - 2.$$

Lemma 2.3. For all j > m,

$$Y_j^i = Y^i \cap X_j \subset Y^{i-1} \subset Y^i.$$

Proof. This follows directly from the definitions. Only note that since j > m, $Y_j^i \subset Y^i \cap X^{I-T_i}$, and that $Y^i = Y^{i-1} \cup X_{T_i}$.

The desired (a + 1)-ad is

$$\mathbf{Z} = (Y^{i}; Y_{1}^{i}, \dots, Y_{a-1}^{i}, Y^{i-1}),$$

and one can check by hand that the above sequence is exact.

The second step is more difficult. We want to show that the homotopy groups of \mathbf{Z} vanish up to degree k_I . The first observation is that because of the previous Lemma and the relative compression property above, the homotopy groups of \mathbf{Z} are isomorphic to those of the (m + 2)-ad

$$\mathbf{W} = (W; W_1, \dots, W_{m+1}) = (Y^i, Y_1^i, \dots, Y_m^i, Y^{i-1})$$

So we will show that $\pi_s(\mathbf{W}) = 0$ for all $m + 1 \le s \le k_I$. Recall that we are still under the induction hypothesis, namely that homotopy excision holds for (i + 1)-ads with i < a. In particular, as m + 1 < a we can apply the induction hypothesis to \mathbf{W} . So to prove the vanishing of the homotopy groups, it suffices to show that the pairs

$$(W_{I'-T'}, W_{I'-T'} \cap W^{T'})$$

are $k'_{T'}$ -connected for $T' \subset \{1, \ldots, m+1\}$, where $k'_{T'} = k_{T'}$ if $T' \subset \{1, \ldots, m\}$ and $k_{T \cup \{m+1\}} = k'_{T \cup \{m+1, \ldots, a\}}$ if $T \subset \{1, \ldots, m\}$.

Let T' be a nonempty subset of $I' = \{1, \ldots, m+1\}$. Then there exists a subset $\Omega \subset 2^I$ such that

$$W_{I'-T'} = \Omega_X$$

(for example $W_j := \{T_1 \cup \{j\}, \dots, T_i \cup \{j\}\}_X$).

There are two cases:

Case A: $T' \subset \{1, \ldots, m\}$. In this case we have

$$(W_{I'-T'}, W_{I'-T'} \cap W^{T'})(\Omega_X, \Omega_X \cap X^{T'}).$$

This is because $W^{T'} = \Omega^i_X \cap X^{T'} = X^{T'}$.

Case B:
$$T' = T \cup \{m+1\}$$
 and $T \subset \{1, ..., m\}$. Then
 $(W_{I'-T'}, W_{I'-T'} \cap W^{T'}) = (\Omega_X, \Omega_X \cap X^{T \cup \{m+1, ..., a\}})$

This is because

$$\begin{split} W^{T'} &= W^{T} \cup W^{m+1} \\ &= X^{T} \cup W_{m+1} \\ &= X^{T} \cup Y^{i-1} \\ &= X^{T} \cup (Y^{i} \cap X^{I-T_{i}}) \\ &= X^{T} \cup (Y^{i} \cap X^{\{m+1,\dots,a\}}) \\ &= X^{T} \cup (W \cap X^{\{1,\dots,a\}}) \\ &= (X^{T} \cup W) \cap X^{T \cup \{m+1,\dots,a\}} \\ &= X^{T \cup \{m+1,\dots,a\}}. \end{split}$$

Cases A and B follow from the following more general lemma which will conclude the proof the homotopy excision theorem.

Lemma 2.4. Let X and k be as in the statement of the homotopy excision theorem. Then for all $\Omega \subset 2^{I}$ and nonempty $T \subset I$ the pair $(\Omega_{X}, \Omega_{X} \cap X^{T})$ is k_{T} -connected.

Proof idea: Without lost of generality one assumes that X is 1-connected. Otherwise one passes to universal covers of the components and take preimages of the subspaces.

The proof is by induction on Ω_X with respect to inclusion. The base case $\Omega_X = X_I$ is trivial as X_I is minimal.

Suppose now that for all $\Omega'_X \subsetneq \Omega_X$, the pair $(\Omega'_X, \Omega'_X \cap X^T)$ is k_T -connected. There are two cases:

Case α : We can write Ω_X as $\Omega_X = \Omega \mathbb{1}_X \cup \Omega \mathbb{2}_X$ with $\Omega \mathbb{1}_X$ proper subspaces (i = 1, 2). Let $\Omega \mathbb{1}_X \cap \Omega \mathbb{2}_X$, and define the 4-ad:

$$\mathbf{K} = (\Omega_X; \Omega 1_X, \Omega 2_X, \Omega_X \cap X^T).$$

It is easy to see using excision that

$$H_*(D_3^0(\mathbf{K}) = 0 = H_*(D_3^1(\mathbf{K}))$$

which implies $H_*(\mathbf{K}) = 0$ (recall the notation and LES from Section 2.2 above).

On the other hand, by induction on Ω_X we have that the pairs $(\Omega i_X, \Omega i_X \cap X^T)$ (i = 1, 2, 3) are k_T -connected, so their homology vanishes up to that degree. Putting all this together and using Mayer-Vietoris for the pair $(\Omega_X, \Omega_X \cap X^T)$ we obtain that $H_s(\Omega_X, \Omega_X \cap X^T) = 0$ for $s \leq k_T$. Thus, by the relative Hurewicz theorem, the proof in this case is completed if we show that the pair $(\Omega_X, \Omega_X \cap X^T)$ is 1-connected. This is a consequence of the following claim:

Claim: For any nonempty subsets $\Omega, \Omega' \subset 2^I$ such that $\Omega'_X \subset \Omega_X$, the pair (Ω_X, Ω'_X) is 2-connected.

To prove this we use induction with respect inclusion again. The base case is trivial again. Assume the claim for smaller subsets and pairs. Take Ω'_X maximal in Ω_X . Recall that we are in Case α , where $\Omega_X = \Omega \mathbb{1}_X \cup \Omega \mathbb{2}_X$. By maximality of Ω'_X we have that $\Omega_X = \Omega'_X \cup \Omega \mathbb{1}_X$ for some i = 1, 2. Then

$$(\Omega_X, \Omega'_X) = (\Omega'_X \cup \Omega i_X, \Omega'_X)$$

The latter is 2-connected if $(\Omega'_X, \Omega'_X \cap \Omega i_X)$ is 2-connected ("connectivity of pairs is preserved by pushout"), which is true by the induction hypothesis. If we don't have maximality, ie $\Omega'_X \subsetneq \Omega''_X \subset \Omega_X$, with Ω''_X maximal, we have that the first pair is 2-connected by induction and the second too by the previous argument.

Case β : Ω_X cannot be written as a union of smaller subsets. Then $\Omega_X = X_S$ for some $S \subset I$, and

$$(\Omega_X, \Omega_X \cap X^T) = (X_S, X_S \cap X^T).$$

If $S \cap T \neq \emptyset$ then $X_S \cap X^T = X_S$ and there is nothing to show. If $S \cap T = \emptyset$ then we have two inclusions

$$X_S \cap X^T \subset X_S \cap X^{I-S} \subset X_S.$$

The first inclusion gives a k_T -connected pair (by induction), and the second inclusion gives us, by hypothesis, a k_{I-S} -connected pair (and so k_T -connected because $T \subset I - S$). This concludes the proof of the Claim and of the Lemma...

and of the homotopy excision theorem.