HOMOTOPY EXCISION FOR $(a+1)$-ADS

Abstract. This a summary of "Preliminaries $B .(a+1)$-ads and connectivity" in T. Goodwillie's thesis.

1. Warm-UP: TRIADS

A triad $\mathbf{X}=\left(X ; X_{1}, X_{2}\right)$ is $\mathbf{k}=\left(k_{1}, k_{2}, k_{12}\right)$-connected if the pairs $\left(X_{1}, X_{1} \cap X_{2}\right),\left(X_{2}, X_{1} \cap\right.$ $\left.X_{2}\right),\left(X, X_{1} \cup X_{2}\right)$ are k_{1}, k_{2} and k_{12}-connected respectively, with $k_{12} \leq k_{1}+k_{2}$.

Theorem 1.1. If a $C W$ triad \boldsymbol{X} is \boldsymbol{k}-connected, then $\pi_{s}(\boldsymbol{X})=0$ for all $2 \leq s \leq k_{12}$.
Remark. The difference between this theorem and Blakers-Massey's is that the in the latter it is assumed that $X=X_{1} \cup X_{2}$, in which case one takes $k_{12}=k_{1}+k_{2}$.

Proof. Consider the following subsets of $I=\{1,2\}$:

$$
T_{1}=I, \quad T_{2}=\{1\}, \quad T_{3}=\{2\}, \quad T_{4}=\emptyset
$$

Set

$$
\mathcal{S}^{i}=\left\{T_{1}, \ldots, T_{i}\right\} \subset 2^{I}, \quad \text { and } Y^{i}=\mathcal{S}_{X}^{i}
$$

Furthermore define the following triads

$$
\mathbf{Y}^{i}=\left(Y^{i} ; Y^{i} \cap X_{1}, Y^{i} \cap X_{2}\right)
$$

Explicitly, these are

$$
\begin{aligned}
& \mathbf{Y}^{1}=\left(X_{1} \cap X_{2} ; X_{1} \cap X_{2}, X_{1} \cap X_{2}\right) \\
& \mathbf{Y}^{2}=\left(X_{1} ; X_{1}, X_{1} \cap X_{2}\right) \\
& \mathbf{Y}^{3}=\left(X_{1} \cup X_{2} ; X_{1}, X_{2}\right) \\
& \mathbf{Y}^{4}=\left(X ; X_{1}, X_{2}\right)
\end{aligned}
$$

Observe that by Blakers-Massey $\pi_{s}\left(\mathbf{Y}^{3}\right)=0$ for all $2 \leq s \leq k_{12}$. We will use this in order to show that the homotopy groups of \mathbf{Y}^{4} vanish in the same range of degrees. Define the following triad

$$
\mathbf{Z}=\left(X ; X_{1}, X_{1} \cup X_{2}\right)
$$

It turns out that there is a long exact sequence

$$
\cdots \rightarrow \pi_{s}\left(\mathbf{Y}^{3}\right) \rightarrow \pi_{s}\left(\mathbf{Y}^{4}\right) \rightarrow \pi_{s}(\mathbf{Z}) \rightarrow \cdots \rightarrow \pi_{2}\left(\mathbf{Y}^{3}\right) \rightarrow \pi_{2}\left(\mathbf{Y}^{4}\right) \rightarrow \pi_{2}(\mathbf{Z})
$$

We want to show that $\pi_{s}(\mathbf{Z})=0$ for all $s \leq k_{12}$. For this we define a dyad

$$
\mathbf{W}=\left(X, X_{1} \cup X_{2}\right)
$$

and note that since $X_{1} \subset X_{1} \cup X_{2}$, we can drop the space X_{1} from \mathbf{Z} after taking homotopy groups, that is $\pi_{s}(\mathbf{W}) \cong \pi_{s}(\mathbf{Z})$ for $s \geq 2$. Now by assumption the homotopy groups of this dyad vanish up to degrees k_{12}. This completes the proof.
2. The general case: homotopy excision for topological $(a+1)$-ads

A topological $(a+1)$ is a space X together with a subspaces X_{1}, \ldots, X_{a}. We typically denote it by $\mathbf{X}=\left(X ; X_{1}, \ldots, X_{a}\right)$. If every X_{i} is open in X, the \mathbf{X} is called an open $(a+1)$. If X is a $C W$-complex and each X_{i} is a subcomplex, then \mathbf{X} is called a $C W-(a+1)$-ad. If a basepoint $* \in \bigcap_{i=1}^{a} X_{i}$ has been chosen, then \mathbf{X} is called a pointed $(a+1)$-ad. A map $f: \mathbf{X} \rightarrow \mathbf{Y}$ between $(a+1)$-ads is a map $f: X \rightarrow Y$ such that $f\left(X_{i}\right) \subset Y_{i}$.
2.1. Notation. For every subset $S \subset I=\{1, \ldots, a\}$ we define

$$
X_{S}= \begin{cases}\bigcap_{j \in S} X_{j} & \text { if } S \neq \emptyset \\ X & \text { if } S=\emptyset\end{cases}
$$

and

$$
X^{S}=\bigcup_{j \in S} X_{j} .
$$

For Ω a subset of 2^{I} (the power set of I) we let

$$
\Omega_{X}=\bigcup_{S \in \Omega} X_{S}
$$

2.2. Homotopy groups. In order to define the homotopy groups of an $(a+1)$-ad \mathbf{X} we consider the following $(a+2)$-ad

$$
\mathbf{I}^{a}=\left(I^{a} ; F_{1}^{1}, \ldots, F_{a}^{1}, \bigcup_{i=1}^{a} F_{i}^{0}\right)
$$

where $\epsilon=0,1$ and F_{j}^{ϵ} denotes the face of the cube consisting of points whose j-th coordinate equals ϵ.

Let $\mathbf{X}=\left(X ; X_{1}, \ldots, X_{a}, *\right)$ be a pointed $(a+1)$-ad. The homotopy groups/sets of \mathbf{X} are defined as

$$
\pi_{s}(\mathbf{X}):=\pi_{s-a}\left(\operatorname{Map}\left(\mathbf{I}^{a}, \mathbf{X}\right), \text { const }\right)
$$

This makes sense only for $s \geq a$ and they are sets when $s=a$, groups when $s=a+1$ and abelian groups when $s \geq a+2$. Here are some useful remarks:

- Note that the homotopy groups of a $2-\mathrm{ad}\left(X ; X_{1}\right)$ as defined above coincide with those of the pair $\left(X, X_{1}\right)$.
- "absolute compression": if $X_{i}=X$ for some i, then $\pi_{s}(\mathbf{X})=0$ for all $s \geq a$.
- "relative compression": if $X_{j} \subset X_{i}$ for some $i \neq j$ then $\pi_{s}(\mathbf{X})=\pi_{s}\left(X ; X_{1}, \ldots, X_{j-1}, X_{j+1}, \ldots, X_{a}\right)$.
- Define

$$
D_{j}^{1}(\mathbf{X})=\left(X ; X_{1}, \ldots, X_{j-1}, X_{j+1}, \ldots, X_{a}\right)
$$

and

$$
D_{j}^{0}(\mathbf{X})=\left(X_{j} ; X_{1} \cap X_{j}, \ldots, X_{j-1} \cap X_{j}, X_{j+1} \cap X_{j}, \ldots, X_{a} \cap X_{j}\right)
$$

then there is a long exact sequence

$$
\cdots \rightarrow \pi_{s+1}(\mathbf{X}) \rightarrow \pi_{s}\left(D_{j}^{0}(\mathbf{X})\right) \rightarrow \pi_{s}\left(D_{j}^{1}(\mathbf{X})\right) \rightarrow \pi_{s}(\mathbf{X}) \rightarrow \cdots
$$

- Let $I=\{1, \ldots, a\}$. If we define $H_{*}(\mathbf{X})=H_{*}\left(X, X^{I}\right)$ then there is an analog long exact sequence for homology groups which can be easily derived from the LES of the triple $\left(X, X^{I}, X^{I \backslash\{j\}}\right)$ and excision.
2.3. Connectivity. Let $a \geq 1$ and $\mathbf{k}=\left\{k_{T}\right\}_{T \subset I} \subset \mathbb{N} \cup\{0\}$, such that if $T \subset \bigcup_{i} T_{i}$ then $k_{T} \leq \sum_{i} k_{i}$. An $(a+1)-\operatorname{ad} \mathbf{X}$ is \mathbf{k}-connected if for every nonempty subset $T \subset I$ the pair

$$
\left(X_{I-T}, X_{I-T} \cap X^{T}\right)
$$

is k_{T}-connected.
2.4. Homotopy excision for $(a+1)$-ads. Here is the main theorem.

Theorem 2.1 (Homotopy excision). If an open or $C W(a+1)$-ad \boldsymbol{X} is \boldsymbol{k}-connected and $k_{T} \geq 2$ for all nonempty $T \subset I$, then $\pi_{s}(\boldsymbol{X})=0$ for all $a \leq s \leq k_{I}$ and for all basepoints in X_{I}.

Remark 2.2.

(1) The statement for open ads follows from the statement for $C W$-ads using cellular approximation.
(2) If in addition \mathbf{X} is a complete $(a+1)-\mathrm{ad}$, that is

$$
X=\bigcup_{i=j}^{a} X_{I \backslash\{j\}}
$$

then homotopy excision holds. This is a theorem of Barratt-Whitehead ${ }^{1}$.
(3) Completeness implies that $X_{I \backslash T} \subset X^{T}$ for all T with more than element. So in checking that a complete $(a+1)$-ad has certain connectivity, one has to only analyze the pairs of the form $\left(X_{I \backslash\{j\}}, X_{I}\right)$.
(4) It is important to have this general form of homotopy excision for $(a+1)$-ads that are open and not complete. This is because we want to apply this theorem to an $(a+1)-\mathrm{ad}$

$$
\left(C(P, N) ; C\left(P, N-Q_{1}\right), \ldots, C\left(P, N-Q_{a}\right)\right)
$$

made out of concordance embedding spaces, with P, and N compact manifolds and $Q_{i} \subset N$ a compact submanifolds.
Proof of homotopy excision. The proof goes by induction on a. The base case, $a=1$, is trivial because CW 2-ads and CW pairs are the same thing and the connectivity of a pair is defined in terms of the vanishing of its homotopy groups.

Now assume that Homotopy Excision holds for all $(i+1)$-ads with $1 \leq i<a$ and let \mathbf{X} and \mathbf{k} be as in the statement of the theorem.

Let $T_{1}, T_{2}, \ldots, T_{2^{a}}$ be the collection of all subsets of $I=\{1, \ldots, a\}$, listed in a way such that

$$
1 \leq i \leq j \leq 2^{a} \Rightarrow\left|T_{i}\right| \geq\left|T_{j}\right|
$$

Let $\Omega^{i}=\left\{T_{1}, \ldots, T_{i}\right\} \subset 2^{I}$. With these subsets of the power set of I we define the following ($a+1$)-ads

$$
\mathbf{Y}^{i}=\left(Y^{i} ; Y_{1}^{i}, \ldots, Y_{a}^{i}\right)=\left(\Omega_{X}^{i} ; \Omega_{X}^{i} \cap X_{1}, \ldots, \Omega_{X}^{i} \cap X_{a}\right)
$$

Observe that $\mathbf{Y}^{2^{a}}=\mathbf{X}$, so if we prove that $\pi_{s}\left(\mathbf{Y}^{i}\right)=0$ for all $a \leq s \leq k_{I}$ and for all $a+1 \leq i \leq 2^{a}$ we will be done. We will do this by induction on i.

The base case is $i=a+1$. By the way we are listing the subsets T_{i}, we have that T_{1} must be all of I, and the subsets T_{2}, \ldots, T_{a+1} must have $a-1$ elements, so they are of the form $I-\{j\}$ for some $j \in I$. It follows that

$$
Y^{a+1}=\bigcup_{j=1}^{a} Y_{I-\{j\}}^{a+1}
$$

and so it is a complete $(a+1)$-ad. Furthermore we have that $\left(Y_{I-\{j\}}^{a+1}, Y_{I}^{a+1}\right)=\left(X_{I-\{j\}}, X\right)$, so these pairs are k_{j}-connected by hypothesis. Homotopy excision follows in this case from Barratt-Whitehead's theorem (see the remark above.)

[^0]Let us now assume that $a+1<i \leq 2^{a}$ and that $\pi_{s}\left(\mathbf{Y}^{i-1}\right)=0$ for all $a \leq s \leq k_{I}$. We want to show that $\pi_{s}\left(\mathbf{Y}^{i}\right)=0$ in the same range of degrees. We will show this in two steps:

- step 1: we will define an $(a+1)-\mathrm{ad} \mathbf{Z}$ such that there is a long exact sequence

$$
\cdots \rightarrow \pi_{s}\left(\mathbf{Y}^{i-1}\right) \rightarrow \pi_{s}\left(\mathbf{Y}^{i}\right) \rightarrow \pi_{s}(\mathbf{Z}) \rightarrow \cdots \rightarrow \pi_{2}\left(\mathbf{Y}^{i-1}\right) \rightarrow \pi_{2}\left(\mathbf{Y}^{i}\right) \rightarrow \pi_{2}(\mathbf{Z})
$$

- step 2: we will then show that the homotopy groups of \mathbf{Z} vanish in the desired range. Combined with the induction hypothesis the result will follow.
The first step is not too bad: firstly, since $i \geq a+1$, then $\left|T_{i}\right| \leq\left|T_{a+2}\right|$, but T_{a+2} must have $a-2$ elements. So we have

$$
0 \leq m:=\left|T_{i}\right| \leq a-2 .
$$

Lemma 2.3. For all $j>m$,

$$
Y_{j}^{i}=Y^{i} \cap X_{j} \subset Y^{i-1} \subset Y^{i}
$$

Proof. This follows directly from the definitions. Only note that since $j>m, Y_{j}^{i} \subset$ $Y^{i} \cap X^{I-T_{i}}$, and that $Y^{i}=Y^{i-1} \cup X_{T_{i}}$.

The desired $(a+1)$-ad is

$$
\mathbf{Z}=\left(Y^{i} ; Y_{1}^{i}, \ldots, Y_{a-1}^{i}, Y^{i-1}\right),
$$

and one can check by hand that the above sequence is exact.
The second step is more difficult. We want to show that the homotopy groups of \mathbf{Z} vanish up to degree k_{I}. The first observation is that because of the previous Lemma and the relative compression property above, the homotopy groups of \mathbf{Z} are isomorphic to those of the $(m+2)$-ad

$$
\mathbf{W}=\left(W ; W_{1}, \ldots, W_{m+1}\right)=\left(Y^{i}, Y_{1}^{i}, \ldots, Y_{m}^{i}, Y^{i-1}\right) .
$$

So we will show that $\pi_{s}(\mathbf{W})=0$ for all $m+1 \leq s \leq k_{I}$. Recall that we are still under the induction hypothesis, namely that homotopy excision holds for $(i+1)$-ads with $i<a$. In particular, as $m+1<a$ we can apply the induction hypothesis to \mathbf{W}. So to prove the vanishing of the homotopy groups, it suffices to show that the pairs

$$
\left(W_{I^{\prime}-T^{\prime}}, W_{I^{\prime}-T^{\prime}} \cap W^{T^{\prime}}\right)
$$

are $k_{T^{\prime}}^{\prime}$-connected for $T^{\prime} \subset\{1, \ldots, m+1\}$, where $k_{T^{\prime}}^{\prime}=k_{T^{\prime}}$ if $T^{\prime} \subset\{1, \ldots, m\}$ and $k_{T \cup\{m+1\}}=k_{T \cup\{m+1, \ldots, a\}}^{\prime}$ if $T \subset\{1, \ldots, m\}$.

Let T^{\prime} be a nonempty subset of $I^{\prime}=\{1, \ldots, m+1\}$. Then there exists a subset $\Omega \subset 2^{I}$ such that

$$
W_{I^{\prime}-T^{\prime}}=\Omega_{X}
$$

(for example $W_{j}:=\left\{T_{1} \cup\{j\}, \ldots, T_{i} \cup\{j\}\right\}_{X}$).
There are two cases:
Case A: $T^{\prime} \subset\{1, \ldots, m\}$. In this case we have

$$
\left(W_{I^{\prime}-T^{\prime}}, W_{I^{\prime}-T^{\prime}} \cap W^{T^{\prime}}\right)\left(\Omega_{X}, \Omega_{X} \cap X^{T^{\prime}}\right) .
$$

This is because $W^{T^{\prime}}=\Omega_{X}^{i} \cap X^{T^{\prime}}=X^{T^{\prime}}$.
Case B: $T^{\prime}=T \cup\{m+1\}$ and $T \subset\{1, \ldots, m\}$. Then

$$
\left(W_{I^{\prime}-T^{\prime}}, W_{I^{\prime}-T^{\prime}} \cap W^{T^{\prime}}\right)=\left(\Omega_{X}, \Omega_{X} \cap X^{T \cup\{m+1, \ldots a\}}\right)
$$

This is because

$$
\begin{aligned}
W^{T^{\prime}} & =W^{T} \cup W^{m+1} \\
& =X^{T} \cup W_{m+1} \\
& =X^{T} \cup Y^{i-1} \\
& =X^{T} \cup\left(Y^{i} \cap X^{I-T_{i}}\right) \\
& =X^{T} \cup\left(Y^{i} \cap X^{\{m+1, \ldots, a\}}\right) \\
& =X^{T} \cup\left(W \cap X^{\{1, \ldots, a\}}\right) \\
& =\left(X^{T} \cup W\right) \cap X^{T \cup\{m+1, \ldots, a\}} \\
& =X^{T \cup\{m+1, \ldots, a\}} .
\end{aligned}
$$

Cases A and B follow from the following more general lemma which will conclude the proof the homotopy excision theorem..
Lemma 2.4. Let \boldsymbol{X} and \boldsymbol{k} be as in the statement of the homotopy excision theorem. Then for all $\Omega \subset 2^{I}$ and nonempty $T \subset I$ the pair $\left(\Omega_{X}, \Omega_{X} \cap X^{T}\right)$ is k_{T}-connected.
Proof idea: Without lost of generality one assumes that X is 1-connected. Otherwise one passes to universal covers of the components and take preimages of the subspaces.

The proof is by induction on Ω_{X} with respect to inclusion. The base case $\Omega_{X}=X_{I}$ is trivial as X_{I} is minimal.

Suppose now that for all $\Omega_{X}^{\prime} \subsetneq \Omega_{X}$, the pair ($\Omega_{X}^{\prime}, \Omega_{X}^{\prime} \cap X^{T}$) is k_{T}-connected.
There are two cases:
Case α : We can write Ω_{X} as $\Omega_{X}=\Omega 1_{X} \cup \Omega 2_{X}$ with Ωi_{X} proper subspaces $(i=1,2)$. Let $\Omega 3_{X}=\Omega 1_{X} \cap \Omega 2_{X}$, and define the 4 -ad:

$$
\mathbf{K}=\left(\Omega_{X} ; \Omega 1_{X}, \Omega 2_{X}, \Omega_{X} \cap X^{T}\right)
$$

It is easy to see using excision that

$$
H_{*}\left(D_{3}^{0}(\mathbf{K})=0=H_{*}\left(D_{3}^{1}(\mathbf{K})\right.\right.
$$

which implies $H_{*}(\mathbf{K})=0$ (recall the notation and LES from Section 2.2 above).
On the other hand, by induction on Ω_{X} we have that the pairs $\left(\Omega i_{X}, \Omega i_{X} \cap X^{T}\right)$ ($i=1,2,3$) are k_{T}-connected, so their homology vanishes up to that degree. Putting all this together and using Mayer-Vietoris for the pair ($\Omega_{X}, \Omega_{X} \cap X^{T}$) we obtain that $H_{s}\left(\Omega_{X}, \Omega_{X} \cap X^{T}\right)=0$ for $s \leq k_{T}$. Thus, by the relative Hurewicz theorem, the proof in this case is completed if we show that the pair $\left(\Omega_{X}, \Omega_{X} \cap X^{T}\right)$ is 1-connected. This is a consequence of the following claim:

Claim: For any nonempty subsets $\Omega, \Omega^{\prime} \subset 2^{I}$ such that $\Omega_{X}^{\prime} \subset \Omega_{X}$, the pair ($\Omega_{X}, \Omega_{X}^{\prime}$) is 2 -connected.

To prove this we use induction with respect inclusion again. The base case is trivial again. Assume the claim for smaller subsets and pairs. Take Ω_{X}^{\prime} maximal in Ω_{X}. Recall that we are in Case α, where $\Omega_{X}=\Omega 1_{X} \cup \Omega 2_{X}$. By maximality of Ω_{X}^{\prime} we have that $\Omega_{X}=\Omega_{X}^{\prime} \cup \Omega i_{X}$ for some $i=1,2$. Then

$$
\left(\Omega_{X}, \Omega_{X}^{\prime}\right)=\left(\Omega_{X}^{\prime} \cup \Omega i_{X}, \Omega_{X}^{\prime}\right)
$$

The latter is 2-connected if ($\Omega_{X}^{\prime}, \Omega_{X}^{\prime} \cap \Omega i_{X}$) is 2-connected ("connectivity of pairs is preserved by pushout"), which is true by the induction hypothesis. If we don't have maximality, ie $\Omega_{X}^{\prime} \subsetneq \Omega_{X}^{\prime \prime} \subset \Omega_{X}$, with $\Omega_{X}^{\prime \prime}$ maximal, we have that the first pair is 2connected by induction and the second too by the previous argument.

Case β : Ω_{X} cannot be written as a union of smaller subsets. Then $\Omega_{X}=X_{S}$ for some $S \subset I$, and

$$
\left(\Omega_{X}, \Omega_{X} \cap X^{T}\right)=\left(X_{S}, X_{S} \cap X^{T}\right)
$$

If $S \cap T \neq \emptyset$ then $X_{S} \cap X^{T}=X_{S}$ and there is nothing to show.
If $S \cap T=\emptyset$ then we have two inclusions

$$
X_{S} \cap X^{T} \subset X_{S} \cap X^{I-S} \subset X_{S}
$$

The first inclusion gives a k_{T}-connected pair (by induction), and the second inclusion gives
 concludes the proof of the Claim and of the Lemma...
and of the homotopy excision theorem.

[^0]: ${ }^{1}$ Actually, I think the vanishing of the homotopy groups for complete ads was announced by Toda. The point of Barratt-Whitehead was to compute the first nontrivial homotopy group in terms of the homotopy groups of the other terms.

