
HOMOTOPY EXCISION FOR (a+ 1)-ADS

Abstract. This a summary of “Preliminaries B. (a + 1)-ads and connectivity” in T.
Goodwillie’s thesis.

1. Warm-up: triads

A triad X = (X;X1, X2) is k = (k1, k2, k12)-connected if the pairs (X1, X1∩X2), (X2, X1∩
X2), (X,X1 ∪X2) are k1, k2 and k12-connected respectively, with k12 ≤ k1 + k2.

Theorem 1.1. If a CW triad X is k-connected, then πs(X) = 0 for all 2 ≤ s ≤ k12.

Remark. The difference between this theorem and Blakers–Massey’s is that the in the
latter it is assumed that X = X1 ∪X2, in which case one takes k12 = k1 + k2.

Proof. Consider the following subsets of I = {1, 2}:

T1 = I, T2 = {1}, T3 = {2}, T4 = ∅.

Set

Si = {T1, . . . , Ti} ⊂ 2I , and Y i = SiX
Furthermore define the following triads

Yi = (Y i;Y i ∩X1, Y
i ∩X2).

Explicitly, these are

Y1 = (X1 ∩X2;X1 ∩X2, X1 ∩X2)

Y2 = (X1;X1, X1 ∩X2)

Y3 = (X1 ∪X2;X1, X2)

Y4 = (X;X1, X2)

Observe that by Blakers-Massey πs(Y
3) = 0 for all 2 ≤ s ≤ k12. We will use this in order

to show that the homotopy groups of Y4 vanish in the same range of degrees. Define the
following triad

Z = (X;X1, X1 ∪X2).

It turns out that there is a long exact sequence

· · · → πs(Y
3)→ πs(Y

4)→ πs(Z)→ · · · → π2(Y3)→ π2(Y4)→ π2(Z)

We want to show that πs(Z) = 0 for all s ≤ k12. For this we define a dyad

W = (X,X1 ∪X2)

and note that since X1 ⊂ X1∪X2, we can drop the space X1 from Z after taking homotopy
groups, that is πs(W) ∼= πs(Z) for s ≥ 2. Now by assumption the homotopy groups of
this dyad vanish up to degrees k12. This completes the proof. �
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2 HOMOTOPY EXCISION FOR (A+ 1)-ADS

2. The general case: homotopy excision for topological (a+ 1)-ads

A topological (a+ 1) is a space X together with a subspaces X1, . . . , Xa. We typically
denote it by X = (X;X1, . . . , Xa). If every Xi is open in X, the X is called an open (a+1).
If X is a CW -complex and each Xi is a subcomplex, then X is called a CW -(a+ 1)-ad. If
a basepoint ∗ ∈

⋂a
i=1Xi has been chosen, then X is called a pointed (a+ 1)-ad. A map

f : X→ Y between (a+ 1)-ads is a map f : X → Y such that f(Xi) ⊂ Yi.

2.1. Notation. For every subset S ⊂ I = {1, . . . , a} we define

XS =

{⋂
j∈S Xj if S 6= ∅

X if S = ∅

and
XS =

⋃
j∈S

Xj .

For Ω a subset of 2I (the power set of I) we let

ΩX =
⋃
S∈Ω

XS .

2.2. Homotopy groups. In order to define the homotopy groups of an (a+ 1)-ad X we
consider the following (a+ 2)-ad

Ia =

(
Ia;F 1

1 , . . . , F
1
a ,

a⋃
i=1

F 0
i

)
where ε = 0, 1 and F εj denotes the face of the cube consisting of points whose j-th
coordinate equals ε.

Let X = (X;X1, . . . , Xa, ∗) be a pointed (a+ 1)-ad. The homotopy groups/sets of X
are defined as

πs(X) := πs−a(Map(Ia,X), const).

This makes sense only for s ≥ a and they are sets when s = a, groups when s = a+ 1 and
abelian groups when s ≥ a+ 2. Here are some useful remarks:

• Note that the homotopy groups of a 2-ad (X;X1) as defined above coincide with
those of the pair (X,X1).
• “absolute compression”: if Xi = X for some i, then πs(X) = 0 for all s ≥ a.
• “relative compression”: ifXj ⊂ Xi for some i 6= j then πs(X) = πs(X;X1, . . . , Xj−1, Xj+1, . . . , Xa).
• Define

D1
j (X) = (X;X1, . . . , Xj−1, Xj+1, . . . , Xa)

and

D0
j (X) = (Xj ;X1 ∩Xj , . . . , Xj−1 ∩Xj , Xj+1 ∩Xj , . . . , Xa ∩Xj)

then there is a long exact sequence

· · · → πs+1(X)→ πs(D
0
j (X))→ πs(D

1
j (X))→ πs(X)→ · · ·

• Let I = {1, . . . , a}. If we define H∗(X) = H∗(X,X
I) then there is an analog long

exact sequence for homology groups which can be easily derived from the LES of
the triple (X,XI , XI\{j}) and excision.

2.3. Connectivity. Let a ≥ 1 and k = {kT }T⊂I ⊂ N ∪ {0}, such that if T ⊂
⋃
i Ti then

kT ≤
∑

i ki. An (a+ 1)-ad X is k-connected if for every nonempty subset T ⊂ I the pair

(XI−T , XI−T ∩XT )

is kT -connected.
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2.4. Homotopy excision for (a+ 1)-ads. Here is the main theorem.

Theorem 2.1 (Homotopy excision). If an open or CW (a+ 1)-ad X is k-connected and
kT ≥ 2 for all nonempty T ⊂ I, then πs(X) = 0 for all a ≤ s ≤ kI and for all basepoints
in XI .

Remark 2.2.

(1) The statement for open ads follows from the statement for CW -ads using cellular
approximation.

(2) If in addition X is a complete (a+ 1)-ad, that is

X =
a⋃
i=j

XI\{j}

then homotopy excision holds. This is a theorem of Barratt-Whitehead1.
(3) Completeness implies that XI\T ⊂ XT for all T with more than element. So

in checking that a complete (a+ 1)-ad has certain connectivity, one has to only
analyze the pairs of the form (XI\{j}, XI).

(4) It is important to have this general form of homotopy excision for (a+ 1)-ads that
are open and not complete. This is because we want to apply this theorem to an
(a+ 1)-ad

(C(P,N);C(P,N −Q1), . . . , C(P,N −Qa))
made out of concordance embedding spaces, with P , and N compact manifolds
and Qi ⊂ N a compact submanifolds.

Proof of homotopy excision. The proof goes by induction on a. The base case, a = 1, is
trivial because CW 2-ads and CW pairs are the same thing and the connectivity of a pair
is defined in terms of the vanishing of its homotopy groups.

Now assume that Homotopy Excision holds for all (i+ 1)-ads with 1 ≤ i < a and let X
and k be as in the statement of the theorem.

Let T1, T2, . . . , T2a be the collection of all subsets of I = {1, . . . , a}, listed in a way such
that

1 ≤ i ≤ j ≤ 2a ⇒ |Ti| ≥ |Tj |.
Let Ωi = {T1, . . . , Ti} ⊂ 2I . With these subsets of the power set of I we define the

following (a+ 1)-ads

Yi = (Y i;Y i
1 , . . . , Y

i
a ) = (Ωi

X ; Ωi
X ∩X1, . . . ,Ω

i
X ∩Xa).

Observe that Y2a = X, so if we prove that πs(Y
i) = 0 for all a ≤ s ≤ kI and for all

a+ 1 ≤ i ≤ 2a we will be done. We will do this by induction on i.
The base case is i = a+ 1. By the way we are listing the subsets Ti, we have that T1

must be all of I, and the subsets T2, . . . , Ta+1 must have a− 1 elements, so they are of the
form I − {j} for some j ∈ I. It follows that

Y a+1 =
a⋃
j=1

Y a+1
I−{j}

and so it is a complete (a+1)-ad. Furthermore we have that (Y a+1
I−{j}, Y

a+1
I ) = (XI−{j}, X),

so these pairs are kj-connected by hypothesis. Homotopy excision follows in this case from
Barratt-Whitehead’s theorem (see the remark above.)

1Actually, I think the vanishing of the homotopy groups for complete ads was announced by Toda. The
point of Barratt-Whitehead was to compute the first nontrivial homotopy group in terms of the homotopy
groups of the other terms.
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Let us now assume that a+ 1 < i ≤ 2a and that πs(Y
i−1) = 0 for all a ≤ s ≤ kI . We

want to show that πs(Y
i) = 0 in the same range of degrees. We will show this in two

steps:

• step 1: we will define an (a+ 1)-ad Z such that there is a long exact sequence

· · · → πs(Y
i−1)→ πs(Y

i)→ πs(Z)→ · · · → π2(Yi−1)→ π2(Yi)→ π2(Z)

• step 2: we will then show that the homotopy groups of Z vanish in the desired
range. Combined with the induction hypothesis the result will follow.

The first step is not too bad: firstly, since i ≥ a + 1, then |Ti| ≤ |Ta+2|, but Ta+2 must
have a− 2 elements. So we have

0 ≤ m := |Ti| ≤ a− 2.

Lemma 2.3. For all j > m,

Y i
j = Y i ∩Xj ⊂ Y i−1 ⊂ Y i.

Proof. This follows directly from the definitions. Only note that since j > m, Y i
j ⊂

Y i ∩XI−Ti , and that Y i = Y i−1 ∪XTi . �

The desired (a+ 1)-ad is

Z = (Y i;Y i
1 , . . . , Y

i
a−1, Y

i−1),

and one can check by hand that the above sequence is exact.
The second step is more difficult. We want to show that the homotopy groups of Z

vanish up to degree kI . The first observation is that because of the previous Lemma and
the relative compression property above, the homotopy groups of Z are isomorphic to
those of the (m+ 2)-ad

W = (W ;W1, . . . ,Wm+1) = (Y i, Y i
1 , . . . , Y

i
m, Y

i−1).

So we will show that πs(W) = 0 for all m+ 1 ≤ s ≤ kI . Recall that we are still under the
induction hypothesis, namely that homotopy excision holds for (i+ 1)-ads with i < a. In
particular, as m+ 1 < a we can apply the induction hypothesis to W. So to prove the
vanishing of the homotopy groups, it suffices to show that the pairs

(WI′−T ′ ,WI′−T ′ ∩W T ′
)

are k′T ′-connected for T ′ ⊂ {1, . . . ,m + 1}, where k′T ′ = kT ′ if T ′ ⊂ {1, . . . ,m} and
kT∪{m+1} = k′T∪{m+1,...,a} if T ⊂ {1, . . . ,m}.

Let T ′ be a nonempty subset of I ′ = {1, . . . ,m+ 1}. Then there exists a subset Ω ⊂ 2I

such that

WI′−T ′ = ΩX

(for example Wj := {T1 ∪ {j}, . . . , Ti ∪ {j}}X).
There are two cases:

Case A: T ′ ⊂ {1, . . . ,m}. In this case we have

(WI′−T ′ ,WI′−T ′ ∩W T ′
)(ΩX ,ΩX ∩XT ′

).

This is because W T ′
= Ωi

X ∩XT ′
= XT ′

.

Case B: T ′ = T ∪ {m+ 1} and T ⊂ {1, . . . ,m}. Then

(WI′−T ′ ,WI′−T ′ ∩W T ′
) = (ΩX ,ΩX ∩XT∪{m+1,...a})
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This is because

W T ′
= W T ∪Wm+1

= XT ∪Wm+1

= XT ∪ Y i−1

= XT ∪ (Y i ∩XI−Ti)

= XT ∪ (Y i ∩X{m+1,...,a})

= XT ∪ (W ∩X{1,...,a})

= (XT ∪W ) ∩XT∪{m+1,...,a}

= XT∪{m+1,...,a}.

Cases A and B follow from the following more general lemma which will conclude the
proof the homotopy excision theorem..

Lemma 2.4. Let X and k be as in the statement of the homotopy excision theorem. Then
for all Ω ⊂ 2I and nonempty T ⊂ I the pair (ΩX ,ΩX ∩XT ) is kT -connected.

Proof idea: Without lost of generality one assumes that X is 1-connected. Otherwise one
passes to universal covers of the components and take preimages of the subspaces.

The proof is by induction on ΩX with respect to inclusion. The base case ΩX = XI is
trivial as XI is minimal.

Suppose now that for all Ω′X ( ΩX , the pair (Ω′X ,Ω
′
X ∩XT ) is kT -connected.

There are two cases:

Case α: We can write ΩX as ΩX = Ω1X ∪ Ω2X with ΩiX proper subspaces (i = 1, 2).
Let Ω3X = Ω1X ∩ Ω2X , and define the 4-ad:

K = (ΩX ; Ω1X ,Ω2X ,ΩX ∩XT ).

It is easy to see using excision that

H∗(D
0
3(K) = 0 = H∗(D

1
3(K)

which implies H∗(K) = 0 (recall the notation and LES from Section 2.2 above).
On the other hand, by induction on ΩX we have that the pairs (ΩiX ,ΩiX ∩ XT )

(i = 1, 2, 3) are kT -connected, so their homology vanishes up to that degree. Putting
all this together and using Mayer-Vietoris for the pair (ΩX ,ΩX ∩ XT ) we obtain that
Hs(ΩX ,ΩX ∩XT ) = 0 for s ≤ kT . Thus, by the relative Hurewicz theorem, the proof in
this case is completed if we show that the pair (ΩX ,ΩX ∩XT ) is 1-connected. This is a
consequence of the following claim:

Claim: For any nonempty subsets Ω,Ω′ ⊂ 2I such that Ω′X ⊂ ΩX , the pair (ΩX ,Ω
′
X)

is 2-connected.
To prove this we use induction with respect inclusion again. The base case is trivial

again. Assume the claim for smaller subsets and pairs. Take Ω′X maximal in ΩX . Recall
that we are in Case α, where ΩX = Ω1X ∪ Ω2X . By maximality of Ω′X we have that
ΩX = Ω′X ∪ ΩiX for some i = 1, 2. Then

(ΩX ,Ω
′
X) = (Ω′X ∪ ΩiX ,Ω

′
X)

The latter is 2-connected if (Ω′X ,Ω
′
X ∩ ΩiX) is 2-connected (“connectivity of pairs is

preserved by pushout”), which is true by the induction hypothesis. If we don’t have
maximality, ie Ω′X ( Ω′′X ⊂ ΩX , with Ω′′X maximal, we have that the first pair is 2-
connected by induction and the second too by the previous argument.
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Case β: ΩX cannot be written as a union of smaller subsets. Then ΩX = XS for some
S ⊂ I, and

(ΩX ,ΩX ∩XT ) = (XS , XS ∩XT ).

If S ∩ T 6= ∅ then XS ∩XT = XS and there is nothing to show.
If S ∩ T = ∅ then we have two inclusions

XS ∩XT ⊂ XS ∩XI−S ⊂ XS .

The first inclusion gives a kT -connected pair (by induction), and the second inclusion gives
us, by hypothesis, a kI−S-connected pair (and so kT -connected because T ⊂ I − S). This
concludes the proof of the Claim and of the Lemma... �

and of the homotopy excision theorem. �
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