
POSETS OF DECOMPOSITIONS

ALEXANDER KUPERS

Abstract. We give a short proof that the poset of unordered proper direct sum decompo-
sitions of an n-dimensional vector space is homotopy equivalent a wedge of pn´2q-spheres.

1. Introduction

In a recent MathOverflow post, Inna Zakharevich asked a question about the following
poset of direct sum decompositions. For a finite-dimensional vector space V over a field F,
let DpV q be the poset of unordered collections W “ tW0, . . . , Wpu of proper subspaces of V
such that the natural map W0 ‘ ¨ ¨ ¨ ‘Wp Ñ V is an isomorphism, ordered by

W “ tW0, . . . , Wpu ĺ W
1
“ tW 1

0, . . . , W 1
p1u if each W 1

i is contained in some Wj .

In this case we say W
1 is a refinement of W and in particular p1 ě p. In other words, maximal

elements are decompositions into lines and minimal elements are decompositions into two
proper subspaces.

Question. What is the homotopy type of the (nerve of) the poset DpV q?

The answer is:

Theorem A. DpV q is homotopy equivalent to a wedge of pdimpV q ´ 2q-spheres.

Welker proved this for finite fields [Wel95], and Randal-Williams explained how the
techniques in [GKRW18] can combined with a result of Charney [Cha80, Theorem 1.1] to
yield the same result for general field [RW22]. Here we give a more elementary argument.
We also give some further applications of the techniques and explain an interpretation in
terms of E1- and E8-homology.

2. Proof of Theorem A

In analogy with DpV q, we define a poset SpV q of ordered direct sum decompositions. Its
objects are ordered collections U “ pU0, . . . , Upq of proper subspaces of V such that the
natural map U0 ‘ ¨ ¨ ¨ ‘ Up Ñ V is an isomorphism, ordered by

U “ tU0, . . . , Upu ĺ U 1 “ tU 10, . . . , U 1p1u
if each U 1i is contained in some
Uj so that i ă i1 implies j ă j1

.

Once more we say that U 1 is a refinement of U , equivalently U is obtained by summing
together some adjacent terms in U 1.

Theorem 2.1. The posets SpV q are all pdimpV q´2q-spherical if and only if the posets DpV q
are all pdimpV q ´ 2q-spherical.
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Theorem A follows from this, since Charney proved that SpV q is pdimpV q ´ 2q-spherical
[Cha80, Theorem 1.1] (our SpV q is isomorphic to her SΛpV q with Λ “ F). The technical
input is the first part of [vdKL11, Theorem 2.3]. A poset is bounded if all chains have finite
length; this is true in all of our applications.

Lemma 2.2 (Looijenga–van der Kallen). Suppose that A and B are bounded posets and we
have a map of posets

F : A ÝÑ tdownward closed subposets of B, ordered by inclusionuop.

Suppose we have n P Z and functions tA : A Ñ Z and tB : B Ñ Z so that the following hold:
(i) Aăa “ ta

1 P A | a1 ă au is ptApaq ´ 2q-connected and F paq is pn´ tApaq ´ 1q-connected,
(ii) Băb “ tb1 P B | b1 ă bu is ptBpbq ´ 2q-connected and Ab “ ta P A | b P F paqu is

pn´ tBpbq ´ 1q-connected.
Then A is pn´ 1q-connected if and only if B is pn´ 1q-connected.

Proof of Theorem 2.1. Note that both SpV q and DpV q are pdimpV q´2q-dimensional, so they
are pdimpV q ´ 2q-spherical if and only if they are pdimpV q ´ 3q-connected.

We will do an induction over dimpV q, observing there is nothing to prove in the initial
case dimpV q “ 0. For the induction step we will apply Lemma 2.2 to A “ SpV q, B “ DpV q,
n “ dimpV q ´ 2, and the map

F : SpV q ÝÑ tdownward closed subposets of DpV qopuop

U “ pU0, . . . , Ukq ÞÝÑ tV “ tV0, . . . , Vlu such that V is a refinement of Uu,

where U “ tU0, . . . , Uku, i.e. we forget the ordering. The values of the map F are downwards
closed as any refinement V is also a refinement of U (remember they are subposets of
DpV qop rather than DpV q). The map F is a map of posets because if U 1 ĺ U in SpV q, i.e. U
is a refinement of U 1, then F pUq Ď F pU 1q because all refinements of U are in particular
refinements of U

1.
For (i), we take tSpV q “ 0 and then there is nothing to prove about SpV qăU . This works

because F pUq is always contractible, as U is terminal in F pUq Ă DpV qop.
For (ii) we take tDpW q “ dimpV q ´ k ´ 1 if W “ tW0, . . . , Wku. Then pDpV qopq

ăW is
the opposite of DpV q

ąW , given by refinements of W . Since a refinement of W is given by
refining at least any of the Wi, this is the join DpW0q ˚ ¨ ¨ ¨ ˚ DpWkq. As dimpWiq ă dimpV q,
by induction this is

´1`
k

ÿ

i“0
pdimpWiq ´ 2` 1q “ pdimpV q ´ k ´ 2q-spherical

so pdimpV q ´ k ´ 3q “ ptDpV qpW q ´ 2q-connected. Finally SpV qW consists of those ordered
splittings U “ pU0, . . . , Ulq such that W is a refinement of U “ tU0, . . . , Ulu. That is, each
Ui is obtained by combining some Wj ’s. Thus this poset is isomorphic to the poset of ordered
partitions of the set t0, . . . , ku into at two least two non-empty subsets, ordered by refinement.
This is the boundary of the permutahedron of order k ` 1, which is a pk ´ 1q-sphere so

pk ´ 2q “ ppdimpV q ´ 2q ´ pdimpV q ´ k ´ 1q ´ 1q “ pn´ tDpW q ´ 1q-connected.

It now follows from Lemma 2.2 that SpV q is pdimpV q ´ 3q “ pn ´ 1q-connected if and
only if PpV q is. �
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Remark 2.3. The proof of Lemma 2.2 in [vdKL11] uses that there is a zigzag of maps of
posets

X

SpV q DpV q

where X Ă SpV q ˆ DpV q is the poset of pairs pU, W q with W P F pUq, with induced partial
order, and diagonal maps the projections. Their proof then shows that both diagonal
maps independently are highly connected. In (i) we have some leeway, as there n “ 8

would have worked, and their argument in fact shows that the left diagonal map is a weak
homotopy equivalence. Now observe that it admits a section U ÞÑ pU, Uq whose composition
with the right diagonal map is the forgetful map U ÞÑ U . We conclude that the latter is
pdimpV q ´ 2q-connected and in particular the map

rHdimpV q´2pSpV q;Zq ÝÑ rHdimpV q´2pDpV q;Zq

it induces between the only non-zero reduced homology groups, is surjective.

3. Generalisations

Our proof uses little about vector spaces, and applies in many settings to transfer
connectivity results from ordered decompositions to unordered ones, and vice versa. We will
not attempt to formalise this here, but give two examples.

3.1. Dedekind domains. The definitions of DpV q and SpV q generalise to direct sum
decompositions of finitely-generated projective modules over a ring R with invariant basis
property; one only needs to replace “subspace” with ”direct summand” and “dimension”
with “rank”. For R a Dedekind domain and M a finitely-generated projective R-module,
Charney proved that SpMq is prkpMq ´ 2q-spherical [Cha80, Theorem 1.1] and hence so is
the unordered version DpMq.

3.2. Free groups. The definitions of DpV q and SpV q also generalise to free product decom-
positions of free groups. For a free group G, Hatcher and Vogtmann proved that DpGq is
prkpGq ´ 2q-spherical [HV98, Theorem 6.1] and hence so is the ordered version SpGq.

4. Relation to E1- and E8-homology

The nerve of the poset SpFnq is isomorphic to the E1-splitting complex SE1pFnq of
[GKRW18, Section 17.2] for the graded E8-algebra N Q n ÞÑ BGLpFnq. As explained in
[RW22], the nerve of the poset DpFnq is weakly equivalent to the E8-splitting complex
SE8pFnq of [GKRW18, Section 17.4]. Thus Theorem 2.1 can be thought of way to a transfer
the standard connectivity hypothesis, without using bar spectral sequences as in [GKRW18,
Chapter 14]:

Corollary 4.1. HE1
n,dpRq “ 0 for d ă n´ 1 if and only HE8

n,d pRq “ 0 for d ă n´ 1.

Remark 4.2. In this language, Lemma 2.2 says there is a surjection HE1
n,n´1pRq Ñ HE8

n,n´1pRq.
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