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Abstract
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18 Poincaré duality 138
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Chapter 1

Singular homology

1.1 Quantifying shapes

1.1.1 Geometry or analysis of position

This is a first course in algebraic topology, a mathematical subject originating in
Poincaré’s work on “analysis situs.” As early as in the 17th century, natural philosophers
desired a mathematical theory of shape which ignored distances and angles and only
cared about shapes up to deformation. In fact, the first concrete reference I know is
Leibniz musing about “geometria situs” (the geometry of position), which concerns the
position of objects ignoring distances [Lei50]:1

I am not content with algebra, in that it yields neither the shortest proofs
nor the most beautiful constructions of geometry. Consequently, in view of
this, I consider that we need yet another kind of analysis, geometric or linear,
which deals directly with position, as algebra deals with magnitude.

Poincaré was the first to make a serious attempt to make these ambitions reality. His
work contains some errors, imprecisions, and infelicitous choices, but what we will learn
in this course is in essence the mathematics that he developed [Poi10]:2 homology theory
for topological spaces. In his introduction he echoes Leibniz:

We know how useful geometric figures are in the theory of imaginary functions
and integrals evaluated between imaginary limits, and how much we desire
their assistance when we want to study, for example, functions of two complex
variables.
If we try to account for the nature of this assistance, figures first of all make
up for the infirmity of our intellect by calling on the aid of our senses; but not
only this. It is worthy repeating that geometry is the art of reasoning well
from badly drawn figures; however, these figures, if they are not to deceive
us, must satisfy certain conditions; the proportions may be grossly altered,
but the relative positions of the different parts must not be upset.

1From a 1679 letter to Christian Huygens.
2You can find it at https://www.maths.ed.ac.uk/˜v1ranick/papers/poincare2009.pdf.
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2 Chapter 1 Singular homology

The use of figures is, above all, then, for the purpose of making known certain
relations between the objects that we study, and these relations are those
which occupy the branch of geometry that we have called Analysis situs, and
which describes the relative situation of points and lines on surfaces, without
consideration of their magnitude.

That is, the objects of interests are topological spaces X, without any conditions on
their topology. By mapping test spaces—points, intervals, triangles, etc.—into X, we will
extract abelian groups Hn(X) whose structure—rank, torsion, etc.—is the sought-after
quantification of the shape of X. After defining these homology groups of X, we will
develop a suite of tools to aid in their computation.

1.1.2 Homology theory is intended to be applied.

Not only will we develop this theory, but we are also interested in applying it to
topological spaces X of geometric interest. Such spaces include:

· the Euclidean spaces Rn,

· the spheres Sn−1 = {(x1, . . . , xn) ∈ Rn |
∑n
i=1 x

2
i = 1},

· the real projective spaces RPn−1 = Sn−1/{±1} of lines in Rn,

· the surfaces Σg of genus g.
What they have in common is that they are manifolds. Usually we care about these
with their smooth structure (which tells us what it means for a real-valued function
on it to be a smooth function), but in this course it will suffice to consider them as
topological manifolds: second countable Hausdorff topological spaces which are locally
homeomorphic to Rn for some n. The first highlight of this course is that the homology
groups of topological manifolds have a symmetry, Poincaré duality. Poincaré writes it as3

For a closed manifold the Betti numbers equally distant from the ends of the
sequence are equal.

In fact, surgery theory in differential topology tell us that a high-dimensional topological
manifold is roughly the same as a topological space with Poincaré duality and a tangent
bundle [L0̈2].

Furthermore, we are interested in applying our techniques to other parts of mathe-
matics. When you learn abstract tools like homological algebra or simplicial methods,
you should keep in mind that the same techniques are foundational to modern results in
algebraic geometry, number theory, symplectic geometry, logic, etc.

1.2 Singular chains

Our goal for the remainder of this chapter is to construct the homology groups of a
topological space. So, let us fix a topological space X for the remainder of this section.
As mentioned above, we seek to understand X by probing it with certain test spaces.

3For him, the Betti number βi(M) is the rank of the free part of Hi(M). His statement is incorrect,
as M needs to be orientable for this to be true.
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Definition 1.2.1. The n-simplex ∆n is the topological space given by

∆n :=
{

(t0, . . . , tn) ∈ Rk+1
∣∣∣∣∣
n∑
i=0

ti = 1 and ti ≥ 0 for i ≥ 0
}
.

Example 1.2.2. For small n, ∆n is a familiar topological space:
· n = 0: a point,
· n = 1: an interval,
· n = 2: a solid triangle,
· n = 3: a solid tetrahedron.

Definition 1.2.3. The set of n-simplices in X is

Sinn(X) := {σ : ∆n → X | σ continuous}.

The set Sinn(X) is quite large, but we can extract geometric information from it by
understanding which collections of simplices are boundaries and which bound. This uses
an observation which you may have already made: the boundary of ∆n is a union of
n+ 1 copies of ∆n−1.
Example 1.2.4. The boundary ∂∆n of ∆n for low k decomposes as follows:

· n = 0: it is empty,
· n = 1: it is two points,
· n = 2: it is three intervals (which overlap in points),
· n = 3: it is four solid triangles (which overlap in intervals).
More precisely, for each 0 ≤ i ≤ n the point (t0, . . . , tn) with ti = 1 and tj = 0 for

i 6= j (this is forced by the conditions on the ti’s) is the ith vertex of ∆n. The map

δi : ∆n−1 −→ ∆n

(t0, . . . , tn−1) 7−→ (t0, . . . , ti−1, 0, ti, . . . , tn−1)
(1.1)

which skips the ith entry, is the inclusion of the face opposite the ith vertex; the ith face.
In this notation, ∂∆n is

⋃n
i=0 δi(∆n−1).

By precomposing with these maps, we can define what it means to take the ith face
of a simplex in X: for σ ∈ Sinn(X) and 0 ≤ i ≤ n,

di(σ) := σ ◦ δi.

Example 1.2.5. We can extract the set π0(X) of path components of X from Sinn(X) for
n = 0, 1. The set Sin0(X) may be identified with the set of points of X, and set Sin1(X)
with the set of continuous paths [0, 1]→ X. Two points x0, x1 ∈ Sin0(X) are in the same
path component if and only if they can be connected by a path, that is, if there is a
σ ∈ Sin1(X) such that σ(0) = x0 and σ(1) = x1. We conclude that

π0(X) = Sin0(X)/∼

with x0 ∼ x1 if there is a σ ∈ Sin1(X) such that

d0(σ) = d1(σ). (1.2)
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∆2

0 2

1

∆1 ∆1

∆1

δ1

δ0δ2

Figure 1.1 The standard 2-simplex ∆2 and its three faces.

To extend this example to higher dimensions, we rewrite (1.2) as d0(σ)− d1(σ) = 0.
This only makes sense in the free abelian group on Sin0(X):

Definition 1.2.6. The abelian group Sn(X) of singular n-chains in X is the abelian
group given by

Sn(X) := Z[Sinn(X)].

That is, elements of Sn(X) are finite linear combinations of n-simplices in X with
integer coefficients, e.g. 3 · σ + 17 · σ′ − 7346 · σ′′. By convention, we set Sn(X) := 0
for n < 0. We can extend di : Sinn(X)→ Sinn−1(X) linearly to di : Sn(X)→ Sn−1(X),
e.g. di(3 · σ + 17 · σ′ − 7346 · σ′′) = 3 · di(σ) + 17 · di(σ′)− 7346 · di(σ′′). The boundary of
a n-simplex in X is given by taking its faces, counted with a sign:

Definition 1.2.7. For σ ∈ Sn(X), we define

d(σ) :=
n∑
i=0

(−1)idi(σ) ∈ Sn−1(X).

Remark 1.2.8. The sign is +1 if prepending to the standard orientation di(σ) an outward-
pointing normal vector recovers the standard orientation of σ, and −1 otherwise.

Definition 1.2.9. An n-cycle is an n-chain σ such that d(σ) = 0. The abelian group
Zn(X) of n-cycles is given by

Zn(X) := ker[d : Sn(X)→ Sn−1(X)].

In Problem 1.4.1, you will check that d(d(a)) = 0 for any a ∈ Sn(X). Thus we can
cheaply construct many cycles by applying d.

Definition 1.2.10. An n-boundary is an n-chain a such that a = d(b) for some τ ∈
Sn+1(X). The abelian group Bn(X) of n-boundaries is given by

Bn(X) := im[d : Sn+1(X)→ Sn(X)].
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Since d2 = 0, Bn(X) is contained in Zn(X). We now define the homology groups
most of this course will be about the group of n-cycles up to n-boundaries (the evident
and hence boring n-cycles):

Definition 1.2.11. The nth homology group Hn(X) of X is given by

Hn(x) := Zn(X)
Bn(X) .

Some comments on this definition:
· Hn(X) is a subquotient of Sn(X). Hence for negative n, Hn(X) = 0 as a conse-

quence of the convention that Sn(X) = 0.
· It is convenient to collect all Hn(X) into a single object: the graded abelian group
H∗(X) = {Hn(X)}n∈Z given in degree n ∈ Z by Hn(X).

· Even though both Zn(X) and Bn(X) are free abelian groups, as subgroups of a
free abelian group, taking the quotient can create torsion in Hn(X). For example,
H1(RP 2) = Z/2 and in fact any abelian group occurs as a homology group of some
topological space X.

· Even though both Zn(X) and Bn(X) are usually abelian groups with enormous
sets of generators, for reasonable topological spaces X the homology groups Hn(X)
tend to be finitely-generated.

· If you want to visualize an element of say H2(X), imagine it as some collection of
oriented triangles in X whose edges “cancel out” and which does not “bound” a
collection of tetrahedra in X.

This is a particular case of a general construction. A chain complex C∗ is a sequence
of abelian groups Cn for n ∈ Z with homomorphisms d : Cn → Cn−1 satisfying d2 = 0.
Given a chain complex, one can define its homology group Hn(C∗) of C∗ in the same
way as above: the n-cycles Zn(C∗) are ker[d : Cn → Cn−1] and the n-boundaries Bn(C∗)
are im[d : Cn+1 → Cn]. The equation d2 = 0 implies Bn(C∗) ⊂ Zn(C∗), so we can define
homology of C∗ as

Hn(C∗) = Zn(C∗)
Bn(Z∗)

.

The homology groups of X are the homology groups of the singular chain complex S∗(X).
We will revisit this in the next chapter.

1.3 First examples

Eventually we will be able to do computations such as

H∗(Σg) =


Z if ∗ = 0,
Z2g if ∗ = 1,
Z if ∗ = 2,
0 if ∗ > 2.

(1.3)
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This groups exhibit the symmetry discovered by Poincaré, and reflect the geometric
properties of the surface Σg:

· H0(Σg) = Z: it is path-connected,

· H1(Σg) = Z2g: it has g handles,

· H2(Σg) = Z: it is orientable,

· H∗(Σg) = 0 for ∗ > 2: it is 2-dimensional.
It will take some time before we prove this. Instead, now we will only do the simplest of
computations. These are simple enough that they can be done using only the definitions.

1.3.1 H0 of a topological space

We motivated the definition of the homology groups Hn(X) through the relationship
of the case n = 0 to path components. The following lemma makes this precise:

Lemma 1.3.1. H0(X) ∼= Z[{path components of X}].

Proof. There is a map of sets

Sin0(X) −→ {path components of X}

sending each point x ∈ Sin0(X) to the path component which contains it. This extends
linearly to a unique homomorphism

λ : S0(X) = Z[Sin0(X)] −→ Z[{path components of X}].

Since S−1(X) = 0, Z0(X) = C0(X), that is, all 0-chains are 0-cycles. To get an
induced homomorphism H0(X)→ Z[{path components of X}], it suffices to prove that
λ(B0(X)) = 0. This amounts to proving that λ sends to 0 the generators d(σ) for
σ ∈ Sin1(X). The element σ is a continuous path [0, 1]→ X and d(σ) = σ(0)− σ(1). As
both σ(0) and σ(1) necessarily lie in the same path component, the homomorphism λ
sends d(σ) to path component− same path component = 0.

Now that we have a well-defined homomorphism λ : H0(X)→ Z[{path components of X}],
we show it is surjective and injective. It is surjective because each of the generators of
Z[{path components of X}] is in the image of λ: choose once and for all a point x(i) in
each of the path components Xi of X, and interpret x(i) as an element of C0(X).

To see it is injective, we prove that its kernel is exactly B0(X). To prepare, we observe
that in H0(X) an element x0 ∈ Z0(X) = S0(X) is equivalent to x1 if and only if they can
be connected by a continuous path τ inX. Indeed, then x0−x1 = d(τ). Thus an arbitrarily
element a ∈ ker(λ) ⊂ H0(X) can be represented by a linear combinition

∑
i aix

(i) of our
chosen points, with finitely many non-zero coefficients. The homomorphism λ sends this
to
∑
i aiXi, and we see this is 0 if and only if ai = 0 for all i.

Corollary 1.3.2. If X is path-connected then H0(X) = Z.
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1.3.2 H∗ of a point

The input to further computations is the computation of the homology of a point.
Remark 1.3.3. I prefer to use ∗ for a point, but too many asterisks would be confusing
here.

From above we know that H0(pt) = Z, but what happens in higher degrees?

Lemma 1.3.4. We have that

H∗(pt) =
{
Z if ∗ = 0,
0 if ∗ > 0.

Proof. There is a single map ∆n → pt, the constant one. This means that each of the
sets Sinn contains a single element constn and thus

Sn(pt) = Z[constn].

What is the differential d : Sn(pt)→ Sn−1(pt)? Precomposition of the constant map
constn by any δi gives the constant map constn−1. Thus the differential either vanishes
or gives constn−1: the first occurs when n is even (so has an odd number of faces, all but
one of which cancel) and the second occurring when n is odd (so has an even number of
faces, all of which cancel).

That is, S∗(X) is the chain complex given by

· · · ←− 0←− 0←− 0←− Z 0←− Z id←− Z 0←− Z id←− Z 0←− Z←− · · · ,

the first copy of Z in the degree 0 (degree increasing by 1 when we move rightwards).
When we take kernel of d modulo its image, we see that only the copy of Z in degree 0
survives.

1.4 Problems

Problem 1.4.1 (A verification). Recall that the differential d : Sn(X) → Sn−1(X) is
given by

d(a) =
n∑
i=0

(−1)idi(a),

with di : Sn(X)→ Sn−1(X) obtained by linearly extending the function σ 7→ di(σ) = σ◦δi
on n-simplices in X. Verify that d2 = 0.



Chapter 2

Homology as a functor

In this chapter we will discuss the first of several important properties of the homology
groups H∗(X): its dependence on the topological space X. This is best phrased in
the language of category theory, which serves as the foundation of much of modern
mathematics. See [Rie16] for an introduction to this topic.

2.1 Homology is natural

Recall we defined the graded abelian group H∗(X) as the homology groups

Hn(X) = Zn(X)
Bn(X) = ker[d : Sn(X)→ Sn−1(X)]

im[d : Sn+1(X)→ Sn(X)]

of the chain complex

...

Sn(X) = Z[Sinn(X)] = Z[{σ : ∆n → X}]

Sn−1(X) = Z[Sinn−1(X)] = Z[{σ′ : ∆n−1 → X}]

...

Every continuous map f : X → Y induces homomorphisms f∗ : Hn(X) → Hn(Y ),
constructed as follows:

(1) The continuous map f induces functions

Sinn(f) : Sinn(X) −→ Sinn(Y )
(σ : ∆n → X) 7−→ (f ◦ σ : ∆n → X → Y ).

These satisfy
Sinn(f)(di(σ)) = f ◦ σ ◦ δi = di(Sinn(f)(σ)). (2.1)

8
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(2) Extending linearly we get homomorphisms

Sn(f) : Sn(X) −→ Sn(Y ).

The formula above implies d ◦ Sn(f) = Sn(f) ◦ d. By linearity, it suffices to check
this on generators σ ∈ Sinn(f):

Sn(f)(d(σ)) = Sn(f)(
n∑
i=0

(−1)idi(σ))

=
n+1∑
i=0

(−1)iSinn(f)(di(σ))

=
n+1∑
i=0

(−1)idi(Sinn(f)(σ)) (2.1)

= d(Sn(f)(σ)).

(3) This in turn implies that

Sn(f) (Zn(X)) ⊂ Zn(Y ), and Sn(f) (Bn(X)) ⊂ Bn(Y ).

For the first of these inclusions, suppose a ∈ Zn(X), then d(a) = 0 so d(Sn(f)(a)) =
Sn(f)(d(a)) = Sn(f)(0) = 0. We leave the second one to the reader.

(4) As a consequence, there is an induced map of quotient groups

Hn(f) : Hn(X) = Zn(X)
Bn(X) −→ Hn(Y ) = Zn(Y )

Bn(Y )
[a] 7−→ [Sn(f)(a)].

We will not work out the following observation in detail, as in the next section we
reduce it to checking a number of easier claims:

Lemma 2.1.1. · For idX : X → X the identity map, Hn(idX) = idHn(X).

· For f : X → Y and g : Y → Z, Hn(g ◦ f) = Hn(g) ◦Hn(f).

Proof suggestion. The crucial observations are that Sinn(id) sends σ : ∆n → X to idX ◦
σ = σ, and both Sinn(g ◦ f) and Sinn(g) ◦ Sinn(f) send it to g ◦ f ◦ σ.

2.2 Categories, functors, and natural transformations

2.2.1 General discussion

Category theory is a general framework for discussion constructions which are natural
in the above sense. It has hard theorems, but at the moment it will serve to us as a
language. See [Rie16] for background reading.
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Categories

Definition 2.2.1. A category C consists of the following data
· a class ob(C) of objects,
· for each X,Y ∈ ob(C) a set C(X,Y ) of morphisms,
· for every object X ∈ ob(C) an identity morphism idX ∈ C(X,Y ),
· a composition law ◦ : C(X,Y )× C(Y,Z)→ C(X,Z).

These should satisfy:
· for f ∈ C(X,Y ), f ◦ idX = f = idY ◦ f ,
· for f ∈ C(X,Y ), g ∈ C(Y,Z), h ∈ C(Z,W ),

(h ◦ g) ◦ f = h ◦ (g ◦ f).

The last property says that composition is associative.
Example 2.2.2. The category Set of sets has the collection of all sets as its class of
objects, and the functions X → Y as morphisms from X to Y . Composition is given by
composition of functions and the identity is the identity function.

It is here where you see why we allow classes of objects; it allows us to have categories
whose objects are sets, possibly with some additional structure. Categories with a set of
objects are called small. We will usually ignore such set-theoretical issues.

The next examples will be given in less detail:
Example 2.2.3. The category Top of topological spaces has topological spaces as objects,
and the continuous maps as morphisms.
Example 2.2.4. The category Grp of groups has groups as objects, and the homomorphisms
as morphisms.
Example 2.2.5. The category Ab of abelian groups has abelian groups as objects, and the
homomorphisms as morphisms.

Functors

We next define a notion of map from one category to another. A map between vector
spaces—called a linear map—is a function which preserves all the structure around;
all operations and the equations these operations satisfy. The same will be true for
categories:

Definition 2.2.6. A functor F : C→ D is given by
· an assignment F : ob(C)→ ob(D),
· for all X,Y ∈ ob(C) a function F : C(X,Y )→ D(F (X), F (Y )).

These should satisfy:
· for X ∈ ob(C), F (idX) = idF (X),
· for f ∈ C(X,Y ), g ∈ C(Y,Z),

F (g ◦ f) = F (g) ◦ F (f).
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Example 2.2.7. Every abelian group is a group, so there is an inclusion functor i : Ab→ Grp.
This regards an abelian group as a group and a homomorphism of abelian groups as a
homomorphism of groups.

The next examples will be given in less detail.
Example 2.2.8. Taking the underlying set of a topological space gives a functor U : Top→
Set.
Example 2.2.9. Considering a set as a discrete topological space gives a functor L : Set→
Top.
Example 2.2.10. Considering a set as an indiscrete topological space gives a functor
R : Set→ Top.

2.2.2 Homology as a functor

Of course, we were aiming at describing homology as a functor. This is just a
reformulation of Lemma 2.1.1, once we introduce one more category.

Definition 2.2.11. The category GrAb of graded abelian groups has collections A∗ =
{An}n∈Z of abelian groups An as objects, and morphisms A∗ → B∗ given by collections
{fn}n∈Z of homomorphisms fn : An → Bn.

Theorem 2.2.12. Homology is a functor

H∗ : Top −→ GrAb

given on objects by X 7→ H∗(X) = {Hn(X)}n∈Z and on morphisms by f 7→ H∗(f) =
{Hn(f)}n∈Z.

Notation 2.2.13. We will eventually shorten H∗(f) to f∗.

2.2.3 Constructing of homology in terms of functors

To get used to category theory, let me describe the construction of homology as a
composition of several functors:

Top ssSet ChZ GrAb.

H∗

Sin• Z(−) H∗

Constructing the singular simplicial set, Sin•

We start with the category Top of topological spaces and continuous maps. Out of
this we construct the sets Sinn(f), which have some additional structure coming from
restriction to faces of simplices. Let us describe this categorically.

Definition 2.2.14. The category ∆inj has objects given by the finite ordered sets
[n] = {0 < . . . < n} and morphisms from [n] to [m] giving by the functions f : [n]→ [m]
such that f(i) < f(j) for i < j.
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All morphisms of ∆inj are injective, hence the subscript inj. This category models
the combinatorial structure of the inclusions of faces:

Example 2.2.15. There is a functor

∆• : ∆inj −→ Top
[n] 7−→ ∆n,

sending an α : [n] → [m] to the continuous injection sending a point (t0, . . . , tn) ∈ ∆n

to the point in ∆m giving by putting ti in the f(i)th place and making the remaining
coordinates 0. For example, the inclusion δi : [n− 1]→ [n] skipping the ith entry gives
rise to the face inclusion δi : ∆n−1 ↪→ ∆n of (1.1).

We obtained the sets Sinn(X) by mapping ∆n intoX, and the functions di : Sinn(X)→
Sinn−1(X) by precomposing with δi. Note that this changes directions: a composition

[n− 2] δi−→ [n− 1] δj−→ [n]

induces inclusions of simplices, along which we restrict to get a composition

Sinn(X) dj−→ Sinn−1(X) di−→ Sinn−2(X).

The order of composition is reversed. This “contravariance” is encoded by modifying
∆inj:

Definition 2.2.16. Let C be a category, the opposite category Cop is the category with
the same class of objects, but morphisms from X to Y given by the set C(Y,X).

Sending C to Cop is a construction on categories; I will leave it to the reader to define
(−)op on functors.

Example 2.2.17. From any object X ∈ ob(C), we obtain a functor hX : Cop → Set by
Y 7→ C(Y,X). This is known as the Yoneda functor.

The construction of the sets Sinn(X) and the maps between them is nothing but the
composition of functors

Sin•(X) = hX ◦ (∆•)op : ∆op
inj −→ Topop −→ Set.

Such functors have a name:

Definition 2.2.18. A semisimplicial set is a functor ∆op
inj → Set.

Let us spell out the details: a semisimplicial set X• : ∆op
inj → Set consists of a collection

of sets {Xn}n≥0 of n-simplices obtained by evaluating X• on [n]. Each strictly order-
preserving injection [n]→ [m] induces a function Xn → Xm. Each morphism of ∆inj is a
composition of injections of the form δi : [n − 1] → [n], so it is enough to record what
function the morphism δi induces: the ith face map di : Xn → Xn−1.
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Example 2.2.19. There is a semisimplicial set S1
• gives as follows: the set of n-simplices

S1
n is empty for n > 1, and both S1

0 and S1
1 consists of a single element. This determines

the face maps uniquely. It is a combinatorial model for the circle.
More generally, any triangulation of a space gives rise to a semisimplicial set (essentially

by definition if I had defined triangulation). This is a reason why piecewise linear topology,
which concerns topological manifolds with triangulations, is also called combinatorial
topology.

Semisimplicial sets are the objects of a category. It remains to define the morphisms
of this category, which are given as follows:

Definition 2.2.20. A morphism f• : X• → Y• of semisimplicial sets is collection of
functions fn : Xn → Yn satisfying di ◦ fn = fn−1 ◦ di for all n ≥ 1 and 0 ≤ i ≤ n.

Remark 2.2.21. In fact, these are just natural transformations: a natural transformation
η : F → G between functors C→ D is a collection of morphisms ηX : F (X)→ G(X) such
that for each morphism f : X → Y we have G(f) ◦ ηX = ηY ◦ F (f).

Thus, there is a category ssSet which has semisimplicial sets as objects (which are
just functors) and morphisms as above (which are just natural transformations). We can
now phrase the construction of the sets of simplices categorically: there is a singular
semisimplicial set functor

Sin• : Top −→ ssSet
X 7−→ Sin•(X).

Of course it remains to verify that this satisfies Sin•(idX) = idSin•(X) and Sin•(g ◦ f) =
Sin•(g) ◦ Sin•(f). This can be done by hand without much effort, but one can also do
work more abstractly:

Remark 2.2.22. There is a category Fun(C,D) with functors as objects and natural
transformations as morphisms. The assignment X 7→ hX gives a functor h : C →
Fun(C,Set). Given a functor F : D → C, precomposition with F gives a functor F ∗ =
Fun(C,Set) → Fun(D,Set). Thus taking C = Top, D = ∆op

inj and F = ∆•, this exhibits
Sin• as the composition F ∗ ◦ h.

Remark 2.2.23. If you familiar with algebraic topology, you may have seem the category ∆:
it has the same objects but morphisms from [n] to [m] given by the functions f : [n]→ [m]
such that f(i) ≤ f(j) for i ≤ j. There is a similar singular simplicial set functor

Sing• : Top −→ sSet
X 7−→ Sing•(X),

which contains a bit more information that the singular semisimplicial set. This informa-
tion is not necessary to define homology, but it does lead to better formal properties.
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Extracting a chain complex

Next in our definition of homology, we extract the chain complex S∗(X) from Sin•(X).
Recall that chain complex C∗ is a collection {Cn}n∈Z of abelian groups with homomor-
phisms d : Cn → Cn−1 such that d2 = 0. A morphism f∗ : C∗ → D∗ of chain complexes
should induce maps on homology groups. This is the case when we have a collection
of homomorphisms {fn : Cn → Dn}n∈Z satisfying d ◦ fn = fn−1 ◦ d; we call this a chain
map.

Definition 2.2.24. The category ChZ of chain complexes has chain complexes as objects,
and the chain maps as morphisms.

Our construction of a chain complex from Sin•(X) works for any semisimplicial set
X•: we define Z(X•)n := Z[Xn], the free abelian group on Xn, and give a differential in
terms of the face maps by the same formula:

d : Z(X•)n = Z[Xn] −→ Z(X•)n−1 = Z[Xn−1]

x 7−→
n∑
i=0

(−1)idi(x).

For a morphism f• : X• → Y• of semisimplicial sets, Z(f•)n : Z(X•)n → Z(Y•)n is given
by sending a generator x ∈ Xn of Z(X•)n = Z[Xn] to fn(x) ∈ Z(Y•)n = Z[Yn]. This is a
chain map, as you will verify in Problem 2.4.1.

After checking that Z(−) preserves identities and composition, we obtain a functor

Z(−) : ssSet −→ ChZ
X• 7−→ Z(X•).

Taking homology

It remains to extract the homology from a chain complex. This is done by defining
cycles and boundaries in the same way as for S∗(X) and taking their quotient:

H∗(C∗) = ker[d : Cn → Cn−1]
im[d : Cn+1 → Cn] .

The definition of a chain map f∗ : C∗ → D∗ was such that [a] 7→ [f(a)] gives a well-
defined map on homology. After checking that this preserves identities and composition,
we obtain a functor

H∗ : ChZ −→ GrAb
C∗ 7−→ H∗(C∗).

2.3 First applications of naturality

We refer to the fact that homology as a functor by saying it is “natural.” Let us this
chapter by giving two applications that use this fact.
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2.3.1 Homology of disjoint unions

The inclusion Xi ↪→
⊔
iXn induce homomorphisms H∗(Xi)→ H∗(

⊔
iXi) which we

can sum together into ⊕
i

H∗(Xi) −→ H∗

(⊔
i

Xi

)
.

Lemma 2.3.1. This map is an isomorphism.

Proof. The singular chain complex S∗(
⊔
iXi) is isomorphic to the direct sum

⊕
i S∗(Xi),

and taking homology commutes with direct sums.

2.3.2 Reduced homology

Next, we discuss a structural property of the homology of a pointed space X. Every
space X has a unique map to the point pt, and X being pointed means that we are also
given a map pt→ X. This is of course the same as picking some x0 ∈ X, so we denote
this map x0 as well. Since the composition is the identity in

pt X ptx0

id
,

so is the induced map on homology

H∗(pt) H∗(X) H∗(pt)
H∗(x0)

id

. (2.2)

Definition 2.3.2. The reduced homology groups of the topological space X are given by

H̃∗(X) := ker[H∗(X)→ H∗(pt)].

The diagram (2.2) provides an identification

H̃∗(X) ∼=
H∗(X)

im[H∗(pt)→ H∗(X)] ,

as well as a splitting of H∗(X) as H∗(X) ∼= H̃∗(X)⊕H∗(pt).

2.4 Problems

Problem 2.4.1 (Another verification). Let f• : X• → Y• be a morphism of semisimplicial
sets. Verify that the map Z(X•)∗ → Z(Y•)∗ determined by Z[Xn] ∈ x 7→ fn(x) ∈ Z[Yn]
is a chain map.

Problem 2.4.2 (Homology of retracts). We say A ⊂ X is a retract if there is a continuous
map r : X → A such that r ◦ i = idA, with i : A→ X the inclusion. Prove that if A is a
retract of X, then H∗(A) is a direct summand of H∗(X).
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Some category theory

Definition 2.4.3. A morphism f : X → Y in a category C is an isomorphism if there is
a morphism g : Y → X such that g ◦ f = idX and f ◦ g = idY . In this case we call g the
inverse of f .

Problem 2.4.4.
(i) Prove that every morphism can have at most one inverse.
(ii) Prove that functors preserve isomorphisms, i.e. if f is an isomorphism then so is

F (f).

Definition 2.4.5. A natural transformation η : F → G of functors C → D is a nat-
ural isomorphism if for each object X of C the component ηX : F (X) → G(X) is an
isomorphism.

Example 2.4.6. Let Vectfd
Q be the category with finite-dimensional Q-vector spaces as

objects, and the linear maps as morphisms.

Problem 2.4.7 (Duals). For V,W ∈ Vectfd
Q , let Hom(V,W ) denote the vector space of

linear maps between from V to W .
(i) Explain how to make the assignment

Hom(−,Q) : (Vectfd
Q )op −→ Vectfd

Q

V 7→ Hom(V,Q),

into a functor. That is, define its value on morphisms.
(ii) Prove that Hom(−,Q) ◦ Hom(−,Q) : Vectfd

Q → Vectfd
Q is naturally isomorphic to

the identity functor on Vectfd
Q .

Geometric realization

Definition 2.4.8. The geometric realization of a semisimplicial set X• is the quotient
space

||X•|| :=

⊔
n≥0

∆n ×Xn

 /∼
where∼ is the equivalence relation generated by (δi(t0, . . . , tn−1), x) ∼ ((t0, . . . , tn−1), di(x)).

Problem 2.4.9 (An example). Draw the geometric realization of the semisimplicial set
given by

∆op
inj −→ ssSet
[n] 7−→ ∆inj([n], [2]).

For each σ ∈ Xn there is a characteristic map cσ : ∆n → ||X•|| given by composing the
inclusion of ∆n ∼= ∆n × {σ} ↪→

⊔
n≥0 ∆n ×Xn with the quotient map

⊔
n≥0 ∆n ×Xn →

||X•||.
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Problem 2.4.10 (The geometric realization of a semisimplicial set).
(i) Show that given a morphism f• : X• → Y• of semisimplicial sets, there is a unique

continuous map
||f•|| : ||X•|| −→ ||Y•||

such that ||f•|| ◦ cσ = cfn(σ) for σ ∈ Xn.
(ii) Give a natural transformation η from ||Sin•(−)|| : Top→ Top to the identity functor

on Top which has the property that

(f• : X• → Sin•(Z)) 7−→ (ηZ ◦ ||f•|| : ||X•|| → Z)

gives a bijection between morphisms X• → Sin•(Z) of semisimplicial sets and
continuous maps ||X•|| → Z. (In particular, you must prove it has this property.)

(iii) Show that the map of chain complexes S∗(ηX) : S∗(||Sin•(X)||)→ S∗(X) admits a
splitting and conclude that H∗(X) is a summand of H∗(||Sin•(X)||).

Remark 2.4.11. In fact, the map ηX : ||Sin•(X)|| → X induces an isomorphism on
homology as well as fundamental groups at any basepoint. Moreover, if X has the
homotopy type of a CW-complex it is a homotopy equivalence. Thus from the point of
view of homotopy theory, X can be recovered from Sin•(X).
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Homotopy invariance

In this chapter we prove that homology only depends on the homotopy type of a
topological space.

3.1 Homotopies

In your previous point-set or differential topology course, you should have seen the
following equivalence relation on continuous maps X → Y :

Definition 3.1.1. Two continuous maps f, g : X → Y are homotopic if there is a
continuous map H : X × [0, 1]→ Y such that H(−, 0) = f and H(−, 1) = g.

We call H a homotopy. Every continuous map is homotopic to itself by the constant
homotopy, and by reversing or concatenating homotopies we prove that homotopy is an
equivalence relation on the set of continuous maps X → Y . An equivalence class is called
a homotopy class, and the set of homotopy classes is denoted [X,Y ].
Example 3.1.2. If X = S1, [S1, Y ] is the set of free homotopy classes of circles in Y . If Y
is path-connected, this is the set of conjugacy classes in the fundamental group π1(Y )
(for any choice of basepoint).

Definition 3.1.3. The homotopy category of topological spaces HoTop has as objects
topological spaces, and as morphisms homotopy classes of continuous maps.

Implicit in this definition is the claim that composition of homotopy classes is well-
defined, i.e. independent of choice of representatives. An isomorphism in this category is a
homotopy equivalence, a continuous map with an inverse up to homotopy, and isomorphic
objects are homotopy equivalent.
Example 3.1.4. The following letters, as subspaces of R2, are homotopy equivalent:
W,E, T, Y, U, I, S, F,H, J,K,L, Z,X,C, V,N,M . Similarly, the following letters are ho-
motopy equivalent: Q,R,O, P,A,D. Finally, B is by itself. You can distinguish these
using the fundamental group, or eventually H1.

Recall that the homology groups are “natural” in their input: each continuous map
f : X → Y induces a morphism of graded abelian groups H∗(f) : H∗(X) → H∗(Y ) (to

18
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save notation, we will write f∗ for H∗(f)), which satisfies id∗ = id and (g ◦ f))∗ = g∗ ◦ f∗.
We rephrased this as homology providing a functor

H∗ : Top −→ GrAb.

There is a canonical functor

γ : Top −→ HoTop,

which is the identity on objects and sends a continuous map to its homotopy classes. In
this chapter and the next we will prove that the functor H∗ : Top→ GrAb factors over γ:

Top GrAb

HoTop.

γ

H∗

The following theorem is a more down-to-earth statement of the same result:

Theorem 3.1.5 (Homotopy invariance of homology). If f, g : X → Y are homotopic
then the induced maps f∗, g∗ : H∗(X)→ H∗(Y ) are equal.

Since functors take isomorphisms to isomorphisms by Problem 2.4.4, we get:

Corollary 3.1.6. If f : X → Y is a homotopy equivalence then f∗ : H∗(X)→ H∗(Y ) is
an isomorphism. Thus homotopy equivalent topological spaces have the same homology.

Since we computed the homology of a point, and topological spaces homotopy
equivalent to a point are called contractible, we get:

Corollary 3.1.7. If X is contractible then

H∗(X) =
{
Z if ∗ = 0,
0 otherwise.

Example 3.1.8. It may seem easy to “see” that the homology of a contractible spaces is
equal to that of a point (or equivalently, the reduced homology vanishes). The Whitehead
manifold is a contractible 3-dimensional manifold for which I think this is not so clear:
https://en.wikipedia.org/wiki/Whitehead_manifold.

3.2 Chain homotopies

Recall that H∗ is the composition of functors

Top Sin•−−→ ssSet Z[−]−−−→ ChZ
H∗−→ GrAb.

Hence, to prove Theorem 3.1.5 it is helpful to know when two chain maps f∗, g∗ : C∗ → D∗
induce the same maps on homology. We will eventually apply this to S∗(f) and S∗(g).
To do so, we will study the analogue of a homotopy for chain complexes.

https://en.wikipedia.org/wiki/Whitehead_manifold
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Definition 3.2.1. Two chain maps f∗, g∗ : C∗ → D∗ are chain homotopic if there are
homomorphism hn : Cn → Dn+1 for n ∈ Z such that

d ◦ hn + hn−1 ◦ d = fn − gn.

We leave it to you to verify this is an equivalence relation. We call the collection
{hn}n∈Z a chain homotopy, and the hardest step is checking that you can “concatenate”
chain homotopies.

Lemma 3.2.2. If f∗, g∗ : C∗ → D∗ are chain homotopic then they induce the same map
on homology.

Proof. It suffices to prove that for each n-cycle a ∈ Cn, the elements fn(a), gn(a) differ
by an n-boundary, an element in the image of d. This follows from

fn(a)− gn(a) = d ◦ hn(a) + hn−1 ◦ d(a) = d(hn(a)),

using the fact that d(a) = 0 since a was assumed to be an n-cycle.

We can now define a homotopy category of chain complexes HoChZ. This has the
same objects, but morphisms are the chain homotopy classes of chain maps. Just as
for the homotopy category of spaces, we need to check that composition is well-defined.
Let’s prove a part of this, as an example of the type of arguments involved:

Lemma 3.2.3. If f∗, g∗ : C∗ → D∗ are chain-homotopic and k∗ : D∗ → E∗ is a chain
map, then k∗ ◦ f∗, k∗ ◦ g∗ : C∗ → E∗ are chain homotopic.

Proof. Let h be the chain homotopy from f∗ to g∗, i.e. d ◦ hn + hn−1 ◦ d = fn − gn. We
claim that the maps kn+1 ◦ hn assemble to a chain homotopy from k∗ ◦ f∗ to k∗ ◦ g∗. As
k∗ is a chain map and hence commutes with d, we get

d ◦ (kn+1 ◦ hn) + (kn ◦ hn−1) ◦ d = kn ◦ (d ◦ hn + hn−1 ◦ d)
= kn ◦ (fn − gn)
= kn ◦ fn − kn ◦ gn.

The isomorphisms in HoChZ are those chain maps with an inverse up to chain
homotopy, the chain homotopy equivalences. If two chain complexes are isomorphic in
HoChZ we say they are chain homotopy equivalent.

If two chain maps are chain homotopic they induce the same map on homology, so
chain homotopy equivalences induce isomorphisms on homology and chain homotopy
equivalent chain complexes have the same homology. Hence there is also a factorization

ChZ GrAb

HoChZ.

γ

H∗

To prove Theorem 3.1.5, we will prove:
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Lemma 3.2.4. If f, g : X → Y are homotopic, then f∗, g∗ : S∗(X)→ S∗(Y ) are chain-
homotopic.

Remark 3.2.5. Though chain homotopy equivalences induce isomorphisms on homology,
the converse is not true: a chain which induces an isomorphism on homology need not be
a chain homotopy equivalence. The former are called quasi-isomorphisms and it is more
common to build a homotopy category of chain complexes where quasi-isomorphisms play
the role of homotopy equivalences, instead of using chain homotopy equivalences. Quillen
was the first to develop a general theory of categories with homotopies, model category
theory [Qui67, Hov99]. Nowadays, these are considered as presentations for ∞-categories.

3.3 Star-shaped domains

We will first prove Corollary 3.1.7 for a particular class of contractible topological
spaces. This includes the products of n-simplices, and that particular case will go into
the proof of Lemma 3.2.4.

Definition 3.3.1. A subset X ⊂ Rn is star-shaped if there is a point x0 ∈ X if for all
x ∈ X the line segment {tx0 + (1− t)x | t ∈ [0, 1]} is contained in X.

Example 3.3.2. Non-empty convex subsets are star-shaped.

Example 3.3.3. The union of the coordinate axes is star-shaped, but not convex.

Star-shaped domains are always contractible. In fact, X deformation retracts onto
x0: if we use the notation r : X → {x0} for the unique map and i : {x0} ↪→ X for the
inclusion, there is a homotopy H from idX to i◦r such that H(x0, t) = x0 for all t ∈ [0, 1].
For a shar-shaped domain H is given by

H(x, t) = tx0 + (1− t)x.

We can think of Z as a chain complex concentrated in degree 0 with trivial differentials.
Then there is a chain map

ε : S∗(X) −→ Z,

determined uniquely by sending each generator of S0(X) = Z[Sin0(X)] to 1.

Proposition 3.3.4. If X is star-shaped then ε is a chain homotopy equivalence.

Proof. We first need to give a chain map η : Z→ S∗(X). This can be given by picking
an element of Sin0(X). We pick x0. So η is given in degree 0 by sending 1 to x0, and
zero in all other degrees.

We will prove that η and ε are inverse up to chain homotopy. This is easy for ε ◦ η, as
this is equal to the identity on Z. However, the composition η ◦ ε is far from the identity
on S∗(X), as its image has rank 1 in degree 0 and has 0 in all other degrees. This means
the chain homotopy h between η ◦ ε and idS∗(X) must be non-trivial.
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Intuitively, η ◦ ε concentrates everything at x0, and our chain homotopy h will mimic
the deformation retraction H doing so. A generator of Sn(X) is a continuous map
σ : ∆n → X. Out of this we can construct a new continuous map

hn(σ) : ∆n+1 −→ X

(t0, . . . , tn+1) 7−→

t0x0 + (1− t0)σ
(

(t1,...,tn+1)
1−t0

)
if t0 6= 1

x0 if t0 = 1.

Composing with δ0 (restriction opposite the 0th vertex) means setting t0 to 0, and
recovers σ. Composing with δi for i > 0 gives the same construction, just applied to
σ ◦ δi−1 = di(σ). This can not be exactly right when n = 0, since we have not defined
our construction for n = −1. We will deal with this later and assume n ≥ 1 for now.

So if we define
hn : Sn(X) −→ Sn+1(X)

on generators by σ 7→ hn(σ), we compute that

d(hn(σ)) = σ +
n+1∑
i=1

(−1)ihn−1(di−1(σ)) = σ − hn−1(d(σ)).

As η ◦ ε vanishes in positive degrees, this can be rewritten as

d(hn(σ)) + hn−1(d(σ)) = σ = idS∗(X)(σ)− η ◦ ε(σ).

As mentioned before, this formula does not make sense when n = 0; in that case
precomposing h0(σ) with δ0 gives us x0 and we get

d(h0(σ)) = σ − x0 = idS∗(X)(σ)− η ◦ ε(σ).

We have thus verified the formula

d ◦ hn + hn−1 ◦ d = idS∗(X) − ε ◦ η,

which finishes the proof.

3.4 The cross product

Homotopy invariance says that if f, g : X → Y are homotopic, then the induced maps
f∗, g∗ : H∗(X)→ H∗(Y ) are equal. As a consequence the homology groups of homotopy
equivalent spaces are equal, which we already proved for star-shaped domains X ⊂ Rn:
H∗(X) = H∗(pt). Last time, we reduce this to showing:

Lemma 3.4.1. If f, g : X → Y are homotopic, then f∗, g∗ : S∗(X)→ S∗(Y ) are chain-
homotopic.
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Let us first reduce Lemma 3.4.1 to the “universal case” using naturality. A homotopy
H between f and g fits in a commutative diagram (this means that composing any two
paths of morphisms with same start and end point gives the same map):

X × {0}

X × [0, 1] Y

X × {1}

i0

f

H

i1

g

.

Since S∗ : Top→ ChZ is a functor, on the level of chain complexes this gives equations
S∗(f) = S∗(H) ◦ S∗(i0) and S∗(g) = S∗(H) ◦ S∗(i1). Since composing a chain homotopy
with a chain map gives a chain homotopy by Lemma 3.2.3, it suffices to prove:

Lemma 3.4.2. S∗(i0), S∗(i1) : S∗(X)→ S∗(X × [0, 1]) are chain homotopic.

A chain homotopy g between S∗(i0) and S∗(i1) consists of maps hn : Sn(X) →
Sn+1(X × [0, 1]) for n ∈ Z, and we want to produce these by taking a “product” of
σ ∈ Sinn(X) with ∆1 ∼= [0, 1]. If we take cartesian products we get σ × id : ∆n × [0, 1]→
X× [0, 1]. We could then explicitly, and in a manner consistent in n, decompose the prism
∆n × [0, 1] into (n+ 1)-simplices to get a number of maps (σ × id)(i) : ∆n+1 → X × [0, 1].
This is the Eilenberg–Zilber approach to the cross product, worked out in Problem 3.5.1.
We will instead use more abstract techniques to define it. Our starting point is:

Theorem 3.4.3. There is a cross product

× : Sp(X)× Sq(Y ) −→ Sp+q(X),

satisfying
· naturality: if f : X → X ′, g : Y → Y ′ are continuous maps, a ∈ Sp(X), b ∈ Sq(Y ),

then (f × g)∗(a× b) = f∗(a)× g∗(b),
· bilinearity: it is bilinear in both entries,
· Leibniz rule: d(a× b) = d(a)× b+ (−1)pa× d(b),
· normalization: writing jx : Y → X × Y for y 7→ (x, y) and iy : X → X × Y for
x 7→ (x, y), we have {x} × b = (jx)∗(b) and a× {y} = (iy)∗(a).

Proof. The proof is an induction over m = p + q. The initial cases p + q = 0, 1 are
dealt with by normalization. For the induction step, we assume we have constructed the
cross product for p- and q-simplices satisfying p+ q = m− 1, and will define it for those
satisfying p+ q = m. We may assume p+ q > 1.

To ensure bilinearity, we define the cross product on the generators and extend
linearly. Let ιp : ∆p → ∆p denote the identity map. Then σ : ∆p → X is given by σ∗(ιp).
So it we want naturality to hold, we must have

σ × τ := (σ × τ)∗(ιp × ιq).
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In particular, it suffices to define the cross product for the “universal example” ιp × ιq
and define σ × τ by the above formula.

Normalization tells us how to define ιp × ιq when p = 0 or q = 0, so we assume both
are positive. If we want the Leibniz rule to hold, we must have

d(ιp × ιq) = d(ιp)× ιq + (−1)pιp × d(ιq).

Since d2 = 0, a necessary condition for this is that d[d(ιp)×ιq+(−1)pιp×d(ιq)] vanishes. It
does, using that the Leibniz rule for total degree m− 1 holds by the inductive hypothesis:

d[d(ιp)× ιq + (−1)pιp × d(ιq)]
= d2(ιp)× ιq + (−1)p−1d(ιp)× d(ιq) + (−1)pd(ιp)× d(ιq) + ιp × d2(ιq)
= 0.

Because ∆p×∆q is star-shaped, Hp+q−1(∆p×∆q) = 0 as p+ q > 1. Thus the (p+ q− 1)
cycle d(ιp)× ιq + (−1)pιp× d(ιq) is a boundary of some element: we pick such an element
and declare it to be ιp × ιq. By construction the Leibniz rule holds, as do the other three
properties.

Remark 3.4.4. The cross product is not unique, as it uses a choice of certain chains.
However, any two choices are unique up to chain homotopy. Similarly, it need not be
associative or graded-commutative, but is so up to chain homotopy.

We can now finish the proof:

Proof of Lemma 3.4.2. Pick a 1-simplex ι : ∆1 → [0, 1] such that d0(ι) = {1} and d1(ι) =
{0}; then d(ι) = {1} − {0} We then define

hn : Sn(X) −→ Sn+1(X × [0, 1])
a 7−→ (−1)na× ι.

The bilinearity of the cross product tells us this is a homomorphism.
We then need to compute d ◦ hn + hn−1 ◦ d:

d ◦ hn(a) + hn−1 ◦ d(a) = d((−1)na× ι) + (−1)n−1d(a)× ι
= (−1)nd(a)× ι+ a× d(ι)− (−1)nd(a)× ι Leibniz rule
= a× {1} − a× {0}
= (i1)∗(a)− (i0)∗(a). normalization

So indeed h is a chain homotopy between i0 and i1.

3.5 Problems

Problem 3.5.1 (The Eilenberg–Zilber map). In this problem you give an explicit
construction of the cross product.

A (p, q)-shuffle (a, b) is a partition of the ordered set {1, . . . , p+ q} into two disjoint
sets 1 ≤ a1 ≤ · · · ≤ ap ≤ p+ q and 1 ≤ b1 ≤ · · · ≤ bq ≤ p+ q. Its sign ε(a, b) is the sign
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of the permutation (a1, . . . , ap, b1, . . . , bq). A shuffle (a, b) induces an affine linear map
ja : ∆p+q −→ ∆p uniquely determined by sending the ith vertex of ∆p+q to the jth one
of ∆p if aj ≤ i ≤ aj+1. It similarly defines an affine linear map jb : ∆p+q → ∆q.

The Eilenberg–Zilber map is given by

EZp,q : Sp(X)× Sq(X) −→ Sp+q(X × Y )
(σ, τ) 7−→

∑
(p,q)-shuffles

ε(a, b)(σ ◦ ja, τ ◦ jb).

Prove that this satisfies the properties of Theorem 3.4.3.
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Relative homology

In this chapter we define a refinement of homology, working relative a subspace A of
a topological space X. Taking A to be empty recovers homology as defined before.

4.1 Relative homology groups

If A ⊂ X is a subspace, then we can identify S∗(A) with a subcomplex of S∗(X).
That is, for all n ∈ Z, the group Sn(A) is a subgroup of Sn(X), and the differential
on Sn(X) restricts to the differential on Sn(A). The quotient of a chain complex by a
subcomplex is again a chain complex:

Lemma 4.1.1. If A∗ ⊂ B∗ is a subcomplex then the quotient groups Cn := Bn/An with
differentials d : Cn → Cn−1 induced by d : Bn → Bn−1 form a chain complex. Furthermore,
the quotient maps assemble to a chain map B∗ → C∗.

Proof sketch. This amounts to showing that the differential d : Cn → Cn−1 is well-defined,
i.e. independent of choice of representative. But if we represent [b] ∈ Cn by b+ a instead
of b, then d(b+ a) = d(b) + d(a) and d(b) differ by d(a) ∈ A∗.

Thus the following definition makes sense:

Definition 4.1.2. The relative singular chain complex of A ⊂ X is the chain complex
given by

S∗(X,A) := S∗(X)/S∗(A).

Definition 4.1.3. The relative homology groups H∗(X,A) of A ⊂ X are the homology
groups of S∗(X,A).

Example 4.1.4. H∗(X,∅) = H∗(X) and H∗(X,X) = 0.
Example 4.1.5. If we take A to be some basepoint x0 ∈ X, then H∗(X,x0) is isomorphic
to the reduced homology H̃∗(X).
Example 4.1.6. There is a canonical relative n-cycle for (∆n, ∂∆n): the identity map
ιn : ∆n → ∆n satisfies d(ιn) ∈ S∗(∂∆n) so d(ιn) ≡ 0 ∈ S∗(∆n, ∂∆n). We will later see
that this generates Hn(∆n, ∂∆n) ∼= Z.

26
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Relative homology is a functor with the following domain:

Definition 4.1.7. The category Top2 has pairs (X,A) of a topological space X and a
subspace A ⊂ X as objects, and as morphisms (X,A)→ (Y,B) those continuous maps
f : X → Y such that f(A) ⊂ B.

There is a notion of a homotopy between two maps of pairs f, g : (X,A)→ (Y,B): it
is map (X,A)× [0, 1] = (X × [0, 1], A× [0, 1])→ (Y,B) which restricts to f and g at 0
and 1 respectively. In other words, it is a homotopy H between f and g as maps X → Y ,
satisfying the additional condition that H(A× [0, 1]) ⊂ B.

Definition 4.1.8. The homotopy category HoTop2 has pairs of a topological space and
a subspace as objects, and the homotopy classes of maps of pairs as morphisms.

If f : (X,A)→ (Y,B) is a map of pairs then f sends S∗(A) ⊂ S∗(X) to S∗(B)→ S∗(Y )
so yields a chain map of quotient complexes S∗(X,A)→ S∗(Y,B). This in turn induces
a map on relative homology groups. I will leave to you to check that this is compatible
with identities and composition, so gives a functor

H∗ : Top2 −→ GrAb.

Last chapter we proved that homology was homotopy invariant. We did so by
constructing a chain homotopy between S∗(i0) and S∗(i1) with i0 : X × {0} → X × [0, 1]
and i1 : X × {1} → X × [0, 1]. This chain homotopy is natural in X, so the one for X
restricts to the one for A when A ⊂ X is a subspace. Thus it induces a chain homotopy
between the two chain maps

S∗(X × {0})/S∗(A× {0}) −→ S∗(X × [0, 1])/S∗(A× [0, 1])

S∗(X × {1})/S∗(A× {1}) −→ S∗(X × [0, 1])/S∗(A× [0, 1])

This implies that homology is also homotopy invariant on pairs, that is, descends to a
functor

H∗ : HoTop2 −→ GrAb.

4.2 Homology is an excisive invariant

Unlike homotopy groups, homology is supposed to the “excisive.” Intuitively this
means it is some sense linear in gluing constructions.
Remark 4.2.1. The prototypical “gluings” in topology are the disjoint union and quotients
of topological spaces, and in chain complexes they are the direct sum and quotients of
chain complexes. Homology does not behave well when we allow arbitrarily pathological
gluings; only homotopically well-behaved gluing constructions are allowed. The precise
statement is that S∗ sends homotopy colimits to homotopy colimits.

It is this linearity that makes homology computable. In particular, intuitively we
expect the following properties to hold:
(P1) long exact sequence of a pair : H∗(X,A) “is” H∗(X)−H∗(A),
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(P2) excision: if U ⊂ A ⊂ X, then H∗(X,A) “is” H∗(X \ U,A \A),
(P3) Mayer–Vietoris: if X is covered by two open subsets U, V , then H∗(X) “is” H∗(U)+

H∗(V )−H∗(U ∩ V ).
We will make these statements precise in this chapter and the next.

4.3 The long exact sequence in homology

Let us start with claim (P1), that H∗(X,A) “is” H∗(X) − H∗(A). This will be a
consequence of a general result about chain complexes.

4.3.1 Long exact sequences from short exact sequences

Definition 4.3.1. A sequence of abelian groups and homomorphisms

· · · −→ Ai −→ Ai+1 −→ Ai+2 −→ · · ·

is exact if the composition of any two adjacent homomorphisms is 0, and ker(Ai →
Ai+1) = im(Ai−1 → Ai) for all i.

In other words, we first require that A∗ is a chain complex and next that its homology
vanishes. However, the intuition is different: one usually does not intend to take the
homology of an exact sequence (the result would be boring), but instead considers it a
tool to “compute” Ai from Aj for j 6= i.

Definition 4.3.2. A short exact sequence of abelian groups is an exact sequence of the
form (you can imagine the 0s extending indefinitely in both directions if you prefer)

0 −→ A −→ B −→ C −→ 0.

Example 4.3.3. Explicitly, a pair of homomorphisms

A
i−→ B

p−→ C

gives a short exact sequence if and only if is i is injective, p is surjective, and ker(p) = im(i).
A short exact sequence is said to be split if there is a map s : C → B such that

p ◦ s = idC .
Example 4.3.4. The short exact sequence

0 −→ Z i1−→ Z2 π2−→ Z −→ 0

is split, but the next one is not:

0 −→ Z/p p−→ Z/p2 q−→ Z/p −→ 0.

Definition 4.3.5. A short exact sequence of chain complexes is a sequence of maps of
chain complexes

0 −→ A∗ −→ B∗ −→ C∗ −→ 0
such that for all n we have a short exact sequence of abelian groups

0 −→ An −→ Bn −→ Cn −→ 0.
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Short exact sequences behave well under taking homology, but not in the way you
might expect. It is not true that if the sequence of chain complexes

0 −→ A∗ −→ B∗ −→ C∗ −→ 0

is exact, that then the sequence

0 −→ Hn(A∗) −→ Hn(B∗) −→ Hn(C∗) −→ 0

is also exact. Let us give a counterexample:
Example 4.3.6. Consider the following short exact sequence of chain complexes

...
...

...

0 0 0 0 0

0 0 Z Z 0

0 Z Z 0 0

0 0 0 0 0

...
...

...

id

id

id

Here each chain complex is drawn vertically. The middle chain complex has vanishing
homology, while the left and right ones have homology equal to Z in one degree. That is,
the homology groups are given by

...
...

...

0 0 0

0 0 Z

Z 0 0

0 0 0

...
...

...

and we see that the horizontal maps fail to be injective once and surjective once.
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Instead there is a long exact sequence, involving connecting homomorphisms which
change degree. In the previous example, there is a connecting homomorphism from the
right to left Z, which is an isomorphism.

Theorem 4.3.7. If 0 → A∗ → B∗ → C∗ → 0 is a short exact sequence of chain
complexes, then there are natural homomorphisms ∂ : Hn(C∗)→ Hn−1(A∗) such that

· · · Hn(B∗) Hn(C∗)

Hn−1(A∗) Hn−1(B∗) · · ·

is a long exact sequence. This is natural in short exact sequence of chain complexes.

Proof indication. The proof is a diagram chase best done in privacy, and can be found
in any textbook on algebraic topology.

However, let me indicate how to produce ∂. Pick a representative c ∈ Cn of [c] ∈
Hn(C∗). Since Bn → Cn is surjective, we can find a b ∈ Bn mapping to c. The image of
d(b) in Cn−1 is d(c) = 0, so d(b) is in the kernel of Bn−1 → Cn−1. Thus it is the image of
a unique a ∈ An−1. This turns out to be a cycle, so we can ∂([c]) = [a] ∈ Hn−1(A∗).

4.3.2 The long exact sequence of a pair

Let us draw a conclusion for relative homology groups. This is the precise version of
(P1), that H∗(X,A) “is” H∗(X)−H∗(A).

Corollary 4.3.8. Let (X,A) be a pair, then there is a long exact sequence of homology
groups

· · · Hn(X) Hn(X,A)

Hn−1(A) Hn−1(X) · · · .

This is natural in the pair (X,A).

Proof. Apply Theorem 4.3.7 to the short exact sequence of chain complexes

0 −→ S∗(A) −→ S∗(X) −→ S∗(X,A) = S∗(X)/S∗(A) −→ 0.

We can generalize this to a long exact sequence of a triple B ⊂ A ⊂ X of topological
spaces. Then the kernel of the surjection

S∗(X,B) = S∗(X)/S∗(B) −→ S∗(X,A) = S∗(X)/S∗(A)

is exactly S∗(A,B) = S∗(A)/S∗(B). Applying Theorem 4.3.7 again we get a long exact
sequence

· · · Hn(X,B) Hn(X,A)

Hn−1(A,B) Hn−1(X,B) · · · .

The previous result is just the case B = ∅.
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4.3.3 First applications of relative homology

We now give the first two computations of relative homology.

Relative H0

Let us start with a computation of relative H0, analogous to the isomorphism
H0(X) ∼= Z[{path-components of X}] of Lemma 1.3.1.

Lemma 4.3.9. H0(X,A) ∼= Z[{path-components of X not hit by A}].

Proof. The end of the long exact sequence is given by

H0(A) H0(X) H0(X,A)

0,

and we know that the homomorphism H0(A)→ H0(X) is given on generators by sending
a path-component of A to the corresponding path-component of X. Thus its cokernel is
isomorphic to the free abelian group generated by all path-components of X that do not
contain a point of A.

Disks relative to their boundary

Let us look at the pair (Di, Si−1). Since Di is contractible, by Corollary 3.1.7 we
know that its homology vanishes in all degrees except 0, in which case it is given by Z.
Thus for n ≥ 2 we see

· · · Hn(Di) = 0 Hn(Di, Si−1)

Hn−1(Si−1) Hn−1(Dn) = 0 · · · ,

and conclude that the connecting homomorphism has both vanishing kernel and cokernel.
Hence it is an isomorphism for n ≥ 2

Hn(Di, Si−1)
∼=−→ Hn−1(Si−1).

This leaves degrees n = 0, 1. For n = 0 we can use the previous lemma, and conclude
that H0(Di, Si−1) = 0. For n = 1 and i > 1, we get

· · · H1(Di) = 0 H1(Di, Si−1)

H0(Si−1) = Z H0(Dn) = Z 0,
∼=

so H1(Di, Si−1) = 0.
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For i = 1 something more subtle happens, as Si−1 = S0 has two path-components:

· · · H1(Di) = 0 H1(Di, Si−1)

H0(Si−1) = Z2 H0(Dn) = Z 0,
∼=

and H1(D1, S0) = Z.
It is probably most convenient to get rid of this noise in low degrees. This can be

done by using reduced homology instead, using Problem 4.4.1. In that case, the clean
answer is that for all n and i there is an isomorphism

Hn(Di, Si−1)
∼=−→ H̃n−1(Si−1).

4.4 Problems

Problem 4.4.1 (Long exact sequence of reduced homology). Construct an analogous
long exact sequence

· · · H̃n(X) H̃n(X,A)

H̃n−1(A) H̃n−1(X) · · ·

for each pair (X,A).

Problem 4.4.2 (Naturality of the connecting homomorphism). Suppose we are given a
commutative diagram of chain complexes

0 A∗ B∗ C∗ 0

0 A′∗ B′∗ C ′∗ 0

with both rows short exact sequences of chain complexes. Prove that the following
diagram involving the connecting homomorphisms commutes

Hn(C∗) Hn−1(A∗)

Hn(C ′∗) Hn−1(A′∗).

∂

∂

Problem 4.4.3 (Retracts). Recall that A ⊂ X is a retract if there is a continuous map
r : X → A such that r ◦ i = idA, with i : A→ X the inclusion. Prove that if A ⊂ X is a
retract, then H∗(X) = H∗(A)⊕H∗(X,A), a sharpening of Problem 2.4.2.
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Problem 4.4.4 (Five lemma). Suppose we are given a commutative diagram

A B C D E

A′ B′ C ′ D′ E′

α β γ δ ε

with exact rows.
(i) Prove that γ is surjective if β and δ surjective and ε is injective.
(ii) Give conditions on α, β, δ, ε analogous to those in (i) under which γ injective. You

do not need to provide a proof.
(iii) Combine (i) and (ii) to give conditions on α, β, δ, ε under which is γ an isomorphism.

Problem 4.4.5 (Isomorphisms on relative homology).
(i) Use the five-lemma and the long exact sequence of a pair to prove that if we

are given a map of pairs (X,A) → (X ′, A′) such that X → X ′ and A → A′ are
homotopy equivalences, then H∗(X,A)→ H∗(X ′, A′) is an isomorphism.

(ii) Show that the map of pairs (Dn, ∂Dn) → (Dn, Dn \ {0}) is not a homotopy
equivalence of pairs but still induces an isomorphism on relative homology.

Problem 4.4.6 (Alternative definition of relative homology). Define subsets of Sn(X)
by

Zn(X,A) := {a ∈ Sn(X) | d(a) ∈ Sn−1(A)}
Bn(X,A) := {a ∈ Sn(X) | ∃b ∈ Sn(A) such that a− b ∈ Bn(X)}.

(i) Prove that these are subgroups of Sn(X) and that Bn(X,A) ⊂ Zn(X,A).
(ii) Prove that Hn(X,A) is naturally isomorphic to Zn(X,A)/Bn(X,A).

Problem 4.4.7 (Normalized singular chains). A weakly order-preserving map f : {0, . . . , n} →
{0, . . . , n−1} determines an affine-linear map f∗ : ∆n → ∆n−1 by declaring the ith vertex
of ∆n is sent to the τ(i)th vertex of ∆n−1. A simplex σ : ∆n → X is said to be degenerate
if it factors as σ = σ′ ◦ f∗ for some σ′ : ∆n−1 → X and f as above.

Let Sdeg
n (X) ⊂ Sn(X) be spanned by the degenerate simplices.

(i) Prove that Sdeg
∗ (X) is a subcomplex.

(ii) Prove that the homology of Sdeg
∗ (X) vanishes.

(iii) Conclude we can compute the homology of X using the smaller chain complex
S∗(X)/Sdeg

∗ (X).
The quotient chain complex in part (iii) is usually denoted N∗(X) and referred to as the
normalized singular chain complex.
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Excision and the Eilenberg–Steenrod axioms

Last chapter we proved the existence of a long exact sequence of a pair, making
precise (P1), that H∗(X,A) “is” H∗(X) −H∗(A). Today we state excision, (P2) that
H∗(X,A) “is” H∗(X \ U,A \A).

5.1 Excision

5.1.1 The statement of excision

In the precise statement (P2), the word “is” will be replaced by an isomorphism.
However, a minor point-set condition need to satisfied.

Definition 5.1.1. A triple U ⊂ A ⊂ X is excisive when cl(U) ⊂ int(A).

Theorem 5.1.2 (Excision). If U ⊂ A ⊂ X is an excisive triple then the inclusion of
pairs (X \ U,A \ U)→ (X,A) induces an isomorphism

H∗(X \ U,A \ U)
∼=−→ H∗(X,A).

That is, you can remove points of your topological space X which lie in the subspace
A, as long as there is a little padding. We get the same result when we collapse the
subspace to a point, regardless of whether we removed some subset first. Indeed, there
is a map of pairs (X,A) → (X/A, ∗) which also induces an isomorphism on homology,
under minor conditions.

Remark 5.1.3. This requires a bit of care when dealing with empty sets: X/A is by
definition the results of collapsing to a point the subsets A+ ⊂ X+, where (−)+ means
the addition of a disjoint basepoint. So if A is empty we add a disjoint basepoint!

Corollary 5.1.4. Suppose that there exists a subset B ⊂ X such that A ⊂ B ⊂ X is
an excisive triple and B deformation retracts onto A, then the map (X,A)→ (X/A, ∗)
induces an isomorphism

H∗(X,A)
∼=−→ H∗(X/A, ∗) = H̃∗(X/A).

34
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Proof. Consider the commutative diagram of maps of pairs

(X,A) (X,B) (X \A,B \A)

(X/A, ∗) (X/A,B/A) (X/A \ ∗, B/A \ ∗).

i j

k

i′ j′

We want to prove that the left vertical map induces an isomorphism on relative homology.
We will do so by proving that the top horizontal two maps, right vertical map, and
bottom horizontal two maps do.

The map i induces an isomorphism on relative homology because A→ B is homology
equivalence by Problem 4.4.5. The map i′ similarly induces an isomorphism on relative
homology; the deformation retraction of B onto A induces a deformation retraction of
B/A into ∗ = A/A (this uses that − × [0, 1] commutes with quotients since [0, 1] is a
compact Hausdorff space, Problem 5.3.1).

The map k is a homeomorphism so induces an isomorphism on relative homology.
Finally, the maps j and j′ induce an isomorphism on relative homology by excision: by
assumption A ⊂ B ⊂ X is an excisive triple, and the argument given above for i′ implies
that ∗ ⊂ B/A ⊂ X/A is again an excisive triple.

Example 5.1.5. If we take two points in the 2-sphere, S0 ⊂ S2, we can consider H∗(S2, S0).
A moments reflection shows that the pair (S2, S0) is excisive, so by Corollary 5.1.4
H∗(S2, S0) ∼= H̃∗(S2/S0). But the pair (S2/S0, ∗) is homotopy equivalent to (S2 ∨S1, ∗),
so we obtain that

H∗(S2, S0) ∼= H̃∗(S2 ∨ S1).

5.1.2 The homology of a sphere

Since the pair (Dn, Sn−1) is excisive and collapsing the boundary of a disk gives a
sphere, H∗(Dn, Sn−1) ∼= H̃∗(Dn/Sn−1) = H̃∗(Sn). Using the isomorphismH∗(Dn, Sn−1) ∼=
H̃∗−1(Sn−1) from the last lecture, we see that

H̃∗(Sn) ∼= H̃∗−1(Sn−1).

Since S0 consists two points, its reduced homology is given by Z in degree 0 and zero
in all other degrees. This is the initial case of an inductive argument computing H̃∗(Sn)
from H̃∗−1(Sn−1) by the previous isomorphism. Passing back from reduced to unreduced
homology adds a Z in degree 0, and thus we conclude:

Theorem 5.1.6. The homology of the n-sphere is as follows. For n ≥ 1, we have

H∗(Sn) =
{
Z if ∗ = 0, n,
0 otherwise.

For n = 0, we have

H∗(S0) =
{
Z⊕ Z if ∗ = 0,
0 otherwise.
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This is the fundamental computation of singular homology. In a sense all of our
further results are an elaboration of it.
Example 5.1.7. One can explicitly identify a generator of H̃n(Sn) when interpreting
this group as Hn(∆n, ∂∆n−1): it is the homology class associated to the relative cycle
id∆n : ∆n → ∆n. By the construction of the connecting homomorphism, it is equivalent
to prove that did∆n , a signed sum of the n+1 faces of ∆n, is a generator of H̃n−1(∂∆n−1).

This is proven by induction. The second statement is clear for n = 1, and for the
induction step we recast the above computation in terms of simplices. To do so, let
xi ∈ ∂∆n denote the ith vertex, and Λni ⊂ ∂∆n denote the ith horn obtained by deleting
the interior of the ith face (opposite the ith vertex). Then excision applies to the map of
pairs (∂∆n \ {x0},Λn0 \ {x0})→ (∂∆n,Λn−1

0 ) and the former deformation retracts onto
(∆n−1, ∂∆n−1) (lying in the 0th face). We thus have isomorphisms

Hn(∆n, ∂∆n) ∂−→ Hn−1(∂∆n,Λn0 )
∼=←− Hn−1(∂∆n \ {x0},Λn \ {x0})

∼=←− Hn−1(∆n−1, ∂∆n−1).

The relative cycle id∆n in the left-most term mapped to that of did∆n , which is equal to
relative cycle σ0 : ∆n−1 → ∂∆n given by the inclusion of the 0th face. But this also in
the image of the relative cycle id∆n−1 : ∆n−1 → ∆n−1 in the right-most term.

5.1.3 Invariance of domain and the Brouwer fixed point

The first application of Theorem 5.1.6 is a pair of geometric results. The first proves
that dimension of Euclidean space is well-defined:

Theorem 5.1.8 (Invariance of domain). If m 6= n then Rn and Rm are not homeomor-
phic.

Proof. For contradiction, suppose such a homeomorphism f is given. Pick some x0 ∈ Rn,
then f induces a homeomorphism

Rn \ {x0}
∼=−→ Rm \ {f(x0)},

and thus both sides must have the same homology. However, the left hand side is
homotopy equivalent to Sn−1 and the right hand side to Sm−1. These have different
homology by Theorem 5.1.6 if m 6= n.

The second proves that every continuous map f : Dn → Dn which is the identity on
∂Dn must have a fixed point. Let us first prove a related proposition:

Proposition 5.1.9. There is no continuous retraction r : Dn → ∂Dn.

Proof. This evident when n = 0, since ∂D0 = ∅, so let’s assume n ≥ 1. We will give a
proof by contradiction. By definition of a retraction, this would satisfy r ◦ i = id∂Dn for
i : ∂Dn → Dn the inclusion. Hence, the composition

Hn−1(∂Dn) i∗−→ Hn−1(Dn) r∗−→ Hn−1(∂Dn)
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must be identity. But by Theorem 5.1.6 it is given by

Z −→ 0 −→ Z

for n ≥ 2, and
Z⊕ Z −→ Z −→ Z⊕ Z

for n = 1. It is impossible for the identity to factor like this.

Theorem 5.1.10 (Brouwer fixed point). Every continuous map f : Dn → Dn which is
the identity on ∂Dn must have a fixed point.

Proof. This is a proof by contradiction. If f had no fixed point, we could define a
continuous retraction r : Dn → ∂Dn−1 by drawing a ray from f(x) to x and sending x to
the points where this ray meets the boundary, cf. Figure 5.1. If x ∈ ∂Dn this evidently
gives back x, and I’ll leave it to you to check that it is continuous. The existence of r
contradicts the previous proposition.

•f(x)

•x

•r(x)

Figure 5.1 The map r in the proof of the Brouwer fixed point theorem.

5.2 The Eilenberg–Steenrod axioms

5.2.1 The axioms

We abstract the properties that we have proven for singular homology to the notino
of a homology theory:

Definition 5.2.1. A homology theory is given by
· a functor H∗(−) : HoTop2 → GrAb,
· a natural transformation ∂ : H∗(X,A)→ H∗−1(A,∅),

satisfying the following properties:
· long exact sequence of a pair : for each pair (X,A) ∈ Top2 there is a long exact

sequence

· · · −→ Hn+1(X,A) ∂−→ Hn(A,∅) −→ Hn(X,∅) −→ Hn(X,A) ∂−→ · · ·
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· excision: for each excisive triad U ⊂ A ⊂ X the inclusion induces an isomorphism

H∗(X \ U,A \A)
∼=−→ H∗(X,A).

· wedge axiom: the inclusions Xi →
⊔
i∈I Xi induces an isomorphism

⊕
i

H∗(Xi)
∼=−→ H∗

(⊔
i

Xi

)
,

· dimension: H∗(pt) vanishes except in degree 0.

Remark 5.2.2. Of course we also know that H0(pt) = Z. This and the previous three
axioms determine H∗(−) uniquely on reasonable spaces (those with the homotopy type of
CW-complexes). The dimension axiom allows for other abelian groups so as to eventually
accomodate Chapter 9.

5.2.2 The locality principle

We will next discuss the proof of excision as a consequence of the locality principle,
whose underlying idea is that you should be able to compute homology using only
simplices that are small with respect to a cover in the following sense:

Definition 5.2.3. A collection A of subsets of X is a cover if their interiors cover X.

Given A, we say that σ : ∆n → X is A-small if its image lies in an element of A. It
is evident that each di(σ) = σ ◦ δi is again A-small. Thus the subgroups SAn (X) spanned
by A-small simplices form a subcomplex

SA∗ (X) ⊂ S∗(X).

Theorem 5.2.4 (Locality principle). The inclusion SA∗ (X)→ S∗(X) induces an isomor-
phism on homology.

Let us deduce excision from this, which said that if U ⊂ A ⊂ X was an excisive triple,
then H∗(X,A) ∼= H∗(X \ U,A \ U).

Proof of Theorem 5.1.2. Write B = X \ U and take A = (A,B), this is a cover because
U ⊂ A ⊂ X is an excisive triple. Observe that S∗(A), S∗(B) ⊂ SA∗ (X), and furthermore
SA∗ (X)/S∗(A) = S∗(B)/S∗(A∩B). The map of short exact sequences of chain complexes

0 S∗(A) SA∗ (X) SA∗ (X)/S∗(A) 0

0 S∗(A) S∗(X) S∗(X)/S∗(A) 0,

∼=H∗

combined with the five-lemma proves that the map

S∗(B)/S∗(A ∩B)
∼=−→ SA∗ (X)/S∗(A) −→ S∗(X)/S∗(A)

induces an isomorphism on homology. Taking homology and recalling A ∩ B = A \ U
gives excision.
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5.3 Problems

Problem 5.3.1 (A result in point-set topology). Prove that if X → X ′ is a quotient of
topological spaces (that is, it is surjective and X ′ is given the quotient topology) and A
is compact Hausdorff, then X ×A→ X ′ ×A is also a quotient.

Problem 5.3.2 (Wedges of spheres).
(i) Compute H∗(Sn ∨ Sm) for n,m ≥ 0.
(ii) State the generalization to

∨r
i=1 S

ni .

Configuration spaces

Definition 5.3.3. The configuration space of k points in X is given by

Confk(X) := {(x1, . . . , xk) ∈ Xk | xi 6= xj if i 6= j}.

Problem 5.3.4. Let us investigate the configuration spaces of the Euclidean space Rn
for n ≥ 2.

(i) Prove that Conf2(Rn) is homotopy equivalent to Sn−1.
(ii) Show that H∗(Confk(Rn)) is a summand of H∗(Confk+1(Rn)).
(iii) Compute H∗(Conf3(Rn)).

The Frobenius–Perron theorem

The following is a version of the Frobenius–Perron theorem:

Theorem. Let A be an (n× n)-matrix with non-negative real entries such that there is
an m ≥ 1 so that the entries of Am are positive. Then A has a positive eigenvalue λ and
we can pick an eigenvector with eigenvalue λ which has positive entries.

Problem 5.3.5. Recall ∆n−1 ⊂ Rn is given by {(x1, . . . , xn) | xi ≥ 0 and x1 + · · ·+xn =
1}. In other words, if we set |x|1 = |x1| + · · · + |xn| then ∆n−1 = {(x1, . . . , xn) | xi ≥
0 and |x|1 = 1}.

(i) Prove that

f : ∆n−1 −→ ∆n−1

x 7−→ Ax

|Ax|1

is well-defined and continuous.
(ii) Deduce the above theorem by applying the Brouwer fixed point theorem to f .



Chapter 6

The locality principle and the Mayer–Vietoris
theorem

In this chapter we outline the proof of the locality principle, and deduce from it the
Mayer–Vietoris theorem, (P3): H∗(U ∪ V ) “is” H∗(U) +H∗(V )−H∗(U ∩ V ).

6.1 The locality principle

Of all the Eilenberg–Steenrod axioms, it remains to prove excision. We wanted to
deduce this from the locality principle. Let us repeat its statement.

Recall that a collection A of subsets of X is a cover if their interiors cover X. Given
a cover A, we said σ : ∆n → X was A-small if its image lies in the interior of an
element of A. Then the subgroups SAn (X) ⊂ Sn(X) spanned by A-small simplices form
a subcomplex

SA∗ (X) ⊂ S∗(X),

and the locality principle says this can also be used to compute the homology of X: the
inclusion SA∗ (X)→ S∗(X) induces an isomorphism on homology.

We also used this to prove Mayer–Vietoris, an very helpful computational tool
expressing the homology of X = U ∩ V in terms of the homology of U , V and U ∩ V ,
through a long exact sequence.

6.1.1 An outline of the proof of the locality principle

We will not give the details of the proof of the locality principle, sticking to the main
ideas instead. The reason for this is that, like the proof homotopy invariance, in practice
the result is more important that the arguments used to prove it.

Proof of Theorem 5.2.4. The underlying idea is that by subdivision, we can replace an
n-cycle a representing a homology class with a different representative which has “smaller”
simplices. If we do this enough times, the representative will be A-small.

Let us describe the first two cases of subdivision; S(∆0) is just ∆0 and to obtain
S(∆1) we add a 0-simplex at its center (1/2, 1/2) (resulting in two copies of ∆1 glued
along endpoints). Another way to describe this is as follows: we take the barycenter in

40



6.1 The locality principle 41

the interior, and then take the convex hull of this center and each of the simplices in the
boundary. This is leads to an inductive construction of the subdivision: knowing how to
subdivide k-simplices ∆k for k < n, we will get a subdivision S(∂∆n) of ∂∆n. To do so,
we take the barycenter (1/(n+ 1), . . . , 1/(n+ 1)) ∈ ∆n, and take the convex hull of this
and the k-simplices in S(∂∆n) to get the (k + 1)-simplices of S(∆n).

S(∆2)

Figure 6.1 The subdivision of ∆2.

Recall that ιn is our notation for the identity map ∆n → ∆n considered as an element
of Sn(∆n). We let S(ιn) denote the sum of the n-simplices in S(∆n). Then, we define
the subdivision of an n-simplex σ : ∆n → X by naturality:

S(σ) := σ∗(S(ιn)).

We extend this linearly to a homomorphism S : Sn(X)→ Sn(X). This satisfies S◦d = d◦S,
because the boundary of a subdivided n-simplex is obtained by subdividing each of the
faces. Thus we have given chain map

S : S∗(X) −→ S∗(X).

There is a chain homotopy T from S to id, so S induces the identity on homology. This is
constructed first for S∗(∆n) and then extended to all topological spaces X by naturality.
By iterating this chain homotopy, we also see that the iterated subdivision Sk is chain
homotopic to the identity.

We claim that for any simplex σ : ∆n → X, there exists an integer k ≥ 0 such that
Sk(σ) is A-small. To see this, observe that the pullback of the cover A along σ gives a
cover B of ∆n. By the Lebesgue number lemma (Problem 6.5.3 below), there exists an
ε > 0 such that every subset of ∆n of radius < ε is contained in an element of B. But
the simplices in the iterated subdivision Sk(∆n) become arbitrarily small, in particular
have radius < ε for k large enough.

We can now start the proof that the inclusion SA∗ (X)→ S∗(X) induces an isomor-
phism on homology. We first prove surjectivity. Suppose we are given an n-cycle, a
finite sum a =

∑
i niσi. Pick an integer k ≥ 0 large enough such that each simplex

in Sk(σi) is A-small. Then [Sk(a)] ∈ H∗(X) lies in the image of the homomorphism
HA∗ (X)→ H∗(X), and since Sk is chain homotopic to the identity, [Sk(a)] = [a].

As is usual in algebraic topology, the proof of injectivity is a “relative form” of the
proof of surjectivity. Suppose that an n-cycle a ∈ SA∗ (X) becomes a boundary in S∗(X),
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that is, a = db with b =
∑
i niτi. As before, there exists an integer k ≥ 0 such that

Sk(b) ∈ SA∗ (X). But then 0 = [dSk(b)] = [Sk(a)] = [a]. This computation requires that
S : S∗(X) → S∗(X) restricts to a chain map S : SA∗ (X) → SA∗ (X), as does the chain
homotopy T between S and id. This follows from the naturality of the constructions of S
and T : S(σ) = σ∗(S(ιn)), so all n-simplices in it are in the image of σ and thus A-small,
and similarly for T .

6.2 The Mayer–Vietoris theorem

The Mayer–Vietoris theorem is closely related to the locality principle and excision.
Here we deduce it from the locality principle, but it may also be deduced from excision.

Theorem 6.2.1 (Mayer–Vietoris). Suppose a topological space X is covered by two open
subsets U, V . Then there is a long exact sequence

· · · Hn(U)⊕Hn(V ) Hn(X)

Hn−1(U ∩ V ) Hn−1(U)⊕Hn−1(V ) · · · .

Proof. We apply the locality principle with A = {U, V }. Then there is a short exact
sequence of chain complexes:

0 −→ H∗(U ∩ V ) −→ H∗(U)⊕H∗(V ) −→ HA∗ (X) −→ 0.

Here the first map is given by a 7→ (a,−a) and the second map is given by (a, b) 7→ a+ b.
When passing to homology, this gives the desired long exact sequence.

The proof also tells us what the morphisms in the long exact sequence are: the left
one is given by ((j1)∗, (j2)∗) for the inclusions j1 : U ∩ V ↪→ U and j2 : U ∩ V ↪→ V , while
the right map is given by (i1)∗ + (i2)∗ for the inclusions i1 : U ↪→ X and I2 : V ↪→ X.
Example 6.2.2. Let us consider the topological space S2 ∨ S1. This has an open cover by
U = S2 ∪ {little bit of S1} and V = {little bit of S2} ∪ S1. This has the property that
U ' S2, V ' S1 and U ∩V ' ∗. Thus the relevant part of the Mayer–Vietoris long exact
sequence looks like:

H2(U ∩ V ) = 0 H2(U)⊕H2(V ) = Z H2(X)

H1(U ∩ V ) = 0 H1(U)⊕H1(V ) = Z H1(X)

H0(U ∩ V ) = Z H0(U)⊕H0(V ) = Z2 H0(S2 ∨ S1) = Z.(id,−id) +

So we conclude that

H∗(S2 ∨ S1) ∼=
{
Z if ∗ = 0, 1, 2,
0 otherwise.
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The previous example is an instance of a general result. We say that pointed spaces
X is well-pointed if the basepoint x0 ∈ X has a small neighborhood which deformation
retracts onto it.

Proposition 6.2.3. If X and Y are well-pointed, then the natural map

H̃∗(X)⊕ H̃∗(Y ) −→ H̃∗(X ∨ Y )

is an isomorphism.

6.3 The suspension isomorphism

Our first application of Mayer–Vietoris is a generalization of the following computation
for spheres

H̃∗+1(Sn+1) ∼= H̃∗(Sn).

We can obtain Sn+1 from Sn by taking Sn × [−1, 1] and collapsing both of the subsets
Sn×{1} and Sn×{−1} to a point. Replacing Sn with X we get the unreduced suspension:

Definition 6.3.1. Let X be a topological space. Its unreduced suspension SX is given
by

SX := (X × [−1, 1])/∼,

with ∼ the equivalence relation generated by (x, 1) ∼ (x′, 1) and (y,−1) ∼ (y,−1).

Example 6.3.2. This can also be obtained by gluing together two cones:

CX = (X × [0, 1])/∼,

with ∼ the equivalence relation generated by (x, 1) ∼ (x′, 1). This contains a copy of
X as the image of X × {0} under the quotient map X × [0, 1] → CX. Then SX is
homeomorphic to CX ∪X CX.

Proposition 6.3.3 (Suspension isomorphism). There is an isomorphism

H̃∗+1(SX) ∼= H̃∗(X).

Proof. Let U ⊂ SX be the image of X × [−1, 1/2) in SX, and V be the image of
X × (−1/2, 1]. These are both contractible, deformation retracting onto one of the two
cone points. Their intersection U ∩ V is (−1/2, 1/2)×X, which is homotopy equivalent
to X.

The Mayer–Vietoris sequence for reduced homology looks like:

· · · H̃m+1(U)⊕ H̃m+1(V ) H̃m+1(U ∩ V )

H̃m(U ∩ V ) H̃m(U)⊕ H̃m(V ) H̃m(U ∩ V )

H̃m−1(U ∩ V ) H̃m−1(U)⊕ H̃m−1(V ) · · ·
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and substituting our values for U ∩ V , U , V , and U ∩ V , we get

· · · 0 H̃m+1(SX)

H̃m(X) 0 H̃m(SX)

H̃m−1(X) 0 · · ·

We conclude that the connecting homomorphisms give isomorphisms H̃m+1(SX)
∼=−→

H̃m(X).

6.4 Many examples

Let us compute some examples, so as to get used to our tools.

6.4.1 The torus, the real projective plane, and the Klein bottle

What the three topological spaces in the title of this subsection have in common is
that there are obtained from a square [0, 1]2 by make an identification on its boundary. I
will not give formula’s for them, but just draw pictures.
Example 6.4.1 (Torus). In this case we have

.

.

∧ ∧

We can cover the torus T2 by two open subsets: a little disk around the center U , and
the complement of the center V :

.

.

∧ ∧

U

V

Then it is clear that U ' ∗, U ∩ V ' S1, and V deformation retracts onto the
boundary. This is a wedge of two circles, S1 ∨ S1: the two horizontal edges get identified
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to a circle, as do the two vertical edges, and they get glued together at the corner. We
know how to compute the homology of each of these.

The Mayer–Vietoris sequence looks like

H2(U ∩ V ) = 0 H2(U)⊕H2(V ) = 0 H2(U ∪ V ) = ?

H1(U ∩ V ) = Z H1(U)⊕H1(V ) = Z2 H1(U ∪ V ) = ?

H0(U ∩ V ) = Z H0(U)⊕H0(V ) = Z H0(U ∪ V ) = Z

We did not draw higher degrees, as those will consists only of zeroes: Hm(T2) = 0 for
m > 2. We also know the homomorphisms on the bottom row; the left one is n 7→ (n,−n),
the right one is (n,m) 7→ n + m. In particular, the left one is injective. Thus it only
remains to understand the homomorphism

H1(U ∩ V ) = Z −→ H1(U)⊕H1(V ) = H1(V ) = Z2.

We can do this by recalling that the isomorphism H1(V ) ∼= Z2 can be given by
H1(S1∨S1)→ H1(S1)⊕H1(S1) induced by the two maps p0, p1 : S1∨S1 → S1 collapsing
one of the two wedge summands to a point. But the composition

S1 '−→ U ∩ V −→ V
'−→ S1 ∨ S1 pi−→ S1

is given by the domain S1 going along target S1 twice; once in one direction and once in
the other. This is null-homotopic. Hence the map H1(U ∩ V )→ H1(V ) is 0.

Feeding this into the Mayer–Vietoris long exact sequence we get

H∗(T2) =


Z if ∗ = 0,
Z2 if ∗ = 1,
Z if ∗ = 2,
0 if ∗ > 2.

Example 6.4.2 (The real projective plane). In this case we have

/

.

∧ ∨

We can cover the real projective plane RP 2 by the same two open subsets: a little
disk around the center U , and the complement of the center V . We still have U ' ∗,
U ∩ V ' S1, but now also V ' S1.
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The Mayer–Vietoris sequence now looks like

H2(U ∩ V ) = 0 H2(U)⊕H2(V ) = 0 H2(U ∪ V ) = ?

H1(U ∩ V ) = Z H1(U)⊕H1(V ) = Z H1(U ∪ V ) = ?

H0(U ∩ V ) = Z H0(U)⊕H0(V ) = Z H0(U ∪ V ) = Z

As before, it remains to understand the map

S1 '−→ U ∩ V −→ V
'−→ S1.

It is the map that sends the domain S1 around the target S1 twice. This implies that the
map H1(U ∩ V )→ H1(V ) is 2 : Z→ Z. This is injective with cokernel Z/2, and feeding
this into the Mayer–Vietoris long exact sequence we get

H∗(RP 2) =


Z if ∗ = 0,
Z/2 if ∗ = 1,
0 if ∗ > 1.

Example 6.4.3 (The Klein plane). In this case we have

/

.

∧ ∧

We again cover the Klein plane K by a little disk around the center U , and the complement
of the center V . We still have U ' ∗, U ∩ V ' S1, but now V ' S1 ∨ S1 again.

The Mayer–Vietoris sequence thus looks like that for T2, and we need to understand
the two maps

S1 '−→ U ∩ V −→ V
'−→ S1 ∨ S1 pi−→ S1.

One of these is null-homotopic, but the other is homotopic to the map that sends the
domain S1 around the target S1 twice. By the discussion of degree, this implies that
the map H1(U ∩ V )→ H1(V ) is given by (0, 2) : Z→ Z2. This is injective with cokernel
Z⊕ Z/2, and feeding this into the Mayer–Vietoris long exact sequence we get

H∗(K) =


Z if ∗ = 0,
Z⊕ Z/2 if ∗ = 1,
0 if ∗ > 1.
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6.4.2 Knot complements

A knot K is a smoothly embedded circle in R3. One might wonder whether the
homology of its complement R3 \K is an interesting invariant.
Example 6.4.4. For the trivial knot K0, R3 \K0 is homotopy equivalent to S2 ∨ S1, and
its homology is Z in degrees 0, 1, 2 and vanishes in other degrees.

The following says it is not:

Proposition 6.4.5. We have

H∗(R3 \K) =
{
Z if ∗ = 0, 1, 2,
0 if ∗ > 2.

Proof. We need a result in differential topology which says that there exists an open
neighborhood V of K which is homeomorphic to K × int(D2). This is in particular
homotopy equivalent to S1.

Let us cover R3 by U = R3 \K and V as above. Then U ∩ V ' S1 × S1 = T2. The
interesting part of the Mayer–Vietoris long exact sequence looks like

· · · H3(U ∪ V ) = 0

H2(U ∩ V ) = Z H2(U)⊕H2(V ) = ?⊕ 0 H2(U ∪ V ) = 0

H1(U ∩ V ) = Z2 H1(U)⊕H1(V ) = Z⊕ ? H1(U ∪ V ) = 0

H0(U ∩ V ) = Z H0(U)⊕H0(V ) = Z H0(U ∪ V ) = Z.

The proposition now easily follows.

Question 6.4.6. What is the generalization to an embedded Sk in Rn?

6.5 Problems

Problem 6.5.1 (Surfaces). Recall that Σg denotes an orientable surfaces of genus g.
(i) Compute H∗(Σg \ int(D2)) for g ≥ 1.
(ii) Prove that the inclusion ∂(Σg \ int(D2))→ Σg \ int(D2) induces the zero map on

H1.
(iii) Compute H∗(Σg) for g ≥ 1. (Hint: (1.3) gives the answer.)

Problem 6.5.2 (Products with circles).
(i) Prove that H∗(X × S1) ∼= H∗(X)⊕H∗−1(X).
(ii) Let Tn = (S1)n be the n-torus. Give without proof a formula for H∗(Tn).



48 Chapter 6 The locality principle and the Mayer–Vietoris theorem

The following is used in the proof of the locality principle.

Problem 6.5.3 (Lebesgue number lemma). Let {Ui}i∈I be an open cover of a compact
metric space (X, d). Prove that there exists a real number ε > 0 such that each subset of
X of radius < ε is contained in some Ui. (Hint: explain why you can assume I is finite
and consider x 7→ maxi∈I d(x,X − Ui).)

The Kakutani fixed point theorem

Let P(X) denote the set of subsets of X. We will prove a version of the Kakutani
fixed point theorem, which is used in game theory and economics:

Theorem (The Kakutani fixed point theorem). Recall that ∆n−1 ⊂ Rn is the convex
hull of the standard basis vectors e1, . . . , en and suppose we are given

f : ∆n−1 −→ P(∆n−1)

satisfying
(i) for all x ∈ ∆n−1, f(x) ⊂ ∆n−1 is convex,

(ii) the set {(x, y) | y ∈ f(x)} ⊂ (∆n−1)2 is closed.
Then there exists an x ∈ ∆n−1 such that x ∈ f(x).

Observe that ∆n−1 is the convex hull conv(e1, . . . , en) of the standard basis vectors. This
means any point x ∈ ∆n−1 can be written uniquely as

∑n
i=1 tiei for ti ∈ [0, 1]. Pick

yi ∈ f(ei) for 1 ≤ i ≤ n, and define f0 : ∆n−1 → ∆n−1 by sending
∑
tiei 7→

∑
tiyi.

Problem 6.5.4.
(i) More generally, for k ≥ 1 take the kth barycentric subdivision Sk(∆n−1) and for

each of its vertices vi pick yi ∈ f(vi). Modify the definition of f0 and construct a
continuous map fk : ∆n−1 → ∆n−1 such that fk(vi) = yi.

(ii) Prove that fk has a fixed point xk.

(iii) Pick an (n − 1)-simplex conv(vk1 , . . . , vkn) of Sk(∆n−1) containing xk, with corre-
sponding yki ∈ f(vki ). Write xk =

∑n
i=1 t

k
i v
k
i . Prove that the sequence

(xk, (tki ), (vki ), (yki )) ∈ ∆n−1 × [0, 1]n × (∆n−1)n × (∆n−1)n

has a convergent subsequence.

(iv) Prove that its first component converges to an x satisfying x ∈ f(x).

Remark 6.5.5. Using suitable extension theorems for functions, you can deduce from the
previous result a stronger one, replacing ∆n−1 with a compact convex subset P ⊂ Rn.
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Good open covers

Definition 6.5.6. An open cover U1, . . . , Ur of X is good if for all subsets I ⊂ {1, . . . , r}
either

⋂
i∈I Ui is empty or has trivial reduced homology.

Problem 6.5.7 (Good open covers).
(i) Prove that if X has a good open cover with r elements, then H̃i(X) = 0 for i ≥ r−1.
(ii) Give an example showing this is optimal, i.e. find an X with a good open cover

with r elements and H̃r−2(X) 6= 0.
(iii) Suppose X has a good open cover with r elements. Give a non-trivial bound on

the rank on H̃1(X) in terms of r (it does not need to be optimal).

Mapping tori

Definition 6.5.8. Given f, g : X → Y , let Z be the topological space obtained as the
quotient

Z := (Y tX × [0, 1])/∼

with ∼ the equivalence relation generated by (x, 0) ∼ f(x) and (x, 1) ∼ g(x).
If g = id, this is called the mapping torus of f .

Problem 6.5.9 (The homology of mapping tori). We shall construct a long exact
sequence

· · · Hn(Y ) Hn(Z)

Hn−1(X) Hn−1(Y ) · · ·

f∗−g∗ i∗

f∗−g∗ i∗

(6.1)

with i : Y → Z the composition Y ↪→ Y tX× [0, 1]→ Z of the inclusion and the quotient
map.

(i) The composition X × [0, 1]→ Y tX × [0, 1]→ Z maps X ×{0, 1} to Y ; thus there
is a map of pairs (X × [0, 1], X × {0, 1}) → (Z, Y ). Prove that this induces an
isomorphism

H∗(X × [0, 1], X × {0, 1})
∼=−→ H∗(Z, Y ).

This fits into a map of long exact sequences

· · · Hn+1(X × [0, 1], X × {0, 1}) Hn(X × {0, 1}) Hn(X × [0, 1]) · · ·

· · · Hn+1(Z, Y ) Hn(Y ) Hn(Z) · · ·

∂

∼=
i∗

(ii) Prove that the boundary homomorphism ∂ : Hn+1(X× [0, 1], X×{0, 1})→ Hn(X×
{0, 1}) is an isomorphism onto the subgroup of elements of the form (a,−a).

(iii) Prove the existence of long exact sequence (6.1).

Problem 6.5.10 (Examples of mapping tori).



50 Chapter 6 The locality principle and the Mayer–Vietoris theorem

(i) The torus T2 is the mapping torus of the identity map id: S1 → S1. Use this to
compute H∗(T2).

(ii) The Klein bottle K is a mapping torus of a map f : S1 → S1. Which map? Use
this to compute H∗(K).



Chapter 7

CW-complexes

Having established the axioms which homology satisfies, we will now develop powerful
computational tools. The most important of these is CW-homology, which gives a very
small chain complex computing the homology of a topological space obtained from gluing
together Dn’s. In this chapter we define that class of topological spaces.

7.1 Attaching cells

7.1.1 Gluings and pushouts

Given a pair (B,A) and a map f : A→ X we can form a new topological space

X ∪f B

by taking (X tB)/∼ where ∼ is the equivalence relation generated by a ∼ f(a) for all
a ∈ A. We give this the quotient topology. This fits in a commutative diagram

A X

B X ∪f B

Example 7.1.1. If A = ∅ then X ∪f B = X tB.

Example 7.1.2. If X = A and f = id, then X ∪f B = B.

Example 7.1.3. If X = ∗ then X ∪f B = B/A.

Example 7.1.4. If (B,A) = (Dn, Sn−1), X = Dn and f is the inclusion Sn−1 → Dn, then
X ∪f B ∼= Sn.

This is an instance of a pushout, a concept in category theory. Given a diagram

A X

B

51
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in C, a pushout is an object P with a pair of morphisms f : X → P , g : B → P such that

A X

B P

f

g

commutes, and for every other commutative diagram

A X

B Q

f̄

ḡ

there exists a unique morphism u : P → Q such that

A X

B P

Q

f
f̄

g

ḡ

u

commutes. We refer to the latter as the universal property of the pushout P .
Remark 7.1.5. It is not the case that “being a pushout” is a property of the object P ;
instead, it is a property of P and the morphisms f, g. This is not included in the notation.

Lemma 7.1.6. P is unique up to isomorphism.

Proof. If P ′ has the same universal property, then we get morphisms u and u′ in

A X

B P

P ′

f
f ′

g

g′

u

A X

B P ′

P.

f ′

f

g′

g

u′

Thus we get a morphisms u′ ◦ u : P → P . By the universal property of P this is the
unique morphism which fits into the commutative diagram

A X

B P

P

f
f

g

g

u

But so does idP : P → P , hence u′ ◦ u = idP . A similar argument gives u ◦ u′ = idP ′ , so
u and u′ are mutually inverse isomorphisms between P and P ′.
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The usual gluing construction is indeed a pushout:

Lemma 7.1.7. The object X ∪f B (with its maps j : X → X ∪f B and g : B → X ∪f B)
is a pushout of

A X

B

f

Proof. We must prove that given a commutative diagram

A X

B Q

f

j̄

ḡ

there is a unique map u : X ∪f B → Q such that

A X

B X ∪f B

Q

f

i j
j̄g

ḡ

u

commutes. Indeed, to make the right triangle commute we must set u([x]) = j̄(x) and to
make the left triangle commute we must set u([b]) = ḡ(x). This is unique since we have
given the value on all points of X ∪f B.

To see this is well-defined, we must verify that u takes the same value on a and f(a);
it does because j̄ ◦ f = ḡ ◦ i. This is continuous by the definition of the quotient topology;
it is continuous when the composition X tB → X ∪f B → Q is, but this is j̄ t ḡ

7.1.2 Cell attachments

Let us take (B,A) = (Dn, Sn−1), and call the pushout

Sn−1 X

Dn X ∪f Dn

f

the result of attaching an n-cell to X. We call f : Sn−1 → X the attaching map and
Dn → X ∪f Dn the characteristic map.
Example 7.1.8. We have seen a number of these already: starting with a single 0-cell D0,
S1 is obtained by attaching a single 1-cell, and S1 ∨ S1 by attaching two 1-cells. From
this we can build the torus T2 and the Klein bottle K by attaching a 2-cell: the following
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figures identify D2 with [0, 1]2 (by a homeomorphism) and tell us what the attaching
maps are

.

.

∧ ∧

/

.

∧ ∧

In the these figures we only indicated the attaching maps but did not give formula’s.
One justification for this is the following lemma:

Lemma 7.1.9. If f0, f1 : Sn−1 → X are homotopic, then X ∪f0 D
n and X ∪f1 D

n are
homotopy equivalent.

Proof. Let H : Sn−1 × [0, 1] → X be a homotopy from f1 to f0. Parametrizing Dn by
radial coordinates (r, θ) ∈ [0, 1] × Sn−1, I will write a map u : X ∪f0 D

n → X ∪f1 D
n,

and leave it to you to produce the homotopy inverse and the required homotopies.
The idea will be to insert the homotopy on the collar of the boundary. We first give

a map

ḡ : Dn −→ X ∪f1 D
n

(r, θ) 7−→
{
H(θ, 2r − 1) if x = (r, θ) with r ≥ 1/2,
(2r, θ) if x = (r, θ) with r ≤ 1/2.

This is well-defined when r = 1/2 because in X ∪f1 D
n the points H(θ, 0) = f1(θ) ∈ X

and (1, θ) ∈ Dn were identified.
We claim that this fits into a commutative diagram

Sn−1 X

Dn−1 X ∪f0 D
n

X ∪f1 D
n,

f0

i j
j̄

g

ḡ

u

with j̄ : X → X ∪f1 D
n the inclusion. This would produce uniquely the continuous map

u. This claim amounts to the statement ḡ(1, θ) = H(θ, 1) = f0(θ), using that H is a
homotopy from f1 to f0.

We can also attach multiple n-cells at the same time: set (B,A) = (
⊔
iD

n
i ,
⊔
i S

n−1
i )

and take the pushout ⊔
i S

n−1
i X

⊔
iD

n
i X ′.

f
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7.1.3 Increasing unions and sequential colimits

Given a sequence of inclusions

X0 ⊂ X1 ⊂ X2 ⊂ · · ·

we can topologize the union X :=
⋃
nXn by declaring a set C ⊂ X to be a closed if and

only if all of its intersections C ∩Xn are. This is a particular example of a sequential
colimit, again a concept in category theory. Given a diagram

X0 −→ X1 −→ X2 −→ · · ·

in C, a sequential colimit in an object P with morphisms fn : Xn → P such that

X0 X1 X2 · · ·

P

f0 f1
f2

commutes, and for every other commutative diagram

X0 X1 X2 · · ·

Q

f0 f̄1
f̄2

there exists a unique morphism u : P → Q such that

X0 X1 X2 · · ·

Q

P

u

commutes. This is the universal property of a sequential colimit, and we usually denote
P as colimn→∞Xn. The caveat of Remark 7.1.5 holds; being a sequential colimit is
not just a property of P but also the maps fn. As in Lemma 7.1.6 it is unique up to
isomorphism.

As the topology on the union X =
⋃
nXn has the property that a map g : X → Y is

continuous if and only if all of its restrictions g|Xn : Xn → Y are, it follows that this is
the sequential colimit of the diagram

X0 −→ X1 −→ X2 −→ · · ·

with horizontal maps given by the inclusions.
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7.2 CW-complexes

7.2.1 Definitions

A CW-complex is a topological space obtained by cell attachments, performed in
order of dimension.

Definition 7.2.1. A CW-complex is a topological space with a sequence of subspaces

∅ = sk−1(X) ⊂ sk0(X) ⊂ sk1(X) ⊂ · · · ⊂ X

such that
· for each n there is a pushout diagram

⊔
i∈In

Sn−1
i skn−1(X)

⊔
i∈In

Dn
i skn(X).

f

· X is the sequential colimit colimn→∞ skn(X).

Observe that a CW-complex is really a topological space equipped with some additional
structure. A topological space X can be made into a CW-complex in many ways. As a
set, X is the union of the interior of its cells.

Example 7.2.2. An n-sphere Sn can be given a CW-structure with a single 0-cell and a
single n-cell, but also a CW-structure with two k-cells for 0 ≤ k ≤ n. The latter is built
inductively: Sn is obtained from Sn−1 by attaching two hemispheres.

The advantage of the “more wasteful” CW-structure is that it is equivariant with
respect to reflection. Reflection swaps the two k-cells, and so we get a CW-structure on
the quotient Sn/{±1}. This is a model for the real projective space RPn of lines through
the origin in Rn+1. That is, RPn can be made into a CW-complex with a single k-cell
for 0 ≤ k ≤ n.

Example 7.2.3. It is a consequence of Morse theory that every smooth manifold admits
the structure of a CW-complex. For example, Poincaré homology sphere S3/I∗ has a
CW-structure with five 0-cells, ten 1-cells, six 2-cells, and a single 3-cell.

The subspace skn(X) is called the n-skeleton. By the universal property of sequential
colimits, f : X → Y is continuous if and only if all restrictions f |skn(X) : skn(X) → Y
are. Iteratively using the universal property of pushouts, this can be rephrased in terms
of the characteristic maps gi : Dn

i → X: f : X → Y is continuous if and only if each
composition f ◦ gi : Dn

i → X is. This is equivalent to saying that⊔
n

⊔
i∈In

gi :
⊔
n

⊔
i∈In

Dn
i −→ X

is a quotient map.
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7.2.2 Point-set topological properties

Let us end with some point-set topological properties. We first introduce some
terminology:

Definition 7.2.4. A CW-complex X is
· finite-dimensional if skn(X) = X for some n,
· of finite type if it has finitely many cells in each dimension,
· finite if it has finitely many cells.

Proposition 7.2.5. CW-complexes are Hausdorff, and compact if and only if they are
finite.

A subspace A of a CW-complex is a subcomplex if it is obtained by taking a subset
of the cells. More precisely, for A ⊂ X to be a subcomplex there should be subsets
Jk ⊂ Ik of the k-cells of X such that for each n ≥ 0, the sequence skn(A) := A ∩ skn(X)
provides Y with a CW-structure with characteristic maps for the k-cells given by gi with
i ∈ Jk. More generally, a cellular map is a continuous map f : X → Y which satisfies
f(skn(X)) ⊂ skn(Y ), so the inclusion A ↪→ X of a subcomplex is a cellular map.

Let us prove a generalization of the second part of the above proposition:

Proposition 7.2.6. Let X be a CW-complex. Then every compact subset K ⊂ X is
contained in a finite subcomplex.

Proof. We first prove that K is contained in finitely many cells, i.e. in the image of gi(Dn
i )

of finitely many characteristic maps. If not, we can find an infinite sequence x0, x1, . . .
of point in K such that all xi lie in distinct gi(Dn

i ). We claim that S := {x0, x1, . . .} is
closed. This is because its inverse image in the domain

⊔
n

⊔
i∈In

Dn
i consists of at most

one point in ecah Dn
i . The same argument works for any subset of S, so S is discrete.

Discrete and compact implies finite, leading to a contradiction.
Now we need to prove that every finite collection of cells lies in a finite subcomplex.

We prove this by induction over the maximal dimension n. To go from n to n+ 1, we
first observe that since a finite union of finite subcomplexes is finite, it suffices to prove
that each (n + 1)-cell lies in a finite subcomplex. The boundary of an (n + 1)-cell is
compact and by the previous part hence is contained in finitely many cells, necessarily
of lower dimension. By the induction step these are contained in a finite subcomplex.
Adding the (n+ 1)-cell to this gives a finite subcomplex which contains it.

Another useful property concerns the inclusion skn−1(X) ↪→ skn(X); this satisfies the
hypothesis for the isomorphism

H∗(skn(X), skn−1(X))
∼=−→ H̃∗(skn(X)/skn−1(X)).

This is useful, as there is a homeomorphism

skn(X)/skn−1(X)
∼=−→

∨
i∈In

Sni .
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Lemma 7.2.7. There is an open neighborhood B of skn−1(X) in skn(X) which defor-
mation retracts onto skn−1(X).

Proof. Let An := {(r, θ) | 1/2 ≤ r ≤ 1} ⊂ Dn, then B is given by the pushout

⊔
i∈In

Sn−1
i skn−1(X)

⊔
i∈In

Ani skn(X).

f

That is, we add collars on the boundaries of the n-cells Dn
i . The deformation retraction

is given by shrinking the size of these collars; I’ll leave it to you to give a formula.

7.3 Problems

Problem 7.3.1. Let complex projective n-space CPn be the topological space of complex
lines in Cn+1, i.e. the quotient space (Cn+1 \ {0})/C×. Give a CW-structure on CPn
with a single 2k-cell for 0 ≤ k ≤ n.

Problem 7.3.2 (Homology of CW-complexes). Prove the following properties by induc-
tion over the skeleton:

(i) If X is a finite-dimensional CW-complex, then there exists an N such that H∗(X) =
0 for ∗ > N .

(ii) If X is a finite CW-complex, then each homology group Hn(X) is finitely generated.

Problem 7.3.3 (Uniqueness of homology theories on CW-complexes). Suppose E∗ and
F∗ are homology theories, and η∗ : E∗ → F∗ is a natural transformation such that (i)
∂ ◦ η∗ = η∗−1 ◦ ∂ and (ii) η∗ : E∗(pt)→ F∗(pt) is an isomorphism.

(i) Prove that η∗ : E∗(Sn)→ F∗(Sn) is an isomorphism for all n ≥ 0.
(ii) Prove that η∗ : E∗(X)→ F∗(X) is an isomorphism for all finite CW-complexes X.
(iii) Outline a proof that η∗ : E∗(X)→ F∗(X) is an isomorphism for all CW-complexes

X.

Homology of sequential colimits

Definition 7.3.4. Given a sequence

A1
f1−→ A2

f2−→ A3
f3−→ · · ·

of abelian groups and homomorphisms, the (sequential) colimit colimi→∞Ai is the
quotient (⊔

Ai
)
/∼

with ∼ the equivalence relation generated by (i, a) ∼ (i+ 1, fi(a)).
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This is an abelian group with homomorphisms Ai → colimi→∞Ai fitting into a
commutative diagram

A1 A2 A3 · · ·

colimi→∞Ai.

Problem 7.3.5 (Sequential colimits of abelian groups). Prove that, as the notation
suggests, colimi→∞Ai is the sequential colimit in the category of abelian groups.

Problem 7.3.6 (Homology of sequential colimits of chain complexes).
(i) Let A0

∗ → A1
∗ → A2

∗ → · · · by a sequence of chain complexes and chain maps.
Define the sequential colimit chain complex colimn→∞A

n
∗ .

(ii) Use the universal property of colimits to construct a map

colimn→∞H∗(An∗ ) −→ H∗(colimn→∞A
n
∗ ).

(iii) Prove that this is an isomorphism. We say that “homology commutes with sequential
colimits.”

Problem 7.3.7 (Homology of sequential colimits of spaces).
(i) Suppose that a topological space Y has a filtration Y0 ⊂ Y1 ⊂ Y2 ⊂ · · · ⊂ Y such

that every continuous map f : K → Y with K compact, factors over some Yi. Prove
that

Hn(Y ) ∼= colimi→∞Hn(Yi).

(ii) Prove that if X is a CW-complex, then sk0(X) ⊂ sk1(X) ⊂ sk2(X) ⊂ · · · ⊂ X has
the above property. Conclude that Hn(X) ∼= colimi→∞Hn(ski(X)).

(iii) Use this to prove the following generalization of Problem 7.3.2 (ii): if X is of finite
type, then each homology group Hn(X) is finitely generated.
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CW-homology

In this chapter, we describe a small chain complex which computes the homology
of a CW-complex. It is based on the fundamental observation that H∗(Dn, Sn−1) is
concentrated in the single degree n, given by Z.

8.1 The degree of a map between spheres

In Theorem 5.1.6 we computed that H̃∗(Sn) vanishes unless ∗ = n, in which case it is
given by Z. By identifying this group with H̃n(∂∆n+1), Example 5.1.7 gives a canonical
generator which we denote [Sn]. We can use this to define an invariant of maps Sn → Sn.

Definition 8.1.1. The degree of a map f : Sn → Sn is the integer deg(f) ∈ Z such that
f∗([Sn]) = deg(f)[Sn].

Since H̃∗ is a homotopy-invariant functor, this has the following properties:

Lemma 8.1.2.
· deg(f) only depends on the homotopy class of f ,
· deg(idSn) = 1,
· deg(g ◦ f) = deg(g) deg(f).

Example 8.1.3. If f : Sn → Sn is a homotopy equivalence, by definition there exists a
g : Sn → Sn such that g ◦ f ' idSn . Thus deg(g) deg(f) = deg(g ◦ f) = deg(idSn) = 1,
so deg(f) = ±1. It is in fact the case that f is a homotopy equivalence if and only
if deg(f) = ±1, and proving this amounts to verifying that deg : [Sn, Sn] → Z is an
isomorphism when n ≥ 1.

8.1.1 Applications

The degree of orthogonal maps

An orthogonal matrix A ∈ O(n+ 1) induces a homeomorphism fA : Sn → Sn, so its
degree must be ±1.

Lemma 8.1.4. The degree of fA is 1 if and only if A ∈ SO(n).

60
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Proof. Since O(n) has two path components, it suffices to prove that the degree of a
reflection is −1. To see this, use that under the identifications H̃n(Sn) ∼= H̃n(∂∆n+1) ∼=
Hn+1(∆n+1, ∂∆n+1) the generator [Dn+1, Sn] is represented by id∆n+1 . Under these
identification, we can obtain the reflection on Sn as the restriction of the boundary of a
map of ∆n+1 obtained by exchanging two vertices. This sends [id∆n+1 ] to −[id∆n+1 ].

Thus the degree of −id : Sn → Sn is (−1)n+1. This has the following application:

Proposition 8.1.5. If f : Sn → Sn has no fixed point then deg(f) = (−1)n+1.

Proof. Such a map f is homotopic to −id via the homotopy

ft(x) = (1− t)f(x)− tx
||(1− t)f(x)− tx|| .

The hypothesis implies that the denominator never vanishes.

Local computation of degree

The degree of a map can be computed from local data. Suppose that n ≥ 1,
U ⊂ Sn is open, x ∈ Sn, and f : U → Sn such that f−1(x) is compact, then we have a
homomorphism

H̃n(Sn) −→ Hn(Sn, Sn \ f−1(x))
∼=←− Hn(U,U \ f−1(x))

f∗−→ Hn(Sn, Sn \ {x})
∼=−→ H̃n(Sn)

with associated degree degx(f). Comapactness is used to justify excision in the first
isomorphism.

We enlarge f−1(x) to a compact K and shrink U to an open V , as long as K ⊂ V ,
and get the same degree. This follows from the commutative diagram

Hn(Sn, Sn \ f−1(x)) Hn(U,U \ f−1(x))

H̃n(Sn) Hn(Sn, Sn \ {x})

Hn(Sn, Sn \K) Hn(V, V \K)

In particular, if U = Sn we may take K = Sn and deduce that degx(f) = deg(f).
If V is a disjoint union

⋃r
j=1 Vj and all f−1(Vj) are disjoint, this gives a formula for

the degree of f as a sum of local degrees

degx(f) =
r∑
j=1

degx(f |Vj ).

Example 8.1.6. This can be used to construct maps Sn → Sn of arbitrary degrees k ∈ Z.
Thus the homomorphism deg : [Sn, Sn]→ Z is surjective.
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We will want to apply this when f : Sn → Sn is smooth near f−1(x). Let me use some
terminology from differential topology. We then want to assume that x is a regular value
of f . This means that the derivative dyf of f is surjective at all points y in f−1(x). By
the inverse function theorem there are orientation-preserving charts around x and disjoint
orientation-preserving around each y such that f looks like a (necessarily invertible)
linear map. Letting Vy denote the image of the chart around y, an argument as in Lemma
8.1.4 shows the local degree degx(Vy) = ±1 and equal to 1 if and only if dyf is preserves
the orientation. In that case, this above formula says that

degx(f) = #{y ∈ f−1(x) with dyf orientation-preserving}
−#{y ∈ f−1(x) with dyf orientation-reserving}.

The fundamental theorem of algebra

The unit complex numbers endow S1 with a multiplication

µ : S1 × S1 −→ S1.

Thus, given two maps f, g : S1 → S1 we can form another map

µ(f, g) : S1 ∆−→ S1 × S1 f×g−−→ S1 × S1 µ−→ S1,

with ∆: S1 → S1 × S1 the diagonal map x 7→ (x, x).

Lemma 8.1.7. deg(µ(f, g)) = deg(f) + deg(g).

Proof. By a generalization of Problem 6.5.2, we know that the induced map

(π1)∗ ⊕ (π2)∗ : Hn(Sn × Sn) −→ Hn(Sn)⊕Hn(Sn) = Z⊕ Z

is an isomorphism. Generators are given by (i1)∗[S1] and (i2)∗[S1] with ij : S1 → S1×S1

the inclusion whih takes the other component to be 1. From this, we deduce that
∆∗[S1] = (i1)∗[S1] + (i2)∗[S1] and µ∗(a(i1)∗[S1] + b(i2)∗[S1]) = (a + b)[S1]. The result
then follows from the computation

(f × g)∗((i1)∗[S1] + (i2)∗[S1]) = (i1 ◦ f)∗[S1] + (i2 ◦ g)∗[S1]
= deg(f)i∗[S1] + deg(g)i∗[S1].

Note that the map z 7→ z2 is µ(id, id) so has degree 2. By induction deg(z 7→ zk) = k.

Corollary 8.1.8 (Fundamental theorem of algebra). Any non-constant complex polyno-
mial has a zero.

Proof. For contradiction, let p be a non-constant polynomial without a zero and write
p(z) = anz

n + an−1z
n−1 + · · ·+ a1z + a0. By replacing p(z) by p(Rz) for small R > 0 if

necessary, we may assume that |an|+ · · ·+ |a1| < |a0|. First consider the map

p̂ : S1 −→ S1

z 7−→ p(z)
||p(z)|| .
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Taking p(tz)
||p(tz)|| , the map p̂ is homotopic to a constant map so has degree 0.

Next consider the polynomials

pt(z) := anz
n + (1− t)(an−1z

n−1 + · · ·+ a1z + a0)

for t ∈ [0, 1], which have no zeroes on the unit circle since |an|+ · · ·+ |a1| < |a0|. Hence
taking the maps S1 → S1 given by pt(z)

||pt(z)|| , we see that p̂ is homotopic to z 7→ zn so has
degree n. Since n > 0 because p is not constant, this gives a contradiction.

8.2 CW-homology

Let X be a CW-complex. Recall that skn−1(X) ⊂ skn(X) has an open neighborhood
which deformation retracts onto skn−1(X) and that skn(X)/skn−1(X) is homeomorphic to
a wedge

∨
i∈In

Sni of n-spheres indexed by the n-cells of X. Thus H∗(skn(X), skn−1(X)) =
0 vanishes unless ∗ = n, in which case there is a natural isomorphism

Hn(skn(X), skn−1(X))
∼=−→ Z⊕In .

We shall denote these groups by CCW
n (X) and will show that they assemble to a chain

complex

· · · −→ CCW
n (X) d−→ CCW

n−1(X) −→ · · ·

whose homology is isomorphic to H∗(X). Though the notation does not reflect this,
C∗(X) of course depends on the choice of CW-structure on X; a different CW-structure
gives a different chain complex.

Let us first define the differential

d : CCW
n (X) −→ CCW

n−1(X)

and verify that d2 = 0. For the sake of readibility, we shorten notation to

Xn := skn(X).

It is obtained by pasting together pieces from two long exact sequences of pairs

Hn(Xn, Xn−1) Hn−1(Xn−1) Hn−1(Xn−1, Xn−2).

d

∂

To see it squares to zero, consider the commuting diagram with C∗(X) for ∗ = n+1, n, n−1
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appearing on the diagonal:

...
...

Hn+1(Xn+1, Xn) Hn−1(Xn−2)

Hn(Xn−1) Hn(Xn, Xn−1) Hn−1(Xn−1)

Hn(Xn+1) Hn−1(Xn−1, Xn−2)

...
...

∂
d

∂

d

Now observe that the composition of the middle two horizontal maps is zero, as they are
part of the same long exact sequence.

Theorem 8.2.1. There are isomorphisms H∗(C∗(X)) ∼= H∗(X).

Proof. By induction over the long exact sequence of the triples Xk ⊂ Xk+1 ⊂ Xn we
conclude that H∗(Xn, Xk) = 0 if ∗ ≤ k or ∗ ≥ n+ 1. Taking k ≤ n− 2, this give us the
zero entries in the commutative diagram (similar to the one used above, but constructed
from long exact sequences of triples instead of pairs)

...

Hn+1(Xn+1, Xn) 0

0 Hn(Xn, Xk) Hn(Xn, Xn−1) Hn−1(Xn−1, Xk)

Hn(Xn+1, Xk) Hn−1(Xn−1, Xn−2)

0
...

∂n+1
dn+1

i∗

∂n

dn
j∗

This gives that

Hn(Xn+1, Xk) = Hn(Xn, Xk)/im(∂1)
= im(i∗)/im(i∗∂n+1) i∗ is injective
= ker(∂n)/im(dn+1) row is exact
= ker(j∗∂n)/im(dn+1) j∗ is injective
= ker(dn)/im(dn+1).
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It remains to identify Hn(Xn+1, Xk) with Hn(X,Xk). To do so, one takes a colimit
as n→∞ to see that H∗(X,Xk) = 0 if ∗ ≤ k and uses the long exact sequence

· · · −→ H∗(Xn+1, Xk) −→ H∗(X,Xk) −→ H∗(X,Xn+1) −→ · · ·

we conclude H∗(Xn+1, Xk)→ H∗(X,Xk) is an isomorphism when ∗ ≤ n.

If f : X → Y is a cellular map between CW-complexes, it induces maps

f∗ : H∗(Xn, Xn−1) −→ H∗(Y n, Y n−1),

compatible with the long exact sequence used to construct the differential. Thus it
induces a chain map f∗ : C∗(X)→ C∗(Y ). The previous argument is natural in cellular
maps, and proves that the following diagram commutes

H∗(C∗(X)) H∗(C∗(Y ))

H∗(X) H∗(Y ).

f∗

∼= ∼=
f∗

Let us end with the explicit identification of the differential. It is a homomorphism

d : Z⊕In = Hn(Xn, Xn−1) −→ Hn−1(Xn−1, Xn−2) = Z⊕In−1 ,

so is uniquely determined by the components

Z Z

Z⊕In Z⊕In−1 .

inclusion of i ∈ In

d

projection to i′ ∈ In−1

As a homomorphism, the dashed map is multiplication by some integer. From the
commutative diagram

Hn(Dn
i , S

n−1
i ) Hn−1(Sn−1

i )

Hn(Xn, Xn−1) Hn−1(Xn−1) Hn−1(Xn−1, Xn−2) Hn−1(Dn−1
i′ , Sn−2

i′ )

∂
∼=

∂

we see it is the degree of the map

Sn−1
i −→ Dn−1

i′ /Sn−2
i′

given by the composition of the attaching map of the ith n-cell with the map Xn−1 →
Dn−1
i′ /Sn−2

i′ collapsing all except the interior of the i′th (n− 1)-cell to a point.
In practice, the techniques of Section 8.1.1 are used to compute this: after a homotopy

we may assume the attaching map is smooth near the pre-image of a point in the interior
of the i′th (n − 1)-cell and has this point as a regular value, and then we count the
pre-images with sign. In practice, this means counting how many times the attaching
map “goes across the (n− 1)-cell, counted with orientation.” For example, this is really
the technique we were using in Section 6.4.1.
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8.3 Examples

8.3.1 Real projective spaces

In Example 7.2.2 we gave a CW-structure on Sn with two k-cells for all 0 ≤ k ≤ n.
Some reflection upon the attaching maps shows that the cellular chain complex C∗(Sn)
is given by

Z2

[
1 −1
1 −1

]
←−−−−− Z2

[
1 −1
−1 1

]
←−−−−−− Z2 ←− · · · ←− Z2

with differential given alternatively by the indicated matrices. One can recover the
homology of Sn from this, but that’s not goal. Instead, we want to compute the homology
of RPn = Sn/{±1}. The indicated CW-structure has a single k-cell for all 0 ≤ k ≤ n
and the differential can be determined by observing that the quotient map Sn → RPn is
a cellular map; it identifies the generators of the copies of Z (up to a sign in even degrees,
because reflection then has odd degree). Thus we get that the cellular chain complex
C∗(RPn) is given by

Z 0←− Z 2←− Z←− · · · ←− Z

with differential given alternatively by 0 and 2. We conclude that

H∗(RP 2n) =


Z if ∗ = 0,
Z/2 if ∗ = 1, 3, · · · , 2n− 1
0 otherwise.

H∗(RP 2n+1) =


Z if ∗ = 0, 2n+ 1,
Z/2 if ∗ = 1, 3, · · · , 2n− 1
0 otherwise.

8.3.2 Euler characteristics

If A∗ is a graded abelian group which has finitely-many non-zero entries, each of
which is finitely-generated, we have an invariant

χ(A∗) =
∞∑

n=−∞
(−1)n rk(An)

called the Euler characteristic. Let us say A∗ is finitely-generated if it satisfies the above
assumptions.

If X is a finite CW-complex, then its homology H∗(X) satisfies the above assumptions
and we can define

χ(X) := χ(H∗(X)).

Proposition 8.3.1. For a finite CW-complex X, we have

χ(X) =
∞∑
n=0

(−1)n #{n-cells}.
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This follows from the application of the following lemma to C∗(X).

Lemma 8.3.2. If A∗ is a finitely-generated chain complex, then χ(A∗) = χ(H∗(A∗)).

Proof. This uses the simple fact that if 0→ A→ B → C → 0 is a short exact sequence
of finitely-generated abelian groups, χ(A)−χ(B)+χ(C) = 0. (This follows from example
from the classification of finitely-generated abelian groups.)

We write Bn, Zn, and Hn, for the boundaries, cycles, and homology of A∗ in degree
n. Then 0→ Bn → Zn → Hn → 0 and 0→ Zn → An → Bn−1 are exact. Thus we can
write

χ(H∗(A∗)) =
∞∑
n=0

(−1)nrk(Hn)

=
∞∑
n=0

(−1)n(rk(Zn)− rk(Bn))

=
∞∑
n=0

(−1)n(rk(An)− rk(Bn)− rk(Bn−1))

=
∞∑
n=0

(−1)nrk(An)

= χ(A∗),

where the fourth equality uses that the terms rk(Bn) cancel out.

Example 8.3.3. Since Σg has a CW-structure with one 0-cell, 2g 1-cells, and one 2-cell,
we have that χ(Σg) = 2− 2g. This is consistent with (1.3).

To compute Euler characteristics, one often uses the following consequence of the fact
stated at the beginning of the proof of the previous lemma. One might apply it to the
long exact sequence of a pair, or Mayer–Vietoris.

Lemma 8.3.4. Suppose 0 → A∗ → B∗ → C∗ → 0 is a short exact sequence of chain
complexes. Then if any two of them are finitely-generated so is the third, and

χ(A∗)− χ(B∗) + χ(C∗) = 0.

8.4 Problems

Problem 8.4.1 (The degree of a map without antipodal points). Suppose that f : Sn →
Sn has no antipodal points, that is, f(x) 6= −x for all x ∈ Sn. Prove that deg(f) = 1.

Problem 8.4.2 (Top homology of CW-complexes). Use CW-homology to prove that if
X is an n-dimensional CW-complex, then Hn(X) is a free abelian group.

Problem 8.4.3 (Homology of complex projective planes). Use Problem 7.3.1 to compute
H∗(CPn).
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Problem 8.4.4 (The homology of geometric realizations). Recall ||X•|| from Definition
2.4.8.

(i) Show that ||X•|| admits a CW structure with a single k-cell for each k-simplex in
Xk.

(ii) Using CW-homology to prove that H∗(||Sin•(X)||) ∼= H∗(X).

Problem 8.4.5 (Euler characteristic is multiplicative). Prove that if X and Y are finite
CW-complexes, then

χ(X × Y ) = χ(X)χ(Y ).

Fundamental theorem of algebra for quaternions

The quaternions H are the R-algebra with generators i, j, k and relations i2 = j2 =
k2 = −1, ij = k, jk = i and ki = j. Every quaternion can be written uniquely as
a + bi + cj + dk with a, b, c, d ∈ R. There is a conjugation operation x 7→ x̄ sending
a+ bi+ cj + dk to a− bi− cj − dk. Then xx̄ is always real (that is, b = c = d = 0) and
we can define a norm ||x|| =

√
xx̄. The quaternions S(H) ∼= S3 of unit norm thus have

a multiplication on them. Warning: though this multiplication is associative, it is not
commutative.

Problem 8.4.6 (Fundamental theorem of algebra for quaternions).
(i) Prove that the map z 7→ zk on S(H) has degree k.
(ii) Prove that for non-zero quaternions a0, . . . , ak, the map

z 7→ a0za1z · · · ak−1zak
||a0za1z · · · ak−1zak||

on S(H) has degree k.
(iii) A polynomial on the quaternions is a map H→ H of the form

p(z) = a0za1z · · · ak−1zak + φ(z)

where φ is a finite sum of terms b0zb1z · · · ak′−1zbk′ for k′ < k. Prove that any
non-constant such polynomial has a zero in H.

The Poincaré homology sphere

Definition 8.4.7. Let I ⊂ SO(3) be the finite group of rotations which are symmetries
of the icosahedron (placed at the origin). Then the Poincaré homology sphere P is the
quotient SO(3)/I.

For the following problem, you might as well ignore the previous definition.

Problem 8.4.8 (The homology of the Poincaré homology sphere). Another way to
construct P is to take the solid dodecahedron1 in R3, and identify opposite faces (which
are pentagons) by a 36◦ clockwise rotation.

1The icosahedron and dodecahedron are dual platonic solids, so the appearance of the dodecahedron
here should not greatly surprise you.
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Figure 8.1 Find the Dodecahedron. This is Escher’s Reptiles, https://en.wikipedia.org/
wiki/Reptiles_(M._C._Escher).

(i) Explain how this gives rise to a CW structure on P with five 0-cells, ten 1-cells, six
2-cells, and a single 3-cell.

(ii) Compute χ(P ).

(iii) Compute H∗(P ).

Remark 8.4.9. P is a 3-dimensional closed orientable manifold whose fundamental group
is the binary icosahedral group I∗, an extension of I by Z/2. In particular, P is not
homotopy equivalent to S3.

The Vietoris–Rips complex

The following is an important concept in topological data analysis. You might want
to use Problem 8.4.4.

Definition 8.4.10. Given a finite metric space (M,d) and real number ε > 0, the Vietoris–
Rips complex V (M, ε) is the topological space defined by the following procedure.

First we pick an arbitrary order ≺ on the finitely many points in M . Next, we
define a semisimplicial set V•(M, ε) by letting Vk(M, ε) by the set of (k + 1)-tuples
x0 ≺ · · · ≺ xk of distinct elements such that max(d(xi, xj) | 0 ≤ i, j ≤ k) ≤ ε, and taking
di(x0 ≺ · · · ≺ xk) := x0 ≺ · · · ≺ x̂i ≺ · · · ≺ xk. Finally, we take the geometric realization
to get a topological space:

V (M, ε) := ||V•(M, ε)||.

Problem 8.4.11 (Homology of the Vietoris–Rips complex).
(i) Explain why V (M, ε) is independent, up to homeomorphism, of the order ≺. You

do not need to give proofs.

https://en.wikipedia.org/wiki/Reptiles_(M._C._Escher)
https://en.wikipedia.org/wiki/Reptiles_(M._C._Escher)
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(ii) Suppose M is non-empty. Prove that there exists an ε1 such that V (M, ε) is
contractible for every ε > ε1. Similarly, prove that there exist an ε0 such that
V (M, ε) 'M (the underlying set, i.e. considered as a discrete topological space)
for every ε < ε0.

(iii) Prove that each homology group Hi(V (M, ε)) is finitely-generated for each finite
metric space (M,d) and ε.

(iv) Give a bound N depending on the number #M of points in M , such that
Hi(V (M, ε)) = 0 for i > N . Prove that it is sharp.

The idea is to extract information about the “shape” of (M,d) from the homology of
V (M, ε) as ε varies.

(v) Let M be the subset of R2 given below, with its induced metric:

•

••

•

• •

Explain how H∗(V (M, ε)) varies as ε does, and explain what this tells you about
the “shape” of (M,d). You do not need to give proofs.
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Homology with coefficients

Today we modify the definition of homology to take values in R-modules instead of
abelian groups; this may simplify our computations or focus our attention on features of
particular interest.

9.1 Homology with coefficients in a ring

By construction, the homology groups Hn(X) of a topological space X are abelian
groups. Abelian groups can be rather complicated, though we do have a classification of
finitely generated ones. The classification of vector spaces over a field F is much easier:
for each cardinal κ, there is up to isomorphism a single vector space of dimension κ.

It is easy to see how to replace Z by F, or in fact any commutative ring R, by recalling
the construction of homology as a composition of functors

HoTop Sin•−−→ ssSet Z[−]−−−→ ChZ −→ GrAb.

The first functor takes the singular semisimplicial set X• with Xn = {∆n → X}, and the
second constructs from this a chain complex S∗(X) = Z[Sin•(X)] of abelian groups:

Sn(X) = Z[{∆n → X}], d =
n∑
i=0

(−1)idi.

We can replace the free abelian group Z[{∆n → X}] by the free R-module R[{∆n →
X}] and use the same formula for the differential d, which now is a homomorphism of
R-modules; the result is a chain complex S∗(X;R) of R-modules. Taking homology we
now get homology groups with coefficients in R:

Hn(X;R) := ker[d : Sn(X;R)→ Sn−1(X;R)]
im[d : Sn+1(X;R)→ Sn(X;R)] .

That is, we take the composition of functors

HoTop Sin•−−→ ssSet R[−]−−−→ ChR −→ GrModR,

where ChR is the category of chain complexes in R and GrModR is the category of graded
R-modules.

71
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Remark 9.1.1. Since we have taken R to be a commutative, we can afford to be a bit
careless with the distinction between left and right R-modules. We will continue doing
so throughout this lecture.

Homology with coefficients in R satisfies the Eilenberg–Steenrod axioms. The dimen-
sion axiom says the homology of a point vanishes unless ∗ = 0; for H∗(−) this is Z, but
for H∗(−;R) it is rather R. This has a number of predictable consequences: for example,

H∗(Sn;R) =
{
R if ∗ = 0, n,
0 otherwise.

In particular, the computational techniques we developed for homology of CW-complexes
go through as long as we replace Z’s for every cell by R’s.

9.1.1 Real projective spaces revisited

The common choices of commutative rings R are: the integers Z, fields such as Q
and Fp, and localizations like Z[1/p]. You use the field Fp when are you only interested
in p-torsion, and Z[1/p] if you are interested in everything except p-torsion.

We illustrate by the example RPn. We know that 2-torsion appears, so let us compute
H∗(RPn;F2). (F2 is particular nice, since there are no sign issues.) If we use the standard
CW structure, there is a single k-cell of each dimension 0 ≤ k ≤ n. Thus, the cellular
chain complex C∗(RPn;F2) is given by Ck(RPn;F2) = F2 for 0 ≤ k ≤ n. The degree of
each attaching map is either 0 or multiplication by 2, both of which reduce to 0 modulo
2. Thus the differential vanishes,

F2
0←− F2

0←− F2
0←− F2 · · ·

0←− F2 ←− 0←− · · · ,

and we conclude that

H∗(RPn;F2) =
{
F2 if 0 ≤ ∗ ≤ n,
0 otherwise.

Not only do we see the 2-torsion appear, but it in fact doubled. This phenomena will be
made precise when we prove the universal coefficients theorem, which tells us how to
compute H∗(X;R) from H∗(X).

On the other hand, let us compute H∗(RPn;Z[1/2]). As before, the cellular homology
chain complex C∗(RPn;Z[1/2]) is given by Ck(RPn;Z[1/2]) = Z[1/2] for 0 ≤ k ≤ n.
The degree of each attaching map is either 0 or multiplication by 2, and now 2 is an
isomorphism.

Z[1/2] 0←− Z[1/2]
∼=←− Z[1/2] 0←− Z[1/2] · · · ←− Z[1/2]←− 0←− · · · ,

and now there are two cases, depending on whether n is even or odd:

H∗(RP 2n;Z[1/2]) =
{
Z[1/2] if ∗ = 0,
0 otherwise,

H∗(RP 2n+1;Z[1/2]) =
{
Z[1/2] if ∗ = 0, 2n+ 1,
0 otherwise.
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9.2 Homology with coefficients in a module

To understand the relation between homology groups with different coefficients, we
need to study the tensor product construction. In this section we recall some facts about
tensor products, and use these to generalize H∗(X;R) to H∗(X;M) for an R-module M .

9.2.1 Tensor products

Let us recall some facts from commutative algebra.

Definition 9.2.1. Let R be a commutative ring and M,N be R-modules. Then tensor
product M ⊗R N is the R-module defined by taking the quotient of the free R-module

R[{(m,n) | m ∈M,n ∈ N}]

by the equivalence relation generated by
· (rm, n) ∼ r(m,n) ∼ (m, rn),
· (m+m′, n) ∼ (m,n) + (m′, n),
· (m,n+ n′) ∼ (m,n) + (m,n′).

We denote the equivalence class of (m,n) by m⊗ n.

Warning 9.2.2. A general element of M ⊗R N is a finite sum
∑
i rimi ⊗ ni, and can’t be

reduced to a single term m⊗ n by applying the relations. A single term m⊗ n is also
referred to as an indecomposable tensor.

This definition may seem to come out of nowhere, but is determined by a universal
property. That is, we will give a characterization of homomorphisms of R-modules out of
M ⊗R N , which determines it uniquely up to isomorphism.

Definition 9.2.3. Let P be an R-module. A function β : M ×N → P is bilinear if it
satisfies

· β(rm, n) = rβ(m,n) = β(m, rn),
· β(m+m′, n) = β(m,n) + β(m′, n),
· β(m,n+ n′) = β(m,n) + β(m,n′).

These are exactly the relations that the symbols m⊗ n satisfy. Writing β0 for the
function M ×N →M ⊗R N given by (m,n) 7→ m⊗ n, this says that β0 is bilinear. It is
in fact the initial bilinear map:

Proposition 9.2.4. There is bijection between homomorphisms b : M ⊗R N → P and
bilinear maps β : M ×N → P , in one direction given by b 7→ b ◦ β0.

Sketch of proof. That b◦β0 is bilinear follows easily from the fact that b is a homorphism
and β0 is bilinear.

To prove that b 7→ b ◦ β0 is a bijection, we need to show that it is injective and
surjective. Injectivity follows from the fact that the map β : M ×N →M ⊗R N has all
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generators m ⊗ n in its image. For surjectivity, we observe that given a bilinear map
β : M ×N → P the formula

mi ⊗ ni 7−→ β(mi, ni)

is compatible with the equivalence relation and hence determines a unique homomorphism
b : M ⊗R N → P such that β = b ◦ β0.

Like pushouts, tensor products are determined uniquely up to isomorphism by this
universal property. You are not likely to use the universal property to compute tensor
products. It is instead used to prove properties of the tensor products.

Lemma 9.2.5. Given R-module homomorphisms f : M →M ′ and g : N → N ′, there is
a unique R-module homomorphism f ⊗ g : M ⊗R N →M ′ ⊗R N ′ such that the following
diagram commutes

M ×N M⊗R

M ′ ×N ′ M ′ ⊗R N ′.

β0

f×g f⊗g
β′0

This is compatible with composition: if we are also given R-module homomorphisms
f ′ : M ′ →M ′′ and g′ : N ′ → N ′′

(f ′ ⊗ g′) ◦ (f ⊗ g) = (f ′ ◦ f)⊗ (g′ ◦ g).

Proof. By the universal property, it suffices to observe that β′0 ◦ (f × g) is a bilinear map
M ×N →M ′ ⊗R N ′. To see it is compatible with composition, observe that both can
be inserted in the dotted arrow to make the diagram commute; by uniqueness they are
equal:

M ×N M ⊗R N

M ′ ×N ′

M ′′ ×N ′′ M ′′ ⊗R N ′′.

β0

f×g

f ′×g′

β′0

This says that tensor product gives a functor

⊗R : ModR ×ModR −→ ModR.

Using the similar arguments using the universal properties, one proves that the tensor
product indeed behaves like a product ought to behave:

Proposition 9.2.6. The tensor product has the following properties:
· associativity: M ⊗R (N ⊗R P ) ∼= (M ⊗R N)⊗R P ,
· unitality: M ⊗R R ∼= M ∼= R⊗RM ,
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· commutativity M ⊗R N ∼= N ⊗RM .

Proof. I will only prove the commutativity, and leave the rest as an exercise for the
diligent reader. A homomorphism f : M ⊗R N → N ⊗RM is uniquely determined by
a bilinear map φ : M × N → N × N , as the homomorphism fitting in a commutative
diagram

M ×N M ⊗R N

N ×M N ⊗RM.

β0

φ f

β′0

Of course, we will take φ(m,n) = (n,m). To find the inverse we take χ(n,m) = (m,n) as
a function N×M →M×N , from which the universal property produces a homomorphism
g : N ⊗RM →M ⊗R N .

We now prove these are mutually inverse. The composition g◦f fits into a commutative
diagram

M ×N M ⊗R N

N ×M

M ×N M ⊗R N,

β0

φ

g◦f

χ

β0

but so does idM⊗RN , so g ◦ f = id. Similarly, f ◦ g = id, so f and g are indeed mutually
inverse isomorphisms.

Remark 9.2.7. Given R-modules M1, . . . ,Mn, we can tensor these together in different
order and possible include some R’s. By the previous proposition, the resulting module
is isomorphic to M1⊗R · ⊗RMn. This isomorphism is in fact unique. This is an example
of a coherence result.

Similar arguments using the universal property tell you that the tensor product is
distributive in appropriate senses. Firstly, −⊗N distributes over direct sums.

Lemma 9.2.8. (
⊕
i∈IMi)⊗N ∼=

⊕
i∈I(Mi ⊗N).

Secondly, −⊗ g distributes over sums of homomorphisms.

Lemma 9.2.9. (f + f ′)⊗ g = f ⊗ g + f ′ ⊗ g.

9.2.2 Some examples

We will work out some examples for R = Z. The unitality of tensor product tells us
that A⊗Z Z ∼= A, an isomorphism which is induced by the bilinear map

A× Z −→ A

(a,m) 7−→ ma.
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Similarly, the bilinear map

A× Z/n −→ A/nA

(a,m) 7−→ ma

induces an isomorphism
A⊗Z Z/n

∼=−→ A/nA.

To see this, we produce an inverse. From their construction, we see that tensor products
preserve surjections. Thus any abelian group A, there is a surjection

A ∼= A⊗Z Z −→ A⊗Z Z/n.

Since n(a⊗m) = (a⊗ nm) = 0 in the right hand side, its kernel contains nA and this
factors over A/nA. This produces an inverse A/nA→ A⊗Z Z/n

Example 9.2.10. We can take A = Z/m. The subgroup of Z generated by m and n is
that generated by gcd(m,n), so we conclude that Z/m⊗ Z/n ∼= Z/ gcd(m,n).

9.2.3 Homology with coefficients in a module

We can use tensor products to define H∗(X;M) for M an R-module. The chain
complex S∗(X;R) given by R[Sin•(X)] is one of R-modules, so we can take

Sn(X;M) := Sn(X;R)⊗RM.

When we define a differential on this by d⊗RM , the compatibility of tensor products with
composition tells us we again have a chain complex of R-modules. Using distributivity,
we see that d =

∑
i(−1)idi ⊗R M . Homology with coefficients in M is defined as the

homology of this chain complex

Hn(X;M) := ker[d : Hn(X;M)→ Hn−1(X;M)]
im[d : Hn+1(X;M)→ Hn(X;M)] ∈ ModR.

As before, this satisfies the Eilenberg–Steenrod axioms.

9.2.4 The Bockstein long exact sequence

The construction of the chain complex S∗(X;M) is natural in M : for any homomor-
phism of R-modules f : M →M ′ we get a chain map S∗(X;M)→ S∗(X;M ′) and hence
an induced map on homology.

As a first attempt to relate these homology groups, we consider a short exact sequence

0 −→M −→M ′ −→M ′′ −→ 0. (9.1)

This induces short exact sequences

0 −→ Sn(X)⊗M −→ Sn(X)⊗M ′ −→ Sn(X)⊗M ′′ −→ 0



9.2 Homology with coefficients in a module 77

since each Sn(X) is a free abelian group and thus this is a just a direct sum of many
copies of (9.1). Thus we get a short exact sequence of chain complex

0 −→ S∗(X;M) −→ S∗(X;M ′) −→ S∗(X;M ′′) −→ 0

and hence a long exact sequence:

· · · Hn+1(X;M ′) Hn+1(X;M ′′)

Hn(X;M) Hn(X;M ′) Hn(X;M ′′)

Hn−1(X;M) Hn−1(X;M ′) · · ·

This is the Bockstein long exact sequence.
Of particular interest is

0 −→ Z p−→ Z −→ Z/p −→ 0,

giving a long exact sequence relating H∗(X) with H∗(X;Z/p). In this case the long exact
sequence looks like

· · · Hn+1(X) Hn+1(X;Z/p)

Hn(X) Hn(X) Hn(X;Z/p)

Hn−1(X) Hn−1(X) · · ·

p

p

with p : Hn(X)→ Hn(X) the multiplication-by-p homomorphism of abelian groups. Let
me justify this: every [a] ∈ Hn(X) is represented by some a =

∑
niσi ⊗ 1 ∈ Cn(X) ⊂

Sn(X) = Sn(X)⊗Z. By construction the left map Hn(X)→ Hn(X) is given by sending
this to

∑
niσi ⊗ p = p (

∑
niσi ⊗ 1), which represents p[a] ∈ Hn(X).

Example 9.2.11. For X = RPn with n > 2 and p = 2, the beginning of this long exact
sequence looks like

· · · H2(RPn) = 0 H2(RPn;Z/2) = Z/2

H1(RPn) = Z/2 H1(RPn) = Z/2 H1(RPn;Z/2) = Z/2

H0(RPn) = Z H0(RPn) = Z H0(RPn;Z/2) = Z/2.

2=0 ∼=

2
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Another interesting case is

0 −→ Z/p −→ Z/p2 −→ Z/p −→ 0.

Then the long exact sequence has an interesting connecting homomorphism

β : Hn(X;Z/p) −→ Hn−1(X;Z/p),

called the Bockstein homomorphism. Knowledge of β and H∗(X;Z/p) amounts to
knowledge of H∗(X;Z/p2).

9.3 Problems

Problem 9.3.1 (A pinch map). Prove that the quotient map RP 2 → RP 2/RP 1 induces
the trivial map on H̃∗(−), but not on H̃∗(−;Z/2).

Problem 9.3.2 (The square of the Bockstein). Prove that β2 = 0.



Chapter 10

Towards the universal coefficients theorem

In this chapter we start with the proof of the universal coefficients theorem, which
explains how to compute H∗(X;M) from H∗(X) when R is a PID.

10.1 The failure of right-exactness

10.1.1 TorR1 as a measure of the failure of right-exactness

It is not true that tensoring a chain complex of R-modules with M commutes with
taking homology: H∗(C∗ ⊗RM) 6= H∗(C∗;R)⊗RM in general.
Example 10.1.1. Let us take the short exact sequence of abelian groups

0 −→ Z 2−→ Z −→ Z/2 −→ 0,

which you may expand with 0’s to the left and right to give a chain complex with trivial
homology. If we tensor it with Z/2 and recall that A⊗Z Z/2 = A/2A, we get

0 −→ Z/2 0−→ Z/2 −→ Z/2 −→ 0,

which is not exact. In particular, its homology is not just 0’s (which is what we would
get by tensoring 0’s with Z/2).

That is, −⊗RM is not exact, i.e. does not preserve exact sequence. However, not
all is lost as it is still right-exact, which means it is preserves cokernels. (There is also a
notion of left-exact functors, which preserve kernels).

Lemma 10.1.2. N 7→ N ⊗RM preserves cokernels, so is right-exact.

Proof. Given an exact sequence

N ′ −→ N −→ N ′′ −→ 0,

N ′′ is the cokernel of N ′ → N if and only if satisfies the following universal property:
every homomorphism N → P such that N ′ → N → P is zero factors uniquely over N ′′:

N ′ N N ′′ 0

P.
0 ∃!
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Thus we ought to prove the same in

N ′ ⊗RM N ⊗RM N ′′ ⊗RM 0

P.
0

Homomorphisms N ′′ ⊗RM → P are in bijection with bilinear maps N ′′ ×M → P , so it
suffices to show that there is a unique bilinear map which makes the following diagram
commute:

N ′ ×M N ×M N ′′ ×M 0

P.

g×id

0
β

β′′

Indeed, from a bilinear map β : N ×M → P sending each entry (g(n′),m) to 0 we can
construct a function β′′ : N ′′ ×M → P by lifting (n′′,m) ∈ N ′′ ×M to N ×M and
applying β; all choices get sent to the same element. It is easy to verify that this is
bilinear because β is.

Whenever a desired property fails in mathematics, we should quantify its failure. To
do so, we will use that if M is free then −⊗RM is exact: if M = R[S] is free on a set S,
then N ⊗RM =

⊕
S N . Thus tensoring an exact sequence

0 −→ N ′′ −→ N −→ N −→ 0

with M = R[S] amounts to taking an S-indexed direct sum of this exact sequence, which
is easily seen to still be exact.

To use this, we resolve M by free modules. By picking generators of M we can
construct a surjection F0 →M with F0 free. If F1 = ker(F0 →M) happened to be free
as well (this is the case for PID’s such as Z), we could define a measure of the failure of
exactness by

TorR1 (M,N) := ker [F1 ⊗R N → F0 ⊗R N ] .

Indeed, when 0→ N → N ′ → N ′′ → 0 is exact, then by considering

0 −→ F∗ ⊗R N −→ F∗ ⊗R N ′ −→ F∗ ⊗R N ′′ −→ 0

as a short exact sequence of chain complexes, we get a long exact sequence

0 TorR1 (M,N) TorR1 (M,N ′) TorR1 (M,N ′′)

M ⊗R N M ⊗R N ′ M ⊗R N ′′ 0.

Writing TorR0 (M,N) := M ⊗R N , we see that TorR0 and TorR1 are the homology of
the rather small chain complex

· · · −→ 0 −→ F1 ⊗R N −→ F0 ⊗R N −→ 0 −→ · · ·



10.2 Tor-groups 81

obtained by tensoring with N the truncated free resolution

· · · −→ 0 −→ F1 −→ F0

obtained from the free resolution

· · · −→ 0 −→ F1 −→ F0 −→M.

To see that the cokernel of F1⊗RN → F0⊗RN is indeed M ⊗RN , one uses that −⊗RN
is right-exact.

We will soon prove that the definition of these Tor-groups is independent of the choice
of truncated free resolutions, and we will generalize it from PID’s to general commutative
rings R.

10.1.2 Examples

Let us first do some examples.
Example 10.1.3. If M is a free module F , then we can take F0 = F and F1 = 0, from
which it follows that TorR1 (F,N) = 0. Thus is equivalent to the fact that if F is free,
then F ⊗R − is exact.
Example 10.1.4. Suppose that R is a field F. Then R-modules are F-vector spaces, so
always free. Thus we can take F0 = M and F1 = 0, and compute TorF1(M,N) = 0.
Equivalently, over a field M ⊗F − is exact.
Example 10.1.5. Let us take R = Z and M = Z/n. This has a free resolution

· · · −→ 0 −→ Z n−→ Z −→ Z/n.

Thus TorZ0 (Z/n,N) and TorZ1 (Z/n,N) are the cokernel or kernel of the multiplication-by-n
homomorphism n : N → N . We conclude that

TorZ0 (Z/n,N) = N/nN,

which is indeed Z/n⊗Z N , and that

TorZ1 (Z/n,N) = ker[n : N → N ].

In particular, we have that

TorZ0 (Z/n,Z/m) = Z/gcd(n,m), TorZ1 (Z/n,Z/m) = Z/gcd(n,m).

10.2 Tor-groups

10.2.1 Tor-groups for general R

Before proving that our Tor-groups are well-defined, let us define them for a general
commutative ring R.

Give an R-module M , we start by building a free resolution of M : picking generators
we find a surjection F0 → M with F0 free, which has a kernel K0. Picking generators
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again, we find a surjection F1 → K0 with F1 free, etc. The result is a free resolution of
M ,

· · · −→ F2 −→ F1 −→ F0 −→M.

By construction, it is an exact chain complex: the image of Fi+1 → Fi is Ki, the kernel
of Fi → Fi−1 (interpreting F−1 as M). If we remove M to obtain the truncated free
resolution

· · · −→ F2 −→ F1 −→ F0

we get a chain complex with a chain map to

· · · −→ 0 −→ 0 −→ N

which induces an isomorphism on homology, i.e. is a quasi-isomorphism.

Definition 10.2.1. Let F∗ →M be a free resolution of an R-module M and N another
R-module, then

TorRn (M,N) = Hn(F∗ ⊗R N).

Remark 10.2.2. A free resolution of a module contains a lot of information about M :
generators, relations between these, relations between the relations (“syzygies”), etc.
From the point of view of homotopy theory or homological algebra, all of these are of a
similar nature.

10.2.2 The fundamental theorem of homological algebra

To show Tor-groups are well-defined, we shall prove:

Theorem 10.2.3 (Fundamental theorem of homological algebra). Let M,N be R-
modules,

· · · −→ F2 −→ F1 −→ F0 −→M

be a free resolution, and

· · · −→ E2 −→ E1 −→ E0 −→ N

be exact at each Ei. Then each homomorphism f : M → N can be lifted to a chain map
f∗ : E∗ → F∗, unique up to chain homotopy.

Proof. Write F−1 = M and E−1 = N , then we will construct components fk : Fk → Ek
of the chain map f∗ by induction over k. The initial case k = −1 is provided to us.

To complete the induction step from k − 1 to k, consider the commutative diagram

Fk Fk−1 Fk−2

Ek Ek−1 Ek−2.

d

fk−1

d

fk−2

d d

Since the right square commutes, Kk−1 = ker[d : Fk−1 → Fk−2] is mapped into Lk−1 =
ker[d : Ek−1 → Ek−2] by fk−1. Since F∗ is a free resolution, Fk surjects to Kk−1, and
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similarly since E∗ is exact, Ek surjects onto Lk−1. For each generator xi of Fk pick a
lift yi of fk−1(d(xi)) to Ek. Because Fk is free, there is a homomorphism fk : Fk → Ek
uniquely defined by sending xi to yi. Since

d(fk(xi)) = d(yi) = fk−1(d(xi)),

this homomorphism makes the left square commute.

For the uniqueness up to chain homotopy, we implement the philosophy that unique-
ness is just relative existence. We will thus reduce the uniqueness up to chain homotopy
to small elaboration of the previous argument.

Just like tensor products of R-modules, there is a tensor product C∗ ⊗R D∗ of chain
complexes: in degree n it is given by

⊕
p+q=nCp ⊗R Dq and differential on Cp ⊗R Dq

given by d⊗ id + (−1)pid⊗ d. Let us define a chain complex Λ∗ as

· · · −→ 0 −→ Λ1 = R{t} d−→ Λ0 = R{t0, t1}

with d(t) = t0 − t1. A chain homotopy from f0
∗ to f1

∗ is then the same as a chain
map H∗ : Λ∗ ⊗ F∗ → E∗ such that H∗(t0 ⊗ −) = f0

∗ , H∗(t1 ⊗ −) = f1
∗ . The maps

hn : Cn → Dn+1 can be extracted as Hn+1(t⊗−).
Now we are in the following situation: instead of F∗ we have a free resolution

F ′′∗ = Λ∗ ⊗ F∗ with a subcomplex F ′∗ = R{t0, t1} ⊗ F∗ ⊂ F ′′∗ so that F ′k admits a free
complement Ck in F ′′k , and instead of looking for f∗, we are looking for an extension
H∗ : F ′′∗ → E∗ of a given chain map F ′∗ → E∗. (In the previous case, F ′′∗ = F∗ and
F ′∗ = 0.)

Our initial case is now ∗ = −2, where we take H−2 = 0. There is something to check,
as this only gives a chain map if dH−1 = f0

−1 − f1
−1 = 0; this is the case because both

chain maps f0
∗ , f

1
∗ : F∗ → E∗ lift f : M → N . For the induction step from k − 1 to k,

consider the commutative diagram

F ′k F ′k−1 F ′k−2

F ′′k F ′′k−1 F ′′k−1

Ek Ek−1 Ek−2.

d

Hk−1

d

Hk−2

d d

We still need to construct Hk on the complement Ck to F ′k (in this case given by
R{t}⊗Fk−1). As before, we can pick generators xi of Ck, and lift Hk−1(d(xi)) to Ek.

Remark 10.2.4. In this argument we didn’t need that the entries Fk were free, only that
they are projective: an R-module P is projective if in each diagram

M

P N
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with right map surjective, a dotted map exists making the diagram commute. Free
R-modules are always projective, and an R-module is projective if and only if it is a
summand of a free module. Over a PID (e.g. Z or a field) every projective module is free.

10.2.3 The well-defined of Tor-groups

Let us now prove that TorRi (M,N) is well-defined, i.e. independent of free resolution
F∗ of M . We will simultaneously prove that they are functorial in both entries.

Suppose that we are given a homomorphism f : M →M ′, and we pick arbitrary free
(or even projective) resolutions F∗ →M and F ′∗ →M ′. Then Theorem 10.2.3 provides a
chain map f∗ : F∗ → F ′∗ lifting f , unique up to chain homotopy. Thus we get a chain map

f∗ ⊗ id : F∗ ⊗R N −→ F ′∗ ⊗R N

unique up to chain homotopy. This induces a unique map H∗(f∗ ⊗ id) : H∗(F∗ ⊗R N)→
H∗(F ′∗ ⊗R N), i.e. well-defined homomorphisms

f∗ : TorR∗ (M,N) −→ TorR∗ (M ′, N).

In particular, if we had taken f = id: M →M but different free resolutions of M , we
get f∗ : F∗ → F ′∗ and also g∗ : F ′∗ → F∗. Then (f∗ ⊗ id) ◦ (g∗ ⊗ id) lifts the identity on M
to a self-map of F∗; but so does the identity of F∗ and hence this is chain-homotopic to
the identity. Using this and the same argument for (g∗ ⊗ id) ◦ (f∗ ⊗ id), we conclude that
f∗ ⊗ id and g∗ ⊗ id induce mutually inverse isomorphisms on TorR∗ (M,N). This proves
that Tor-groups are well-defined.

Collecting all we have proven, we get the following theorem:

Theorem 10.2.5. There is a functor TorR∗ (−, N) : ModR → GrModR extending −⊗R N
in degree 0.

The tensor product is symmetric since R is commutative. The same is true for
Tor-groups: TorR∗ (M,N) ∼= TorR∗ (N,M). This can be proven using Theorem 10.2.3.

10.3 The universal coefficients theorem

We will use this technology to finally clarify the relationship between H∗(X;M) and
H∗(X;R). You should imagine taking R = Z, and M = Z/n, Q or Z[1/n].

Theorem 10.3.1 (Universal coefficients theorem). Let R be a PID, then there is a
natural short exact sequence

0 −→ Hn(X;R)⊗RM −→ Hn(X;M) −→ TorR1 (Hn−1(X);M) −→ 0,

of R-modules, which is split but not naturally so.

Example 10.3.2. Let us use this to compute H∗(RP 2;Z/2) from H∗(RP 2) for ∗ = 1, 2
(the only interesting cases). For ∗ = 1, we get

0 −→ H1(RP 2) = Z/2 −→ H1(RP 2;Z/2) −→ TorZ1 (Z;Z/2) = 0 −→ 0
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the right term vanishing because Z is free, so H1(RP 2;Z/2) = Z/2. For ∗ = 2, we get

0 −→ H2(RP 2) = 0 −→ H2(RP 2;Z/2) −→ TorZ1 (Z/2;Z/2) = Z/2 −→ 0

the right term given by Z/gcd(2, 2), so H2(RP 2;Z/2) = Z/2 as well.

10.4 Problems

Problem 10.4.1 (Do fields detect integral homology?). Is it true that H̃∗(X;Q) vanishes
and H̃∗(X;Fp) vanishes for all primes p, if and only if H̃∗(X) vanishes? Give a proof or
find a counterexample.

10.4.1 Euler characteristic revisited

Problem 10.4.2. (i) Suppose that X is a topological space such that Hi(X) is finitely
generated for each i. Prove that Hi(X;F) is finite-dimensional for each field F.

(ii) Suppose that X is a topological space such that Hi(X) = 0 when i ≥ N . Prove
that Hi(X;F) = 0 when i ≥ N + 1 for each field F.

Thus under the assumptions of parts (i) and (ii), the following Euler characteristics
are well-defined:

χ(X;Z) :=
∞∑
i=0

(−1)i rkHi(X) and

χ(X;F) =
∞∑
i=0

(−1)i dimHi(X;F).

(iii) Under the assumptions of parts (i) and (ii), prove that

χ(X;Z) = χ(X;F).

Conclude that the Euler characteristic is independent of the choice of coefficients.
(iv) Verify by computation that χ(RPn;Q) = χ(RPn;Z) = χ(RPn;F2).

We will thus denote the common values of all these Euler characteristics by χ(X).

Problem 10.4.3. (i) Suppose that X and Y are topological spaces such that Hi(X)
is finitely generated for each i. Prove that Hi(X × Y ) is also finitely generated for
each i.

(ii) Suppose that X and Y are topological spaces such that Hi(X) = 0 for i ≥ N and
Hi(Y ) = 0 for i ≥M . Prove that Hi(X × Y ) = 0 for i ≥ N +M + 1 as well. Give
an example showing that you can’t improve this to i ≥ N +M .

Thus under the assumptions of parts (i) and (ii), we have well-defined Euler charac-
teristics χ(X), χ(Y ) and χ(X × Y ).

(ii) Under the assumptions of parts (i) and (ii), prove that

χ(X × Y ) = χ(X)χ(Y ).

(iii) Show that χ(Σg ×X) is divisible by 2.
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The universal coefficients and Künneth theorems

In this chapter we give the proof of the universal coefficients theorem, which tells us
how to relate H∗(X;R)⊗RM with H∗(X;M). With the tools developed to do so, we
also prove the Künneth theorem, which tells us how to relate H∗(X;R)⊗R H∗(Y ;R) to
H∗(X × Y ;R).

11.1 The universal coefficients theorem

Let C∗ be a chain complex of R-modules, eventually R = Z and C∗ = S∗(X). The
universal coefficients theorem concerns the failure of the natural map

α : Hn(C∗)⊗RM −→ Hn(C∗ ⊗RM)
[a]⊗m 7−→ [a⊗m]

to be an isomorphism, under some conditions on R and C∗. These are satisfied in the
examples we are interesting in.

Theorem 11.1.1 (Universal coefficients theorem). Let R be a PID and C∗ a chain
complex of free R-modules. Then there is a natural exact sequence of R-modules

0 −→ Hn(C∗)⊗RM −→ Hn(C∗ ⊗RM) −→ TorR1 (Hn−1(C∗),M) −→ 0.

Furthermore, these are split (but not naturally so).

What is the point of the addendum? Usually you know the outer terms in the short
exact sequence, and there is a number of possibilities for the middle, e.g.

0 −→ Z/2 −→ Z/4 −→ Z/2 −→ 0,

0 −→ Z/2 −→ (Z/2)2 −→ Z/2 −→ 0.

The addendum says that the middle term is always the direct sum of the outer ones (that
is, the latter of the two examples is what happens), though not canonically so.

86
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Proof. We resolve M by free R-modules. We can get away with a two-step resolution
since R is a PID: 0→ F1 → F0 →M → 0. We will use that for F free

α : Hn(C∗)⊗R F −→ Hn(C∗ ⊗R F )

is an isomorphism.
Tensoring the free resolution with C∗ we get a short exact sequence of chain complexes

0 −→ C∗ ⊗R F1 −→ C∗ ⊗R F0 −→ C∗ ⊗RM −→ 0.

This uses the assumption that each Cn is free (otherwise it would not be exact at the
left). We obtain from this a long exact sequence on homology

· · · Hn(C∗ ⊗R F0) Hn(C∗ ⊗RM)

Hn−1(C∗ ⊗R F1) Hn−1(C∗ ⊗R F0) · · ·

Exactness at the right terms gives us a short exact sequence

0

coker[Hn(C∗ ⊗R F1)→ Hn(C∗ ⊗R F0)]

H∗(C∗ ⊗RM)

ker[Hn−1(C∗ ⊗R F1)→ Hn−1(C∗ ⊗R F0)]

0

.

Using that α is an isomorphism for free R-modules, we see this is naturally isomorphic to

0

coker[Hn(C∗)⊗R F1 → Hn(C∗)⊗R F0]

H∗(C∗ ⊗RM)

ker[Hn−1(C∗)⊗R F1 → Hn−1(C∗)⊗R F0]

0

.
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But the first term is just TorR0 (Hn(C∗),M) = Hn(C∗) ⊗RM and the last term is just
TorR1 (Hn−1(C∗),M).

For the addendum, we use that since R is a PID and each entry Cn is free, then
d(Cn) = Bn−1(C∗) ⊂ Cn−1 is free. By lifting generators, we can find a map β′ splitting

0 Zn(C∗) Cn Bn−1(C∗) 0
d

β β′

,

from which we get β as x 7→ x− β′(d(x)).
This induces a splitting map

Hn(C∗ ⊗RM) −→ Hn(C∗)⊗RM
[a⊗m] 7−→ [β(a)]⊗m.

That is, we lift a class in Hn(C∗⊗RM) to Zn(C∗⊗R) ⊂ Cn⊗RM , map it to Zn(C∗)⊗RM
using β⊗Rid, and then take its equivalence class in Hn(C∗)⊗RM by taking the quotient by
Bn(C∗)⊗RM . Here we use that tensor products preserve cokernels. This is independent
of the choice of lift: by definition d(

∑
i ri ⊗mi) =

∑
i d(ai)⊗mi, and this evidently gets

mapped to 0 when we take the quotient by Bn(C∗)⊗RM .

Example 11.1.2. Recall that Klein bottle K has homology given by

H∗(K) =


Z if ∗ = 0,
Z⊕ Z/2 if ∗ = 1,
0 otherwise.

Thus we get that

H1(K;Z/2) ∼= H1(K)⊗Z Z/2⊕ TorZ1 (H0(K),Z/2) = (Z/2)2

coming from the first term, and

H2(K;Z/2) ∼= H2(K)⊗Z Z/2⊕ TorZ2 (H1(K),Z/2) = Z/2

coming from the second term, as TorZ1 (Z/2,Z/2) = Z/2. Thus K and T2 have the same
homology with Z/2-coefficients.

11.2 The Künneth theorem

Recall that for homotopy invariance we constructed, rather inexplicitly, a bilinear
cross product

× : S∗(X)× S∗(Y ) −→ S∗(X × Y ).

The same construction goes through with coefficients.
At that point, we took X = [0, 1] but also wondered what this map tells us about the

homology of a product. There are two steps involved in answering this question:
· Understand how far the homology of S∗(X)⊗ S∗(Y ) is from H∗(X)⊗H∗(Y ).
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· Understand how far the homology of S∗(X)⊗ S∗(Y ) is that of S∗(X × Y ).
The first can be answered by techniques used to prove the universal coefficients

theorem, so we will not give the proof. We will drop the subscript R from the tensor
products for the sake of readability.

Theorem 11.2.1 (Künneth for chain complexes). Let R be a PID, C∗ a chain complex of
free R-modules and D∗ any chain complex of R-modules. There are short exact sequences

0→
⊕

p+q=n
Hp(C∗)⊗Hq(D∗)→ Hn(C∗ ⊗D∗)→

⊕
p+q=n−1

TorR1 (Hp(C∗), Hq(D∗))→ 0

which are split (but not naturally so).

Corollary 11.2.2. Let C∗, C ′∗, D∗ be chain complexes of R-modules. If f∗ : C∗ → C ′∗ is
induces an isomorphism on homology, so does C∗ ⊗D∗ → C ′∗ ⊗D∗.

Proof. Applying Theorem 11.2.1, we get that f∗ induces isomorphisms on the outer terms.
By the five lemma, it also induces an isomorphism on the middle term.

This reduces our program to proving the following theorem:

Theorem 11.2.3. The cross product × : S∗(X) ⊗ S∗(Y ) → S∗(X × Y ) induces an
isomorphism on homology.

This is proven using the method of acyclic models, which we prove in the next section.
Combining this with Theorem 11.2.1, Künneth for chain complexes, we get:

Corollary 11.2.4 (Künneth theorem). Let R be a PID, then there are short exact
sequences

0→
⊕

p+q=n
Hp(X;R)⊗Hq(Y ;R)→ Hn(X×Y ;R)→

⊕
p+q=n−1

TorR1 (Hp(X;R), Hq(Y ;R))→ 0

which are split (but not naturally so).

Example 11.2.5. We compute H∗(RP 3 × RP 3;Z/2). To do so, recall that TorF1(M,N)
always vanishes when F is a field, because every F-module is free. Thus the Künneth
short exact sequence reduces to an isomorphism of graded F-vector spaces

H∗(X;F)⊗H∗(Y ;F)→ H∗(X × Y ;F).

Using that Z/2 is a field, and that

H∗(RP 3;Z/2) =
{
Z/2 if 0 ≤ ∗ ≤ 3,
0 otherwise,
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we obtain that

H∗(RP 3 × RP 3;Z/2) =



Z/2 if ∗ = 0,
(Z/2)2 if ∗ = 1,
(Z/2)3 if ∗ = 2,
(Z/2)4 if ∗ = 3,
(Z/2)3 if ∗ = 4,
(Z/2)2 if ∗ = 5,
Z/2 if ∗ = 6,
0 otherwise.

Example 11.2.6. Next, we compute H∗(RP 2 × RP 2). Recall that

H∗(RP 2) =


Z if ∗ = 0
Z/2 if ∗ = 1,
0 otherwise.

Using the fact that TorZ1 (Z,Z/2) = 0 and TorZ1 (Z/2,Z/2) = Z/2, we compute that

H∗(RP 2 × RP 2) =



Z if ∗ = 0,
(Z/2)2 if ∗ = 1,
Z/2 if ∗ = 2,
Z/2 if ∗ = 3,
0 otherwise.

11.3 Acyclic models

Recall the following lemma, which we used to prove that Tor-groups are independent
of the choice of free resolution. It is a special case of Theorem 10.2.3:

Lemma 11.3.1. If both F• → M and G• → N are free resolutions, then any homo-
morphism f : M → M ′ can be lifted to a chain map f• : F• → G•, unique up to chain
homotopy.

Proof hint. To lift f : M → N to f0 : F0 → G0, we shall use that G0 → N is surjective.
Picking a generating set {xi} of the free R-module F0, we can lift to G0 the image under
F0 →M → N of each xi. Thus so far we have obtained

· · · F1 F0 M

· · · G1 G0 N.

f0 f

To next produce f1 : F1 → G1 we do something similar: each element of a generating
set of F1 is mapped under F1 → F0 → G0 to a cycle. By exactness at G0 it is a boundary
and hence in the image of G1 → G0; we pick a lift.
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This process can be continued until we have found all fk : Fk → Gk. There are clearly
choices involved, but we can use a similar argment to find the components hk : Fk → Gk+1
of the chain homotopy between two different choices.

Remark 11.3.2. To obtain Theorem 10.2.3, note you can weaken the hypotheses: F•
needs to consist of projective modules instead of free ones, and G• → N only needs to
be exact.

The acyclic models theorem is a generalization of this argument from chain complexes
to functors with values in chain complexes. We fix a category C. We can think of a
resolution · · · → P1 → P0 → M of an R-module M as non-negatively graded chain
complex P• such that the chain complex

· · · −→ P2 −→ P1 −→ P0 −→ P −→ 0

is exact.
Its generalisation to a functor F : C→ ModR instead of an R-module M is as functor

F• : C→ Ch≥0
R such that for each X ∈ ob(C) the chain complex

· · · −→ F2(X) −→ F1(X) −→ F0(X) −→ F (X) −→ 0

is exact.
The acyclic models theorem gives a condition under which a natural transformation

f : F −→ G

of functors C→ ModR can be lifted to a natural transformation f• : F• → F ′• of functors
C→ Ch≥0

R , unique up to natural chain homotopy. The hypothesis we give is one which
reduces the problem from one about functors and natural transformations, to one about
modules and homomorphisms.

We fix a collection M of objects C which we call models, and use these to specify a
particular class of functors:

Definition 11.3.3. A representable functor F : C→ ModR is one of the formR[HomC(X,−)].

We then demand that F• and G• are degreewise M-free, i.e. a direct sum of rep-
resentable functors Z[HomC(M,−)] with M ∈ M. Then we futher demand that the
extended complexes

· · · −→ F2(M) −→ F1(M) −→ F0(M) −→ F (M) −→ 0,

· · · −→ G2(M) −→ G1(M) −→ G0(M) −→ G(M) −→ 0,

are exact for all M ∈ M, i.e. M-exact: we say that F• → F and G• → G are M-free
resolutions.

Theorem 11.3.4 (Acylic models). If F• → F and G• → G are M-free resolutions,
then every natural transformation f : F → G of functors C → ModR can be lifted to a
natural transformation f• : F• → G• of functors C→ ModR, unique up to natural chain
homotopy.



92 Chapter 11 The universal coefficients and Künneth theorems

Remark 11.3.5. You can weaken the conditions on F• → F and G• → G as above: F•
needs to be M-projective and G• to be M-exact.
Example 11.3.6. If we take C to be the category with a unique object ∗ and only an
identity morphisms, and we take M = {∗}, the acyclic models theorem is equivalent to
Lemma 11.3.1.

To prove Theorem 11.3.4, we recall that the important property of the free modules
was lifting against surjective maps. Let us prove the corresponding statement for M-free
functors:

Definition 11.3.7. A natural transformation η : F → G of functors C → ModR is an
M-epimorphism if F (M)→ G(M) is surjective for all M ∈M.

Lemma 11.3.8. If we have a diagram

G

F H

g

of functors C→ ModR where F is M-free and g is an M-epimorphism, then there exists
a dotted lift.

Proof. First we observe it suffices to treat the case

F = R[Hom(M,−)],

as the set of natural transformations out of a direct sum of functors is the product the
set of natural transformations out of the individual summands.

Then let us first evaluate at M , to get

G(M)

R[Hom(M,M)] H(M).

g

Since the right map is surjective, we can find a lift x of the generators idM . We claim that
this choice determines an entire natural transformation F → G by naturality. Naturality
demands that a generator f ∈ R[Hom(M,X)] is sent to G(f)(x), as we can write f as
F (f)(idM ).

What this argument uses is the Yoneda lemma, which says that if F =
⊕

iR[Hom(Mi,−)]
is a direct sum of representable, then

Nat(F,G) =
∏
i

G(Mi),

naturally in G. To prove Theorem 11.3.4 we repeat the proof of Lemma 11.3.1 with some
modifications:
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Proof of Theorem 11.3.4. To lift the natural transformation f : F → G to f0 : F0 → G0,
we write F0 =

⊕
iR[Hom(Mi,−)]. By Yoneda, a natural transformation F0 → G is

uniquely determined by a collection of elements xi ∈ G(Mi). Since G0 → G is an
M-epimorphism, the maps G0(Mi) → G(Mi) are surjective. Thus we can lift the xi
to G0(Mi), and using Yoneda these lifts determine a unique natural transformation
F0 → G0. Thus so far we have obtained

· · · F1 F0 F

· · · G1 G0 G.

f0 f

To next produce f1 : F1 → G1 we do something similar: we shall write F1 =⊕
i′ R[Hom(M ′i′ ,−)] and use Yoenda identify the natural transformation F1 → F0 → G0

as a collection of elements x′i′ ∈ G0(M ′i′). By construction these lie in the kernel of
d : G0(M ′i′) → G(M ′i′). Since the bottom row is M-exact, each x′i′ is a boundary and
hence in the image of G1(M ′i′)→ G0(M ′i′). We pick a lifts and use Yoneda to produce
f1 : F1 → G1.

This process can be continued until we have found all fk : Fk → Gk. There are clearly
choices involved, but we can use a similar argment to find the components hk : Fk → Gk+1
of the chain homotopy between two different choices.

11.3.1 Proving the Künneth theorem

To prove the Künneth theorem we apply Theorem 11.3.4 to

C = Top2,

M = {(∆p,∆q) | p, q ≥ 0},
F = ((X,Y ) 7→ H0(X)⊗H0(Y ))
F• = ((X,Y ) 7→ S∗(X)⊗ S∗(Y ))
G = (X,Y ) 7→ H0(X × Y )
G• = ((X,Y ) 7→ S∗(X × Y ))

f = natural iso : H0(X)⊗H0(Y )
∼=−→ H0(X × Y )

and its inverse, to get a chain homotopy equivalence

S∗(X)⊗ S∗(Y ) −→ S∗(X × Y )

unique up to chain homotopy.
We need to verify hypotheses that both

(X,Y ) 7−→ Sn(X × Y ;R) and (X,Y ) 7−→
⊕

p+q=n
Sp(X;R)⊗ Sq(Y ;R)

are M-free resolutions. That they are M-exact follows because the reduced homology
of the models vanish. To see the first is M-free, we write it as a direct sum of the
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representables

Sp(X;R)⊗ Sq(Y ;R) = R[{(∆p → X,∆q → Y )}]
= R[HomTop2((∆p,∆q), (X,Y ))].

To second the second is M-free, we recognize it as the representable

Sn(X × Y ;R) = R[{∆n → X × Y }]
= R[{∆n → X,∆n → Y }]
= R[HomTop2((∆n,∆n), (X,Y ))].

Theorem 11.3.9. There are natural chain maps

S∗(X;R)⊗ S∗(X;R) S∗(X × Y ;R)

which are unique up to chain homotopy, and induce mutually inverse isomorphisms on
homology.

11.4 Problems

Problem 11.4.1 (Moore spaces). The Moore space M(Z/m, n) is obtained by attaching
an (n+ 1)-cell to Sn along a map of degree m. Here we use that homotopy classes of
continuous maps Sn → Sn are classified by their degree, so this describes a topological
space which is well-defined up to homotopy equivalence.

(i) Compute H∗(M(Z/m, n)) and H∗(M(Z/m, n)).
(ii) Prove that the quotient map M(Z/m, n)→M(Z/m, n)/Sn induces the zero map

on reduced homology, but not on reduced cohomology.
(iii) Deduce that the splitting in the universal coefficient theorem for cohomology can

not be natural.

Problem 11.4.2 (Alexander–Whitney map). In Problem 3.5.1 we gave an explicit
construction of a cross product EZ: S∗(X)× S∗(Y )→ S∗(X × Y ), the Eilenberg–Zilber
map. This generalizes to homology with coefficients. There is an explicit inverse
AW: S∗(X×Y ;R)→ S∗(X;R)⊗S∗(Y ;R) up to homotopy, called the Alexander–Whitney
map:

S∗(X × Y ;R) 3 σ 7−→
n∑
p+q

π1 ◦ σ|∆p ⊗ π2 ◦ σ|∆q ∈ S∗(X;R)⊗ S∗(Y ;R),

where ∆p ⊂ ∆n is the first face and ∆q ⊂ ∆n the last one.
(i) Verify AW is a chain map.
(ii) Check that AW ◦ EZ = id when working with normalized chains as in Problem

4.4.7.
In fact, it is also possible to give an explicit chain homotopy between EZ ◦AW and the
identity, see [GDR99].
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Recap and an extended example

We will soon move on to cohomology; a dual to homology which has values in graded
algebras instead of graded abelian groups. Before doing so, we recap what we are proven
so far and work out an interesting example.

12.1 Recap of homology

It is fair to divide our work between axioms which we have established and computa-
tional tools which we have developed. Let’s start with the former, stated with coefficients
in an R-module M .
Long exact sequence of a pair For every A ⊂ X we get a long exact sequence

· · · Hn(X;M) Hn(X,A;M)

Hn−1(A;M) Hn−1(X;M) · · ·

This is natural in the pair A ⊂ X.
Excision When U ⊂ A ⊂ X is an excisive triple (i.e. cl(U) ⊂ int(A)), the inclusion

induces an isomorphism

H∗(X \ U,A \ U ;M)
∼=−→ H∗(X,A;M).

This is natural in the excisive triple U ⊂ A ⊂ X.
Wedge For disjoint unions the inclusions induce an isomorphism

⊕
i∈I

H∗(Xi;M)
∼=−→ H∗

(⊔
i∈I

Xi;M
)
.

These are called the Eilenberg–Steenrod axioms, and determine H∗(−;M) uniquely
up to natural isomorphism in terms of value at a point, at least on spaces homotopy
equivalent to CW-complexes. From this, we developed several techniques to determine
homology groups:

95
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Mayer–Vietoris If two open subsets U, V cover X, then there is a long exact sequence

· · · Hn(U ;M)⊕Hn(V ;M) Hn(X;M)

Hn−1(U ∩ V ;M) Hn−1(U ;M)⊕Hn−1(V ;M) · · ·

This is natural in the data U, V ⊂ X.
Cellular homology If X is given a CW-structure, then one can compute H∗(X;M)

using the chain complex C∗(X;M), given in degree n by R[{n-cells}]⊗RM :

· · · −→ R[{n-cells}]⊗RM −→ R[{(n− 1)-cells}]⊗RM −→ · · · .

For an n-cell e, the differential of e ⊗m is given the sum over (n − 1)-cells e′ of
d(e, e′)e′ ⊗m with d(e, e′) the degree of the map

Sn−1 ∼= ∂e→ skn−1(X)/skn−2(X)→ e′/∂e′ ∼= Sn−1.

This is natural with respect to cellular maps.
Universal coefficients theorem If R is a PID, then there are short exact sequences

0→ Hn(X;R)⊗RM → Hn(X;M)→ TorR1 (Hn−1(X;R),M)→ 0

which are split but not naturally so. These are natural in X.
Künneth theorem If R is a PID, then there are short exact sequences

0→
⊕

p+q=n
Hp(X;R)⊗RHq(Y ;R)→ Hn(X×Y ;R)→

⊕
p+q=n1

TorR1 (Hp(X;R), Hq(Y ;R))→ 0

which are split but not naturally so. These are natural in X and Y .
It is also worth cataloguing the examples we have computed so far:
· the spheres Sn,
· the real and complex projective spaces RPn and CPn,
· the genus g surface Σg,
· the Poincaré homology sphere P .

We can create more examples by taking suspensions, disjoint unions, wedges and products
of these. Today we will add the special orthogonal groups to this list.

12.2 Special orthogonal groups

Recall that an (n × n)-matrix A with real entries is orthogonal if AAt = id; it
follows that AtA = id and that det(A) = ±1. The orthogonal group O(n) is the group
of orthogonal (n × n)-matrices, topologized as a subspace of Rn2 . This has two path-
components, distinguished by the determinant, and the special orthogonal group SO(n)



12.2 Special orthogonal groups 97

is the subgroup of orthogonal (n× n)-matrices with determinant 1. We will compute as
much as the homology of these spaces as we can. We could do better with more tools, as
we do not yet exploit the fact that the SO(n) are topological groups which map to each
other by group homomorphisms.
Remark 12.2.1. The study of the homology and homotopy of SO(n) was of great impor-
tance in algebraic topology. It led to characteristic classes, Bott periodicity, topological
K-theory, the image of J , etc. Their importance is due to the fact that we can compute
all they are spaces of geometric importance whose homology and homotopy are both
computable; a combination that is quite rare.

12.2.1 SO(2)

It is a result of Euler that SO(n) is generated by rotations around some axis. Thus
SO(2) is the group of the rotations in R2, and by specifying an angle are homeomorphic
to S1. For example using the suspension isomorphism, we see that

H∗(SO(2)) =
{
Z if ∗ = 0, 1,
0 otherwise.

12.2.2 SO(3)

Similarly, SO(3) is the group in rotations in R3. It is in fact homeomorphic to RP 3

as we will now explain.
Recall that the quaternions H are the R-algebra with generators i, j, k and relations

i2 = j2 = k2 = −1, ij = k, jk = i and ki = j. Every quaternion can be written uniquely
as a + bi + cj + dk with a, b, c, d ∈ R. Those with b = c = d = 0 are called real, those
with a = 0 imaginary. There is a conjugation operation x 7→ x̄ sending a+ bi+ cj + dk
to a− bi− cj − dk. Then xx̄ is always real, and we can define a norm ||x|| =

√
xx̄. The

quaternions S(H) ∼= S3 of unit norm form a group under composition: x−1 = x̄. The
unit quaterions act on the imaginary quaternions: x ∈ S(H) sends y ∈ Im(H) to xyx−1.
This preserves the norm, so gives a homomorphism

S3 ∼= S(H) −→ {orthogonal linear maps on Im(H)} ∼= SO(3).

This is surjective with kernel ±1, and induces a homeomorphism RP 3 = S3/±1 ∼= SO(3).
There is a CW structure on RPn with a single k-cell for 0 ≤ k ≤ n, and attaching

maps alternatively of degree 2 and 0. In particular, for n = 3 we have a cellular chain
complex

Z 0←− Z 2←− Z 0←− Z.

This gives us that

H∗(SO(3)) =



Z if ∗ = 0,
Z/2 if ∗ = 1,
0 if ∗ = 2,
Z if ∗ = 3,
0 otherwise.
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12.2.3 SO(4)

There is a similar exceptional isomorphism involving quaternions for SO(4): letting
x, x′ ∈ S(H) × S(H) act on H by y 7→ xy(x′)−1, one sees that as a topological group
SO(4) is isomorphic to

(S3 × S3)/{±id}.

If we forget the group sturcture, this is turn homeomorphic to S3 × RP 3.
Thus we can compute its homology using the Künneth theorem, Theorem 11.2.4.

Because the homology of S3 is free in each degree, there are no non-zero Tor-terms and
we get an isomorphism

H∗(SO(4)) ∼= H∗(S3)⊗H∗(RP 3).

12.2.4 SO(n)

At this point our exceptional isomorphisms run out, which the exception of SO(8) ∼=
SO(7)× S7, and we have to confront the special orthogonal groups head on. We will do
so by describing a CW structure on them, following Section 3.D of Hatcher.

For v ∈ Sn−1, let r(v) denote the reflection of Rn across the plane orthogonal to v.
This is orthogonal but has determinant −1, which can be fixed by using instead r(v)r(e1).
Thus we obtain a continuous map

ρ : RPn−1 −→ SO(n)
v 7−→ r(v)r(e1).

This is injective because the map v 7→ r(v) is, and on O(n) multiplication by r(e1)is a
homeomorphism.

More generally, for any sequence I = (i1, . . . , ir) with 0 < ij < n, we have a continuous
map

ρI : RP i1 × · · · × RP ir −→ SO(n)
(v1, . . . , vr) 7−→ ρ(v1) · · · ρ(vr).

Let φ : Di → RP i be the characteristic map of the top cell in the standard CW
structure on RP i. These can be combined to a map

φI : Di1 × · · · ×Dir −→ RP i1 × · · · × RP ir

and we can compose this with ρI as well as the usual homeomorphism of the domain
with Di1+···+ir , we obtain a map

χI : Di1+···+ir −→ SO(n).

Some of these maps have overlapping images, and so we focus on I which are admissible,
which means that n > i1 > · · · > ir > 0. Note that I may be empty. This is [Hat02,
Proposition 3D.1].
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Proposition 12.2.2. The maps χI : Di1+···+ir → SO(n), ranging over admissible I, are
the characteristic maps of a CW structure on SO(n) such that the map

ρ : RPn−1 × RPn−2 × · · · × RP 1 −→ SO(n)

is cellular if we use the standard CW structure on the domain.

We shall denote the cells with characteristic maps χI by eI , or if we have I = n >
i1 > · · · > ir > 0 by ei1 × · · · × eir . Observe that each cell of SO(n) is by definition
obtained by taking cells χi : Di → RP i → SO(n) and multiplying these using the group
structure of SO(n). In particular, the map ρ is surjective.
Example 12.2.3. For n = 2, there are only two admissible sequences: (1) and (), correspond-
ing to cells of dimension 1 and 0. These are the cells for the ordinary CW-decomposition
of SO(2) = S1, and the map ρ : RP 1 → SO(2) is given by composing sending a line v to
ρ(v)ρ(e1), which is the same as rotation through twice the angle between v and e1.
Example 12.2.4. For n = 3, there are only four admissible sequences: (2, 1), (2), (1) and
(), corresponding to cells of dimension 3, 2, 1 and 0. These are the cells for the ordinary
CW-decomposition of RP 3.

Proposition 12.2.5. The homology group Hi(SO(n);Z/2) is the free Z/2-vector space
on the set of admissible sequences I with i1 + · · ·+ ir = i.

Proof. Since the map ρ : RPn−1×RPn−2×· · ·×RP 1 −→ SO(n) is a cellular map, there
is an induced map of cellular chain complexes with Z/2-coefficients

C∗(RPn−1 × RPn−2 × · · · × RP 1;Z/2) −→ C∗(SO(n);Z/2),

which is surjective since ρ is.
Recall that the cells of a product are the products of cells in each of the terms so

each entry in C∗(RPn−1×RPn−2× · · ·×RP 1;Z/2) is generated by ei1 × . . .× ein−1 with
eij a ij-cell of RPn−j , and the differential is given by1

d(ei1 × . . .× ein−1) =
∑
j

(−1)i1+···+ij−1ei1 × · · · × d(eij )× · · · × ein−1 .

Since d(eij ) is always 0 modulo 2, we conclude that the differential vanishes in the domain.
Since the map of chain complexes is surjective, the differential must also vanish in the
target. In other words, there is an isomorphism of graded vector spaces

C∗(SO(n);Z/2) ∼= H∗(SO(n);Z/2).

The proposition then easily follows.

Example 12.2.6. Let us write

f(x) =
∞∑
i=0

dimHi(SO(n);Z/2) · xi ∈ Z[[x]]

1For a detailed proof, see Proposition 3B.1 of Hatcher.
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for the generating series of the dimension. Since in an admissible sequence we can decide
to either include the integer i or not, we see that

f(x) =
n−1∏
i=1

(1 + xi).

By expanding this product we can easily read off the dimensions of H∗(SO(n);Z/2). For
example, when n = 6 we get

x15+x14 + x13 + 2x12 + 2x11 + 3x10 + 3x9 + 3x8+
3x7 + 3x6 + 3x5 + 2x4 + 2x3 + x2 + x+ 1.

This is compatible with SO(6) being 15-dimensional.
In fact, these dimensions are the same as those of the graded Z/2-algebra

Z/2[w̄1, . . . , w̄n−1]/(w̄2
1, . . . , w̄

2
n−1)

where the degree of w̄i is i. If we had worked out the homomorphisms

H∗(SO(n);Z/2)⊗H∗(SO(n);Z/2) ∼= H∗(SO(n)× SO(n);Z/2) −→ H∗(SO(n);Z/2),

which make H∗(SO(n);Z/2) into a Z/2-algebra, we would have found this description.
It is harder to compute the homology with Z-coefficients; we shall not give a complete

answer but outline a procedure to compute these groups:

Theorem 12.2.7. There are “small” chain complexes C2i
∗ and C2i+1

∗ such that

C∗(SO(2k + 1)) ∼= C2
∗ ⊗ C4

∗ ⊗ · · · ⊗ C2k
∗

C∗(SO(2k + 2)) ∼= C2
∗ ⊗ C4

∗ ⊗ · · · ⊗ C2k
∗ ⊗ C2k+1

∗ .

Proof. We will only do the case n = 2k + 1 in detail, as the case n = 2k + 2 is similar.
Recall that ei ⊂ SO(2k + 1) denotes an i-cell, and eiej for i > j is a product of two such
cells.

Let us consider the four cells e0, e2i−1, e2i, e2ie2i−1. These are in the image of the
cellular map RP 2i × RP 2i−1 → SO(2k + 1), of the cells e0 × e0, e0 × e2i−1, e2i × e0,
e2i × e2i−1. The boundary of ei with i > 0 is 2ei−1 when i is even and 0 when i is odd.
Thus d(e0 × e2i−1) = 0, d(e2i × e0) = 2e2i−1 × e0, and

d(e2i × e2i−1) = 2e2i−1 × e2i−1.

When we map e2i−1 × e2i−1 ⊂ RP 2i × RP 2i−1 to SO(2k + 1), we land in the much
lower-dimensional cell e2i−1 as we are multiplying rotations which happen to lie in the
same 2i-dimensional subspace. Thus d(e2ie2i−1) = 0.

In other words, the four cells e0, e2i−1, e2i, e2ie2i−1 span a subcomplex C2i
∗ ⊂ C∗(SO(2k+

1)). We now claim that

C∗(SO(2k + 1)) ∼= C2
∗ ⊗ C4

∗ ⊗ · · · ⊗ C2k
∗ .



12.2 Special orthogonal groups 101

The proof is by induction over k; for k = 1 this SO(2k+1) = RP 3 and C∗(SO(2k+1)) =
C2
∗ . For the induction step, observe that C∗(SO(2k − 1)) ⊂ C∗(SO(2k + 1)) is the

subcomplex spanned by all cells eI with I not containing 2k − 1 or 2k. Inspecting the
differentials, we see that

C∗(SO(2k + 1)) = C∗(SO(2k − 1))⊗ C2k
∗ .

Applying the inductive hypothesis we are done.
For the case n = 2k + 2, one adds C2n+1

∗ spanned by the cells e0, e2n+1 and with
trivial differential.

Let us draw some corollaries:

Corollary 12.2.8. The rational homology groups are (additively) given by

H∗(SO(2k + 1);Q) ∼= Q[p̄3, · · · p̄4k−1]
H∗(SO(2k + 2);Q) ∼= Q[p̄3, · · · p̄4k−1, ē2k+1]

Proof. Again we do the case n = 2k + 1 only: H∗(C2
∗ ⊗ C4

∗ ⊗ · · · ⊗ C2k
∗ ⊗ Q) can be

computed by algebraic Künneth theorem as the tensor product of the homologies of
C2i
∗ ⊗Q and C2i+1

∗ ⊗Q:

H∗(C2i
∗ ) =

{
Q if ∗ = 0, 4i− 1,
0 otherwise.

H∗(C2i+1
∗ ) =

{
Q if ∗ = 0, 2i+ 1,
0 otherwise.

In fact, this computation works with coefficients in Z[1/2]. This is consistent with
the following result:

Corollary 12.2.9. The homology groups H∗(SO(n)) are direct sums of Z’s and Z/2’s.

Proof. As before we do the case n = 2k + 1 only: H∗(C2
∗ ⊗ C4

∗ ⊗ · · · ⊗ C2k
∗ ) can be

computed by algebraic Künneth theorem from the homology of C2i
∗ :

H∗(C2i
∗ ) =


Z if ∗ = 0, 4i− 1,
Z/2 if ∗ = 2i− 1
0 otherwise.

The contribution to H∗(C2
∗ ⊗ C4

∗ ⊗ · · · ⊗ C2k
∗ ) are then tensor products of such groups,

which will only be Z’s or Z/2’s, as well as TorZ1 -terms, which will only be Z/2’s.
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Example 12.2.10 (SO(5)). By the argument in the previous corollary, it suffices to
compute H∗(C2

∗ ⊗ C4
∗ ) using the algebraic Künneth theorem. We first compute

H∗(C2
∗ )⊗H∗(C4

∗ ) =


Z if ∗ = 0, 3, 7, 10,
Z/2 if ∗ = 1, 3, 4, 6, 8,
0 otherwise.

Next we add Tor-terms, which only occur between H1(C2
∗ ) and H3(C4

∗ ) and contribute a
Z/2 to degree 5. We conclude that

H∗(SO(5)) =


Z if ∗ = 0, 3, 7, 10,
Z/2 if ∗ = 1, 3, 4, 5, 6, 8,
0 otherwise.

12.3 Problems

Problem 12.3.1 (Stiefel manifolds). Let Vn,k be the topological space of orthonormal
k-tuples of vectors in Rn. These are called Stiefel manifolds.

(i) Use the action of SO(n) on the k-tuple (en−k+1, . . . , en) to give a homeomorphism

SO(n)/SO(n− k)
∼=−→ Vn,k.

(ii) Use this to give a CW-structure on Vn,k.
(iii) Prove that C2k

∗ is the cellular chain complex of V2k+1,2 and use this to compute
H∗(V2k+1,2).



Chapter 13

Cohomology

In this chapter we define cohomology, the dual to homology, and explain how to relate
the two.

13.1 Cohomology as the dual of homology

Cohomology is an invariant of topological spaces analogous to homology, which is
contravariant rather than covariant: a continuous map f : X → Y induces a homomor-
phism f∗ : H∗(Y )→ H∗(X). That is, as a functor it will have domain HoTopop instead
of HoTop. There are several reasons to want this:

(1) Many geometric objects pull back along continuous map f : X → Y , such as
differential forms, covering spaces, or vector bundles. Invariants of such objects
that are compatible with pull back, must take values in an abelian group which is
contravariantly assigned to X.

(2) One can build invariants of topological spaces from geometric objects, such as
differential forms (deRham cohomology), or vector bundles (topological K-theory).
Such invariants will be contravariant, and to compare homology we know we need
contravariant variations of it.

(3) For every topological these is a diagonal map X → X ×X. Cohomology will turn
this into a map ∆∗ : H∗(X ×X)→ H∗(X), from which we can extract a product
on H∗(X). This additional algebraic structure is a helpful invariant.

Let us fix an R-module M to use as coefficients. We define the singular n-cochains
on X with values in M to be the module of R-module homomorphisms Sn(X;R)→M :

Sn(X;M) := HomR(Sn(X;R),M).

These assemble to a cochain complex, which is like a chain complex but its differential
increases degree rather than decreasing it:

d : Sn(X;M) −→ Sn+1(X;M)
α 7−→ (−1)n+1α ◦ d.

103
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The purpose of this sign is not be clear, but it will be used to guarantee that the Kronecker
pairing is well-defined. Anyway, this differential satisfies d2 = 0, and we take cohomology
by taking the quotient of the cocycles by the coboundaries

Zn(X;M) := ker[d : Sn(X;M)→ Sn+1(X;M)],
Bn(X;M) := im[d : Sn−1(X;M)→ Sn(X;M).

Definition 13.1.1. The cohomology groups of X with coefficients in M are given by

Hn(X;M) := Zn(X;M)
Bn(X;M) .

This amounts to inserting the functor HomR(−,M) : Chop
R → CoChR in the construc-

tion of homology: cohomology is given as the composition

Topop Sin•−−→ ssSetop R[−]−−−→ Chop
R

HomR(−,M)−−−−−−−−→ CoChR
H∗−→ GrAb.

Cochain homotopies are defined similarly to chain homotopy, but now decrease degree
instead of increasing it. Dualizing a chain homotopy gives a cochain homotopy. Thus
cohomology is homotopy-invariant and factors over HoTopop.
Remark 13.1.2. It should be clear at this point that we should have defined cohomology
to be negatively graded:

S∨−n(X;M) := Sn(X;M).
With this grading convention the differential decreases degree, so we get a chain complex.
As we will see later, using this convention makes arguments go through more smoothly.
Example 13.1.3. H0(X;M) consists of those functions α : Sin0(X) → M such that
d(α) = 0. The equation d(α) = 0 means that α(d(σ)) for every 1-simplex σ ∈ X: thus it
is expressing that α is constant on path components. We conclude that

H0(X;M) = {functions π0(X)→M}.

13.1.1 Eilenberg–Steenrod axioms for cohomology

Cohomology is a dual version of homology. To make this precise we need to first
define a relative version. To make sense of H∗(X,A;M) for a pair A ⊂ X we replace
S∗(X;R) by S∗(X,A;R) := S∗(X;R)/S∗(A;R). In other words, Sn(X,A;M) consists
of those R-linear functionals Sn(X;R)→M which vanish on Sn(A;R) ⊂ Sn(X;R). By
definition, there is then a short exact sequence of cochain complexes

0 −→ S∗(X,A;M) −→ S∗(X;M) −→ S∗(A;M) −→ 0

and from our usual homological algebra machinery, we get a long exact sequence where
now all maps go the opposite way from the one in homology:

· · · Hn(X;M) Hn(X,A;M)

Hn−1(X,A;M) Hn−1(X;M) · · ·
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This gives one of the three Eilenberg–Steenrod axioms for cohomology: the long exact
sequence for a pair. The other two are versions of the excision and wedge axioms. Excision
for homology was proven using the subdivision operation S and a chain homotopy between
the identity and S, and we dualize these to give excision for cohomology. The precise
statement of excision is that for an excisive triple U ⊂ A ⊂ X, the homomorphism

H∗(X,A;M) −→ H∗(X \ U,A \ U ;M)

is an isomorphism.
The wedge axiom will look slightly different, as HomR(−,M) takes direct sums to

direct products: the natural maps H∗(
⊔
i∈I Xi) → H∗(Xi) induced by the inclusions

assemble to an isomorphism

H∗
(⊔
i∈I

Xi

)
−→

∏
i∈I

H∗(Xi).

13.1.2 First computational tools

With Eilenberg–Steenrod axioms for cohomology come the same computational tools
as for homology: Mayer–Vietoris takes the shape

· · · Hn(U ;M)⊕Hn(V ;M) Hn(X;M)

Hn−1(U ∩ V ;M) Hn−1(U ;M)⊕Hn−1(V ;M) · · ·

and from this we can deduce a suspension isomorphism

H̃n(SX;M) ∼= H̃n−1(X;M).

This gives us the cohomology of spheres from H∗(S0;M): for n ≥ 1 we have

H∗(Sn;M) =
{
M if ∗ = 0, n,
0 otherwise.

From this we can construct the machinery of cellular cohomology: for CW-complexes there
is a cellular cochain complex computing H∗(X;M) obtained by applying HomR(−,M)
to the cellular chain complex C∗(X;R).
Example 13.1.4. Let us compute H∗(RP 3). Dualizing the cellular chain complex C∗(RP 3)
for the standard CW structure, we get the cellular cochain complex:

Z 0−→ Z 2−→ Z 0−→ Z.

Thus we see that

H∗(RP 3) =



Z if ∗ = 0,
0 if ∗ = 1,
Z/2 if ∗ = 2,
Z if ∗ = 3,
0 otherwise.
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That is, in comparison with homology the free summands stay in the same degrees, but
the torsion shifts up one degree: this is a general phenomenon we will shall explain
shortly.

13.2 The Kronecker pairing

For any R-module N there is an evaluation pairing

HomR(N,M)×N −→M

(α, n) 7−→ α(n).

This is also known as the Kronecker pairing. It is bilinear, so induces a map out of the
tensor product

HomR(N,M)⊗R N −→M.

We get an evaluation pairing Sn(X;M)⊗R Sn(X;R)→M between singular chain and
cochains. To make this compatible with gradings, with M in degree 0, we use the
regraded version S∨−n(X;M) = Sn(X;M):

S∨−n(X;M)⊗R Sn(X;R) −→M.

Proposition 13.2.1. These maps assemble into map of chain complexes

S∨∗ (X;M)⊗R S∗(X;R) −→M

with M considered as a chain complex concentrated in degree 0.

Proof. We must verify that the evaluation pairings are compatible with the differential.
There is only something to check on the term S∨−n(X;M)⊗R Sn(X;R) in degree 0. The
differential on the tensor product is given on generators by

d(α⊗ σ) = d(α)⊗ σ + (−1)nα⊗ d(σ) = (−1)n+1(α ◦ d)⊗ σ + (−1)nα⊗ d(σ).

Getting the sign on the right hand side was the reason for modifying the sign on the
differential in the singular cochain complex. Under the evaluation pairing this goes to

(−1)n+1α(d(σ)) + (−1)nα(d(σ)) = 0.

We can now take homology and get maps

H∗(S∨∗ (X;M))⊗R H∗(X;R) −→ H∗(S∨∗ (X;M)⊗R S∗(X;R)) −→M.

Recalling that H−n(S∨∗ (X;M)) = Hn(X;M), this gives homomorphisms

〈−,−〉 : Hn(X;M)⊗R Hn(X;R) −→M.
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13.3 Ext and universal coefficients for cohomology

The Kronecker pairing provides a map

β : Hn(X;M) −→ HomR(Hn(M), R)
α 7−→ 〈α,−〉.

We will investigate to what extent it is an isomorphism. This is possible using a version
of the universal coefficients theorem, obtained by studying the functor HomR(−,M)
instead of −⊗RM . Let us give the algebraic version:

Theorem 13.3.1 (Universal coefficients for cochain complexes). Let R be a PID, M an
R-module, and C∗ be a chain complex of free R-modules. There are short exact sequences

0 −→ ExtR1 (Hn−1(C∗),M) −→ Hn(HomR(C∗,M)) β−→ HomR(Hn(C∗),M) −→ 0

which are split but not naturally so.

Taking C∗ = S∗(X;R), we get a universal coefficients theorem for singular cohomology

0 −→ ExtR1 (Hn−1(X;R),M) −→ Hn(X;M) β−→ HomR(Hn(X;R),M) −→ 0.

The statement should look familiar: it is similar to that of the universal coefficients
theorem in homology. However, instead of TorR1 , which is the derived functor of −⊗RM ,
we see a new functor ExtR1 , which is the derived functor of HomR(−,M). The issue is
similar to before: HomR(−,M) is not exact, but not all hope is lost:

Lemma 13.3.2. HomR(−,M) takes cokernels to kernels.

Proof. If N ′′ is the cokernel of g : N → N ′, we need to prove that every homomorphism
f : P → HomR(N ′,M) such that

P
f−→ HomR(N ′,M) −◦g−−→ HomR(N,M)

is zero, factors uniquely over HomR(N ′′,M). Indeed, if f(p) vanishes on the image of g,
then it factors uniquely as a map f̃(p) : N ′/g(N) = N ′′ →M .

We can now call on the machinery of homological algebra to measure the failure of
exactness of HomR(−,M). We take a free resolution

· · · −→ F2 −→ F1 −→ F0 −→ N −→ 0,

and after truncating this and applying HomR(−,M) get a chain complex

0 −→ HomR(F0,M) −→ HomR(F1,M) −→ · · · .

Definition 13.3.3. We define the Ext-groups of N against M over R by

ExtRn (N,M) := Hn(HomR(F∗,M)).
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Since HomR(−,M) sends cokernels to kernels, we see that

ExtR0 (N,M) = HomR(N,M).

Example 13.3.4. If R = Z and M = Z, then of course HomZ(Z/n,Z) = 0. However,
ExtZ1 (Z/n,Z) does not vanish. To see this, we resolve Z/n by

Z n−→ Z −→ Z/n

and see that ExtZ1 (Z/n,Z) is the cokernel of the homomorphism

Z = HomZ(Z,Z) n−→ HomZ(Z,Z) = Z,

so ExtZ1 (Z/n,Z) = Z/n. Through this phenomenon, Theorem 13.3.1 explains the follow-
ing, as long as all H∗(X) are finitely-generated abelian groups:

free part of Hn(X) ∼= free part of Hn(X),

torsion part of Hn(X) ∼= torsion part of Hn−1(X).

The same techniques as for Tor imply:

Proposition 13.3.5. ExtRn (−,M) : Modop
R → ModR is independent of choice of resolution

and functorial.

Remark 13.3.6. As should be clear from the definitions, ExtRn (N,M) is also covariantly
functorial in M .

Proof of Theorem 13.3.1. Let us shorten the homology, cycles and boundaries in C∗
to Hn, Zn and Bn. Then Hn = Zn/Bn is a submodule of Cn/Bn, and its quotient is
isomorphic to Cn/Zn = Bn−1 via the differential. We thus have a short exact sequence

0 −→ Hn −→ Cn/Bn
d−→ Bn−1 −→ 0.

Since Bn−1 ⊂ Cn−1 is free, this remains short exact after applying HomR(−,M):

0 −→ HomR(Bn−1,M) −→ HomR(Cn/Bn,M) −→ HomR(Hn,M) −→ 0.

We can mapHn(HomR(C∗,M)) into the right term using β. Recall thatHn(HomR(C∗,M))
is a quotient of the cycles Zn(HomR(C∗,M)) in HomR(C∗,M). These are functionals of
Cn which vanish on Bn, so are equal to the middle term. We thus get a map of short
exact sequences

0 Bn(HomR(C∗,M)) Zn(HomR(C∗,M)) Hn(HomR(C∗,M)) 0

0 HomR(Bn−1,M) HomR(Cn/Bn,M) HomR(Hn,M) 0.

β′ ∼= β

Extending vertically by 0’s to a short exact sequence of chain complexes, we get a long
exact sequence on homology. Concentrating on the entry of this long exact sequence
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coming from Hn(HomR(C∗,M)), we see that β is surjective and its kernel is coker(β′).
In other words, it fits into a short exact sequence

0 −→ coker(β′) −→ Hn(HomR(C∗,M)) β−→ HomR(Hn,M) −→ 0.

So it remains to identify coker(β′) with an Ext-group. To do so, observe that
Bn(HomR(C∗,M)) consist of those functionals Cn →M that factor as Cn

d−→ Cn−1 →
M . Since Cn → Cn−1 factors over Zn−1, which is a direct summand since Cn is free, this
is the same as functionals Cn →M that factor as Cn

d−→ Zn−1 →M . Thus the cokernel
of β′ is equal to the cokernel of HomR(Zn−1,M)→ HomR(Bn−1,M) given by restriction
to Bn−1 ⊂ Zn−1:

coker(β′) = coker[HomR(Zn−1,M)→ HomR(Bn−1,M)].

Since both Zn−1 and Bn−1 are free, as submodules of the free R-module Cn−1, we
see that

0 −→ Bn−1 −→ Zn−1 −→ Hn−1 −→ 0

is a free resolution of Hn−1 and thus the above cokernel computes ExtR1 (Hn−1,M).
Finally, for the addendum about the splitting we use that the short exact sequence

0 −→ Hn −→ Cn/Bn −→ Bn−1 −→ 0

admits a splitting because Bn−1 is free, and proceed as in the previous universal coefficients
theorem.

Example 13.3.7. Let us compute H∗(RP 3) again, using that

H∗(RP 3) =



Z if ∗ = 0,
Z/2 if ∗ = 1,
0 if ∗ = 2,
Z if ∗ = 3,
0 otherwise.

Applying HomZ(−,Z) gives a Z in degrees 0 and 3, but no Z/2 as that can’t map
non-trivially into Z. However ExtZ1 (Z/2,Z) = Z/2, so we get a Z/2 in degree 2. This
agrees with the answer obtained above using cellular cohomology.

13.4 Problems

Problem 13.4.1 (H1). Prove that H1(X;M) ∼= HomR(H1(X;R),M). Conclude that
H1(X) is always torsion-free.

Problem 13.4.2 (The degree in cohomology). A map f : Sn → Sn induces a self-map
of both Hn(Sn) and Hn(Sn), both of which are given by multiplication with an integer.
Prove that these integers are equal.



Chapter 14

The cup product

One motivation for cohomology is that its contravariance should allow us to produce
a product from the diagonal map. We will do so in this chapter.

14.1 The cross product

As before, we drop the subscript R from tensor products for brevity. Recall from
Theorem 11.3.9 that there is a natural chain homotopy equivalence

AWX,Y : S∗(X × Y ;R) −→ S∗(X;R)⊗ S∗(Y ;R),

unique up to chain homotopy.
Remark 14.1.1. In Problem 11.4.2 we gave an explicit formula, called the Alexander–
Whitney map:

S∗(X × Y ;R) 3 σ 7−→
n∑
p+q

π1 ◦ σ|∆p ⊗ π2 ◦ σ|∆q ∈ S∗(X;R)⊗ S∗(Y ;R),

where ∆p ⊂ ∆n is the first face and ∆q ⊂ ∆n the last one. Though our “agnostic”
approach through acylic models is better for proofs, I recommend you think in terms of
this definition instead.

Dualizing this gives a map of cochain complexes

AW ∗X,Y : HomR(S∗(X)⊗S∗(Y ), R) −→ HomR(S∗(X×Y ;R), R) = S∗(X×Y ;R). (14.1)

Since we can dualize a chain homotopy to a cochain homotopy, this is a cochain homotopy
equivalence.

To map into the domain S∗(X;R)⊗ S∗(Y ;R), we use the chain map

aC∗,D∗ : HomR(C∗, R)⊗HomR(D∗, R) −→ HomR(C∗ ⊗D∗;R)

given by

α⊗ β 7−→
{

(x⊗ y 7→ (−1)pqα(x)β(y) if deg(α) = p = deg(x), deg(β) = q = deg(y).
0 otherwise.

110
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Taking C∗ = S∗(X;R) and D∗ = S∗(Y ;R), this gives a cochain map

S∗(X;R)⊗ S∗(Y ;R) −→ HomR(S∗(X)⊗ S∗(Y ), R). (14.2)

Composing with (14.1), we get a cochain map S∗(X;R)⊗ S∗(Y ;R)→ S∗(X × Y ;R),
and passing to homology a map

H∗(S∗(X;R)⊗ S∗(Y ;R)) −→ H∗(X × Y ;R).

As in Künneth, there is a natural map H∗(X;R)⊗H∗(Y ;R)→ H∗(S∗(X;R)⊗S∗(Y ;R)),
and precomposing with this we finally obtain the cohomology cross product

× : H∗(X;R)⊗H∗(Y ;R)→ H∗(X × Y ;R).

14.2 The cup product

The diagonal is the continuous map ∆: X → X ×X given by x 7→ (x, x). It induces
a map ∆∗ : H∗(X ×X;R)→ H∗(X;R) on cohomology, and we can precompose it with
the cohomology cross product:

Definition 14.2.1. The cup product

∪ : H∗(X;R)⊗H∗(X;R) −→ H∗(X;R).

is the composition of the cohomology cross product with ∆∗.

Remark 14.2.2. The formula for the Alexander–Whitney maps from Problem 11.4.2 gives
an explicit formula for the cup product as the map induced on cohomology by

Sp(X;R)⊗ Sq(X;R) −→ Sp+q(X × Y ;R)
α⊗ β 7−→ (σ 7→ (−1)pqα(πX ◦ σ|∆p))β(πY ◦ σ|∆q )) .

By construction the cup product is natural in X, that is, f∗ : H∗(Y ;R)→ H∗(X;R)
satisfies f∗(x ∪ y) = f∗(x) ∪ f∗(y). It has the following further properties:

Proposition 14.2.3. The cup product is associative, unital, and graded-commutative.
The unit is given by element of H0(X;R) = Map(π0(X), R) that assigns 1 to every
connected component.

Here graded-commutativity means that α ∪ β = (−1)pqβ ∪ α when deg(α) = p and
deg(β) = q. Note that the naturality of f∗ can be rephrased as saying that it is a
homomorphism H∗(Y ;R)→ H∗(X;R) of graded-commutative R-algebras.

The properties of the cup product can all be proven using acyclic models. Let us
prove the associativity this way. At this point, I will also drop R from the coefficients
and the subscript on Hom, to make all diagrams fit on the page. Our cup product is a
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composition of the dual (14.1) of AW , the chain map α (14.2) and the map induced by
the diagonal:

H∗(X)⊗H∗(X)

H∗(Hom(S∗(X)⊗ S∗(X), R))

H∗(X ×X)

H∗(X)

aX,X

AW ∗X,X

∆∗

When we start with three copies of H∗(X), we can either take ∪ ◦ (∪⊗ id) or ∪ ◦ (id⊗∪)
to end up at H∗(X): associativity asserts these are equal.

Since AW ∗ and a are natural, the following diagrams commute

H∗(X ×X)⊗H∗(X) H∗(X ×X ×X)

H∗(X)⊗H∗(X) H∗(X ×X)

AW ∗X×X,X◦aX×X,X

∆∗⊗id (∆×id)∗
AW ∗X,X◦aX,X

H∗(X)⊗H∗(X ×X) H∗(X ×X ×X)

H∗(X)⊗H∗(X) H∗(X ×X).

AW ∗X,X×X◦aX,X×X

id⊗∆∗ (id×∆)∗
AW ∗X,X◦aX,X

These can pasted together to top-right and bottom-left squares of

H∗(X)⊗H∗(X ×X) H∗(X)⊗H∗(X)

H∗(X ×X)⊗H∗(X) H∗(X ×X ×X) H∗(X ×X)

H∗(X)⊗H∗(X) H∗(X ×X) H∗(X)

AW ∗X,X×X◦aX,X×X

id⊗∆∗

AW ∗X,X◦aX,X

AW ∗X×X,X◦aX×X,X

∆∗⊗id (∆×id)∗

(id×∆)∗

∆∗
AW ∗X,X◦aX,X ∆∗

where the bottom-right corner commutes since the following diagram of spaces does

X X ×X

X ×X X ×X ×X.

∆

∆ id×∆
∆×id
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It thus suffices to prove that the following completion of the top-left corner commutes

H∗(X)⊗H∗(Y )⊗H∗(Z) H∗(X)⊗H∗(Y × Z)

H∗(X × Y )⊗H∗(Z) H∗(X × Y × Z),

id⊗(AW ∗Y,Z◦aY,Z)

(AW ∗X,Y ◦aX,Y )⊗id AW ∗X,Y×Z◦αX,Y×Z

AW ∗X×Y,Z◦aX×Y,Z

and specialize X,Y, Z all to X.
Since α is natural in chain maps and AW ∗ is given by precomposition with a chain

map, we see that they commute. It thus suffices to prove that the following two diagrams
commute up to chain homotopy

S∗(X)⊗ S∗(Y )⊗ S∗(Z) Hom(S∗(X)⊗ S∗(Y ), R)⊗ S∗(Z)

S∗(X)⊗Hom(S∗(Y )⊗ S∗(Z), R) Hom(S∗(X)⊗ S∗(Y )⊗ S∗(Z), R).

aX,Y ⊗id

id⊗aY,Z aX×Y,Z

aX,Y×Z

S∗(X × Y × Z) S∗(X × Y )⊗ S∗(Z)

S∗(X)⊗ S∗(Y × Z) S∗(X)⊗ S∗(Y )⊗ S∗(Z).

AWX×Y,Z

AWX,Y×Z AWX,Y ⊗id
id⊗AWX,Y×Z

The first is commutative by a simple inspecting on the formula for a. However, the
second is not obviously commutative (how can it be given our construction?) so a chain
homotopy is needed. We find it using acyclic models:

Lemma 14.2.4. The two chain homotopy equivalences (id⊗AWY,Z)◦AWX,Y×Z , (AWX,Y⊗
id) ◦AWX×Y,Z , both chain maps

S∗(X × Y × Z;R) −→ S∗(X;R)⊗ S∗(Y ;R)⊗ S∗(Y ;R),

are naturally chain homotopic.

Proof. We apply Theorem 11.3.4 to

C = Top3,

M = {(∆p,∆q,∆r) | p, q, r ≥ 0},
F = (X,Y, Z) 7→ H0(X × Y × Z)
F• = ((X,Y, Z) 7→ S∗(X × Y × Z))
G = ((X,Y, Z) 7→ H0(X)⊗H0(Y )⊗H0(Z))
G• = ((X,Y, Z) 7→ S∗(X)⊗ S∗(Y )⊗ S∗(Z))

f = natural iso : H0(X × Y × Z)
∼=−→ H0(X)⊗H0(Y )⊗H0(Z).

We do not only obtain a natural chain map f∗ : F∗ → G∗ extending f , but this is unique
up to chain homotopy. But both (id⊗ AW ) ◦ AW, (AW ⊗ id) ◦ AW extend f , so they
must be chain-homotopic.
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This completes the proof of associativity. You are probably tired of commutative
squares at this point, so we will be satisfied with saying that similar proofs give the
unitality and graded-associativity of the cup product. The latter reduces to proving that
the following diagram for AW commutes up to natural chain homotopy

S∗(X × Y ) S∗(Y ×X)

S∗(X)⊗ S∗(Y ) S∗(Y )⊗ S∗(X),

T∗

AWX,Y AWY,X

τ

(14.3)

where T (x, y) = (y, x) and τ(a⊗b) = (−1)deg(a) deg(b)b⊗a. Without this sign, the bottom
map is not a chain map.
Remark 14.2.5. It is in fact impossible to make the cup-product on S∗(X) graded-
commutative with any cochain complex model for cohomology. The failure of this is
measured by the so-called Steenrod squares [MT68].

14.3 Examples

Let us compute some first examples of cohomology rings.

14.3.1 Spheres

If a topological space has rather little cohomology, it is easy to determine the cup
product. For example, let n ≥ 1 and let us write 1 for the generator of H0(Sn) and xn
for the generator of Hn(Sn) in

H∗(Sn) =
{
Z if ∗ = 0, n,
0 otherwise.

Then 1 is the unit, and x∪x vanishes because it lies in degree 2n. Letting ΛZ(xn) denote
the exterior algebra Z[xn]/(x2

n), we see that

H∗(Sn) ∼= ΛZ(xn).

14.3.2 Products

We know that over a field F, H∗(X ×Y ;F) ∼= H∗(X;F)⊗FH
∗(Y ;F) as graded vector

spaces. The same is true as F-algebras. To make sense for this, we first need to define
the tensor product of graded-commutative algebras:

Definition 14.3.1. Let A∗ and B∗ be graded-commutative R-algebras, then we make
A∗ ⊗R B∗ into a graded-commutative R-algebra by taking its product to be

(a⊗ b)(a′ ⊗ b′) = (−1)pqaa′ ⊗ bb′,

where deg(b) = p and deg(a′) = q.
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Proposition 14.3.2. The cross product
× : H∗(X × Y ;R) −→ H∗(X;R)⊗H∗(Y ;R)

is an R-algebra homomorphism. It is an isomorphism when H∗(X;R) consists of free
R-modules (e.g. when R is a field F).

Proof. We need to prove that
(a× b) ∪ (a′ × b′) = (−1)deg(b) deg(a′)(a ∪ a′)× (b ∪ b′).

There is a commutative diagram

X × Y X × Y ×X × Y

X ×X × Y × Y,

∆X×Y

∆X×∆Y id×T×id

with T (x, y, x′, y′) = (x, x′, y, y′).
By definition, we have

(a× b) ∪ (a′ × b′) = ∆∗X×Y (a× b× a′ × b′)
= (∆X ×∆Y )∗(id× T × id)∗(a× b× a′ × b′)
= (∆X ×∆Y )∗(a× T ∗(b× a′)× b′)
= (−1)deg(a′) deg(b)(∆X ×∆Y )∗(a× a′ × b× b′).

Here the sign appears due to commutative diagram (14.3). The naturality of the cross
product says that the following diagram commutes

H∗(X ×X × Y × Y ) H∗(X ×X)⊗H∗(Y × Y )

H∗(X × Y ) H∗(X)⊗H∗(Y ),

(∆X×∆Y )∗

× ∆∗X⊗∆∗Y
×

so that
(−1)deg(a′) deg(b)(∆X ×∆Y )∗(a× a′ × b× b′) = (−1)deg(a′) deg(b)(a ∪ a′)× (b ∪ b′),

as desired.

Example 14.3.3. We see that for n,m ≥ 1,
H∗(Sn × Sm) ∼= ΛZ(xn)⊗ ΛZ(ym) =: ΛZ(xn, ym)

with deg(xn) = n, deg(ym) = m. Observe that the latter exterior algebra is the free
graded-commutative algebra on two generators, satisfying xnym = (−1)nmymxn.

Corollary 14.3.4. For n,m ≥ 1, every map f : Sn+m → Sn×Sm is trivial on cohomology
in positive degrees.

Proof. It can only be non-zero in degree n + m. In this degree Hn+m(Sn × Sm) is
generated by xn ∪ ym. Now we use that f∗(xn ∪ ym) = f∗(xn) ∪ f∗(ym) = 0 ∪ 0 = 0.

Thus the cup product distinguishes Sn × Sm from Sn ∨ Sm ∨ Sn+m, which have the
same homology. In particular, these topological spaces are not homotopy equivalent.
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14.4 Problems

Problem 14.4.1 (The degree of a self-map of CPn). Recall that H2n(CPn) = Z. Any
map f : CPn → CPn induces a map f∗ : H2n(CPn) = Z → H2n(CPn) = Z. This is
given by multiplication with an integer which we denote deg(f).

Prove that deg(f) ≥ 0 when n is even.

14.4.1 The James construction on spheres

Definition 14.4.2. The James construction J(X) of a based topological space X is the
quotient ⊔

k≥0
Xk

 /∼
with (x1, . . . , xk) ' (x1, . . . , x̂i, . . . , xk) if xi is the basepoint of X.

We let Jm(X) ⊂ J(X) be the subspace given by the image of
⊔

0≤k≤mX
k

You may use the following facts about J(X): given a CW-structure on X with the
basepoint a 0-cell, we get a product CW-structure on Xm such that the surjective map
Xm → Jm(X) is cellular. This map is given by identifying the m subcomplexes of
Xm with the product CW structure, where one of the entries is the basepoint. The
inclusion Jm(X) → Jm+1(X) is the inclusion of a subcomplexes, as is the inclusion
Jm(X)→ J(X).

Problem 14.4.3. Let n ≥ 2.
(i) Describe the k-cells of J(Sn), if we give Sn the CW-structure with a single 0- and

n-cell.
(ii) Compute H∗(J(Sn)) and H∗(J(Sn)) as graded abelian groups.

Problem 14.4.4. We will now compute the cup product when n is even.
(i) For m ≥ 1, let

qm : (Sn)m → Jm(Sn)

be the quotient map. Let ai ∈ Hn((Sn)m) denote the generator of the ith sphere
and x1 the generator of Hn(Jm(Sn)). Prove that q∗m(x1) = a1 + · · ·+ am.

(ii) Let xm denote the generator Hnm(Jm(Sn)). Prove that q∗(xm) = a1 · · · am.
(iii) Prove that xm1 = m!xm.

Problem 14.4.5. Finally, we identify the algebra, still supposing throughout this problem
that n is even. The divided power algebra ΓZ[x] on a generator x is the subring of the
polynomial ring Q[x] generated by the elements xi/i! for i ≥ 1.

(i) Prove that H∗(J(Sn)) is isomorphic to ΓZ[n] with deg(x) = n.
(ii) Prove that H∗(J(Sn);Q) ∼= Q[x] with deg(x) = n.

Remark 14.4.6. J(X) is homotopy equivalent to the “free topological group on X with
basepoint as the identity.” See [Hat02, Section 4.J] for more information.
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Cup products in two examples

In this chapter we work out the cup products on RPn and surfaces. Both have
interesting applications: the first will allow us to prove a result about division algebras
and the second will points us towards Poincaré duality.

15.1 The cup product on the cohomology of RP n

15.1.1 The relative cross product

In Problem 15.3.2 you will construct a relative cup product

∪ : H∗(X,A;R)⊗H∗(X,B;R) −→ H∗(X,A ∪B;R)

when A,B ⊂ X are open. This fits into a commutative diagram

H∗(X,A;R)⊗H∗(X,B;R) H∗(X,A ∪B;R)

H∗(X;R)⊗H∗(X;R) H∗(X;R).

∪

∪

This is constructed from a relative cross product, which I will outline below.
Recall that the relative cochains S∗(X,A;R) are given by those linear functionals

on S∗(X;R) which vanish on S∗(A;R). By naturality, the cross product of an element
of S∗(X,A;R) ⊗ S∗(Y,B;R) will be a functional on S∗(X × Y ;R) which vanishes on
S∗(X ×B;R) + S∗(A× Y ;R). We know from the locality principle that when A and B
are open, the chain map

S∗(X ×B;R) + S∗(A× Y ;R) −→ S∗(X ×B ∪A× Y ;R)

induces an isomorphism on homology. This implies that

S∗(X × Y,×B ∪A× Y ;R)

ker[S∗(X × Y ;R)→ Hom(S∗(X ×B;R) + S∗(A× Y ;R), R)]

117
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induces an isomorphism on homology. Thus we get a relative cross product

× : H∗(X,A;R)⊗H∗(Y,B;R) −→ H∗(X × Y,X ×B ∪A× Y ;R).

We will use one property of this relative cross product, which we will not prove for the
sake of time: recall that H1(R,R \ {0};R) ∼= H1([0, 1], ∂[0, 1];R) ∼= R, and all otherwise
cohomology groups vanish. We already know that the left and right hand sides of the
following lemma are isomorphic, the content is the statement that the relative cross
product induces this isomorphism.

Lemma 15.1.1. If A ⊂ X is open, the homomorphism

× : H1(R,R \ {0};R)⊗Hn(X,A;R) −→ Hn+1(X × R, X × (R \ {0}) ∪A× R;R)

is an isomorphism.

Example 15.1.2. Observe that when we have (X,A) = (R,R \ {0}) and (Y,B) =
(Rn−1,Rn−1, \{0}), we get (X × Y,X × B ∪ A × Y ) = (Rn,Rn \ {0}). Thus the ho-
momorphism

× : H1(R,R \ {0};R)⊗Hn−1(Rn−1,Rn−1 \ {0};R) −→ Hn(Rn,Rn \ {0};R).

is an isomorphism.

15.1.2 The cohomology of RPn

We will use this lemma, together with some geometric arguments, to compute the
cup product on RPn.

Theorem 15.1.3. The cohomology ring of RPn with Z/2-coefficients is given by

H∗(RPn;Z/2) ∼= Z/2[x]/(xn+1).

Proof. Let’s drop the Z/2’s for the sake of brevity. By induction over n and naturality
with respect to the inclusion RPn−1 → RPn, it suffices to prove that the cup product

H1(RPn)⊗Hn−1(RPn) −→ Hn(RPn)

is an isomorphism.
Recall that RPn is the topological space of lines in Rn+1. The subspaces Rn−1 × {0}

and {0} × R2, which intersect in {0} × R× {0}, induce inclusions

RPn−1 = {[x0 : · · · : xn] | xn = 0} ⊂ RPn, and
RP 1 = {[x0 : · · · : xn] | x0 = · · · = xn−2 = 0} ⊂ RPn

intersecting the point p = [0 : · · · : 0 : 1 : 0]. We will consider the open subsets
RPn \ RPn−1 ⊂ RPn and RPn \ RP 1 ⊂ RPn, whose union is RPn \ {p}.

We also observe that RPn \ RPn−1 consists of points [x0 : · · · : xn] with xn 6= 0 so
deformation retracts onto RP 0 = [0 : · · · : 0 : 1]. Similarly, RPn \ RP 1 consists of those
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points [x0 : · · · : xn] with not all of x0, . . . , xn−2 equal to 0, so deformation retracts onto
RPn−2 = {[x0 : · · · : xn] | xn−1 = 0 = xn}. Finally, RPn \ {p} ' RPn−1.

Using cellular cohomology, this implies that in the commutative diagram

H1(RPn,RPn \ RPn−1)⊗Hn−1(RPn,RPn \ RP 1) Hn(RPn,RPn \ {p})

H1(RPn)⊗Hn−1(RPn) Hn(RPn)

∪

∼= ∼=

∪

the vertical maps are isomorphisms. It hence suffices to prove that the top relative cup
product is an isomorphism.

To do so, we restrict to the chart Rn 3 (x1, . . . , xn) 7→ [x1 : x2 : · · · : xn−1 : 1 : xn] ∈
RPn:

H1(RPn,RPn \ RPn−1)⊗Hn−1(RPn,RPn \ RP 1) Hn(RPn,RPn \ {p})

H1(Rn,Rn \ Rn−1)⊗Hn−1(Rn,Rn \ R) Hn(Rn,Rn \ {0})

∪

∼= ∼=

∪

The vertical maps are isomorphisms by the commutative diagram (for i = n− 1, 1 and 0
respectively):

Hn−i(RPn) Hn−i(RPn,RPn \ RP i) Hn−i(Rn,Rn \ Ri)

Hn−i(RPn−i) Hn−i(RPn−i,RPn−i \ {p}) Hn−i(Rn−i,Rn−i \ {0}).

∼=

∼=
∼=

∼=
∼=

The left horizontal maps are isomorphisms by the deformation retractions given above, the
left vertical map by a cellular cohomology computation, the bottom right horizontal map
by excision, and the right vertical map since it is induced by the homotopy equivalence.

Recalling that the cup product is induced by restricting the cross product along the
diagonal, we look at the commutative diagram

H1(Rn,Rn \ Rn−1)⊗Hn−1(Rn,Rn \ R) H1(R,R \ {0})⊗Hn−1(Rn−1,Rn−1 \ {0})

Hn(R2n,Rn × (Rn \ R) ∪ (Rn \ Rn−1)× Rn) Hn(Rn,Rn \ {0})

Hn(Rn,Rn \ {0})

×

∼=
×∼=

∆∗

with the right vertical map an isomorphism by Example 15.1.2 and the top horizontal map
induced by the projection Rn → R onto the last coordinate and Rn → Rn−1 onto the first
(n− 1)-coordinates. The middle horizontal map is induced by (x1, . . . , xn, y1, . . . , yn) 7→
(xn, y1, . . . , yn−1). This means that the composition of it with ∆∗, the dotted map, is
induced by permutation of coordinates and hence an isomorphism. Thus the left vertical
composition, which is the cup product, is an isomorphism.
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Remark 15.1.4. Replacing R with C or H, this argument proves that

H∗(CPn) = Z[x]/(xn+1) and H∗(HPn) = Z[y]/(yn+1)

with |x| = 2 and |y| = 4.

15.1.3 Division algebras

Definition 15.1.5. A division algebra structure on Rn is a bilinear map m : Rn×Rn → Rn
such that right and left multiplication with a non-zero element are invertible.

Example 15.1.6. Note we do not require commutativity or even associativity. The ordinary
multiplications of R, C, H, and O hence give division algebra structures on R, R2, R4,
and R8.

Theorem 15.1.7. There can only be a division algebra structure on Rn if n = 2k.

Proof. Since multiplication by a 6= 0 is an invertible linear map, it sends Rn \ {0} to
itself. Thus (a, b) 7→ µ(a,b)

||µ(a,b)|| gives a continuous map

Sn−1 × Sn−1 −→ Sn−1.

We can quotient by ±1 to get a continuous map

µ : RPn−1 × RPn−1 −→ RPn−1

which has the property that when restricted to RPn−1 × {b} or {a} × RPn−1 it is a
homeomorphism. This implies that the induced map on cohomology with Z/2-coefficients

µ∗ : H∗(RPn−1;Z/2) = Z/2[x]/(xn) −→ H∗(RPn−1×RPn−1;Z/2) = Z/2[x1, x2]/(xn1 , xn2 )

pulls back the generator x ∈ H1(RPn−1;Z/2) to the element x1 + x2 ∈ H1(RPn−1 ×
RPn−1;Z/2).

Since pullback is a homomorphism, we must have (x1 + x2)n = 0. Observing that
squaring is linear modulo 2, and writing n =

∑
ai2i with ai ∈ {0, 1}, we see that∏

(x2i

1 + x2i

2 )ai must vanish. However, no terms can cancel when expanding this product,
so we must have that each term (x2i

1 +x2i

2 )ai vanishes. This only happens when n = 2k.

Remark 15.1.8. In fact, it is a famous result in algebraic topology that there can only be
a division algebra structure on Rn if n = 1, 2, 4, 8. This is done by rewriting the problem
in terms of the homotopy groups of spheres, where it becomes the Hopf invariant one
problem [Ada60].

15.2 The cup product on the cohomology of surfaces

15.2.1 Towards Poincaré duality

Recall that an n-dimensional topological manifold is a second countable Hausdorff
topological space which is locally homeomorphic to Rn. The following is a special case of
the next big theorem which we will prove:
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Theorem 15.2.1 (Poincaré duality with Z/2-coefficients). Let M be a compact n-
dimensional topological manifold. Then there is a unique class [M ] ∈ Hn(M ;Z/2) such
that composition

H i(M ;Z/2)⊗Hn−i(M ;Z/2) ∪−→ Hn(M ;Z/2) 〈−,[M ]〉−−−−−→ Z/2

is a perfect pairing, i.e. the induced map H i(M ;Z/2)→ Hom(Hn−i(M ;Z/2),Z/2) is an
isomorphism.

The class [M ] is called the fundamental class.
Example 15.2.2 (Real projective spaces). We show this is true for real projective spaces:
the fundamental class [RPn] is the generator of Hn(RPn;Z/2), and it follows from our
previous computation that

H i(RPn;Z/2)⊗Hn−i(RPn;Z/2) ∪−→ Hn(RPn;Z/2) 〈−,[RP
n]〉−−−−−−→ Z/2

is given by
xi ⊗ xn−i 7−→ xn 7−→ 1.

Example 15.2.3 (Torus). Recall that the torus T2 is just homeomorphic to S1 × S1, so
its cohomology ring with Z/2-coefficients is given by

H∗(T2;Z/2) ∼= Z/2[α, β]/(α2, β2).

Thus in this case the fundamental class is the generator of H2(T2;Z/2) and the isomor-
phism H1(M ;Z/2)→ Hom(H1(M ;Z/2),Z/2) is given by sending the basis α, β to the
dual basis elements eβ, eα respectively.

15.2.2 The intersection product

We can combine the Poincaré duality map with universal coefficient theorem for
cohomology, to get an isomorphism

H i(M ;Z/2)
∼=−→ Hom(Hn−i(M ;Z/2);Z/2)

∼=←− Hn−i(M ;Z/2).

Using these isomorphisms, we can transform the cup product on cohomology into an
intersection product on homology

Hp(M ;Z/2)⊗Hq(M ;Z/2) Hp+q−n(M ;Z/2)

Hn−p(M ;Z/2) ∼= Hn−q(M ;Z/2) H2n−p−q(M ;Z/2).

∼=

t

∼=

∪

This is called the intersection product because if a ∈ Hp(M ;Z/2) and b ∈ Hq(M ;Z/2)
can be represented as the image of fundamental class of some submanifolds A and B
of dimension p and q respectively, a t b can be computed as follows: make A and B
transverse, take their intersection to get a (p+q−n)-dimensional dimensional submanifold
A ∩B, and take the image of its fundamental class.
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Example 15.2.4. For the torus, the generators a, b of H1(T2;Z/2) are represented by
circles which intersect transversally in a single point. Hence their intersection product is
1 ∈ H0(T2;Z/2). This reflects the fact that α ∪ β is the generator of H2(T2;Z/2).

Example 15.2.5. For a genus g surface Σg, there are 2g circles a1, b1, · · · , ag, bg which
generate H1(Σg;Z/2). Each pair ai, bi intersects transversally in a single point, while
elements of different pairs do not intersect. Thus ai t bi = 1 and all other intersection
products vanish. We conclude that H∗(Σg;Z/2) is generated by elements ai, bi of degree
1, satisfying aiaj = 0 = bibj for all 1 ≤ i, j ≤ g, as well as aibj = 0 and aibi = ajbj for all
1 ≤ i 6= j ≤ g.

15.2.3 The classification of surfaces

To every compact connected surface we can associate a perfect symmetric bilinear
form

〈− ∪ −, [Σ]〉 : H1(Σ;Z/2)⊗H1(Σ;Z/2) −→ Z/2,

and homeomorphic surfaces get assigned isomorphic forms. Thus we get a map of sets

Surf := {connected compact surfaces}
homeomorphism

Bil := {perfect symmetric bilinear forms over Z/2}
isomorphism

Both sides have a commutative monoid structure: the right hand side by orthogonal
sum ⊕, and the left hand side by connected sum #. The connected sum Σ#Σ′ of Σ
and Σ′ is given by removing a disk from both sides and gluing the boundaries together.
These are compatible:

Lemma 15.2.6. There is an isomorphism H1(Σ#Σ′;Z/2) ∼= H1(Σ;Z/2)⊕H1(Σ′;Z/2)
of perfect symmetric bilinear forms over Z/2.

A bilinear form over Z/2 can be encoded up to isomorphism by the matrix over
Z/2, whose entries are given by the values of the form on pairs of basis elements. For
example, the form on H1(T2;Z/2) is given by hyperbolic form H = [ 0 1

1 0 ], and the one on
H1(RP 2;Z/2) is given by the diagonal form D = [ 1 ].

Lemma 15.2.7. Any perfect symmetric bilinear form over Z/2 is a direct sum of copies
of H and D.

Proof. Any perfect symmetric bilinear form is finite-dimensional, so the proof is by
induction over dimension of V . If we can find a vector v such that v · v = 1, we have
found a copy of D. If we can’t find such a vector we will have to settle for a non-zero
v ∈ V such that v · v = 0. If so, pick a w such that v · w = 1; necessarily w · w = 0 as
well, and we have found a copy of H. Now we use that if the form restricted to V ′ ⊂ V
is perfect, then V ∼= V ′ ⊕ (V ′)⊥.
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There is a relation between H and D in Bil: D+H = 3D. To see that this is the only
relation, one observes that the dimension and the number of vectors satisfying v · v = 0
are invariants. Thus we see that

Bil = Z≥0{H,D}
D +H = 3D.

Since we can hit H by T2 and D by RP 2, the map Surf → Bil is surjective. The
classification of surfaces says it is also injective:

Theorem 15.2.8 (Classification of surfaces). The map Surf → Bil is an isomorphism of
commutative monoids.

Example 15.2.9. The relation D +H = 3D translates to RP 2#T 2 ∼= RP 2#RP 2#RP 2.
This can be seen as follows: T2 is obtained by gluing the ends of a cylinder as usual,
while RP 2#RP 2 = K is obtained by gluing the ends of a cylinder after a reflection. This
means that we can think of RP 2#T 2 as removing two nearby disks and gluing their
boundary to a cylinder as usual, while for RP 2#K we introduce a reflection for one.
However, when we move one of the disks along the generator of π1(RP 2) its returns
with a reflection so we get the same surface whether we glue the cylinder along the two
boundaries as usual or with one reflection.

15.3 Problems

Problem 15.3.1 (Maps between projective spaces). In this problem you will answer
three questions about continuous maps between projective spaces.

(i) The standard inclusion Rn → Rn+1 induces a continuous map i : RPn−1 → RPn
between real projective spaces. Does this admit a retraction, i.e. is there a continuous
map r : RPn → RPn−1 such that r ◦ i = idRPn−1?

(ii) The Segre embedding is the continuous map

S : CP 1 × CP 1 −→ CP 3

([x0 : x1], [y0, y1]) 7−→ ([x0y0 : x1y0 : x0y1 : x1y1]).

What is the induced map S∗ : H∗(CP 3)→ H∗(CP 1 × CP 1) on cohomology?
(iii) Complexification Rn → Cn induces a continuous map j : RPn → CPn. What is

the induced map j∗ : H∗(CPn)→ H∗(RPn) on cohomology?

Problem 15.3.2 (Cup products on suspensions).
(i) Let A,B ⊂ X be open subspaces. Construct a relative cohomology cup product

H∗(X,A;R)⊗R H∗(X,B;R) −→ H∗(X,A ∪B;R),

which fits into a commutative diagram

H∗(X,A;R)⊗R H∗(X,B;R) H∗(X,A ∪B;R)

H∗(X;R)⊗R H∗(X;R) H∗(X;R).
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(Hint: it might be more convenient to use the explicit formula rather than acyclic
models, and you will need the locality principle.)

(ii) Use this to prove that in the cohomology of SY , all cup products of elements of
positive degree vanish.

(iii) Deduce that CPn for n ≥ 2 can not be homotopy equivalent to a suspension.

In the following problem you may not use the classification of surfaces.

Problem 15.3.3 (The Poincaré duality pairing and connected sums). Recall Poincaré
duality says that on a connected compact surface Σ there is a unique class [Σ] ∈ H2(Σ;Z/2)
such that the bilinear form

− · − : H1(Σ;Z/2)⊗H1(Σ;Z/2) ∪−→ H2(Σ;Z/2) 〈−,[Σ]〉−→ Z/2

is non-degenerate (equivalently, it is a perfect pairing).
Also recall that the connected sum Σ#Σ′ of two connected compact surfaces is given

by removing an open disk from both Σ and Σ′ and gluing their boundaries together. You
may assume this is a well-defined operation, up to homeomorphism.

(i) Use Mayer–Vietoris to prove that H1(Σ#Σ′;Z/2) ∼= H1(Σ;Z/2)⊕H1(Σ′;Z/2) as
Z/2-vector spaces.

(ii) Prove that this isomorphism is one of Z/2-vector spaces with bilinear forms, if we
interpret the right hand side as the orthogonal direct sum.

The cup product for a wedge

You may use the following proposition:

Proposition 15.3.4. Let X and Y be pointed path-connected spaces. Then as a graded-
commutative R-algebra, H∗(X ∨ Y ;R) is given by

(H∗(X;R)⊕H∗(Y ;R)) /∼

where ∼ identifies r · 1X ∈ H0(X;R) with r · 1Y ∈ H0(Y ;R).

Problem 15.3.5. Use cup products to show that RP 3 is not homotopy equivalent to
RP 2 ∨ S3.

Maps between surfaces

You may use the following computation:

Theorem. The cohomology ring of a genus g surface Σg with coefficients in a commutative
ring R is the graded-commutative R-algebra with generators α1, . . . , αg, β1, . . . , βg of degree
1, and relations

(a) αiαj = 0 = βiβj for 1 ≤ i, j ≤ g,
(b) αiβj = 0 for 1 ≤ i 6= j ≤ g, and
(c) αiβi = αjβj for 1 ≤ i, j ≤ g.

Problem 15.3.6. Use cup products to prove that if g < h there exists no continuous
map Σg → Σh which induces an injection on H2.
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The Hopf invariant

Definition 15.3.7. Let n ≥ 2. Given a continuous map f : S2n−1 → Sn, we define C(f)
to be Sn ∪f D2n. This has a canonical CW-structure with 3 cells, which give generators
1, en, e2n for H∗(C(f)) with ∗ = 0, n, 2n respectively. Thus we have

en ∪ en = H(f) · e2n

for some integer H(f) ∈ Z. This integer is the Hopf invariant of f .

Problem 15.3.8.
(i) Prove that H(f) only depends on the homotopy class of f .

The Hopf invariant in fact gives a homomorphism from the homotopy group π2n−1(Sn),
the set of based homotopy classes of based continuous maps from S2n−1 to Sn, to Z.
Understanding its image thus amounts to producing maps with small Hopf invariant.

(ii) Use CP 2 to give an example of a continuous map S3 → S2 with Hopf invariant
one.

The same ideas applied to HP 2 and OP 2 tells us that continuous maps of Hopf invariant
one exist for n = 2, 4, 8. Thus in these dimensions H : π2n−1(Sn) → Z is surjective. A
theorem of Adams says these are the only cases [Ada60].

Thus the next best possible result is the following: for each even n ≥ 2, there exists a
continuous map of Hopf invariant two. You will construct it now:
(iii) Inside Sn × Sn there are two copies of Sn; Sn × {x0} and {x0} × Sn. Let X be

obtained by identifying these in the obvious manner. Show that X has the structure
of a CW-complex with a single 0-, n- and 2n-cell, and hence is of the form C(f)
for some f : S2n−1 → Sn.

(iv) Prove that H(f) = 2 when n is even. (Hint: use naturality of cup products with
respect to the quotient map Sn × Sn → X.)
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Covering spaces and orientations

In this chapter we start our proof of Poincaré duality, and we first need to confront
the notion of an orientation of a manifold. We approach this through covering spaces.

16.1 Covering spaces

The exponential map

R −→ S1

θ 7−→ e2πiθ

has the property that the inverse image of a small segment of the single is homeomorphic
to a disjoint union of many copies of this segment. The definition a covering space
formalizes this example:

Definition 16.1.1. A continuous map p : E → B is a covering map if it has the following
properties:

· for all b ∈ B the subspace p−1(b) ⊂ E is discrete,
· each b ∈ B has an open neighborhood U ⊂ B such that there is a homeomorphism
φ : p−1(U)→ U × p−1(b) which fits into a commutative diagram

E U × p−1(b)

U.

p

φ
∼=

π1

We call E the total space, B the base, the subspaces p−1(b) the fibers, p the projection
map, and the φ’s local trivializations.
Example 16.1.2. For any set X we can form the product

π1 : B ×X → B.

This is a covering map, which we call the trivial covering map with fiber X.

126
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Covering maps arise as the quotient maps for sufficiently nice group actions. A
discrete group G acts freely on E when g(e) = e implies g = id. A stronger version is
that G acts properly discontinuously; each e ∈ E should have an open neighborhood V
such that g(V )∩ V 6= ∅ if and only if g = id.When G acts propertly discontinuously, the
quotient map

q : E → E/G

is a covering map (the U ’s will be images of the V ’s). Its fibers can be identified with G.
The following is a fact from point-set topology: when G is finite and E is Hausdorff, free
implies properly discontinuous.

Example 16.1.3. We can apply this to the quotient map

Sn −→ Sn/±1 = RPn,

which exhibits Sn as a double cover of RPn. Since Sn is simply-connected for n ≥ 2, it
is then also the universal cover.

Example 16.1.4. Similar, we can apply this to the quotient map

S3 −→ S3/I∗,

which exhibits the Poincaré homology sphere as the base of a covering map with total
space S3. The inverse image of a point in S3/I∗ has cardinality #I∗ = 120, so we say
this is 120-sheeted cover.

16.2 The fundamental group and the classification of covering spaces

Suppose p : E → B is a covering map and we are given a commutative diagram

{0} E

[0, 1] B.

e0

p

γ

That is, we are given a path γ : [0, 1]→ B with a lift to E of its starting point. Using
the local trivializations we can lift this path to E:

Proposition 16.2.1. Given a commutative diagram as above, there exists a unique map
γ̃ : [0, 1]→ E such that γ̃(0) = e0 and p ◦ γ̃ = γ.

In other words, it’s a lift in

{0} E

[0, 1] B.

e0

p

γ

γ̃
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Proof. We can cover the image of γ by the U ’s of local trivializations. Since γ([0, 1]) is
compact, it’s covered by finitely many of these, {Ui}ni=1, and we can give t0 = 0 < t1 <
· · · < tn = 1 such that γ([ti, ti+1]) ⊂ Ui+1. By induction over n, we may thus assume
that the image of γ is contained in U of a local trivialization. But then it is clear that
there is a unique lift: under the homeomorphism φ : p−1(U) ∼= U × π−1(b), e0 lies in a
unique sheet U × {e} and the unique lift is given by taking γ̃ to be the composition of

[0, 1] γ−→ U
∼=←− U × {e} ↪→ U × π−1(b) φ−1

−→ p−1(U) ↪→ E.

Remark 16.2.2. Using little squares or cubes instead of little intervals, one proves there
are unique lifts in

[0, 1]k × {0} E

[0, 1]k × [0, 1] B,

e0

p

γ

γ̃

and by induction over cells we may even replace [0, 1]k ∼= DK with a finite CW-complex
X. A map p with the property that (not necessarily unique) lifts exists in such diagrams
is called a Serre fibration. Thus every covering map is a Serre fibration.

This construction relates the fibers over points b, b′ that can be connected by a path
γ: we map e ∈ p−1(b) to endpoint of the lift γ̃ starting at e. Taking b = b′, this gives rise
to an action of the fundamental group π1(B, b) on p−1(b). Before giving hte detail, let us
recall the definition of the fundamental group:

Definition 16.2.3. Given a based space (B, b), the fundamental group π1(B, b) is given
by the set of “loops” γ : [0, 1]→ B such that γ(0) = b = γ(1), up to homotopy fixing the
endpoints. Concatenation makes this into a group.

This is natural in based spaces, in the sense that a continuous map induces a
homomorphism. More precisely, the fundamental group gives a functor

π1 : Top∗ −→ Grp.

The action of [γ] ∈ π1(B, b) on p−1(b) is then given as above: given e ∈ p−1(b), we lift
a representative γ : [0, 1]→ B to a path γ̃ : [0, 1]→ E with starting point e, and define
the (right) action as

e · [γ] = γ̃(0).
The uniqueness of lifts guarantees − · [γ] is a permutation of p−1(b). It is independent
of the choice of representative because we can uniquely lift a homotopy between two
representatives, so their endpoints need to be the same point of p−1(b). This construction
is natural in the covering map p:

Definition 16.2.4. For a topological space B, the category Cov/B of covering spaces
over B has objects covering maps p : E → B and morphisms commutative diagrams

E E′

B.

p

f

p′
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Definition 16.2.5. For a discrete group G, the category SetG of G-sets has objects sets
X with G-actions and morphisms given by G-equivariant functions.

If B has base point b, then sending p to p−1(b) gives a functor

Cov/B −→ Setπ1(B,b).

For this to be an equivalence of categories, i.e. have an inverse up to natural isomor-
phism, at least B needs to be path-connected. This is almost enough, but we also need
B to be locally nice: it needs to be semi-locally simply-connected, i.e. for every b ∈ B,
each open neighborhood U of b contains another open neighborhood V of p such that
π1(V, b)→ π1(U, b) is trivial.

Theorem 16.2.6. If B is path-connected and semi-locally simply-connected, the functor

Cov/B −→ Setπ1(B,b)

is an equivalence of categories.

The inverse is given in terms of a “universal cover” of B. This is a covering map

p : B̃ −→ B,

such that B̃ comes with a fiberwise free and transitive left π1(B, b)-action over B.
The inverse functor then sends π1(B, b)-set X to X ×π1(B,b) B̃. This universal cover is
characterized by the property that B̃ is simply-connected, and in fact isomorphism classes
of coverings p : E → B with E path-connected are in bijection with conjugacy classes of
subgroups H ⊂ π1(B, b) (the relation is that p−1(b) is π1(B, b)/H as a π1(B, b)-set).

16.3 Orientations

Suppose that M is an n-dimensional manifold. I claim that

H∗(M,M \ {m};R) ∼=
{
R if ∗ = n,
0 otherwise.

To see this, pick a neighborhood U of M which is homeomorphic to Rn (a chart). Then
the map H∗(U,U \ {p};R) → H∗(M,M \ {m};R) is an isomorphism by excision, and
H∗(U,U \ {p};R) ∼= H∗(Rn,Rn \ {0};R). These sets for varying m assemble to a cover
of M :

Definition 16.3.1. The R-orientation cover OM,R of M is the topological space with
underlying set ⊔

m∈M
H∗(M,M \ {m};R)

and topology given as follows: a basis is indexed by triples (U, a) with U ⊂ M open,
ā ∈ Hn(M,M \U ;R) and given by the elements (m, a) ∈

⊔
m∈M H∗(M,M \{m};R) such

that ā maps to a under the map Hn(M,M \ U ;R)→ H∗(M,M \ {m};R).
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Sending (m, a) ∈ OM,R to m gives a continuous map which is a covering map. The
local trivializations are produced from the charts of M .

The addition in the fibers makes this an “abelian group over M .” Recall that
given maps p : E → B, p′ : E′ → B, the pullback E ×B E′ is given by the subspace
(e, e′) ∈ E ×E′ such that p(e) = p′(e′). That is, it consists of pairs of points in the fibers
of p. That OM,R is abelian group over M can be made precise by saying that there are
continuous maps

+: OM,R ×M OM,R −→ OM,R

satisfying the usual properties for addition. Similarly, we have map R×OM,R → OM,R,
which combines with the addition to make OM,R in an R-module over M .

Let Γ(M,OM,R) denote the set of sections of p : OM,R →M . These are the continuous
maps s : M → OM,R satisfying p ◦ s = idM . The addition and scalar multiplication in
the fibers make this into an R-module.

Now we observe that there is a canonical map

Hn(M ;R) −→ Γ(M,OM,R)

given by sending b ∈ Hn(M ;R) to the map sending m to the image of b under the map
Hn(M ;R)→ Hn(M,M \ {m};R). This is a map of R-modules. The first step in proving
Poincaré duality is given by establishing:

Theorem 16.3.2 (Orientation theorem). If M is compact then the homomorphism

Hn(M ;R) −→ Γ(M,OM ;R)

is an isomorphism.

Let us now compute the right hand side. The classification of covering spaces can
be applied not just to sets over M but also R-modules over M to give (we use that all
manifolds are semi-locally simply-connected):

Theorem 16.3.3. If M is path-connected with basepoint m, the functor

ModR,/B −→ ModR[π1(M,m)]

(p : E → B) 7−→ p−1(m)

is an equivalence of categories.

Under this equivalence, passing to section of p : E → B amounts to taking the R-
module (p−1(m))π1(M,m) of π1(M,m)-invariants: the section picks out an element of
p−1(m), as well as canonical lifts of paths.

Example 16.3.4. Let us specialize to R = Z. Then the action of π1(M,m) on p−1(m) ∼= Z
amounts to a homomorphism

w1 : π1(M,m) −→ Aut(p−1(m)) ∼= {±1}.
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This is essentially the first Stiefel–Whitney class. Either it is trivial or surjective. In the
first case we say M is orientable and we have Γ(M,OM ;Z) ∼= Z. In the second case we
say M is non-orientable and we have Γ(M,OM ;Z) ∼= Z±1 ∼= 0.

Inside OM ;Z there is a subcovering O×M ;Z of M consisting of those elements of the
local homology groups Hn(M,M \ {m}) which are generators. M is orientable if and
only this admits a section; such a section is called an orientation and picks out consistent
generators of Hn(M,M \ {m}) for all m ∈M . Since each fiber has two elements, O×M ;Z
admits a section if and only if it is trivial.

Let us denote by OM ;Z ⊗ R the fiberwise tensor product with R. The universal
coefficient theorem tells us that OM ;Z ⊗R ∼= OM ;R. Thus the action

π1(M,m) −→ Aut(p−1(m)) ∼= Aut(R)

factors over {±1}. Then we have

Γ(M,OM ;R) ∼=
{
R if M is orientable,
2-torsion in R if M is non-orientable.

As before, there is a subcover O×M,R ⊂ OM,R consisting of the generators in each
Hn(M,M \ {m};R).

Definition 16.3.5. An R-orientation of M is a section of O×M,R.

Example 16.3.6. If R = Z/2, we get

Γ(M,OM ;R) ∼= Z/2

whether M is orientable or not. There is a unique Z/2-orientation given by picking the
unique non-zero element in Hn(M,M \ {m};Z/2) for each m ∈M .

16.4 Problems

Problem 16.4.1 (Transfer maps). Let p : E → B be a covering map with N sheets, and
R be a commutative ring.

(i) Prove that each simplex σ : ∆p → B has exactly N distinct lifts to E. Denoting
these lifts by σ1, . . . , σN , prove that

S∗(B;R) −→ S∗(E;R)

σ 7−→
N∑
i=1

σi

is a chain map. Conclude it induces a map τ : H∗(B;R)→ H∗(E;R) on homology.
(ii) Prove that p∗ ◦ τ is given by multiplication with N .
(iii) Prove that if G is a finite group acting freely on Sn, then H∗(Sn/G;Fp) = 0 for

0 < ∗ < n when p does not divide |G|.
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(iv) Prove that if G is a finite group acting freely on a manifold M , then H∗(M/G;Q)
injects into the G-invariants H∗(M ;Q)G.

(v) Suppose A ⊂ B is a subspace. Set EA := p−1(A), and let pA : EA → B be the
restriction of p to EA. Construct a transfer map τ : H∗(B,A;R)→ H∗(E,EA;R)
which is compatible with the exact sequence of pairs, in the sense that the following
diagram commutes

· · · Hn(A;R) Hn(B;R) Hn(B,A;R) · · ·

· · · Hn(EA;R) Hn(E;R) Hn(E,EA;R) · · · .

τ τ τ
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The orientation theorem

We continue our proof of Poincaré duality. Our goal in this chapter is to prove the
orientation theorem, which extracts a fundamental class from an orientation. We then
discuss a cap product map, which will appear in the general formulation of Poincaré
duality.

17.1 The orientation theorem

Recall that for each n-dimensional topological manifold M , there is a canonical
covering map

p : OM,R −→M.

with has fiber over m ∈ M given by Hn(M,M \ {m};R). An orientation of M is a
section s of OM,R such that each s(m) ∈ Hn(M,M \ {m};R) is an R-module generator.

Our goal is to extract a fundamental class [M ] ∈ Hn(M ;R) from an orientation. We
will do so through the map

j : Hn(M ;R) −→ Γ(M,OM,R)
a 7−→ [m 7→ (jm)∗(a)],

with jm the map of pairs (M,∅)→ (M,M \ {m}). Last chapter we saw that OM,R is an
R-module over M . This makes Γ(M,OM,R) into an R-module, just like the left hand
side Hn(M ;R).

Theorem 17.1.1 (Orientation theorem). If M is compact, the map j : Hn(M ;R) →
Γ(M,OM,R) is an isomorphism of R-modules.

Corollary 17.1.2. If M is compact, an orientation of M gives rise to a fundamental
class [M ] ∈ Hn(M ;R) which restricts to a generator of Hn(M,M \ {m};R) for each
m ∈M .

We will prove a more general theorem, and introduce for A ⊂M closed the notation

Hn(M |A) := Hn(M,M \A;R).

133
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As before, there is a map

jA : Hn(M |A) −→ Γ(A,OM,R)
a 7−→ [m 7→ (jm)∗(a)].

Theorem 17.1.3. For q > n, Hq(M |A) = 0, and for q = n, the map jA : Hn(M |A)→
Γ(A,OM,R) is an isomorphism of R-modules.

The case A = ∅ is the orientation theorem, while the case A = {m} is obvious. Our
proof will be induction over increasingly general A. We start with two lemma’s which
make this induction possible:

Lemma 17.1.4. Let A,B ⊂M be closed. If Theorem 17.1.3 holds for A, B and A ∩B,
it holds for A ∪B.

Proof. This follows from Mayer–Vietoris for relative homology: the pairs (M,M \ A)
and (M,M \ B) cover (M,M \ (A ∩ B)) with intersection (M,M \ (A ∪ B)), and give
rise to a long exact sequence

· · · Hn(M |A)⊕Hn(M |B) Hn(M |A ∩B)

Hn−1(M |A ∪B) Hn−1(M |A)⊕Hn−1(M |B) · · ·

Our hypotheses tell us that Hq(M |A ∪B) = 0 for q > n, and for q = n there is a short
exact sequence

0 −→ Hn(M |A ∪B) −→ Hn(M |A)⊕Hn(M |B) −→ Hn(M |A ∩B)

This fits into a commutative diagram

0 Hn(M |A ∪B) Hn(M |A)⊕Hn(M |B) Hn(M |A ∩B)

0 Γ(A ∪B;OM,R) Γ(A;OM,R)⊕ Γ(B;OM ;R) Γ(A ∩B;OM,R).

∼= ∼=

The bottom row is exact: a section over A ∪B is determined by its restriction to A and
B, and sections over A and B that agree over the closed set A ∩ B can be glued to a
unique section over A∪B. By the five lemma, the map Hn(M |A∪B)→ Γ(A∪B;OM,R)
is an isomorphism.

Lemma 17.1.5. l If A1 ⊃ A2 ⊃ · · · is a sequence of compact subsets with A =
⋂
iAi.

Theorem 17.1.3 holds for each Ai, it holds for A.

Proof. Recall the construction of a colimit of abelian groups Bi, i ∈ N: colimiBi has as
elements equivalence classes of b ∈ Bi under the equivalence relation generated by saying
b ∈ Bi is equivalence to its image in Bi+1.
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As all Hn(X|Ai) have compatible restrictions map to Hn(X|A), and similarly for the
Γ(Ai,OM,R) there are induced maps

colimiHn(X|Ai) −→ Hn(X|A), colimi Γ(Ai,OM,R) −→ Γ(A,OM,R)

which fit in a commutative diagram

colimiHn(X;Ai) Hn(X|A)

colimi Γ(Ai,OM,R) Γ(A,OM,R).

∼=

The vertical map is an isomorphism by the hypotheses, as a colimit of isomorphisms is
an isomorphism.

It thus suffices to prove that the horizontal maps are isomorphisms. Let us start with
the top one. Since colimits commute with homology by Problem 7.3.6, it suffices to prove
that

colimi S∗(X;Ai) −→ S∗(X|A),

is an isomorphism. Recall that Sn(X|A) is Sn(X;R)/Sn(X \A;R), so it suffices to prove
that if σ : ∆p → X has image in X \A, it has image in X \Ai for some i. This follows
by compactness: the X \Ai form an open cover of X \A and σ(∆p) is compact so lies in
one of these.

To see that the bottom map is an isomorphism, we first prove it is surjective. Since
A is compact, it is covered by finitely many open subsets U of local trivializations. By
uniqueness of path-lifting, given s : A→ OM,R it extends to their union (or at least all
path components of U which intersect A). This contains Ai (as the intersection of the
compact subsets Ai \U is empty, hence one of the Ai \U must already be empty). Hence
s is the in image of Γ(Ai,OM,R). For injectivity, we observe that if the restriction of
si ∈ Γ(Ai,OM,R) vanishes over A, by the previous arguments it vanishes over some open
neighborhood of A and hence on some Aj for j ≥ i. Hence the equivalence class of si is 0
in the colimit.

We can prove Theorem 17.1.3:

Proof of Theorem 17.1.3. We say A ⊂M is Euclidean if it lies in a chart. Our proof will
be induction over the following cases:

(1) M = Rn, A is compact and convex,
(2) M = Rn, A is a finite union of compact and convex subsets,
(3) M = Rn, A is compact,
(4) M is arbitrary, A is a compact Euclidean subset,
(5) M is arbitrary, A is compact.

For (1), we observe that by translation and scaling we may assume that 0 ∈ A. Since A
is contractibe, it follows that

Hn(Rn|0) −→ Hn(Rn|A)
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is an isomorphism. This fits in a commutative diagram

Hn(Rn|0) Hn(Rn|A)

Γ(0,ORn,R) Γ(A,ORn,R).

∼=

∼=

∼=

The left vertical map and bottom horizontal map are isomorphisms, because ORn,R is
trivial and hence any section is determined by its value on a single point.

For (2), do an induction over the number of subsets using Lemma 17.1.4; the initial
case is (1). For (3), use Lemma 17.1.5 and the observation that any compact subset is
the intersection Ai which are unions of finitely many closed disks.

For (4), use excision to reduce it to (3). For (5), we cover A by disks Di in finitely
many charts and take Ai = A∩Di. Then we do an induction over the number of subsets
using Lemma 17.1.4; the initial case is (4).

Example 17.1.6. Every simply-connected manifold is orientable, so if M is path-connected
we have Hn(M ;R) ∼= R. Thus for such manifold, you always know H0(M ;R) and
Hn(M ;R).

17.2 The cap product and the formulation of Poincaré duality

The cap product will be obtained by combining the cup product and the Kronecker
pairing. All coefficients are in R, but we suppress this for the sake of brevity. The cap
product will be a map

Hp(X)⊗Hn(X) −→ Hn−p(X)
α⊗ b 7−→ α ∩ b.

It is given by taking homology of the chain map

Sp(X)⊗ Sn(X)

Sp(X)⊗
⊕

k+l=n Sk(X)⊗ Sl(X)

Sp(X)⊗ Sp(X)⊗ Sn−p(X)

Sn−p(X).

id⊗AWX◦∆∗

projection on term k = p

〈−,−〉⊗id

Using the explicit formula for the Alexander–Whitney map, it is given by

α⊗ b 7−→ α(b|∆p) · b|∆n−p .

This has the following properties, which can be verified using this formula:
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Lemma 17.2.1. The cap product satisfies:
(i) It makes H∗(X) into a graded H∗(X)-module, i.e. (α ∪ β) ∩ x = α ∩ (β ∩ x) and

1 ∩ x = x.
(ii) Given a map f : X → Y , α ∈ Hp(Y ) and x ∈ Hn(X), f∗(f∗(α) ∩ x) = α ∩ f∗(x).

(iii) For the augmentation ε : H∗(X)→ R, ε(α ∩ x) = 〈α, x〉.
(iv) We have 〈α ∪ β, x〉 = 〈α, β ∩ x〉.

Proof. We will only prove (ii). We write β ∈ Cp(Y ) and σ ∈ Cn(X) for representatives.
Then we have that

f∗(f∗(β) ∩ σ) = f∗ (f∗(β)(σ|∆p)σ|∆n−p)
= f∗ (β(f ◦ σ|∆p)σ|∆n−p)
= β(f ◦ σ|∆p)f∗(σ|∆n−p)
= β(f ◦ σ|∆p)(f ◦ σ)|∆n−p)
= β ∩ f∗(σ).

If M is compact, the orientation theorem takes an R-orientation in Γ(M,OM,R) to
an element [M ] ∈ Hn(M ;R). Poincaré duality says that the cap product with this class
is an isomorphism:

Theorem 17.2.2 (Poincaré duality). Suppose M is compact and we are given an R-
orientation of M . Then there is a unique class [M ] ∈ Hn(M ;R) which restricts to the
orientation in each Hn(M,M \ {m};R), and the cap product

− ∩ [M ] : Hp(M ;R) −→ Hn−p(M ;R)

is an isomorphism for all p.

Example 17.2.3. Take R to be a field F. Then this says that Hp(M ;F) is isomorphic
to Hn−p(M ;F), and in particular has the same dimension. Since dimHp(M ;F) ∼=
dimHp(M ;F) by the universal coefficients theorem, we conclude the equality of Betti
numbers

bp(M) = bn−p(M)

that we have been using as motivation for Poincaré duality.

17.3 Problems

Problem 17.3.1 (A verification). Prove Lemma 17.2.1 (iv).
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Poincaré duality

In this chapter we prove Poincaré duality. To do so, we need to establish that the
C̆ech cohomology groups Ȟ∗(K) for K ⊂M satisfy versions of the Eilenberg–Steenrod
axioms.

18.1 Poincaré duality and C̆ech cohomology

Recall Poincaré duality says:

Theorem 18.1.1 (Poincaré duality). Suppose M is compact and we are given an R-
orientation of M . Then there is a unique class [M ] ∈ Hn(M ;R) which restricts to the
orientation in each Hn(M,M \ {m};R), and the cap product

− ∩ [M ] : Hp(M ;R) −→ Hn−p(M ;R)

is an isomorphism for all p.

We prove this by formulating a relative version, which we approach through an
induction as in the proof of the orientation theorem. As before, we drop R from the
notation for the sake of brevity.

We start with the construction of a relative cap product

∩ : Hp(X)⊗Hn(X,A) −→ Hn−p(X,A).

To define this, we need that property (ii)
given a map f : X → Y , α ∈ Hp(Y ) and x ∈ Hn(X), f∗(f∗(α)∩x) = α∩f∗(x),

of the cap product is true before passing to homology. In particular, when applied to f
given by i : A→ X, it says that the following diagram commutes

Sp(X)⊗ Sn(A) Sp(A)⊗ Sn(A) Sn−p(A)

Sp(X)⊗ Sn(X) Sn−p(X).

i∗⊗id

id⊗i∗

∩

i∗

∩

138
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Thus we get an induced map on cokernels of the vertical maps

Sp(X)⊗ Sn(X,A) −→ Sn−p(X,A).

(Here we use that Sp(X) ⊗ − preserves the exact sequence 0 → Sn(A) → Sn(X) →
Sn(X,A) → 0 since it is split.) This is the relative cap product and it has the same
properties as the absolute one. In particular, H∗(X,A) is a graded H∗(X)-module.

Observe that excision tells us that when K ⊂ U ⊂ X is excisive triple, the map

H∗(U,U \K) −→ H∗(X,X \K)

is an isomorphism. Thus H∗(X,X \K) is not only an H∗(X)-module but also an H∗(U)-
module. These module structures are compatible: if K ⊂ U ⊂ X and K ⊂ V ⊂ X are
excisive triples with V ⊂ U , then the following diagram commutes

Hp(U)⊗Hn(X,X \K)

Hn−p(X,X \K)

Hp(V )⊗Hn(X,X \K).

In particular, we can take the colimit over open subsets U of X containing K. A poset
is a “partially ordered set,” i.e. a set with a partial order �, which can be considered as
a category with a unique morphisms from x to y if x � y. Let UK denote the poset of
such open subsets, ordered by reverse inclusion.

Definition 18.1.2. The C̆ech cohomology of K is given by

Ȟp(K) := colim
U∈UK

Hp(U).

Example 18.1.3. That is, an element of Ȟp(K) is an equivalence class of pairs (U,α) with
U ∈ UK and α ∈ H∗(U). The equivalence relation is that for V ⊂ U , (U,α) is equivalent
to (V, i∗V⊂Uα).

The restriction maps H∗(U)→ H∗(V ) are maps of graded-commutative R-algebras,
so Ȟ∗(K) is also a graded-commutative R-algebra. The above observations tell us that
the relative homology group H∗(X,X \K) form a graded Ȟ∗(X)-module.
Remark 18.1.4. In general Ȟp(K) is not equal to Hp(K). However, this is the case
when each open neighborhood U of K contains another open neighborhood V such that
K → V is a homotopy equivalence.

The relative version of Poincaré duality is then stated in terms of C̆ech cohomology
as follows. By the orientation theorem, if M is an n-dimensional topological manifold
and A ⊂M is compact, then

Hn(M |A) −→ Γ(A,OM ;R)
a 7−→ [m 7→ (jm)∗(a)]
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is an isomorphism. An R-orientation of M along A is a section in Γ(A,OM ;R) which
restricts to a generator of each fiber Hn(M,M \ {m};R) for m ∈ A. This isomorphism
converts such an R-orientation into a fundamental class [M |A] ∈ Hn(M |A) of M along
A. The fully relative version of Poincaré duality says that cap product with this induces
an isomorphism:

Theorem 18.1.5 (Relative Poincaré duality). Let M be as above and A be a compact
subset. Given an R-orientation of M along A we get a fundamental class [M |A], and
the cap product

− ∩ [M |A] : Ȟp(A;R) −→ Hn−p(M,M \A;R)

is an isomorphism.

If we assume M is compact and A = M , we recover absolute Poincaré duality.

18.2 Properties of C̆ech cohomology

C̆ech cohomology is not a cohomology theory. In fact, saying this wouldn’t even make
sense as Ȟ∗(K) depends on the topological space X containing K. To see this, recall it
was defined in terms of the poset UK of open subsets U of X containing K.

However, it still satisfies properties reminiscent of the Eilenberg–Steenrod axioms as
long as restrict our attention to closed subsets of a fixed topological space X. In this
section we establish some of these, as we will use them in the proof of Poincaré duality.

18.2.1 Functoriality

The first observation is that if L ⊂ K is an inclusion, then each open neighborhood
of K is an open neighborhood of L. This gives rise to a map of posets UK → UL, which
we claim induces a restriction map on colimits

Ȟ∗(K) −→ Ȟ∗(L),

making Ȟ∗(−) into a functor ClX −→ GrAb, where ClX is the poset of closed subsets of
X ordered by reverse inclusion.

This is true more generally. Suppose that I and J are posets and φ : I→ J is a functor
(or equivalently, a weakly-order preserving map). Then from any functor A : J→ Ab, we
obtain a functor A ◦ φ : I→ Ab. There is then a natural map

colim
i∈I

A ◦ φ −→ colim
j∈J

A,

sending an element represented by a ∈ A(φ(i)) for i ∈ I to the element represented by
a ∈ A(φ(i)) with φ(i) ∈ I.

Taking A = Hp(−), I = UK and J = UL, we get a map

Ȟp(K) = colim
U∈UK

Hp −→ colim
U∈UL

Hp = Ȟp(L).
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18.2.2 The long exact sequence of a pair

To state version sof the long exact sequence of a pair and excision, we need to define
relative C̆ech cohomology groups. This is straightforward: for L ⊂ K closed, let UK,L be
the poset of pairs of open subsets V ⊂ U of X such that L ⊂ V and K ⊂ U , ordered by
reverse inclusion. Then we define

Ȟ∗(K,L) := colim
(U,V )∈UK,L

H∗(U, V ).

Lemma 18.2.1 (Long exact sequence of a pair). Suppose that L ⊂ K are closed subsets
of X, then there is a natural long exact sequence

· · · −→ Ȟp(K,L) −→ Ȟp(K) −→ Ȟp(L) −→ Ȟp+1(K,L) −→ · · · .

The difficulty with deducing this lemma from the usual long exact sequence of a pair
in cohomology lies with the fact that the colimits that appear are taken over different
posets; UK,L, UK and UL respectively. We thus need to know what happens when we
vary the indexing poset. That is, we will want to answer the following:

Question 18.2.2. Given a map of posets φ : I→ J, when is

colim
i∈I

A ◦ φ −→ colim
j∈J

A

an isomorphism?

The condition will be that I is “dense” in J:

Definition 18.2.3. A map of posets φ : I→ J is cofinal if for all j ∈ J there exists a i ∈ I
such that j ≤ φ(i).

Example 18.2.4. Surjective maps of posets are cofinal.

Proposition 18.2.5. If φ : I→ J is cofinal then

colim
i∈I

A ◦ φ −→ colim
j∈J

A

is an isomorphism.

Proof. We first prove surjectivity. Each element of colimj∈JA is represented by some
a ∈ Aj . By cofinality it is also represented by an a′ ∈ Aφ(i) with j ≤ φ(i); this is clearly
in the image of colimi∈IA ◦ φ.

For injectivity, suppose that a ∈ colimi∈IA ◦ φ is represented by a ∈ A(φ(i)) and
becomes identified with 0 in colimj∈JA. This means its image a′ ∈ A(j) is 0 for some
φ(i) ≤ j. By cofinality we can pick a further i′ such that j ≤ φ(i′) so that its further
image a′′ ∈ A(φ(i′)) is 0. But a′′ also represents a ∈ colimi∈IA ◦ φ so this was already
0.
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Proof of Lemma 18.2.1. By the previous lemma we may replace UK and UL in the
definitions of Ȟ∗(K) and Ȟ∗(L) by UK,L, as both functors

UK ←− UK,L −→ UL

are surjective. Then for each (U, V ) ∈ UK,L, we get a long exact sequence

· · · −→ Hp(U, V ) −→ Hp(U) −→ Hp(V ) −→ Hp+1(U, V ) −→ · · · ,

and since colimits preserve long exact sequences, we can take the colimit over UK,L to
get the desired long exact sequence on C̆ech cohomology.

18.2.3 Excision and Mayer–Vietoris

Excision is proven in a similar manner, and Mayer–Vietoris is a formal consequence
of excision and the long exact sequence of a pair.

Lemma 18.2.6 (Excision). Suppose that X is normal and A,B ⊂ X are closed. Then
the map

Ȟp(A ∪B,A) −→ Ȟp(B,A ∩B)

is an isomorphism.

Proof. The assumption on X implies that both maps of posets

UA∪B,A ←− UA × UB −→ UB,A∩B,

left one given by (U,U ′) 7→ (U ∪ U ′, U) and right one by (U,U ′) 7→ (U ′, U ∩ U ′), are
cofinal. Thus we may replace UA∪B,A and UB,A∩B by UA × UB on both sides of the
statement of excision, and obtain the result from excision for ordinary cohomology by
taking a colimit over UA × UB.

A version of Mayer–Vietoris follows formally from excision and the long exact sequence
of a pair:

Lemma 18.2.7 (Mayer–Vietoris). Suppose that X is normal and A,B ⊂ X are closed.
Then there is a natural long exact sequence

· · · −→ Ȟp(A ∪B) −→ Ȟp(A)⊕ Ȟp(B) −→ Ȟp(A ∩B) −→ Ȟp+1(A ∪B) −→ · · · .

18.3 Fully relative Poincaré duality

18.3.1 A fully relative cap product

We already constructed a relative cap product

∩ : Ȟp(K)⊗Hn(X,X \K) −→ Hn−p(X,X \K).



18.3 Fully relative Poincaré duality 143

This was in fact the motivation for defining the C̆ech cohomology group Ȟp(K). For
the sake of induction arguments, we need a more relative version. This should involve
relative C̆cech cohomology: if L ⊂ K are closed subsets of X, then it is given by

∩ : Ȟp(K,L)⊗Hn(X,X \K) −→ Hn−p(X \ L,X \K).

This should fit into a commutative diagram

Ȟp(K,L)⊗Hn(X,X \K) Hn−p(X \ L,X \K)

Ȟp(K)⊗Hn(X,X \K) Hn−p(X,X \K).

∩

∩

The C̆ech cohomology cap product came from compatible cap products ∩ : Hp(U)⊗
Hn(U,U \K)→ Hn−p(U,U \K). These came from a chain map

Sp(U)⊗ Sn(U)/Sn(U \K) −→ Sn−p(U)/Sn−p(U \K),

which fits into a commutative diagram

Sp(U)⊗ Sn(U)/Sn(U \K) Sn−p(U)/Sn−p(U \K)

Sp(U, V )⊗ Sn(U)/Sn(U \K) Sn−p(U)/Sn−p(U \K)

Sp(U, V )⊗ (Sn(U \ L) + Sn(V )) /Sn(U \K) Sn−p(U \ L)/Sn−p(U \K),

'

where we use in the bottom row that cap product with elements in Sp(U, V ) kills Sn(V ).
Since U = (U \ L) ∪ V is an open cover, the locality principle makes the left bottom
vertical map a chain homotopy equivalence.

Thus upon taking homology, there will be a dotted map which induces the fully
relative cap product after composition with the Künneth map Hp(U, V )⊗Hn(U,U \K)→
H∗(S∗(U, V )⊗ S∗(U)/S∗(U \K)) and taking colimits.

It is compatible with the long exact sequence of pairs and Mayer–Vietoris in the
following sense:

Lemma 18.3.1. xK ∈ Hn(X,X \K), the following commutes

· · · Ȟp(K,L) Ȟp(K) Ȟp(L) · · ·

· · · Hn−p(X \ L,X \K) Hn−p(X,X \K) Hn−p(X,X \ L) · · · ,

−∩xK −∩xK −∩xL

with xL the image in Hn(X,X \ L) of xK .

Recall the shorthand Hn(X|A) for Hn(X,X \A).



144 Chapter 18 Poincaré duality

Lemma 18.3.2. For xA∪B ∈ Hn(X|A ∪B), the following commutes

· · · Ȟp(A ∪B) Ȟp(A)⊕ Ȟp(B) Ȟp(A ∩B) · · ·

· · · Hn−p(X|A ∪B) Hn−p(X|A)⊕Hn−p(X|B) Hn−p(X|A ∩B) · · · ,

−∩xA∪B −∩xA⊕−∩xB −∩xA∩B

with xA, xB and xA∩B the image in Hn(X|A), Hn(X|B) and Hn(X|A ∩B) of xA∪B.

We will use the latter during our proof of fully relative Poincaré duality.

18.3.2 The proof of full relative Poincaré duality

We now formulate fully relative Poincaré duality. Recall that the orientation theorem
says that if M is an n-dimensional topological manifold and A ⊂M is compact, then

Hn(M |A) −→ Γ(A,OM ;R)
a 7−→ [m 7→ (jm)∗(a)]

is an isomorphism. From this, an R-orientation of M along A is gives rise to a fundamental
class [M |A] ∈ Hn(M |A) of M along A. The fully relative version of Poincaré duality
says that cap product with this induces an isomorphism.

Theorem 18.3.3 (Fully relative Poincaré duality). Let M be as above and L ⊂ K a
pair of compact subsets. Given an R-orientation of M along A we get a fundamental
class [M |A], and the cap product

− ∩ [M |K] : Ȟp(K,L;R) −→ Hn−p(M \ L,M \K;R)

is an isomorphism.

Remark 18.3.4. You will generally want to assume M is compact, L = ∅ and K = M ,
to get that given an R-orientation of M with associated fundamental class [M ] the cap
product

− ∩ [M ] : Hp(M ;R) −→ Hn−p(M ;R)

is an isomorphism. However, the fully relative version is easier to prove because it is more
amenable to the type of inductive arguments that we also used to prove the orientation
theorem.

We will first prove the relative version, where L = ∅. We write K = A. The argument
will be analogous to that for the orientation theorem, an induction over increasingly
general pairs of compact subsets A ⊂ B in M . The orientation theorem used two lemma’s:
one allowed us to proceed from triples A, B, and A∩B, to the union A∪B, and the other
from A1 ⊃ A2 ⊃ · · · to the intersection ∩iAi. Here are the corresponding statements for
Poincaré duality, which use the shorthand

Hn(X|A) := Hn(X,X \A;R).

The first is the compability of the cap product with Mayer–Vietoris:
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Lemma 18.3.5. For xA∪B ∈ Hn(X|A ∪B), the following commutes

· · · Ȟp(A ∪B) Ȟp(A)⊕ Ȟp(B) Ȟp(A ∩B) · · ·

· · · Hn−p(X|A ∪B) Hn−p(X|A)⊕Hn−p(X|B) Hn−p(X|A ∩B) · · · ,

−∩xA∪B −∩xA⊕−∩xB −∩xA∩B

with xA, xB and xA∩B the image in Hn(X|A), Hn(X|B) and Hn(X|A ∩B) of xA∪B.

Proposition 18.3.6. If relative Poincaré duality is true for compact A, B and A ∩B,
then it is true for A ∪B.

Proof. Apply the five-lemma to the long exact sequences in the previous Lemma.

The following is a consequence of the fact that a colimit of colimits is itself a colimit.

Lemma 18.3.7. If A1 ⊃ A2 ⊃ · · · is a sequence of compact subsets with intersection
A := ∩iAi, then the map

colim
i∈N

Ȟ∗(Ai) −→ Ȟ∗(A)

is an isomorphism.

Proposition 18.3.8. If relative Poincaré duality is true for compact A1 ⊃ A2 ⊃ · · · ,
then it is true for A = ∩iAi.

Proof. Take colimits of both sides of the isomorphism

− ∩ [M |Ai] : Ȟp(Ai) −→ Hn−p(M,M \Ai),

and apply the previous lemma as well as the fact that homology commutes with colimits
of chain complexes.

These propositions complete the proof, after doing a straightforward initial case.

Proof of Theorem 18.3.3 for L = ∅, K = A. We will now prove by induction the follow-
ing cases:

(1) M = Rn, A is compact and convex,
(2) M = Rn, A is a finite union of compact and convex subsets,
(3) M = Rn, A is compact,
(4) M is arbitrary, A is a compact Euclidean subset,
(5) M is arbitrary, A is compact.

In case (1), A has the property that every open neighborhood A ⊂ U contains another
open neighborhood A ⊂ V ⊂ U such that A → V is a homotopy equivalence. To see
so, we observe that U contains an ε-neighborhood Uε of A for ε small enough, and that
assigning to x ∈ Uε the unique closest point in A gives a homotopy inverse to the inclusion
A ↪→ Uε. This implies that

Ȟ∗(K) −→ H∗(K)
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is an isomorphism.
Without loss of generality 0 ∈ K. Then it suffices to prove that in the following

commutative diagram the bottom horizontal map is an isomorphism

Hp(K) Hn−p(Rn,Rn \K)

Hp(∗) Hn−p(Rn,Rn \ ∗).

−∩[Rn|K]

−∩[Rn|∗]

∼= ∼=

For the bottom map, there is only something to prove when p = 0, and then result is
1 ∩ [Rn|∗] = [Rn|∗], which is indeed the generator.

The remainder is as the orientation theorem:

(1) Prop 18.3.6=⇒ (2) Prop 18.3.8=⇒ (3) excision=⇒ (4) Prop 18.3.8=⇒ (5).

We now deduce the general case

Proof of Theorem 18.3.3. By Lemma 18.3.1, for A ⊂ B compact in M , the following
commutes

· · · Ȟp(B,A) Ȟp(B) Ȟp(A) · · ·

· · · Hn−p(M \A,M \B) Hn−p(M,M \B) Hn−p(M,M \A) · · · ,

−∩[M |B] −∩[M |B] −∩[M |A]

with [M |B] the image in Hn(M,M \ A) of [M |A]. Thus by the five-lemma, the fully
relative version follows from relative version.

18.4 Applications

18.4.1 Classical Poincaré duality

When we assume M is compact, L = ∅ and K = M , we get that given an R-
orientation of M with associated fundamental class [M ], the cap product

− ∩ [M ] : Hp(M ;R) −→ Hn−p(M ;R)

is an isomorphism.
To get a more concrete statement, we combine this with the universal coefficient

theorem. Let us take R = F a field. Then there is a pairing

Hp(M ;F)⊗Hn−p(M ;F) ∪−→ Hn(M ;F) 〈−,[M ]〉−−−−−→ F.

Since 〈a ∪ b, [M ]〉 = 〈a, b ∩ [M ]〉, this fits into a commutative diagram

Hp(M ;F)⊗Hn−p(M ;F) F

Hp(M ;F)⊗Hp(M ;F)

∼=
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with vertical map given by id⊗ (− ∩ [M ]), which is an isomorphism by Poincaré duality.
By the universal coefficient theorem, the bottom map is a perfect pairing, and hence so
is the top map.

This can generalized to the integers Z, or more generally a PID R. In this case, we
obtain from the universal coefficient theorem that

Hp(M ;R)
tors ⊗ Hn−p(M ;R)

tors
∪−→ Hn(M ;R) 〈−,[M ]〉−−−−−→ R

is a perfect pairing.
Example 18.4.1. Every manifold has a unique Z/2-orientation, as every fiber of OM,Z/2
has a unique non-zero element. This is in particular true for RPn. Thus we see

Hp(RPn;Z/2)⊗Hn−p(RPn;Z/2) −→ Z/2
(a, b) 7−→ 〈a ∪ b, [RPn]〉

is a perfect pairing. If we denote the non-trivial element in Hp(RPn;Z/2) by xp, then
this implies that xp ∪ xn−p = xn. This confirms our computation of the cohomology ring
of RPn as

H∗(RPn;Z/2) = Z/2[x]/(xn+1) if |x| = 1.

Example 18.4.2. CPn has a Z-orientation because it is simply-connected. It also has
torsion-free integral cohomology. Then the same argument as for RPn gives another
proof that

H∗(CPn;Z/2) = Z[y]/(yn+1) with |y| = 2.

.

18.4.2 Alexander duality

The relative version is interesting even when M = Rn: for any compact subset
K ⊂ Rn

Ȟp(K;R) −∩[Rn|K]−−−−−−→ Hn−p(Rn,Rn \K;R)

is an isomorphism. The right-hand side is in turn isomorphic to H̃n−p−1(Rn \K;R) using
the long exact sequence of a pair. In other words, we can use the relative version to
compute homology of complements.

Suppose now that K is a nice compact subset, e.g. a smooth submanifold. Then
Ȟp(K;R) ∼= Hp(K;R), and we conclude that

Hp(K;R)
∼=−→ H̃n−p−1(Rn \K;R).

Example 18.4.3. If K is an embedded S1 in R3, i.e. a knot, then R3 \K has the homology
of a circle. It need not be homotopy equivalent to a circle. More generally, if K is an
embedded Sn−2 in Rn, then Rn \K has the homology of a circle.
Example 18.4.4. If K is an embedded S1 in R2, then R2 \K has the homology of S0. This
means it has two path components, which is the assertion of the Jordan curve theorem.
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18.4.3 Poincaré–Lefschetz duality

Another application of the relative version starts with an oriented compact manifold
M with boundary ∂M . This can be doubled to an oriented manifold

DM = M ∪∂M M

with compact subset K the second copy of M in DM . This is nicely embedded, so
Ȟ∗(K;R) ∼= H∗(K,R). Then we get that

Hp(K;R) −∩[DM |K]−−−−−−−→ Hn−p(DM,DM \K;R)

is an isomorphism. Now using K ∼= M and applying excision to (M,∂M)→ (DM,DM \
K), we get Poincaré duality for manifolds with boundary, which is also known as
Poincaré–Lefschetz duality:

Hp(M ;R)
∼=−→ Hn−p(M,∂M ;R).

Example 18.4.5. If M is contractible, then we get that

0 = Hp(M)
∼=−→ Hn−p(M,∂M) −→ H̃n−p−1(∂M)

unless p = 0, in which case the left hand side is Z. Thus ∂M has the same homology as
an (n− 1)-sphere. The boundary of a contractible manifold need not be homeomorphic
to Sn−1. In particular, Freedman showed that the Poincaré homology sphere bounds a
contractible 4-manifold.

18.5 Problems

Problem 18.5.1 (The signature). Let M be a path-connected compact oriented manifold
of dimension n = 4k.

(i) Prove that the bilinear form

H2k(M ;R)⊗R H
2k(M ;R) ∪−→ H4k(M ;R) 〈−,[M ]〉−−−−−→ R

is symmetric and non-degenerate.
By the classification of bilinear forms over the real numbers, its associated quadratic
form is equivalent to one of the form

(x1, . . . , xp+q) 7−→
p∑
i=1

x2
i −

p+q∑
j=p+1

x2
j .

The number p− q is called the signature of M , denoted σ(M).
(ii) Give an example of a 4k-dimensional manifold with signature 1.

Problem 18.5.2 (The K3-manifold).
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(i) Suppose that there exists a (4k + 1)-dimensional compact oriented manifold W
with boundary such that ∂W = M . Let i : M ↪→ W denote the inclusion. Prove
that i∗[M ] = 0.

With some more work, this leads to the result that σ(M) = 0 when M bounds a manifold
W . You may use this fact in the next part:

(ii) The K3-manifold1 is the 4-dimensional path-connected compact oriented submani-
fold M of CP 3 cut out by the homogeneous equation z4

1 + z4
2 + z4

3 + z4
4 = 0. Its

intersection form
t : H2(M)⊗R H2(M) −→ Z

has Gram matrix (with entries ei t ej for some integral basis e1, . . . , e22 of H2(M) ∼=
Z22) given by H⊕3 ⊕ (−E8)⊕2 with

H =
[
0 1
1 0

]
and − E8 =



−2 −1 0 0 0 0 0 0
−1 −2 −1 0 0 0 0 0
0 −1 −2 −1 0 0 0 0
0 0 −1 −2 −1 0 0 0
0 0 0 −1 −2 −1 0 −1
0 0 0 0 −1 −2 −1 0
0 0 0 0 0 −1 −2 0
0 0 0 0 −1 0 0 −2


Can it bound a compact oriented 5-dimensional manifold?

1It is in fact a 2-dimensional complex manifold, so also called a K3-surface. However, this is only one
of many distinct complex structure on M .
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Past and future

In this chapter we will summarize what we have learned so far, and then I will explain
some directions in which algebraic topology went next.

19.1 The past

In this course, we learned what the homology and cohomology groups of a topological
space are, and how to compute them. Along the way we learned a number of important
concepts and techniques in homological algebra.

19.1.1 Homology

The first object of interest was homology of a topological space X, defined by taking
the homology of the chain complex S∗(X) with entries

Sn(X) = Z[{σ : ∆n → X}],

and differential given by

d(σ) =
n∑
i=0

(−1)iσ|face opposite to ith vertex.

We saw three useful elaborations:
· relative homology: for A ⊂ X, define H∗(X,A) as the homology of S∗(X)/S∗(A),
· coefficients: for an R-module M , define H∗(X;M) as the homology of S∗(X)⊗M ,
· relative homology with coefficients: combine the above two.

These satisfy the four Eilenberg–Steenrod axioms: long exact sequence of a pair, excision,
wedge, and dimension. To prove these, we learned two important homological techniques.
For the long exact sequence of a pair, we use that a short exact sequence of chain
complexes induces a long exact sequence on homology. For excision, we constructred a
chain homotopy from barycentric subdivision to the identity.

From the Eilenberg–Steenrod axioms we deduced the suspension isomorphism and
the Mayer–Vietoris long exact sequence. These then led to cellular homology, which gives
a rather small chain complex which computes the homology of a CW-complex.

150
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Next we proved the universal coefficients theorem and Künneth theorem, which both
involve Tor-terms: for coefficients in a PID R (which we drop from the notation for
brevity), there are short exact sequences (split but not naturally so)

0→ Hp(X)⊗R N −→ Hp(X;N) −→ TorR1 (Hp−1(X), N)→ 0 for N an R-module,

0→
⊕

p+q=n
Hp(X)⊗Hq(Y ) −→ Hn(X × Y ) −→

⊕
p+q=n−1

TorR1 (Hp(X), Hq(X))→ 0.

The zeroth Tor-group is given by TorR0 (M,N) = M ⊗R N and the higher terms
measure the failure of M ⊗R − to be exact. They can be computed by resolving M by
free R-modules (though projective R-modules suffice). That is, one constructs chain
complex F• concentrated in non-negative degrees with a homomorphism F0 →M such
that the extended chain complex

· · · −→ F2 −→ F1 −→ F0 −→M −→ 0

is exact, and takes
TorRi (M,N) := Hi(F• ⊗R N).

We call F• →M a free resolution. That the Tor-groups independent of the choice of free
resolution F• used the following result:

Lemma 19.1.1 (Fundamental theorem of homological algebra). If both F• →M and
G• → N are free resolutions, then any homomorphism f : M → N can be lifted to a
chain map f• : F• → G•, unique up to chain homotopy.

The acyclic models theorem generalizes this from chain complexes to functors with
values in chain complexes and gives a condition under which a natural transformation
f : F → G of functors C→ ModR can be lifted to a natural transformation f• : F• → G•
of functors C → ModR, unique up to natural chain homotopy. To state it, we fix a
collection M of objects C which we call models, and first we demand that F• and G• are
degreewise M-free, i.e. a direct sum of the functors Z[HomC(M,−)] with M ∈M. Then
we futher demand that the extended complexes

· · · −→ F2(M) −→ F1(M) −→ F0(M) −→ F (M) −→ 0,

· · · −→ G2(M) −→ G1(M) −→ G0(M) −→ G(M) −→ 0,

are exact for all M ∈M, i.e. M-exact: F• → F and G• → F ′ are M-free resolutions.

Theorem 19.1.2 (Acylic models). If F• → F and G• → G are M-free resolutions,
then every natural transformation f : F → G of functors C → ModR can be lifted to a
natural transformation f• : F• → G• of functors C→ ModR, unique up to natural chain
homotopy.



152 Chapter 19 Past and future

Example 19.1.3. To prove the Künneth theorem we applied acylic models to

C = Top2,

M = {(∆p,∆q) | p, q ≥ 0},
F = ((X,Y ) 7→ H0(X)⊗H0(Y ))
F• = ((X,Y ) 7→ S∗(X)⊗ S∗(Y ))
G = (X,Y ) 7→ H0(X × Y )
G• = ((X,Y ) 7→ S∗(X × Y ))

f = natural iso : H0(X)⊗H0(Y )
∼=−→ H0(X × Y )

and its inverse, to get a chain homotopy equivalence

S∗(X)⊗ S∗(Y ) −→ S∗(X × Y )

unique up to chain homotopy.

19.1.2 Cohomology

After proving these important results about homology, we discussed its dual, coho-
mology. It is the cohomology of the cochain complex S∗(X) with entries

Sn(X) = Hom(Sn(X),Z)

and differential given by
d(α) = (−1)n+1α ◦ d,

with d on the right hand side the differential for homology. There is a relative version with
coefficients, which satisfy similar Eilenberg–Steenrod axioms. Thus for the computation
of cohomology we have similar tools as for homology. Cohomology is related to homology
through the Kronecker pairing

〈−,−〉 : Hp(X;R)⊗Hp(X;R) −→ R

[α]⊗ [σ] 7−→ α(σ).

This gives a homomorphism Hp(X;R)→ HomR(Hp(X;R), R) which features in another
universal coefficients theorem: for a PID R, there are short exact sequences

0 −→ ExtR1 (Hp−1(X;R), R) −→ Hp(X;R) −→ HomR(Hp(X;R), R) −→ 0.

The Ext-groups are computed like the Tor-groups, but defined using Hom instead of ⊗.
The novel feature of cohomology is the existence of the cup product. There is an

explicit formula for it, given by

∪ : Hp(X;R)⊗Hq(X;R) −→ Hp+q(X;R)
[α]⊗ [β] 7−→ [σ 7→ α(σ|first ∆p)β(σ|last ∆q )] .
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This is clearly associative and unital, but not clearly graded commutative. This is proved
by an application of the uniqueness clause in acyclic models to

C = Top2,

M = {(∆p,∆q) | p, q ≥ 0},
F = (X,Y ) 7→ H0(X × Y )
F• = ((X,Y ) 7→ S∗(X × Y ))
G = ((X,Y ) 7→ H0(X)⊗H0(Y ))
G• = ((X,Y ) 7→ S∗(X)⊗ S∗(Y ))

f = natural iso : H0(X × Y )
∼=−→ H0(X)⊗H0(Y ),

and dualizing. Then we have two lifts:

σ 7−→
∑

p+q=n
(π1 ◦ σ)|first ∆p ⊗ (π2 ◦ σ)|last ∆q ,

σ 7−→
∑

p+q=n
(−1)pq(π1 ◦ σ)|last ∆p ⊗ (π2 ◦ σ)|first ∆q .

The uniqueness clause tells you these are chain-homotopic. Some dualizations then give
rise to the graded-commutativity of the cup product.

Finally, we observed that for manifolds there is another relation between homology
and cohomology: Poincaré duality. An R-orientation on manifold M of dimension n
is a section of the covering space OM,R with fibers Hn(M,M \ {m};R), which has the
property that its values are R-module generators. By the orientation theorem, this gives
rise a unique fundamental class [M ] ∈ Hn(M ;R). Poincaré duality then says that the
cap product

− ∩ [M ] : Hp(M ;R) −→ Hn−p(M ;R)
[α] 7−→ α([M ]|first ∆p)[M ]|last ∆n−p

is an isomorphism. (This involved a slight abuse of notation: [M ] is a linear combination
of simplices in M , and restriction of this to a face means restricting each term to a face.)

19.2 The future

The results we have studied so far was mostly done in the 1950’s and earlier. A lot
has happened since, and below we will give an overview of the next couple of decades. If
you are interested in reading more about this, [May99] is a good starting point.

19.2.1 Spectral sequences

We have done many computations of homology and cohomology groups throughout
this course. However, we did not yet use the most powerful tool available: spectral
sequences [McC01].
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The goal of a spectral sequence is straightforward: suppose you have a filtered space
X, i.e. a collection of subspaces

F0(X) ⊂ F1(X) ⊂ F2(X) ⊂ · · ·

such that colimk→∞Fk(X) → X is a homeomorphism. Then you could attempt to
compute H∗(X) by computing H∗(Fk(X)) inductively using the long exact sequences

· · · −→ Hi(Fk−1(X)) −→ Hi(Fk(X)) −→ Hi(Fk(X), Fk−1(X)) −→ · · ·

and taking colimk→∞H∗(Fk(X)). If the filtration is nice enough, this colimit is equal to
H∗(X) and you can identify Hi(Fk(X), Fk−1(X)) with H̃i(Fk(X)/Fk−1(X)).

A spectral sequence collects all these (infinitely many) computational steps into a
single object. This allow one to state and use additional algebraic properties, which
simplify the computations. The result is a machine⊕

k≥0 H̃∗(Fk(X)/Fk−1(X)) H∗(X),spectral sequence

with the convention that F−1(X) = ∅.
Example 19.2.1. In the case of the skeletal filtration

sk0(X) ⊂ sk1(X) ⊂ sk2(X) ⊂ · · ·

of a CW-complex X, the associated spectral sequence reduces to the statement that
cellular chain complex computes homology.
Example 19.2.2. The workhorse of spectral sequences is the Serre spectral sequence. It
applies to the following generalization of covering spaces: bundles with fiber F , for some
topological space F . These are maps

p : E −→ B

such that there is an open cover of B by U ’s so that there is a homeomorphism p−1(U) ∼=
F ×U over U . We call B the base, E the total space, and F the fiber. If the base B is a
CW-complex, we can filter the total space E by p−1(skk(B)). The associated spectral
sequence is Serre spectral sequence and computes H∗(E) from H∗(B) and H∗(F ). If B is
1-connected, then the inut is more precisely given by the homology groups H∗(B;H∗(F )).

A famous example is Hopf fibration

S3 → S2

with fiber S1, given by the attaching map for the 4-cell of CP 2.

19.2.2 Homotopy theory

More generally, the Sere spectral sequence applies to Serre fibrations. These are maps
p : E → B such that in each commutative diagram

Di E

Di × [0, 1] B
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there exists a lift. We saw that covering spaces had this property (there the lift was even
unique).

Serre fibrations are part of the subject of homotopy theory. The goal of this subject
is classify topological spaces up to homotopy equivalence. The most important invariants
are the homotopy groups

πi(X,x0) := {based continuous maps Si → X}
based homotopy .

This is the most important invariant because a map X → Y between path-connected
based spaces homotopy equivalent to CW complexes is a homotopy equivalence if and
only if it induces isomorphisms on all homotopy groups; the Whitehead theorem.

A Serre fibration has an associated long exact sequence (ignoring basepoints and
issues due to some homotopy groups being non-abelian)

· · · −→ πi(F ) −→ πi(E) −→ πi(B) −→ πi−1(F ) −→ · · · .

There are also strong relationships between homotopy groups and (co)homology groups,
so you can play homotopy theory and (co)homology theory off each other. For example, if
f : X → Y induces an isomorphism on homology and both X and Y are simply-connected,
then it induces an isomorphism on homotopy groups.

Over the years, homotopy theory has developed into the more general study of
mathematical objects up to some notion of deformation, not just topological spaces up
to homotopy equivalence. As such, it forms the foundation of higher category theory and
derived algebraic geometry.

19.2.3 Characteristic classes

A motivating problem for homotopy theory was the classification of vector bundles.
A vector bundle over B is a map p : E → B such that each fiber p−1(b) has the structure
of a real (or complex) vector space, and there is an open cover U of B such that
p−1(U) ∼= Rn × U over U compatibly with these vector space structures.

Remark 19.2.3. You may noticed an interest in these questions from some of our examples:
the projective spaces are related to line bundles, and the special orthogonal groups to
oriented vector bundles.

To understand vector bundles, we need invariants that not only serve to distinguish
them but also convey some geometric intuition (as, hopefully at this point, homology
does for topological spaces for you). These are characteric classes [MS74]: they assign to
a vector bundle p : E → B a cohomology class x(E) ∈ Hr(B;R), naturally in the vector
bundle.

Examples of characteristic classes are Stiefel–Whitney classe, which can tell you
whether a vector bundle is orientable, and Euler classes, which tell you whether it has an
everywhere non-zero section. Finding all characteristic classes and the properties they
encode is related to understanding the cohomology of Lie groups such as SO(n).
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19.2.4 Topological K-theory

You can not only use topology to distinguish vector bundles, but you can also use
vector bundles to distinguish topological spaces. This is an invariant called topological
K-theory [Hata]: if X is compact Hausdorff, it is given by

K0(X) := Z[iso. classes of vector bundles over X]
[E ⊕ F ] = [E] + [F ] .

As the notation suggests, these groups can be generalized to Ki(X) for i ∈ Z. There
is also a relative version, and these form a cohomology theory which does not satisfy
dimension axiom.

K−∗(pt) =



Z if ∗ ≡ 0 (mod 8)
Z/2 if ∗ ≡ 1 (mod 8)
Z/2 if ∗ ≡ 2 (mod 8)
0 if ∗ ≡ 3 (mod 8)
Z if ∗ ≡ 4 (mod 8)
0 if ∗ ≡ 5 (mod 8)
0 if ∗ ≡ 6 (mod 8)
0 if ∗ ≡ 7 (mod 8).

That is, it is a generalized cohomology theory. This means that even though all the
computational tools for cohomology are present, the values will be quite different. For
example, they are always 8-periodic (this is known as Bott periodicity). The suspension
isomorphism tells you that K−n(pt) = K0(Sn), so the above computation tells you that
there are some interesting patterns in the classification of vector bundles on spheres.

More recently, topological K-theory was generalized to algebraic K-theory, which is
built from algebraic vector bundles on schemes [Wei13]. Its values on a point are of great
importance in number theory and geometric topology.
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