Multijets and approximations of polynomials

Part I - Multijets and Thom transversality theorem

Let X and Y be smooth manifolds.

- A k-jet is an equivalence class of a triple (x, U, f) where $x \in U \stackrel{\text { open }}{\subset} X$ and $f: U \rightarrow Y$ a smooth map, and with equivalence relation $(x, U, f) \simeq\left(x^{\prime}, U^{\prime}, f^{\prime}\right)$ if $x=x^{\prime}$ and for some chart containing x and $f(x)$ the two maps have the same derivatives up to degree k.
- Denote by $J^{k}(X, Y)$ the set of all k-jets. Since $J^{k}\left(\mathbb{R}^{m}, \mathbb{R}^{n}\right)$ is a vector space, the charts of X and Y give charts of $J^{k}(X, Y)$ which induce a topology so that $J^{k}(X, Y)$ is a smooth manifold.
- There are the following maps

$$
\begin{aligned}
& s: J^{k}(X, Y) \longrightarrow X \quad[x, U, f] \longmapsto x \\
& t: J^{k}(X, Y) \longrightarrow Y \quad[x, U, f] \longmapsto f(x)
\end{aligned}
$$

and any smooth map $f: X \rightarrow Y$ induces a section $j^{k} f: X \longrightarrow J^{k}(X, Y)$ of s, called the k-prolongation

There weak/strong C^{∞} topology can be defined as union over all k of the subspace topologies of

$$
C^{\infty}(X, Y) \longrightarrow \operatorname{Map}\left(X, J^{k}(X, Y)\right), \quad f \longmapsto j^{k} f
$$

with respect to the compact-open/fine topology on the space of continuous maps.

Then

- For compact manifolds X both topologies coincide;
- The space of smooth maps $C^{\infty}(X, Y)$ is a Baire space with respect to both topologies.

Definition

X is a Baire space if for every countable collection of open, dense set $\left\{U_{i}\right\}_{i \in \mathbb{N}}$, the intersection $\bigcap_{i} U_{i}$ is dense in X.

Theorem (Thom Transversality I)

Let X and Y be smooth manifolds and $W \subset J^{k}(X, Y)$ a smooth submanifold. Then $\left\{f \in C^{\infty}(X, Y) \mid j^{k} f \pitchfork W\right\}$ is dense in $C^{\infty}(X, Y)$ (with respect to the weak and strong topology). If W is closed, then the set is open in the strong topology.

The reduction to the local case is based on the Baire property:

- Choose countable cover of W by open sets W_{i} such that
- The closure of W_{i} in $J^{k}(X, Y)$ is contained in W
- \bar{W}_{i} is compact
- $s \times t\left(W_{i}\right)$ is contained in $U_{i} \times V_{i} \subset X \times Y$ for charts $\left(U_{i}, \varphi_{i}\right)$ and $\left(V_{i}, \psi_{i}\right)$.
- \bar{U}_{i} is compact.
- $\left\{f \in C^{\infty}(X, Y) \mid j^{k} f \pitchfork W\right\}=\bigcap_{i}\left\{f \in C^{\infty}(X, Y) \mid j^{k} f \pitchfork \bar{W}_{i}\right\}$
- Prove that $\left\{f \in C^{\infty}(X, Y) \mid j^{k} f \pitchfork \bar{W}_{i}\right\}$ is open and dense

Definition

The space of multijets is

$$
r J^{k}(X, Y):=\left\{\left(z_{1}, \ldots, z_{r}\right) \in J^{k}(X, Y) \mid s z_{i} \neq s z_{j} \text { for } i \neq j\right\}
$$

There are source and target maps

$$
s \times t: r^{k}(X, Y) \longrightarrow X^{(r)} \times Y^{r}
$$

and for any smooth map $f: X \rightarrow Y$ there is a prolongation which is a section of $s:{ }_{r} J^{k}(X, Y) \rightarrow X^{(r)}$

$$
{ }_{r} j(f): X^{(r)} \longrightarrow{ }_{r} J^{k}(X, Y)
$$

Multijet transversality

Definition

Let $C \subset X$ be a closed subset and $f_{0} \in C^{\infty}(X, Y)$, consider

$$
C^{\infty}\left(X, Y ; f_{0}, C\right):=\left\{f \in C^{\infty}(X, Y)|f|_{C}=f_{0} \mid c\right\}
$$

as the subspace with respect to strong topology on $C^{\infty}(X, Y)$.

Theorem (Thom Transversality II)

For X, Y, C, f_{0} as above and $W \subset{ }_{r} J^{k}(X, Y)$ a submanifold for some $r \geq 1$ and finite $k \geq 0$. Then

$$
\left\{\left.f \in C^{\infty}\left(X, Y ; f_{0}, C\right)\right|_{r} j\left(\left.f\right|_{X \backslash C}\right) \pitchfork W\right\}
$$

is dense in $C^{\infty}\left(X, Y ; f_{0}, C\right)$.
If $\partial X, \partial Y$ and C are empty, then this is due to Mather (who said its due to Morlet).

Parametrized multijet transversality

Consider a smooth map $f: X \times M \rightarrow Y$ as a family of smooth maps $f_{p}: X \rightarrow Y$ for $p \in M$. Consider the associated multijet

$$
\tilde{r}(f): X^{(r)} \times M \longrightarrow{ }_{r} J(X, Y), \quad \tilde{j}(f)\left(x_{1}, \ldots, x_{r}, p\right)=r j\left(f_{p}\right)\left(x_{1}, \ldots, x_{r}\right),
$$

i.e. the jet with respect to the coordinates in X.

Theorem (Thom transversality III)

Let X, Y, C, W be as above and $r \geq 1$ and finite $k \geq 0$. For any $f_{0} \in C^{\infty}(X \times M, Y)$, the set

$$
\left\{f \in C^{\infty}\left(X \times M, y ; f_{0}, C \times M\right) \mid r \tilde{j}\left(\left.f\right|_{(X-C) \times M}\right) \pitchfork W\right\}
$$

is dense in $C^{\infty}\left(X \times M, y ; f_{0}, C \times M\right)$.
"Idea of the proof": Reduce to the second version of the transversality theorem.

- The composition is the same as ${ }_{r}(f)$.
- ψ is a bundle projection and the image is an open subset.
- Hence, $W^{\prime}:=\psi^{-1}(W \times \Delta)$ is a submanifold of ${ }_{r} J^{k}(X \times M, Y)$.

$$
\begin{aligned}
r j(f) \pitchfork W^{\prime} & \Leftrightarrow \psi \circ r j(f) \pitchfork W \times \Delta \\
& \Leftrightarrow \tilde{j}(f) \pitchfork W
\end{aligned}
$$

With the obvious modifications for the subspace condition, we can then apply the multijet version of the Thom transversality.

Corollary

Let X, Y, C, M, f_{0} be as above and W_{α} a countable collection of submanifolds of ${ }_{r_{a}} J^{m_{\alpha}}(X, Y)$. Then for every neighbourhood N of $f_{0} \in C^{\infty}\left(X \times M, Y ; f_{0}, C \times M\right)$ there exists a smooth homotopy f^{u} such that

- $f^{0}=f_{0}$
- $f^{u} \in N$ for all u
- $r_{r_{a}} j^{m_{\alpha}}\left(f^{1} l_{(X-C) \times M)}\right) \pitchfork W_{\alpha}$ for all α.

Proof. Any neighbourhood of f_{0} contains such an f^{1} by density. Any neighbourhood contains a path connected neighbourhood.

Part II - Approximation by polynomials

Some motivation first

Preview: The stratification is constructed from subsets of the multijet spaces

- Construct subsets $S(Z, P, N) \subset{ }_{r} J^{\infty}(\mathbb{R} \times P, N)=\lim _{\infty \leftarrow m} J^{m}(\mathbb{R} \times P, N)$ which are supposed to detect points in a fibrered concordance whose image lie above each other.
- These are determined locally by subsets $Z \subset_{r} J^{\infty}\left(\mathbb{R} \times \mathbb{R}^{p}, \mathbb{R}^{n}\right)$ so that $Z=\left(p_{m}^{\infty}\right)^{-1}\left(Z^{\prime}\right)$ for $Z^{\prime} \subset{ }_{r} J^{m}\left(\mathbb{R} \times \mathbb{R}^{p}, \mathbb{R}^{n}\right)$ and Z^{\prime} is a closed algebraic subset defined by real polynomials.
Then $S(Z, P, N)$ is determined as follows: Cover ${ }_{r} J^{\infty}(\mathbb{R} \times P, N)$ by sets ${ }_{r} J^{\infty}(\mathbb{R} \times U, V)$ for open subsets $U \subset P$ and $V \subset N$ with embeddings $\varphi: U \hookrightarrow \mathbb{R}^{p}$ and $\psi: V \rightarrow \mathbb{R}^{n}$. Let $z \in{ }_{r} J^{\infty}(\mathbb{R} \times U, V)$, then

$$
\begin{aligned}
j^{\infty}\left(1_{\mathbb{R}} \times \varphi\right)(s z) & \in_{r} J^{\infty}\left(\mathbb{R} \times U, \mathbb{R} \times \mathbb{R}^{p}\right) \\
r j^{\infty}(\psi)(t z) & \in_{r} J^{\infty}\left(V, \mathbb{R}^{n}\right)
\end{aligned}
$$

and z is in $S(Z, P, N)$ if there is a $\tilde{z} \in Z$ so that

$$
r j^{\infty}(\psi)(t z) \circ z=\tilde{z} \circ{ }_{r} j^{\infty}\left(1_{\mathbb{R}} \times \varphi\right)(s z) \in_{r} J^{\infty}\left(\mathbb{R} \times U, \mathbb{R}^{n}\right)
$$

Some remarks:

- For some reasons (better properties of varieties over \mathbb{C}) this is actually done with complex multijets ${ }_{r} J^{\infty}\left(\mathbb{C} \times \mathbb{C}^{p}, \mathbb{C}^{n}\right)$ so that there is some content in Z^{\prime} being defined by real polynomials
- Obviously, the sets $Z \subset{ }_{r} J^{\infty}\left(\mathbb{R} \times \mathbb{R}^{p}, \mathbb{R}^{n}\right)$ need to satisfy invariance properties with respect to the above choices (next talk).
Example:

$$
Z^{0}=\left\{\left(z_{1}, z_{2}\right) \in_{2} J^{\infty}\left(\mathbb{C} \times \mathbb{C}^{p}, \mathbb{C}^{n}\right) \mid t\left(z_{1}\right)=t\left(z_{2}\right)\right\}
$$

- Next: Introduce the operations A,B,C and D that can be applied to sets Z above that measure, for example, if there are several points whose image lie above each other.
- Applying these operations to Z^{0} gives a countable sequence of varieties $Z_{\alpha} \subset{ }_{r_{\alpha}} J^{\infty}\left(\mathbb{C}^{p+1}, \mathbb{C}^{n}\right)$ for which we can form $S\left(Z_{\alpha}, P, N\right)$
- Make a fibred concordance transverse to the submanifolds of ${ }_{r} J^{\infty}(\mathbb{R} \times P, N)$ that come from the non-singular parts of these varieties.

Operation D

Motivation: Let $Z \subset{ }_{r} J^{m}\left(\mathbb{C} \times \mathbb{C}^{p}, \mathbb{C}^{n}\right)$ and set $K=\operatorname{Poly}_{r\left({ }_{(p+1+m}^{m}\right)-1}\left(\mathbb{C}^{p+1}\right)$ and

$$
X=\left\{(x, f) \in\left(\mathbb{C}^{p+1}\right)^{(r)} \times K^{n} \mid r j^{\infty}(f)(x) \in Z\right\}
$$

Then the closure $\bar{X} \subset\left(\mathbb{C}^{p+1}\right)^{r} \times K^{n}$ potentially contains points on the fat diagonal. Collisions can be encoded by surjective maps $\phi:\{1, \ldots, r\} \rightarrow\left\{1, \ldots, r^{\prime}\right\}$

$$
\left.Y_{\phi}:=\left\{(y, f) \in \mathbb{C}^{p+1}\right)^{\left(r^{\prime}\right)} \times K^{n} \mid\left(\phi^{*} y, f\right) \in \bar{X}\right\}
$$

Then set

$$
\begin{aligned}
& D_{\phi}(Z):=\left\{\left(z_{1}, \ldots, z_{r^{\prime}}\right) \in{r^{\prime}}^{\infty}\left(\mathbb{C}^{p+1}, \mathbb{C}^{n}\right) \mid \exists(y, f) \in Y_{\phi}\right. \text { s.t. } \\
&\left.p_{(m+1)\left|\phi^{-1}\left(i^{\prime}\right)\right|-1}^{\infty}\left(z_{i}^{\prime}\right)=j^{(m+1)\left|\phi^{-1}\left(i^{\prime}\right)\right|-1}(f)\left(y_{i}\right)\right\}
\end{aligned}
$$

Claim: For a convergent sequence $\left\{f^{v}\right\}_{v \geq 1}$ in $C^{\infty}\left(\mathbb{R}^{p+1}, \mathbb{R}^{n}\right)$ with limit f, and a sequence $\left\{x^{v}\right\}_{v \geq 1} \in\left(\mathbb{R}^{p+1}\right)^{(r)}$ converging to $x=\phi^{*} y$ for $y \in\left(\mathbb{R}^{p+1}\right)^{\left(r^{\prime}\right)}$. Then

$$
j^{\infty}\left(f^{v}\right)\left(x^{v}\right) \in Z \quad \forall v \Rightarrow_{r^{\prime} j^{\infty}}(f)(y) \in D_{\phi}(Z)
$$

Lemma 37. Let $m \geq 0, r \geq r^{\prime} \geq 1$, and $k_{i} \geq 0$ for $1 \leq i \leq r$ be integers and denote $K=\sum_{i} k_{\text {. }}$. Let $\phi:\{1, \ldots, r\} \rightarrow\left\{1, \ldots, r^{\prime}\right\}$ be surjective, $U \subset \mathbb{C}^{m}$ open, $\left\{f^{f}\right\}_{v \geq 1}$ a convergent sequence in the space $H(U)$ of holomorphic functions on U. Let $\left\{x^{v}\right\}_{v \geq 1} \in U^{(r)}$ converging to $x=\phi^{*} y$ for $y \in U^{\left(r^{\prime}\right)}$.
Then there exists a convergent sequence $g^{v} \in$ Poly $_{K-1}\left(\mathbb{C}^{m}\right)$ with limit g so that

- $g^{v}-f^{\nu}$ vanishes to order k_{i} at x_{i}^{v} for all i, v
- $g-f$ vanishes to order $\sum_{\phi(i)=j} k_{i}$ at y_{j} for all j.

Remark: The same holds for smooth functions on $U \subset \mathbb{R}^{m}$ instead of $H(U)$ and real valued polynomials Poly ${ }_{K-1}\left(\mathbb{R}^{m}\right)$ instead of complex ones.

Special case $m=1$

Lemma. Let $U \subset \mathbb{C}$ and $\left(a_{1}, \ldots, a_{k}\right) \in U^{k}$ and $f \in H(U)$, there is a unique polynomial $A_{a, f} \in$ Poly $_{k-1}(\mathbb{C})$ such that $f-A_{a, f}$ vanishes at a_{1}, \ldots, a_{k} with multiplities.

Proof.

- $k=1$ then $A_{a, f}=f(a)$
- $k \geq 1$ then $A_{a_{1}, \ldots, a_{k}, f}=f\left(a_{k}\right)+\left(t-a_{k}\right) A_{a_{1}, \ldots, a_{k-1}, f}$ where

$$
\tilde{f}(t)= \begin{cases}\frac{f(t)-f\left(a_{k}\right)}{t-a_{k}} & t \neq a_{k} \\ f^{\prime}\left(a_{k}\right) & t=a_{k}\end{cases}
$$

For $m>1$ there is no unique construction, but Lemma 37 says that such a polynomial always exists that there is a continuity property in choosing it.

Lemma. Let $m \geq 0, r \geq 1$, and $k_{i} \geq 0$ for $1 \leq i \leq r$ be integers and denote $K=\sum_{i} k_{i}$. Let $\left(x_{1}, \ldots, x_{r}\right) \in\left(\mathbb{C}^{m}\right)^{(r)}$. Then the subspace of Poly ${ }_{K-1}\left(\mathbb{C}^{m}\right)$ of polynomials that vanish to order $\geq k_{i}$ at x_{i} has codimension $\sum_{i}\binom{m+k_{i}-1}{k_{i}-1}$.
Proof. It is the preimage of the map

$$
\text { Poly }_{k-1}\left(\mathbb{C}^{m}\right) \longrightarrow \prod_{i=1}^{r} \text { Poly }_{k_{i}-1}\left(\mathbb{C}^{m}\right), \quad f \longmapsto\left(T_{x_{i}}^{\leq k_{i}-1}(f)\right)_{i}
$$

which explains the codimension. The statement is equivalent to proving that one can always construct a polynomial with prescribed Taylor polynomial at x_{i}, and we prove it by induction over r where the case $r=1$ is trivial.

- By induction assumption, we can construct polynomials with prescribed Taylor approximation at x_{1}, \ldots, x_{r-1} so that we can assume without loss of generality that the Taylor approximation is non-trivial only at x_{r}.
- Choose linear functions L_{i} with $L_{i}\left(x_{j}\right) \neq 0$ for $i \neq j$ and $L_{j}\left(x_{j}\right)=0$ and set $g=h \prod_{i=1}^{r-1} L_{i}^{k_{i}}$. Since $\prod_{i=1}^{r-1} L_{i}^{k_{i}}\left(x_{r}\right) \neq 0$ we can find h so that g has the prescribed Taylor approximation at X_{r}.

Proof of Lemma 37

Lemma 37. Let $m \geq 0, r \geq r^{\prime} \geq 1$, and $k_{i} \geq 0$ for $1 \leq i \leq r$ be integers and denote $K=\sum_{i} k_{i}$. Let $\phi:\{1, \ldots, r\} \rightarrow\left\{1, \ldots, r^{\prime}\right\}$ be surjective, $U \subset \mathbb{C}^{m}$ open, $\left\{f^{v}\right\}_{v \geq 1}$ a convergent sequence in the space $H(U)$ of holomorphic functions on U. Let $\left\{x^{\nu}\right\}_{v \geq 1} \in U^{(r)}$ converging to $x=\phi^{*} y$ for $y \in U^{\left(r^{\prime}\right)}$.
Then there exists a convergent sequence $g^{v} \in \operatorname{Poly}_{K-1}\left(\mathbb{C}^{m}\right)$ with limit g so that

- $g^{v}-f^{v}$ vanishes to order k_{i} at x_{i}^{v} for all i, v
- $g-f$ vanishes to order $\sum_{\phi(i)=j} k_{i}$ at y_{j} for all j.

Proof. Double induction on m and K.

- $m=1$ and K arbitrary follows from explicit formulas in the special for tuples

$$
a^{v}=(\underbrace{x_{1}^{v}, \ldots, x_{1}^{v}}_{k_{1}}, \ldots, x_{r}^{v}, \ldots, x_{r}^{v}) \quad \Rightarrow g^{v}=A_{a^{v}, f^{v}}
$$

- Now let $m \geq 2$ and $K \geq 1$ and assume its true for $(m-1, K)$ and for $(m, K-1)$.

Step 1. Assume

$$
x_{r}^{v}=0 \quad \forall v, \quad x_{i}=0 \quad \forall i
$$

- Find a projection $p: \mathbb{C}^{m}=\mathbb{C}^{m-1} \times \mathbb{C} \rightarrow \mathbb{C}^{m-1}$ so that $p_{1}\left(x_{i}^{v}\right) \neq p_{1}\left(x_{j}^{v}\right)$ for $i \neq j$. Write the coordinates with respect to p_{1} as (x, t).
- Find neighbourhoods $U_{1} \subset \mathbb{C}^{m-1}$ and $U_{2} \subset \mathbb{C}$ of zero ($U_{1} \times U_{2}$ contains all but finitely many x_{i}^{v} by the second condition) where one can write

$$
\begin{aligned}
f^{v}(x, t) & =f_{1}^{v}(x)+t f_{2}^{v}(x, t) \\
f(x, t) & =f_{1}(x)+t f_{2}(x, t)
\end{aligned}
$$

- Apply induction hypothesis to f_{1}^{v} and f_{1} with $(m-1, K)$, and to f_{2}^{v} and f_{2} with ($m, K-1$).
- Then

$$
\begin{aligned}
g^{v}(x, t) & =g_{1}^{v}(x)+\operatorname{tg}_{2}^{v}(x, t) \\
g(x, t) & =g_{1}(x)+\operatorname{tg}_{2}(x, t)
\end{aligned}
$$

satisfies the conditions of the theorem.

Step 2. Assume

$$
x_{i}^{v} \in D_{\epsilon}(0) \subset U \quad \forall v, \quad x_{i}=0 \quad \forall i
$$

Then we can reduce to step 1 by replacing the sequence with $\tilde{x}_{i}^{v}=x_{i}^{v}-x_{r}^{v}$ and $\tilde{f}^{\nu}(\xi):=f^{\nu}\left(\xi+x_{r}^{v}\right)$ and $\tilde{f}=f$ on $D_{\epsilon}(0)$.

Step 3. Assumptions as above but x_{i} is some complex number $\forall i$
\rightarrow Translate to zero

Step 4. The general case

- The basic idea is to use the previous steps for the sequences x_{i}^{v} for all i with $\phi(i)=j$ for some fixed j to obtain functions g_{j}^{y} and g_{j} so that

$$
f^{v}-g_{j}^{v} \text { vanish at } x_{i} \text { to order } k_{i} \text { for all } i \text { with } \phi(i)=j \text {. }
$$

- If we can also arrange that these g_{i}^{p} satisfy

$$
g_{j}^{v} \text { vanish at } x_{i} \text { to order } k_{i} \text { for all } i \text { with } \phi(i) \neq j
$$

then $\sum_{j=1}^{r^{\prime}} g_{j}^{v}$ is a sequence of functions we are looking for.

- Choose a linear polynomial $L \in \operatorname{Poly}_{1}\left(\mathbb{C}^{m}\right)$ so that $L\left(x_{i}^{v}\right) \neq L\left(x_{i}^{v}\right)$ for $i \neq i^{\prime}$ and $L\left(y_{j}\right) \neq L\left(y_{j^{\prime}}\right)$ for $j \neq j^{\prime}$ and define

$$
\begin{aligned}
& q_{j}^{v}:=\prod_{i \in \phi^{-1}(j)}\left(L-L\left(x_{i}\right)\right)^{k_{i}} \\
& q_{j}:=\prod_{i \in \phi^{-1}(j)}\left(L-L\left(y_{i}\right)\right)^{k_{i}}
\end{aligned}
$$

which satisfy

$$
q_{j}^{v}\left(x_{i}\right) \neq 0 \text { if } \phi(i)=j \text {, and } q_{j}^{v}\left(x_{i}\right) \text { vanish to order } k_{i} \text { at } x_{i} \text { for } \phi(i) \neq j .
$$

- Apply previous step to the sequence f^{v} / q_{j}^{v} and configurations $\left(x_{i}^{v}\right)$ for all $i \in \phi^{-1}(j)$ to obtain an approximation h_{j}^{v} of polynomials satisfying

$$
h_{j}^{v}-f^{v} / q_{j}^{v} \text { vanishes to degree } k_{i} \text { at } x_{i} \text { for } i \in \phi^{-1}(j)
$$

- Then set $g_{j}^{v}:=q_{j} h_{j}^{v}$ which vanishes by construction at x_{i} to order k_{i} for i with $\phi(i) \neq j$.

