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1 Introduction

Throughout, k will denote a field of characteristic 0 (usually R or Q).

Definition. A nilpotent, or k-good in the sense of Bousfield-Kan space X is for-
mal (resp. stably formal) over k ifH∗(X; k) ' APL(X; k) (resp. H∗(X; k) ' C∗(X; k)f)
are quasi-isomorphic as cdgas (resp. as chain complexes).

An operad {O(n)} in Spc is formal (over k) if APL(O(n))⊗k and H∗(O(n); k)
are quasi-isomorphic as cooperads of cdgas.

This talk will sketch a proof of the

Theorem (Kontsevich, Lambrechts-Volić). For n ≥ 3, the little disks operad
En is formal over R.
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So what I am not going to do is

� Develop the theory of semialgebraic sets–in a nutshell, they have a good
theory of ‘piecewise algebraic forms’ which allow pushforwards along ‘semi-
algebraic bundles’. See [3] for more.

� Define ΩPA and the natural equivalence APL
'−→ ΩPA

� Worry about the Künneth quasi-isomorphismAPL(X)⊗APL(Y )
∼−→ APL(X × Y )

going the wrong way.

What I am going to do is

1. Define the Fulton-MacPherson operad C[−] and talk about some of its
nice properties.

2. Define Kontsevich’s operad D(−) of admissible diagrams.
3. Show that D(−) is quasi-isomorphic to H∗(C[−]).
4. Define the configuration space integral I : D(−)→ ΩPA(−) and show that

it is a quasi-isomorphism.

Notation A will always be a finite set, n ≥ 3 will denote a fixed ambient
dimension, k a field.

2 The Fulton-MacPherson operad

Let C(A) := Conf(A,Rn)/RnoR>0, where the factor of Rn acts by translation
and R>0 acts by dilation. Observe that this space is homeomorphic to the space
of configurations with barycenter the origin and radius 1:

C(A) ∼=

{
x : A→ Rn | x̄ :=

1

|A|
∑
a

x(a) = 0 max
a∈A
{x(a)− x̄} = 1

}
.
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For distinct a, b, c ∈ A, we define two functions, normalized direction and relative
distance:

θab : C(A)→ Sn−1 δabc : C(A)→ [0,∞]

x 7→ x(a)− x(b)

|x(a)− x(b)|
x 7→ |x(a)− x(b)|

|x(a)− x(c)|
.

Definition. Let An \ ∆ denote the set of n-tuples with distinct entries and
consider the map

ι : C(A) −→ (Sn−1)A
2\∆ × ([0,∞])A

3\∆

x 7−→ ((θa,b), (δa,b,c))

The Fulton-MacPherson compactification C[A] of C(A) is the closure of the
image of ι, i.e. ι(C(A)) =: C[A].

Idea. We are allowing points to be ‘infinitesimally close’ to each other, but by
remembering the relative directions between the points labelled by a 6= b, the
compactification doesn’t cause any ‘collapse’ or change in homotopy type.

We abuse terminology by calling y ∈ C[A] a ‘configuration.’

Proposition. C[A] is a compact semi-algebraic manifold with interior C(A)
and

dimC[A] =

{
0 |A| ≤ 1

n|A| − n− 1 |A| ≥ 2
.

Proposition. For x ∈ C[A], the following are equivalent: x ∈ ∂C[A] ⇐⇒
∃a, b, c ∈ A distinct such that x(a) ' x(b) rel x(c), i.e. δa,b,c(x) = 0.

The operad structure Suppose given a map of sets ν : A → P with P
ordered1 and let Ap = ν−1(p).

C[P ]×Πp∈PC[Ap]→ C[A]

(x0, (xp)p∈P )

Idea. Replace x0(p) by the configuration xp “made infinitesimal.”

Note that the unit is given by the unique point {∗} ' C[1].

Proposition. [5] The Fulton-MacPherson operad C[−] of configurations in Rn
and the little n-disks operad are weakly equivalent as topological operads.

1It has been pointed out that one doesn’t need an ordering on P to define the operad
structure–this will come in later when we want to put an orientation on the fiber of the
structure map.
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The canonical projections Given an inclusion A ⊂ V , there is a canonical
projection (”forget points labelled by V \ A”), which is compatible with the
induced operad structure map:

C[V ] C[A]

C[V ]×Πv∈V C[Av]

'

The Kontsevich configuration space integral is defined via a pushforward of
certain semi-algebraic forms along these canonical projections.

Theorem. Let A finite set and I linearly ordered. Then

π : C[A ∪ I]→ C[A]

is an oriented semi-algebraic bundle with fiber of dimension

dim fib π

{
= n · |I| |A| ≥ 2 or I = ∅
< n · |I| otherwise

We can consider the subbundle C∂ [A ∪ I] → C[A] given by, for x ∈ C[A],
C∂ [A ∪ I]x = ∂(C[A ∪ I]x). This is the fiberwise boundary.

Decomposition of fiberwise boundary ∂C[A]

Idea. Most of the operad structure on C[−] can be understood as an explicit
decomposition of the boundary of C[−] as a union of faces which are homeo-
morphic to products of the form C[n]× C[k1]× · · · × C[kn].

Let V = A ∪ I. For each W ( V , we have

ΦW : C[V/W ]× C[W ]→ C[V ]

where the image of ΦW consists of configurations in which all w ∈ W are
infinitesimally close to one another. When |W | ≥ 2 and either W ⊆ A or
|W ∩ A| 6= 1, the image of ΦW lies in the fiberwise boundary C∂ [V ]. Then we
have the decomposition

C∂ [A ∪ I] =
⋃
W

Im ΦW

Fact. For distinct W,Z, Im ΦW , Im ΦZ intersect in strictly smaller dimension.
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3 The cdga of admissible diagrams

Strategy Define a cdga cooperad structure on all diagrams D̃ and shows it
descends to a class of admissible diagrams D later.

Definition. A diagram Γ on A is a finite oriented graph with internal IΓ and
external AΓ vertices and such that the sets of edges EΓ and internal vertices
IΓ are linearly ordered. We write s, t : EΓ → AΓ t IΓ for the source, target
respectively.

An edge is

� a chord if its endpoints are external
� a dead-end if one of its endpoints has only one neighbor2

� contractible if it is not a chord, dead-end, or a loop

The space of diagrams D̃(A) on A is the free k-module generated by isomorphism
classes of diagrams Γ on A modulo the relations

� Γ = (−1)nΓ′ if Γ,Γ′ differ by inversion of one edge (and the ordering on
EΓ = EΓ′ stays the same)

� Γ = (−1)nΓ′ if Γ,Γ′ differ by a transposition in the order of internal
vertices

� Γ = (−1)n−1Γ′ if Γ,Γ′ differ by a transposition in the order of edges

Note that implicitly, the definition D̃(−) depends on n, it’s just suppressed
from notation. In the following, when a fixed diagram is understood, I write
E, I instead of EΓ, IΓ for ease of notation.

Definition. The degree of a diagram Γ is given by

deg Γ = (n− 1)|EΓ| − n|IΓ|.

Remark. The degree is compatible with the equivalence relation above, hence
D̃(A) is a graded k-module.

Definition. The product diagram of Γ1,Γ2 ∈ D̃(A) is given by “gluing them
together along A,” i.e.

� AΓ1·Γ2
= A

� EΓ1·Γ2
= EΓ1

< EΓ2
, i.e. for all e1 ∈ EΓ1

, e2 ∈ EΓ2
, e1 < e2.

� IΓ1·Γ2 = IΓ1 < IΓ2

and where the source and target maps are given by their restrictions to EΓ1
, EΓ2

.

Remark. The unit diagram is the one with no edges or internal vertices.

2not the same as univalent! Since there might be loops or double/triple/etc edges.
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Proposition. This extends to a degree 0 linear map

D̃(A)⊗ D̃(A)→ D̃(A)

For the following definition, we use the convention that the vertices in a diagram
are always ordered such that a < i for a ∈ A, i ∈ I.

Definition. Let Γ a diagram and e a contractible edge of Γ. The diagram Γ/e
obtained from Γ by contracting the edge e is the diagram given by

VΓ/e = VΓ \ {max{s(e), t(e)}}
EΓ/e = EΓ \ {e}

We write f̄ for the image of f ∈ EΓ in Γ/e.

Define the differential of a diagram to be

dΓ =
∑

e∈EcontrΓ

ε(Γ, e) · Γ/e

where

ε(Γ, e) =


(−1)pos(t(e);I) s(e) < t(e) and M odd

−(−1)pos(s(e);I) s(e) > t(e) and M odd

(−1)pos(e;E) M even

.

Lemmas. 1. d defines a linear map D̃(A)→ D̃(A)
2. d is homogenous of degree +1.
3. (Liebniz rule)

d(Γ · Γ′) = d(Γ) · Γ′ + (−1)deg ΓΓ · d(Γ′)

4. (chain map) d2 = 0

Sketch of 4. Note that ē2 is contractible in Γ/e1 ⇐⇒ ē1 is contractible in Γ/e2,
and (Γ/e1)/ē2

∼= (Γ/e2)/ē1. It remains to check that a sign vanishes.

Taken together, the lemmas above imply the

Theorem.
(
D̃(A), d

)
is a commutative differential graded algebra.

3.1 Admissible diagrams

Definition. A diagram is admissible if it has no loops, double edges, internal
vertices of valance ≤ 2, and each internal vertex is connected (in the topological
sense, i.e. regarding Γ as a CW complex) to an external vertex.

Remark. An admissible graph does not have dead ends.
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Lemma. The module of non-admissible diagrams is a differential ideal, i.e.

d(N (A)) ⊆ N (A)

Definition. The cDGA of admissible diagrams is the quotient

D(A) := D̃(A)/N (A)

A cochain complex is connected if it is

� concentrated in nonnegative degrees
� isomorphic to k in degree 0 .

Proposition. If n ≥ 3, then Dn(A) is a connected cDGA.

Proof. Suppose Γ a nontrivial diagram–want to show that it has positive de-
gree. Consider “half-edges.” Since each internal vertex is of valance ≥ 3, there
are ≥ 3|I| half-edges, and since Γ is nontrivial there is at least one half-edge
connecting {internal vertices} to an external vertex.

|E| ≥ 1

2
(3|I|+ 1)

deg Γ = |E|(n− 1)− |I|n ≥ 1

2
(3|I|+ 1)(n− 1)− |I|n

=
n− 1

2
+ |I|n− 3

2
> 0

when n ≥ 3 and |I| ≥ 0.

3.2 Cooperad structure

Let A ⊂ V , i.e. V = AtI. Fix a map ν : A→ P and consider a map λ : V → P
which agrees with ν on A3.

Ψ̃ν : D̃(A)→ D̃(P )⊗
⊗
p∈P
D̃(Ap)

Γ 7→
∑
λ

±[pth clusters collapsed]⊗ (pth cluster)

where the sum is over all λ satisfying the above.

[pictures]

The sign is given by

S(I, λ) = {(v, w) ∈ I2 | v < w and λ(v) > λ(w)}
S(E, λ) = {(e, f) ∈ E2 | e < f and λ(e) > λ(f)}
ε(Γ, λ) = (−1)n·|S(I,λ)|+(n−1)|S(E,λ)|

3[4] refer to these maps as ‘condensations’.
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Proposition. This descends to a well-defined linear cooperad structure map

Ψν : D(A)→ D(P )⊗
⊗
p∈P
D(Ap).

4 Equivalence of the cooperads D(−) and H∗(C[−])

Recall: from Dexter’s talk that we have

H∗(C[A]; k) '
∧
{gab}a6=b,a,b∈A/g2

ab = 0 gab = (−1)ngba gabgbc+gbcgca+gcagab

where gab = θ∗ab(vol) ∈ Hn−1(C[A]; k).

For a 6= b, let Γ〈a, b〉 denote the diagram with a single chord from a to b with
no internal vertices or other edges.

Theorem. For n ≥ 2, there is a quasi-isomorphism of cdgas (Z-graded if n = 2)

J : D(A)→ H∗(C[A]; k)

Γ〈a, b〉 7→ gab

Γ 7→ 0 if Γ has an internal vertex.

First, need to show the map is well-defined, i.e. J(d(−)) = 0. The Arnold
relation comes from the diagram with a single internal vertex which is connected
to all external vertices. Since J is surjective on homology, we show that it
induces an isomorphism on homology by computing dimension in each degree.
The dimension computation involves induction on |A|–here it is important to
distinguish integer partitions and set partitions.

5 The Kontsevich configuration space integrals

Goal. Construct a cDGA morphism

I : D(A)→ ΩPA(C[A])

which is a quasi-isomorphism and “almost” a morphism of cooperads.

From now on, let Γ be a diagram on A. Let vol ∈ Ωn−1(Sn−1) be the standard
normalized volume form on the sphere Sn−1 ⊂ Rn. For every linearly ordered
finite set E, let

volE = ×e∈Evole ∈ Ω
|E|(n−1)
min ((Sn−1)|E|)

where the product is taken in the order on e. Recall that given two vertices
v, w ∈ V , there is a map θv,w : C[V ] → Sn−1. We use the convention that
θv,v is the constant map to a basepoint ∗ ∈ Sn−1. For an edge e ∈ EΓ, let
θe := θs(e),t(e). Then define the map

θΓ = (θe)e∈E : C[V ]→ (Sn−1)E

Furthermore, recall that we have a canonical projection πΓ : C[VΓ]→ C[A].
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Definition. The Kontsevich configuration space integral Ĩ is given by: if |A| ≥ 2,

Ĩ(Γ) = πΓ∗θ
∗
Γ(volE) ∈ ΩPA(C[A])

and if |A| ≤ 1, then

Ĩ(Γ) =

{
1 Γ a unit

0 otherwise
.

Lemma. Ĩ defines, for any finite set A, a degree zero linear map

Ĩ : D̃(A)→ ΩPA(C[A])

5.1 I is a map of cdgas

Proposition. Ĩ is a morphism of algebras, i.e. Ĩ(Γ1 · Γ2) = Ĩ(Γ1)Ĩ(Γ2).

Proposition. Ĩ(N (A)), i.e. Ĩ vanishes on nonadmissible diagrams.

Corollary. Ĩ descends to a map of algebras

I : D(A)→ ΩPA(C[A])

The latter proposition follows from

Lemmas. Ĩ vanishes on diagrams

1. with loops
2. with double edges
3. containing an internal vertex not connected to any external vertices
4. containing a univalent internal vertex
5. containing a bivalent internal vertex.

Sketch of 1, 2. These both follow from noticing that θΓ factors through a lower
dimensional space, e.g.

C[V ] (Sn−1)EΓ C[V ] (Sn−1){e,f}

(Sn−1)E\{e} Sn−1

θ θ

∆

and the

Fact. Let α ∈ ΩPA(X). If degα > dimX, then α = 0.
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Sketch of 3, 4. These follow from recognizing that θ factors through a canonical
projection, e.g. for 3, wlog assume (by multiplicativity) that no internal vertices
are connected to external vertices. Then

C[V ] (Sn−1)EΓ

C[I]× C[A]

C[A]

θ

and we have the

Fact. Let π : E → B an oriented semialgebraic bundle which factors as

E
ρ−→ Z → qB. Suppose that dim q−1(b) < dimπ−1(b) pointwise. Then for

any µ ∈ Ωmin(Z), we have π∗(ρ
∗(µ)) = 0.

The result follows by comparing the dimensions of the fibers of C[V ] → C[A]
and C[I]× C[A] � C[A]. The proof of 4. is similar.

Sketch of 5. Suppose i the internal vertex of valance 2. The idea is to consider
the automorphism of C[VΓ] which replaces the point labeled by i by a point
symmetric to it with respect to the barycenters of the points v, w. For sim-
plicity, suppose that the only vertices in our diagram are i, v, w. Consider the
aforementioned automorphism of C[{i, v, w}]:

� this ‘antipode about v+w
2 ’ picks up a sign of (−1)n

� swapping the edges (i, v) and (i, w) picks up a sign of (−1)n−1.

hence I(Γ) = −I(Γ) =⇒ I(Γ) = 0.

The argument is similar in the case of more vertices in the diagram.

Proposition. The Kontsevich configuration space integrals commute with the
differential, i.e.

Ĩ ◦ d = d ◦ Ĩ I ◦ d = d ◦ I. (1)

Proposition (fiberwise Stokes formula). Let π : E → B an oriented SA bundle
with k-dimensional fiber and π∂ : E∂ → B its fiberwise boundary. Then for
µ ∈ Ωmin(E),

d(π∗(µ)) = π∗(dµ) + (−1)|µ|−kπ∂∗ (µ|E∂ )

Fact. If π as above and E =
⋃
Eλ where Eλ ∩ Eη has fiber dimension < k for

all λ 6= η, then the pushforward satisfies π∗ =
∑
πλ∗(−)|Eλ .
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Applying these to (1), we get that the RHS is equal to

d(Ĩ(Γ)) = dπ∗(θ
∗(vol)) = π∗(dθ

∗(vol)) + (−1)|volEΓ
|−|I|·nπ∂∗ (θ∗(volEΓ

|C∂ [V ]))

=
∑
W

(
π∂ |Im ΦW

)
∗ (µ)

Claim. All terms in the sum on the RHS above vanish except when W is the
pair of endpoints of a contractible edge e of Γ.

The rough idea is to use the following diagram to reduce the question (push-
forward of a form from C[V/W ]) and (evaluating/integrating a form on C[W ])
and vice versa.

(Sn−1)Ē × (Sn−1)E
′

(Sn−1)E

C[V/W ]× C[W ] C∂ [V ] C[V ]

C[A]

τ

θ̄×θ′

ΦW

θ

π

Vanishing occurs for degree reasons and proof follows from casework. Then we
have to check that the signs agree.

6 Proof of formality

n ≥ 3: We only need to check that I defines a quasi-isomorphism. It is surjective
on cohomology because Γ〈a, b〉 7→ gab, and we know that D(−)

∼−→ ΩPA(C[−])
because ΩPA is quasi-isomorphic to (singular) cochains.

7 Intrinsic formality

(Follows [2].)

Remark. Fresse-Willwacher consider nonunital operads with extra structure
they call ‘λ-operations,’ which capture the structure of a unit. More precisely,
there is an equivalence of theories {unital operads} ' {nonunital Λ-operads}.

Recall from Jun Hou’s talk that the inverse to the embedding of ‘nice’ rational
spaces into cDGA is given by4

G := HomcDGA(−,Q) : cDGA→ sSet

Fact. H∗(En) ' Poiscn admits a cofibrant resolution in Hopf dg cooperads given
by CE∗(pn) where pn is a graded version of Lie algebras of infinitesimal braids.

4In the following, I make no distinction between G and FW’s ‘derived’ version G•.
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Note that there is an orientation-reversing involution on the little n-disks operad

which induces an involution on its homology J : H∗(En) ' Poisn
'−→ Poisn.

Theorem. [2] Let P a Λ-operad in sSet. Suppose each P(r) is Q-good in the
sense of Bousfield-Kan. Assume that we have an isomorphism of Λ-operads
(in coalgebras over Q): H∗(P;Q) ' Poisn for n ≥ 3. If 4|n, assume that P
is equipped with an involution reflecting the involution of the Poisson operad.
Then P is rationally weakly equivalent to G(Poisn) as an operad in sSet.

Sketch. Suppose given χ : Poiscn → H∗(P) a homology isomorphism.

1. Take resolutions Res• P and Res• Poisn. Note that these are the quasi-
(co)free conditions Jun Hou talked about last week. These resolutions
come from a cofree (coalg)-forgetful adjunction.

2. Consider the (bicosimplicial) mapping space

X•,• := MapOpΛ
dg

(Res• Poiscn,Res•H∗(P))

Note that it is sufficient to consider the totalization of the diagonal cosim-
plicial object Xn,n because ∆ is cosifted.
Furthermore, if P has an involution, then the involutions on it and Poiscn
act on the mapping space X.

3. Compute π0π0(X) = MapOpHopf,Λdg
(Poiscn, H

∗(P)). Then χ is an element

on the RHS, and we want to lift this to an element of TotX•.
4. [1] The obstruction to lifting χ to the `th stage lies in π`+1π`(X). The

obstruction to uniqueness of lifting lives in π`π`(X).
Note that if 4|n, need to do this obstruction theory equivariantly.

5. Computation of cohomotopy groups goes through a series of simplifica-
tions:
(a) Have an isomorphism of normalized cochain complexes

Nπ∗(X, ∗) ' NBiDerOpΛ
dg

(Res• Poiscn,Res•H∗(P))

(b) Use Koszul duality to relate the biderivation complex to a deforma-
tion bicomplex.

(c) The deformation bicomplex is equivalent to a twisted end complex,
which is defined in terms of graph complexes.

(d) Compute the homology of some graph complexes. This step looks
somewhat like the proof of formality which we saw earlier.

Remark. A similar technique can also be used to analyze the mapping space
Map(EQ

n , E
Q
m) for n,m distinct.
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homotopy theory of semi-algebraic sets. Algebr. Geom. Topol., 11(5):2477–
2545, 2011.
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