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1. Sullivan’s rational homotopy theory

A goal of algebraic topology is to reduce problems about topology and geometry to questions in algebra.
This is accomplished by means of assigning to spaces and other homotopical structures functorial algebraic
invariants such as homology and homotopy groups. A natural question is to ask how well these algebraic
invariants capture the information present in homotopy theory. Most of the time, they are insufficient, but
one place where this approach works completely is rational homotopy theory.

In fact, there are two approaches to rational homotopy theory, one based on cohomology rings and the
other based on homotopy groups. In this section, we focus on the former; the latter is discussed in the next
section.

The main theorem is the following.

Theorem 1.1 (Sullivan). Let SpacesQ,ft,>1 ⊂ Spaces be the full subcategory of simply connected spaces X
such that each πiX is a finite-dimensional Q-vector space. Then the cochain functor

C∗(−;Q) : SpacesQ,ft,>1 → CAlgopQ

is a fully faithful embedding.

Remarks 1.2.

(1) We can also identify the essential image of the functor C∗(−;Q)|SpacesQ,ft,>1 . It consists of those A ∈ CAlgQ
for which each πiA is a finite-dimensional Q-vector space such that πiA ∼= Q if i = 0, and is zero if i = −1
or i > 0.

(2) Instead of working with E∞-algebras, it is possible over a field of characteristic zero to find an explicit

commutative model of cochains in CAlg♥Q . This was the original approach of Sullivan, who used the
model of PL de Rham forms.

Let us mention the proof of Sullivan’s theorem briefly. We will need some facts.

Fact 1.3. If

Y ′ ×Y X X

Y ′ Y

y
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is a pullback square in Spaces and Y is simply connected, then

C∗(Y ′;Q)⊗C∗(Y ;Q) C
∗(X;Q)→ C∗(Y ′ ×Y X;Q)

is an equivalence.

Corollary 1.4 (Künneth). The functor C∗(−;Q) : (Spacesft,×)→ (CAlgopQ ,⊗) is symmetric monoidal.

Fact 1.5. If V is a finite-dimensional Q-vector space, then we have an equivalence

C∗(K(V, n);Q) ' Sym∗(V ∨[−n]).

Proof sketch of (1.1). The functor C∗(−;Q) : Spaces → CAlgopQ admits a right adjoint given by the functor

MapCAlgQ
(−,Q). To show that C∗(−;Q) is fully faithful, it suffices to show that the unit map

uX : X → MapCAlgQ
(C∗(X;Q),Q)

is an equivalence where X is a simply connected rational space of finite type.
We induct on the Postnikov tower of X1. The base case n = 1 is obvious, so let n > 1. We have a pullback

diagram

τ≤nX τ≤n−1X

∗ K(πnX,n+ 1)

y

By fact 1.3, we get a pushout square

C∗(K(πnX,n+ 1);Q) C∗(τ≤n−1X;Q)

Q C∗(τ≤nX;Q).
p

To show that uτ≤nX is an equivalence, it suffices to do so for uτ≤n−1X , which follows from the induction
hypothesis, and for uK(πnX,n+1), which follows from fact 1.5. �

Remark 1.6. It is not necessary that X is simply connected for the theorem to hold. Fact 1.3 remains true
if π1(X) acts nilpotently on higher homotopy groups/cohomology groups, and if X is nilpotent then we still
have a good Postnikov tower for X. Therefore, we may relax the assumption that X is simply connected to
just that X is nilpotent.

2. Lie models in rational homotopy theory

2.1. Quillen’s approach. Before Sullivan, Quillen developed another algebraic model of rational homotopy
theory in terms of dg Lie algebras. The idea is that instead of looking at the cochains which can be strictified
to a cdga, we look at the homotopy groups of a rational space. The extra algebraic structure here is that of
a Lie algebra reflected in the Whitehead products.

Theorem 2.1 (Quillen). There is an equivalence

λ : SpacesQ,>1
∗ → Lie≥1Q .

This is related to the Sullivan theory by means of the Chevalley-Eilenberg construction.

1During the talk, Dylan pointed out that one needed to show C∗(X;Q) ' colimC∗(τ≤nX;Q). This follows from the fact
the map X → τ≤n induces an isomorphism on homotopy groups up to degree n, hence an isomorphism of cohomology groups

up to n.
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2.2. L∞-algebras and the Chevalley-Eilenberg construction. We describe the Chevalley-Eilenberg
complex in the more general setting of L∞-algebras.

Definition 2.2. An L∞-algebra is a graded vector space g together with maps

`r : g⊗r → g

of degree r − 2 for all r ≥ 1, satisfying

(i) Graded anti-symmetry: `r(. . . , x, y, . . .) = (−1)|x||y|+1`r(. . . , y, x, . . .).
(ii) Generalized Jacobi identities: for all n ≥ 1,

n∑
i=1

∑
σ∈�(i,n−i+1)

(−1)ε`n−i(`i(xσ(1), . . . , xσ(i)), xσ(i+1), . . . , xσ(n)) = 0.

The sign is given by ε = i+
∑
i<j

σ(i)>σ(j)

|xi| |xj |+ 1.

Remark 2.3. Let d = `1 and [−,−] = `2. Then the first few Jacobi identities are:

d2(x) = 0,

d([x, y]) = [dx, y] + (−1)|x|[x, dy)],

[x, [y, z]]− [[x, y], z]− (−1)|x||y|[y, [x, z]] = ±(d`3 + `3d)(x, y, z).

In other words, g has the structure of a chain complex with differential d, such that d is a derivation for
the bracket [−,−], which satisfies the usual Jacobi identity up to homotopy, and so on.

Example 2.4. An L∞-algebra with `r = 0 for r > 2 is the same as a differential graded Lie algebra.
Conversely, over a field of characteristic zero, every L∞-algebra is quasi-isomorphic to a dg-Lie algebra.

Remark 2.5. We have opted to give a concrete definition of L∞-algebras in terms of formulas. Other
definitions are possible: for example, an L∞-structure on a graded vector space g is the same as a coderivation
differential d on the cofree symmetric coalgebra cogenerated by g[1]. This perspective will be be useful when
we define the Chevalley-Eilenberg construction below.

Definition 2.6. Let g be a non-negatively graded L∞-algebra of finite type. The Chevalley-Eilenberg con-
struction CE∗(g) is the cdga whose underlying graded vector space is Sym∗ g[1]∨. To specify the differential,
it suffices to define maps dCE : g[1]∨ → (Symr g[1])∨ for each r, and we have

dCE(ξ)(x1[1] · · ·xr[1]) = ±ξ(`r(x1, . . . , xr)[1]).

Remark 2.7. Note that the canonical isomorphism (Symr g[1])∨
∼=−→ Symr(g[1]∨) is given by multiplication

by 1
r! .

Since CE∗ takes the initial object 0 ∈ LieQ to the final object Q ∈ CAlgopQ , this construction determines a
functor

CE∗ : LieQ → (CAlgaugQ )op.

Proposition 2.8. The Chevalley-Eilenberg construction gives an equivalence

CE∗ : Lieft,≥1Q
∼−→ (CAlgaug,ft,>1

Q )op.

Definition 2.9. An L∞-algebra g is an L∞-model of a simply connected space X if it is quasi-isomorphic
to λ(X).

Remark 2.10. If X is of finite type, then g is an L∞-model of X iff CE∗(g) is a Sullivan model of X.
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3. Mapping spaces in rational homotopy theory

Previously, we have identified the mapping spaces in rational homotopy theory with mapping spaces
between cdgas. In this section we give a concrete description of these mapping spaces due to Hinich and
others.

Here’s the basic idea. Let X be a (rational, etc.) space and A ∈ CAlgQ. To understand the space of
maps MapCAlgQ

(C∗(X;Q), A), we find a Lie model for X, so that we may replace C∗(X;Q) with the quasi-

isomorphic algebra CE∗(g) for some L∞-algebra g. By construction, CE∗(g) is freely generated as a cdga,
so if we ignore the differential, we have

MapCAlgd=0
Q

(CE∗(g), A) ' MapModd=0
Q

(g[1]∨, A) ' (A⊗ g)−1.

The dg-algebra homomorphisms form a subspace of this space consisting of those elements that respect the
differential. This condition amounts to the Maurer-Cartan equation. We make this more precise below.

Extension of scalars. First we explain what we mean by “A⊗g” when A is a cdga and g is a L∞-algebra.
This is a new L∞-algebra whose underlying graded vector space is A⊗ g, and the differentials and brackets
are defined by

dA⊗g(a⊗ x) = dA(a)⊗ x+ (−1)|a|a⊗ dg(x),

`r(a1 ⊗ x1, . . . , ar ⊗ xr) = (−1)
∑

i<j |aj ||xi|a1 · · · ar ⊗ `r(x1, . . . , xr).

The Maurer-Cartan space. Unlike the Maurer-Cartan equation for dg Lie algebras, the equation for
L∞-algebra involves an infinite sum, so some kind of nilpotence condition is necessary for the equation to
converge.

Let g be an L∞-algebra. The lower central series of g is the filtration

g = Γ1g ⊇ Γ2g ⊇ · · ·

where Γkg is the sub-L∞-algebra spanned by bracket expressions formed using at least k elements from g.
In other words, it is the smallest filtration on g that is compatible with the L∞-structure.

Definition 3.1. A L∞-algebra g is degreewise nilpotent if for every n there exists k such that (Γkg)n = 0.

Remark 3.2. This is a natural condition on L∞-algebra from the perspective of rational homotopy theory.
Under the correspondence of proposition 2.8, degreewise nilpotent connective L∞-algebra of finite type
correspond to connected Sullivan algebras of finite type.

Definition 3.3. Let g be a degreewise nilpotent L∞-algebra.

(a) A Maurer-Cartan element of g is an element x ∈ g−1 such that∑
r≥1

1

r!
`r(x, . . . , x) = 0.

(b) The Maurer-Cartan space of g is the simplicial set

MC•(g) = MC(g⊗ Ω•),

where Ω• ∼= Ωpoly(∆•) is the simplicial cdga with n-simplices

Ωn = Q[t0, . . . , t,dt0, . . . , dtn]/(
∑
i

ti = 1,
∑
i

dti = 0),

where |ti| = 0 and |dti| = 1.

Remark 3.4. Let g be a complete L∞-algebra, i.e., it is equipped with a descending filtration of L∞-ideals

g = F 1g ⊇ F 2g ⊇ · · ·

such that each g/F rg is a nilpotent L∞-algebra and g
∼−→ lim g/F rg. Then g is degreewise nilpotent if it is

of finite type, and we can define its Maurer-Cartan space as

MC•(g) = MC(lim g/F rg⊗ Ω•).
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Proposition 3.5. Let g be a non-negatively graded degreewise nilpotent L∞-algebra of finite type, and A be
a cdga. If g or A is bounded, then there is an equivalence

MapCAlgQ
(CE∗(g), A) ' MC•(A⊗ g).

Proof. We prove the π0 statement. As we discussed, the underlying graded commutative algebra of CE∗(g) is
free on g[1]∨. Given τ ∈ A⊗ g of degree −1, we can define a morphism of graded algebras evτ : CE∗(g)→ A
by evτ (ξ) = (1 ⊗ ξ)(τ). We claim that evτ is a chain map iff τ is a Maurer-Cartan element. Let ξ ∈ g[1]∨;
we have:

(dA ◦ evτ )(ξ) = (dA ⊗ ξ)(τ),

(evτ ◦dCE)(ξ) =
∑
r≥1

±ξ(`r(τ, · · · , τ)).

So evτ respects the differentials iff τ satisfies the Maurer-Cartan equation in the L∞-algebra A⊗ g.
The verification of this proposition for mapping spaces is due to Brown-Szczarba. �

Putting the results from the previous sections all together, we obtain the following theorem2

Theorem 3.6. Let X be connected and Y a nilpotent space of finite type. Let A be a cdga model for X (e.g.,
C∗(X;Q)) and g a degreewise nilpotent L∞-algebra model for Y of finite type. Then there is an equivalence

MapSpaces(X,YQ) ' MC•(A⊗̂g).

Proof remarks. Roughly speaking, we have the following chain of equivalences

MapSpaces(X,YQ) ' MapCAlgQ
(C∗(Y ;Q), C∗(X;Q)) ' MapCAlgQ

(CE∗(g), A) ' MC•(A⊗ g).

Except we need to be a little careful – g was not assumed to be bounded. Instead, we need to write g as a
limit of finite-dimensional nilpotent quotients, so we will have to take a completed tensor product. �

Remark 3.7. The completed tensor product is also a product of expressing “maps” in terms of “tensors”.

4. Operadic enhancements

Let V be a symmetric monoidal category, e.g., V = Spaces or CAlgQ. Recall that an operad in V is an
associative algebra in the category of symmetric sequences in V; a cooperad in V is a coassociative coalgebra
in the category of symmetric sequences in V.

Theorem 4.1 (Fresse). There is an equivalence of categories

C∗(−;Q) : Op(SpacesQ,ft,>1)
∼−→ CoOp(CAlgft,>1

Q )op.

Proof. Apply Op(−) to both sides of Sullivan’s adjoint equivalence SpacesQ,ft,>1 ' (CAlgft,>1
Q )op and use the

fact that
Op(Vop) ' CoOp(V)op.

�

Remark 4.2. Fresse spends 100+ pages in his book to prove a version of this theorem. The issue has to do
with the fact that the cochain functor is not strong symmetric monoidal on the nose, so doesn’t preserve
algebra structures on the nose. For example, given the operadic composition map

O(n)×O(k1)× · · · × O(kn)→ O(k1 + · · ·+ kn),

applying cochains gives only the zigzag

C∗(O(k1 + · · ·+ kn);Q)→ C∗(O(n)×O(k1)× · · · × O(kn);Q)
∼←− C∗(O(n);Q)× C∗(O(k1);Q)× · · · × C∗(O(kn);Q).

2During the talk, Dev observed that (e.g., when g is nilpotent), the Maurer-Cartan elements are cut out by polynomial

equations, hence form an algebraic variety. The 1-cells of the Maurer-Cartan space are gauge equivalences. How should one
think of this space of Maurer-Cartan elements up to gauge equivalences? Dev also promoted doing actual computations of

mapping spaces (e.g., Sn ∨ Sn → Sn × Sn?) in terms of Maurer-Cartan spaces which sadly the author has not yet done.

5



The second map is only a quasi-isomorphism but not an isomorphism; this makes defining the coproduct
map coherently problematic.

There are two solutions to this. One is to simply assert that these coherence problems are all solved
by invoking the yoga of ∞-categories. Fresse takes a different path: he observes that the adjoint functor
MapCAlg♥Q

(−,Q) is strong symmetric monoidal on the nose, so it extends directly to a functor from cooperads

in CAlg♥Q to operads in spaces. Then Fresse shows that this functor admits an adjoint functor, which he
takes to be the operadic enhancement of Sullivan’s cochain functor. He also proves that for good operads,
his operadic cochain functor agrees up to equivalence with the previous Sullivan cochain functor in each
arity. Doing this by hand appears to be combinatorially tricky, so Fresse actually proves this theorem three
times, in increasing generality on the operad.

Evidently, we may replace “simply-connected” with “nilpotent”, etc. in the statement of the theorem.
Let us introduce terminology to abbreviate these conditions. We say that a space X is Q-good if the induced
map H∗(XQ;Q) → H∗(X,Q) is an isomorphism. An operad in spaces is Q-good if the components spaces
in each arity are Q-good.

Example 4.3.

• Nilpotent spaces of finite type are Q-good.
• En-operads, for n ≥ 3, are Q-good.

Corollary 4.4. Let O and P be Q-good operads in spaces. Then

MapOp(Spaces)(O,PQ) ' MapCoOp(CAlgQ)
(C∗(P;Q), C∗(O;Q)).

It will be convenient in the future to specify the objects of CoOp(CAlgQ) more precisely.

Definition 4.5. An object of CoOp(CAlgQ) is a Hopf cochain dg-cooperad, which is a cooperad C in the
category of commutative cochain dg-algebras satisfying C(0) = C(1) = 1.

Remark 4.6. We may also consider cooperads where C(1) is not 1, as long as it satisfies the following
conilpotence condition: composition coproducts of a given element after finitely many iterations. This is
useful for example when we construct colimits of cooperads.

Finally, we turn to the description of the mapping spaces between cooperads. Fix two cooperads C,D ∈
CoOp(CAlgR), and consider the (classical) formal moduli problem

R 7→ MapCoOp(CAlgR)(C ⊗R,D ⊗R).

Slogan 4.7 (Lurie, Pridham, . . . ). Formal moduli problems in characteristic zero are controlled by Lie
algebras.

So as before, we expect this moduli problem to be controlled by an L∞-algebra. More specifically, the
mapping spaces between cooperads should be given as the Maurer-Cartan elements of a certain L∞-algebra.

Theorem 4.8 (Fresse-Willwacher). Suppose C,D ∈ CoOp(CAlgQ) be two cooperads. Let C′ be a model of C
that is aritywise quasi-free generated by V ∈ SSeq(Modd=0

Q ), and let D′ be a model of D that is quasi-cofree

cogenerated by W ∈ SSeq(CAlgd=0
Q ).

There is an L∞-algebra Def(C′,D′) such that

HomCoOp(CAlgQ)
(C,D) ∼= MC(Def(C′,D′)).

Proof. As in the non-operadic case, there are two steps in the proof.

(1) Ignoring the differential, HomCoOp(CAlgd=0
Q )(C′,D′) ∼= HomSSeq(Modd=0

Q )(V,W ).

(2) There is an L∞-structure on HomSSeq(ModQ)(V,W ) such that the Maurer-Cartan equation encodes the
condition of being a chain map.

The first step follows from the quasi-freeness, quasi-cofreeness, and other conditions we demand on C′.
Recall that an operad in cdgas is quasi-(co)free if its underlying operad in graded vector spaces is (co)free.
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We have:

Ψ : HomCoOp(CAlgd=0
Q )(C′,D′)

∼−→ HomSSeq(CAlgd=0
Q )(C′,W ) since D′ is quasi-cofree

∼−→ HomSSeq(Modd=0
Q )(V,W ) by conditions on C′

Remarks 4.9.

(1) In the language of model categories, C′ and D′ are respectively cofibrant and fibrant replacements for C
and D in some model structure on cooperads.

(2) The conditions on C′ to make step (1) work are a little subtle. Fresse and Willwacher assume moreover
that

(i) the generating symmetric sequence V is equipped with an exhaustive bounded below filtration

F 1V ⊂ F 2V ⊆ · · ·

compatible with the cooperad structure such that dimF pV (r)/F p+1V (r) <∞ for each p, r ≥ 1.
(ii) C′ is equipped with an augmentation from C′ to the commutative cooperad Comc.

These properties are needed to build a map of cooperads from a map between generators and cogen-
erators by inducting along the filtration.

Let

Φ : HomSSeq(ModQ(V,W )→ HomCoOp(CAlgQ)
(C′,D′)

be the inverse map to Ψ. We want to consider encode those morphisms x : V →W for which Φ(x) : C′ → D′
preserves the differential structure, and show that they can be cut out by the Maurer-Cartan equation
for some L∞-structure on Def(C′,D′) := HomSSeq(ModQ)(V,W ). To do this we first describe a criterion for
defining L∞-structures with a specified Maurer-Cartan equation.

Lemma 4.10. Let V be a graded vector space. A functorial power series M : R 7→ MR(x) : (R ⊗ V )−1 →
(R⊗ V )−2 is the Maurer-Cartan series for some L∞-structure on V iff DMR(x)(MR(x)) = 0.

Proof. Given an L∞-structure on V , we get a functorial Maurer-Cartan series by extension of scalars. For
example, if R = Q[ε1, . . . , εn]/(ε21, . . . , ε

2
n), then we have

MR(

n∑
i=1

εixi) =

∞∑
r=1

1

r!
`r(

n∑
i=1

εixi, . . . ,

n∑
i=1

εixi)

=

∞∑
r=1

1

r!

∑
σ:{1,...,r}↪→{1,...,n}

±εσ(1) · · · εσ(r)`r(xσ(1), . . . , xσ(r)).

Conversely, given MR, if we let n = r and look at the coefficient of ε1 · · · εn, we see that we can recover a
bracket from MR:

`r(x1, . . . , xr) := ±[ε1 · · · εr]MR(

r∑
i=1

εixi).

It remains to show that the brackets {`r} obtained this way satisfy the generalized Jacobi identities. Let
us abbreviate x :=

∑n
i=1 εixi and εσ := εσ(1) · · · εσ(n). Then from the previous equation we see that the

differential of MR at x is given by

DMR(x)(h) =

∞∑
r=1

1

r!

∑
σ

±εσ`r(h, xσ(2), . . . , xσ(r)),

so that

DMR(x)(MR(x)) =

∞∑
r=1

1

(r − 1)!

∞∑
s=1

1

s!

∑
σ,τ

σ∩τ=∅

±εσ∪τ `r(`s(xτ(1), . . . , xτ(s)), xσ(2), . . . , xσ(r)).
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Setting DMR(x)(MR(x)) = 0, n = r + s− 1, and looking at the coefficient of ε1 · · · εn, we see that∑
r+s=n+1

∑
(σ,τ)∈�(r,s)

±`r(`s(xτ(1), . . . , xτ(s)), xσ(2), . . . , xσ(r)) = 0,

which is the generalized Jacobi identity. �

Proof. For x ∈ Def(C′,D′), we set M(x) := Ψ(dD′Φ(x) ± Φ(x)dC′). By the lemma, once we show that
DM(x)(M(x)) = 0, we would obtain a L∞-structure on HomSSeq(ModQ)(V,W ) such that the Maurer-Cartan
elements are precisely the chain maps.

We claim that DΦ(x)(M(x)) = dD′Φ(x)± Φ(x)dC′ . This follows3 from:

(i) dD′Φ(x)− Φ(x)− Φ(x)dC′ is a biderivation (see following remark) of Φ(x).
(ii) If θ is any biderivation of Φ(x), then DΦ(x)(Ψ(θ)) = θ.

Finally, we have

DM(x)(M(x)) = Ψ(dD′DΦ(x)(M(x))±DΦ(x)(M(x))dC′) by the chain rule

= Ψ(dD′(dD′Φ(x)− Φ(x)dC′)± (dD′Φ(x)− Φ(x)dC′)dC′) by the claim

= Ψ(dD′Φ(x)dC′ − dD′Φ(x)dC′) since d2 = 0

= 0.

This completes the proof. �

Remark 4.11. This L∞-algebra Def(C′,D′) is called the deformation complex, and its underlying graded
vector space can be identified with a certain complex of biderivations of the canonical morphism C′ →
Comc → D′. Consequently, Def(C′,D′) is independent of the choice of V and W . (Recall that a degree k
biderivation of a map f : C → D is a degree k map θ : C → D of symmetric sequences such that f + εθ
is a morphism of cooperads in algebras, where ε2 = 0. This graded vector space of biderivations inherits a
differential where dθ = dD ◦ θ − (−1)kθ ◦ dC .)

In some sense this is the more natural route to take. The input to the Lurie-Pridham machine relating
formal moduli problems to Lie algebras is a calculation of the tangent space of the moduli problem. In this
case, just as the tangent space in commutative algebra maps are derivations, the tangent space in maps of
cooperads of algebras are “by definition” biderivations.

5. Applications to automorphisms of En-operads

Let n ≥ 3. The spaces in En are simply connected, and therefore Q-good, so corollary 4.4 gives an
equivalence

End((En)Q) ' End(C∗(En;Q)).

3These statements are much easier to check in the non-cooperadic context. For (i), let f : (A,mA, dA)→ (B,mB , dB) be a

map of cdgas when we forget about the differential. We want to show that dBf−fdA is a derivation of f , i.e., f+ ε(dBf−fdA)

is also a map of algebras. For example, multiplication is respected:

(f + ε(dBf − fdA))mA = fmA + ε(dBfmA − fdAmA)

fmA + ε(dBmB(f ⊗ f)− f(mA(dA ⊗ 1 + 1⊗ dA)))

= mB(f ⊗ f) + ε(mB(dB ⊗ 1 + 1⊗ dB)(f ⊗ f)−mB(f ⊗ f)(dA ⊗ 1 + 1⊗ dA))

= mB(f ⊗ f + ε(dBf ⊗ f + f ⊗ dBf − fdA ⊗ f − f ⊗ fdA))

= mB(f + ε(dBf − fdA)⊗ f + ε(dBf − fdA)).

For (ii), we have a bijection

HomCAlg(SymV,A)
∼=−→ HomMod(V,A)

sending an algebra homomorphism f to f ◦ i, where i is the inclusion of generators. Denote the inverse map by Φ; if x ∈
HomMod(V,A), Φ(x) is the unique extension of x to a map of algebras, e.g., Φ(x)(v1 + v2v3) = x(v1) + x(v2)x(v3).

Now let h ∈ HomMod(ε⊗ V, ε⊗A). The differential DΦ is defined as

DΦ(x)(h) =
Φ(x+ εh)− Φ(x)

ε

∣∣∣∣
ε=0

.

It is straightforward to check that DΦ(x)(h) is the unique derivation on the free symmetric algebra extending h which is

obtained by the Leibniz rule. Consequently, if h is the restriction of a derivation θ to begin with, then DΦ(x)(h) = θ.
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In fact, this is an equivalence of monoids (under composition of endomorphisms), so passing to the path
components that are invertible on π0, we deduce:

Proposition 5.1. For n > 2, Aut((En)Q) ' Aut(C∗(En;Q)).

The result is also true when n = 2, but we don’t know whether E2 is Q-good. Instead, we proceed by
manual computation.

Proposition 5.2. Aut((E2)Q) ' Aut(C∗(E2;Q)).

Really rough sketch. In the case n = 2, the spaces E2(r) can be identified with the classifying space BPr of
the pure braid group on r strands. Moreover, the rationalization E2(r)Q of this space can be identified with

the classifying space BP̂r of the “Malcev completion” of Pr. To identify their mapping spaces, we consider
the homotopy spectral sequence for maps from E2 and from (E2)Q to certain Eilenberg-Mac Lane spaces,
and show that their E2-pages are isomorphic. It turns out that E2-pages only depend on H∗(Pr;Q) and

H∗(P̂r;Q) for ∗ ≤ 1. This is a direct computation: we have H0
∼= Q for both groups, and for H1 we compute

the abelianizations of Pr and P̂r and show that they are isomorphic.
�

Later in this seminar, we shall construct explicit Lie models for the En-operads and use them to compute
these mapping spaces.
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