
THURSDAY SEMINAR: AUTOMORPHISMS OF En-OPERADS

ALEXANDER KUPERS

Abstract. The thursday seminar in Spring 2020 was about the automorphisms of
En-operads. Our main goal is to understand the computation of Fresse, Turchin and
Willwacher of Maph(Em, EQ

n ) for m ≤ n in terms of graph homology. These notes collect
three talks: an introduction, and two talks explaining the main computation.

Warning 0.1. These notes are likely to contain many mistakes, and are sloppy in the following
particular ways (and possibly many more):

· The distinction between non-unital and unital operads
· The distinction between working derived and non-derived.
· Eschewing any discussion of model structures, and checking cofibrancy or fibrancy.

My excuse for this is that these points, though interesting, only serve to cloud the answer to
the core question:

What do graph complexes have to do with the automorphisms of rationalized
En-operads?

Warning 0.2. I followed [FTW17] in working cohomologically. In retrospect I think this is
not an optimal choice, and it is clearer to work with homological grading to avoid some
counter-intuitive grading conventions (e.g. a n-Poisson operad concentrated in non-positive
degrees).

Part 1. Introduction

1. En-operads and maps between them

1.1. En-operads. An operad is a mathematical object that encodes an algebraic structure
which has n-to-one operations for all n, as well as a way to compose such operations. The
example of interest to us is the little n-disks operad Dn, which encodes an algebraic structure
inspired by the following geometric operations on n-fold loop spaces [May72]:

Example 1.1. Let X be a based space, and ΩnX the topological space of pointed map
(Dn, ∂Dn) → (X,x0) with the compact-open topology. Suppose we are given three maps
e1, e2, e3 : Dn → Dn, each of which is a compositions of scaling and translation, and all of
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which have disjoint interior, e.g.

1

2 3

Then we can take a triple of maps f1, f2, f3 : (Dn, ∂Dn) → (X,x0) and produce a new
map f : (Dn, ∂Dn) → (X,x0) as follows: insert fi suitably reparametrized on the image
of ei, and extend to the remainder of Dn by the constant map with x0 to get a new map
f : (Dn, ∂Dn)→ (X,x0). More precisely, it is given by

f(x) :=
{
fi ◦ e−1

i (x) if x ∈ ei(Dn),
x0 otherwise.

This construction is continuous in the ei’s and fi’s. The former assemble to a topological
space Dn(3), in fact a finite-dimensional manifold homotopy equivalent to the configuration
of three distinct ordered points in int(Dn) ∼= Rn.

Of course, the choice of the number 3 is irrelevant for this construction: it works for any
number k of little disks ei and maps fi. The collection of these constructions for all k ≥ 0 is
then compatible with composition: if one of the inputs fi is obtained from this construction
from maps e′j and f ′j , we can compute the output by replacing fi by the f ′j and ei by the
composition ei ◦ e′j (that is, compose the little n-disks).

Definition 1.2. The little n-disks operad is the collection of topological spaces given by

Dn(k) :=
{

k maps e1, . . . , ek : Dn → Dn

composition of scaling and translation, with disjoint interior

}
,

with the composition maps

Dn(`)× (Dn(k1)× · · · ×Dn(k`)) −→ Dn(k1 + · · ·+ kn)

given by composition of maps, and unit 1 ∈ Dn(1) given by the identity map Dn → Dn.

Warning 1.3. In these notes I will not distinguish between the version of En given above,
and the one with En(0) = ∅. This distinction is important for some technical steps, but will
not serve to clarify the main points.

The composition operation is associative, and the identity map id ∈ Dn(1) serves as a
unit for it. There is an action of the symmetric group Σk on Dn(k), permuting the maps,
and the composition is equivariant for this.
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This leads to the general definition of an operad O in a symmetric monoidal category
(C,⊗, id) as a collection of objects O(k) for k ≥ 0 with Σk-action, an associative and
equivariant composition operations

O(`)⊗ (O(k1)⊗ · · · ⊗ O(k`)) −→ O(k1 + · · ·+ k`) for ` ≥ 0, k1, . . . , k` ≥ 0,

and a morphism 1 → O(1) which serves as a unit for the composition. A morphism of
operads is a collection of morphisms O(k) → O′(k) compatible with the composition, the
identity, and the symmetric group actions.

The operad O encodes the following algebraic structure:

Definition 1.4. An O-algebra is an object A of C with morphisms

O(k)⊗A⊗k −→ A

which are compatible with the composition, the identity, and the symmetric group actions.

Example 1.5. ΩnX is an Dn-algebra. In fact, the recognition principle says that any path-
connected Dn-algebra is weakly equivalent to an n-fold loop space (in fact, you only need to
be group-like).

If C has a notion of weak equivalence, we say that a morphism of operads is a weak
equivalence of all O(k)→ O′(k) are. This leads to an ∞-category Op(C) of operads in C.

Remark 1.6. For technical reasons, if you want a model for this ∞-category, it is better to
use as a starting point of a reformulation of the above definition of an operad. This leads to
such models as ∞-operads, dendroidal sets, or dendroidal Segal spaces.

The En-operad is the object of Op(S) (S is our notation for a category of spaces, e.g. S or
sSet) provided by the little n-disks operad:

Definition 1.7. An En-operad is any operad in (S,×, ∗) weakly equivalent to Dn.

1.2. Maps between En-operads. In these notes we will interested in the following object:

Definition 1.8. Maph(Em, En) is the mapping space from Em to En in Op(S).

In other words, it is a “derived” mapping space, encoding all ways to naturally consider an
En-algebra as an Em-algebra. One canonical way is through the operad map i : Em → En
induced by the inclusion Rm → Rn. The following question is almost completely open, with
only a few low-dimensional cases known:

Question 1.9. What is the homotopy type of Maph(Em, En)?

Remark 1.10. In fact, preparing this talk, I realized I don’t even know what Maph(Em, En)
is when m > n. It is presumably empty? As evidence, since BP(2) is E4 but can’t be E12,
Maph(Em, En) is empty when n ≤ 4 and m ≥ 12.

Of particular interest is the case m = n. In this case we let Auth(En) ⊂ Maph(En, En)
denote the homotopy-invertible path components. This might not matter:

Question 1.11. Is Maph(En, En) group-like?

Example 1.12. Auth(E1) ' O(1), and Auth(E2) ' O(2) by a result of Horel [Hor17].
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The identifications in the previous example are as group-like topological monoids. Of
course, Auth(En) is in general such a monoid, and hence we can take its classifying space. It
would be even better to know about the homotopy type of this space:

Question 1.13. What is the homotopy type of BAuth(En)?

There is a conjecture about the case n = 3 [AFT17], which uses the non-obvious fact that
there is a map Top(n) → Auth(En), where Top(n) is the topological group of homeomor-
phisms of Rn fixing the origin. This is compatible with the previous example, because the
inclusion O(n) ↪→ Top(n) is a weak equivalence for n ≤ 3.

Conjecture 1.14 (Ayala–Francis–Tanaka). The map

Top(n) −→ Auth(En)

is a weak equivalence if and only if n ≤ 3.

Even the π0-case is open and interesting:

Question 1.15. Does the map Top(n) → Auth(En) induce an isomorphism on π0? It is
well-known that π0 Top(n) = Z/2 for all n ≥ 4.

2. Rationalized En-operads and maps between them

A first instinct of a topologist is to separate the primes, and study the rational and p-local
cases separately. The rational case should be easiest. One reason is that in general rational
homotopy theory is easier, but a more convincing one is that the En-operad simplifies a lot
rationally. Before going into this, a part of the proof of statements to come, we will give
those statements:

2.1. Statements of results.

Definition 2.1. EQ
n is the operad obtained by rationalizing each of its spaces of operations.

Warning 2.2. This is one of those constructions that takes a lot of care in some models for
operad (you need sufficiently functorial rationalization functors), but less so in other models.

The universal property of rationalization then implies that precomposition with the
rationalization map Em → EQ

m induces a weak equivalence

Maph(EQ
m, E

Q
n ) −→ Maph(Em, EQ

n ).

Question 2.3. What is the homotopy type of Maph(Em, EQ
n )?

Question 2.4. What is the homotopy type of BAuth(EQ
n )?

Since post-composition with rationalization gives a map Maph(Em, En)→ Maph(Em, EQ
n )

and the target is a rational space, there is an induced map

Maph(Em, En)Q −→ Maph(Em, EQ
n ).

Like for ordinary mapping spaces, it is in general not a weak equivalence. However, in good
circumstances it does induce a weak equivalence when we fix the path components. For
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example, if m < n− 2, then Maph(Em, En; i)Q → Maph(Em, EQ
n ; iQ) is a weak equivalence,

with i : Em → En the standard inclusion.
It turns out that the answer to the first of the previous two questions is known, and

these results the first goal of this seminar. I’ll start with the formulation of the case n = m,
which is most striking. To start with, we start with the observation that Dn(2) ' Sn−1, two
points moving around each other. Thus an automorphism EQ

n → EQ
n induces a homotopy

equivalence Sn−1
Q → Sn−1

Q , which is classified by a unique λ ∈ Q×. This gives a surjective
function

F : π0(Aut(EQ
n )) −→ Q×.

This amounts to recording the effect of the automorphism on the Browder bracket. The
following appears in [FTW17]:

Theorem 2.5 (Fresse–Turchin–Willwacher). Suppose n ≥ 2 and λ ∈ Q×

· If n > 2 and n 6≡ 1 (mod 4), then F−1(λ) is path-connected.
· If n > 2 and n ≡ 1 (mod 4), then F−1(λ) has path-components indexed by Q.
· If n = 2, then F−1(λ) has group of path-components given by the elements of the

Grothendieck–Teichmüller group GT1(Q) ⊂ GT(Q) whose cyclotomic character is 1.
In all these cases, letting Auth(EQ

n )c denote the path-component of c, we have for ∗ > 0,

π∗(Auth(EQ
n )c) ∼= Hk(GC2

n).

Remark 2.6. In fact, the extension 1 → GT1(Q) → π0(Auth(EQ
n )) → Q× → 1 in the case

n = 2 is as expect: the middle term is GT(Q).

Remark 2.7. There are also path components of Map(En, EQ
n ) which are not homotopy-

invertible. It is not known what their rational homotopy groups are.

Leaving the case n = 2 for later discussion, let us focus on the latter statement. Suppose
that λ = 1 for convenience (all components are homotopy equivalent to each other anyway).
Then Auth(EQ

n )1 is a path-connected rational H-space, so formal. This means that its
rational homotopy groups determine its homotopy type. These homotopy groups are given
by the homology of a certain chain complex of at least 2-valent graphs. We will discuss this
again in more detail in Section 7.2.

Definition 2.8. The (dual) graph complex GC2
n is the chain complex generated over Q by

connected finite graphs whose vertices are at least bivalent. A graph G with |V | vertices and
|E| edges contributes to degree (n− 1)|E| − n|V |+ n. The edges and vertices are presumed
ordered and the edges direct, and an equivalence relation takes care of an orientation induced
by this: if n is even then we orient the set of edges, if n is odd we orient the set of vertices,
and orient each edge individually. The differential is given by expanding vertices into an
edges in all possible ways, with appropriate signs.

Remark 2.9. As we’ll see, this is in fact the linear dual of a complex G2
n. So in fact one

ought to think of a graph Γ in GC2
n as an indicator function.

Since the differential replaces a vertex (of degree −n) by two vertices and an edges (of
total degree −2n+ (n− 1) = −n− 1), the differential decreases degree.
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Example 2.10. The Θ-graph

• •

vanish when n is even (there is a symmetry which induces an odd permuting of edges).
When n is odd, it does not vanish: interchanging the vertices induces an odd permutation of
vertices and changing the direction all three edges. Its differential vanishes; the reason is
that each edge gets doubled twice an edge expansion, but with opposite sign.

Here are two observations regarding graph homology:
· Graph homology admits a direct sum decomposition by loop order (equivalently,

genus), which is independent but related to the decomposition by degree. In
particular, the 1-loop parts splits off and what remains is quasi-isomorphic to
the subcomplex with all vertices of valence ≥ 3:

H∗(GC2
n) ∼= H∗(GC1-loop

n )⊕H∗(GC3
n),

and for n > 2, H∗(GC1-loop
n ) is given by a single Q every four degrees represented

by cycles with only bivalent vertices (as far as is known, no relation to algebraic
K-theory or BO). This is helpful, because GC3

n is degree-wise finite-dimensional.
· Up to regrading GC2

n depends only on the parity on n. Thus it is sensible to talk
about “even” and “odd” graph homology.

· Exploiting the previous point and a connection to number theory for n = 2, we
know that H∗(GC3

n) contains a free Lie algebra on infinitely many generators when
n is even (the degrees of the generators depends on n, but in terms of graphs their
“leading terms” are wheels with odd numbers of spokes) [Wil15].

· Computer calculations of H∗(GC3
n) have been performed [BNM01], and give for

example that for n odd the contributions of trivalent graphs (these are all cycles,
but quotient by boundaries imposes some relations between them) to g-loop part
has dimensions given by This may seem small, but it is known to generally grow

g 1 2 3 4 5 6
dim 1 1 1 2 2 3

super-exponentially.

2.2. The cases n = 2 and m < n. Before going into the proof, I have two more things to
explain. Firstly, I didn’t explain the statement for n = 2. Secondly, I didn’t state the result
for m < n.

2.2.1. The case n = 2. Recall that for n = 2, after we fix λ ∈ Q× the path components
are given by elements of the Grothendieck–Teichmüller group [Fre17a, Fre17b]. This group
GT(Q) was defined by Drinfel’d, and has a free and transitive action on the set of rational
associators. It plays a role in many parts of mathematics, including deformation quantization,
representation theory, the study of multiple zeta values, and number theory.
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In fact, there are many Grothendieck–Teichmüller groups, depending on a notion of
completion. The one we are interested in is the rational one, arising from Malcev completion,
but there are also ones arising from p-completion or profinite completion. The quickest
definition using a model for the little 2-disks operad in the category of groupoids, i.e. it is an
operad in the category of groupoids which whose nerve is an E2-operad. This model the
parenthesized braids operad PaB.

Definition 2.11. The Grothendieck–Teichmüller group GT(Q) is the group of automor-
phisms of the Malcev completion PaB∧Q.

There is a different GRT(Q), which is the associated graded of a filtration on GT(Q)
and has the advantage that it is pro-unipotent. That the map GT(Q) → GRT(Q) is an
isomorphism follows from the existence of a rational associator. Since GRT(Q) is pro-
unipotent, it is determined by Lie algebra grt.

One of the striking links between number theory and the Grothendieck–Teichmüller is
the existence of an injective homomorphism Gal(Q̄/Q)→ GT∧, the profinite version. The
analogous result for the rational version is a theorem of F. Brown [Bro12]:

GalMT (Z) ↪→ GT(Q).

Here the right hand side is the motivic Galois group of the category of integral mixed Tate
motives. This implies there is an inclusion of a free Lie algebra L(σ3, σ5, σ7, . . .) ↪→ grt.
Thus GT(Q) is a very large group. In particular, is significantly larger than π0O(2) = Z/2,
and thus provides a striking example of the map Aut(En) → Aut(EQ

n ) not being a weak
equivalence.

Are there non-trivial positive degree homotopy groups in Aut(EQ
2 )? When n = 2, the

grading on graphs in GC2
n is given by

|E| − 2|V |+ 2 = g + 1− |V |.

Thus loops live in degree 2−|V |. Thus the only such graph in positive degree is the following:

•

This is non-zero because for even n, the set of edges is oriented. It is also a cycle. This gives
a contribution Q ⊂ π1 Aut(EQ

2 ), which is in fact hit by Q = π1O(2)Q.
To understand the contributions of GC3

2, we give the “bottom” and “top” degrees of the
g-loop contributions. The “top” of the graph complex are the graphs with a single vertex,
which live in degree g. The “bottom” of the graph complex are the trivalent graphs. Such a
graph of genus g has 2g − 2 vertices, and hence live in degree −g − 1. So at first, we think
that there could be many non-trivial higher-degree homotopy groups, contributing from
the top half of the graph complex. These all vanish, by the following result of Willwacher
[Wil15].

Theorem 2.12 (Willwacher). H∗(GC3
2) = 0 for ∗ > 0 and H0(GC3

2) = grt.
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Remark 2.13. A different proof was given by Chan–Galatius–Payne, using the virtual
cohomological dimension of moduli spaces of curves [CGP18].

This is also the source of the many graph homology classes for n even: H0(GC3
2) contains

L(σ3, σ5, σ7, . . .) by F. Brown’s theorem, and

H0(GC3,g-loop
2 ) ∼= Hg(n−2)(GC3,g-loop

2 ).

Conjecture 2.14 (Ihara–Deligne). H−1(GC3
2) = 0.

2.2.2. The case m < n. There is also a version of Theorem 2.5 for the case

Maph(Em, EQ
n )

when m < n. The answer is given in terms of a version of GC2
n called HGC2

m,n, a complex
of hairy graphs:

Definition 2.15. The (dual) hairy graph complex HGC2
m,n is the chain complex generated

by connected finite graphs. The vertices can have arity 1, in which case we call that vertex
external, and the edge adjacent to it a hair. The degree is determined as follows: an internal
edges contribute n− 1, internal vertices −n, each hair n− 1, and external vertex −m. The
orientations on internal vertices and edges are as in GC2

n and when m is odd there is an
orientation on the external vertices. The differential is as in GC2

n.

Theorem 2.16. If n− 2 ≥ m ≥ 1, then Maph(Em, EQ
n ) is simply-connected with homotopy

groups given by
π∗(Maph(Em, EQ

n )) ∼= H∗(HGC2
m,n).

When m = n − 1, then there is a surjective function F : π0(Maph(En−1, E
Q
n )) → Q×. For

λ ∈ Q×, F−1(λ) is path-connected and we have

π∗(Maph(En−1, E
Q
n )λ) ∼= H∗(HGCn−1,n).

Remark 2.17. It is helpful to observe at this point that not only is Maph(Em, EQ
n ) simply-

connected when n−m ≥ 2, but so is Maph(Em, En). Thus Maph(Em, En)Q has the same
rational homotopy groups as Maph(Em, En). With a little bit of work, the arguments that
establish this also tell one that

Maph(Em, En)Q −→ Maph(Em, EQ
n )

is a weak equivalence.

2.3. An outline of the proof. Finally, I will explain why rationalizing helps a lot when
considering En-operads. The reason is formality.

2.3.1. Rationalized operads. To understand spaces rationally, particular algebraic models
can be useful. This will also be true of our rational operads. We need to do a particular
computation, and this should make it permissible to use a particular model for operads of
rational operads.

To every topological space we can assign a rational commutative dg-algebra (CDGA)
C∗(X;Q) of cochains.
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Remark 2.18. If you want it be strictly commutative instead of up to coherent homotopy,
you need to use a functor A∗PL(X) of polynomial de Rham forms, a version of de Rham
forms but over the rationals and valid for general spaces:

Sop −→ CDGA
X 7−→ A∗PL(X) := Sing(X)⊗∆ A∗PL(∆•).

We can localize S at the rational equivalence, and study rational spaces instead. This
retains all information about rational cohomology and rational homotopy groups, at least
for 1-connected spaces (in fact, nilpotent suffices). For 1-connected spaces, all this can be
recovered from C∗(X;Q), in the following precise sense:

Theorem 2.19 (Sullivan). Let SQ
f,>1 be the ∞-category of finite type rational 1-connected

spaces, and CDGAf,>1 the ∞-category of finite type 1-connected CDGA’s. Then rational
cochains induces an equivalence of ∞-categories

SQ
f,>1

∼−→ CDGAf,>1.

Given an operad O in spaces, we can apply C∗(X;Q) to get a cooperad in CDGA. This
requires a bit care to make precise, and is best handled by ∞-categories:

Op(S)op −→ CoOp(CDGA)
{O(n)} 7−→ {C∗(X;Q)}.

We could ask for an analogue of Sullivan’s theorem. This exists by work of Fresse [Fre18a]:

Theorem 2.20 (Fresse). Let Op(SQ)f,>1 be the ∞-category of operads O with each O(n)
a finite type rational 1-connected space and such that O(0) = ∅. Then CoOp(CDGA)f,>1
denote the ∞-category of cooperads C with each C∗(n) a finite type 1-connected CDGA’s and
C∗(0) = 0. Then X 7→ C∗(X;Q) induces an equivalence of ∞-categories

Op(SQ)f,>1
∼−→ CoOp(CDGA)f,>1.

In particular, this says that there is a weak equivalence of derived mapping spaces:

Maph(Em, EQ
n ) ' MaphCoOp(CDGAQ)(C∗(En;Q), C∗(Em;Q)).

2.3.2. Formality. Now we finally make precise in what sense EQ
n is simpler than En; it is a

formal operad.
You may be familiar with formality for spaces. There is of course another natural CDGA

associated to X in addition to C∗(X;Q): the rational cohomology ring H∗(X;Q), with zero
differential.

Definition 2.21. A space X is formal if there is a zig-zag of weak equivalences C∗(X;Q) '
H∗(X;Q).

Example 2.22. Spheres Sn are formal, as is any H-space or compact Kähler manifold. More
importantly for us, the configuration space Confk(Rn) is formal for n ≥ 2.

We could similarly ask for whether the cooperad of CDGA’s C∗(O;Q) is weakly equivalent
to the cohomology cooperad H∗(O;Q). If this is the case we say that O is formal.
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Remark 2.23. This is to be distinguished from C∗(O;Q) being weakly equivalent to H∗(O;Q),
a different notion of formality for operads.

The following is proven in [LV14, Tam03]:

Theorem 2.24 (Kontsevich, Tamarkin, Lambrechts–Volic, Fresse–Willwacher). En is formal,
and its cohomology operad is the n-Poisson cooperad Poiscn.

Remark 2.25. Slightly subtle is that the Kontsevich proof (with details filled in by Lambrechts
and Volic) only works over the reals. Hence we need to resort to the other proofs if we want
a rational result.

This formality allows us to replace the cochains of En by its cohomology cooperad, which
is the n-Poisson cooperad. We obtain that:

MaphCoOp(C∗(En;Q), C∗(Em;Q)) ' MaphCoOp(Poiscn,Poiscm).

The proof by Kontsevich and Lambrechts–Volic uses an intermediate cooperad of graphs.
Related constructions will play an important role in the computation, and are in fact the
source of the graphs in the graph complexes.

Remark 2.26. Kontsevich’s original motivation was deformation quantization, see [Kon03] or
[Fre18b].

2.3.3. Computing derived mapping spaces. Let us outline the computation of the derived
mapping spaces

MaphCoOp(CDGAQ)(Poiscn,Poiscm),
many details to be given in the next two talks. We shall mostly follow [FW20].

(I) The first step is to pick particular models. For the left hand side we pick a cooperad
Graphsc,2n of graphs closely related to the one that appears in Kontsevich’s proof
of formality (it happens to be cofibrant). For the right hand side [FTW17] picks a
cooperadic W -construction W c(Poiscm) but we will use the bar-cobar construction (it
happens to be fibrant):

MaphCoOp(CDGAQ)(Poiscn,Poiscm) ' MaphCoOp(CDGAQ)(Graphsc,2n , BΩPoiscm).

(II) The first reason for picking these larger models is that they are sufficiently free,
resp. cofree, that we can compute the right hand side in terms of maps from the
generators IG2

n of the domain to the cogenerators ΩPoiscm of the target, modeled by a
Maurer–Cartan space.

MaphCoOp(CDGAQ)(Graphsc,2n , BΩPoiscm) ' MC•(MapSymSeq(CoChQ)(IG2
n,ΩPoiscm)).

(III) Koszul duality for Poisson cooperads gives a weak equivalence ΩPoiscm −→ ΛmPoism,
so we simplify this to

MC•(MaphSymSeq(CoChQ)(IG2
n,ΩPoiscm)) ' MC•(MaphSymSeq(CoChQ)(IG2

n,ΛmPoism[1])).

(IV) The second reason for picking these larger models is that we can easily map in a hairy
graph complex HCG2

n, and then prove by a spectral sequence comparison argument
that this is an equivalence.

(V) We then prove that the hairy graph complex HCG2
n is equivalent to GC2

n.
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3. Applications to spaces of embeddings

An important motivation for studying maps between En-operads is their appearance in
embedding calculus.

3.1. A quick introduction to embedding calculus. Embedding calculus is the study of
embeddings by their restrictions to little disks in the domain. (So the appearance of En, as
a local situation, is not so surprising.)

The object of interest is the following: the∞-category Mfdn of n-dimensional manifolds and
embeddings contains a full subcategory Diskn whose objects are disjoint unions of Rn’s (open
disks). By restriction Emb(−,M) is a presheaf on Diskn, and it’s in terms of these presheaves
that embedding calculus is defined (for convenience we will take dimM = n = dimN , which
can always be arranged by replacing M by a thickening) [BdBW13]:

Definition 3.1. The limit of the Taylor tower T∞Emb(M,N) is defined as the derived
mapping space

Maph(Emb(−,M),Emb(−, N))
in PreSh(Diskn).

There is a natural map

Emb(M,N) −→ T∞Emb(M,N),

and the convergence results of Goodwillie–Klein–Weiss say that this is an equivalence if the
handle dimension of M is ≤ n− 3 [GW99, GK15].

Remark 3.2. The Taylor tower is obtained by filtering Diskn by cardinality.

3.2. Configuration categories. Though there are several equivalent setups, the one that
makes the connection between embedding calculus and En-operads most clear is that of
configuration categories [BdBW18].

The starting point here is the Ran space

Ran(M) = colim
k∈FinSetop

surj

Mk.

We didn’t specify the category in which we are taking the colimit. If we had just used
S, the result is just the infinite symmetric product. However, Mk is naturally a stratified
topological space, with stratification encoded by the map from Mk to the poset of partitions
of k recording which particles are in the same location. This map should be continuous if
we put on the partition poset the topology where open subsets are those collections U of
partitions closed under passing to refinements. We will then take this colimit in the category
StratTop of stratified topological spaces.

Any stratified topological spaces X has a exit path ∞-category Exit(X). Its space of
objects is the disjoint union of the strata Xα of X, and its space of morphisms from Xα to
Xβ are continuous paths γ : [0, 1]→ X such that (i) γ(0) ∈ Xα and γ(1) ∈ Xβ , and (ii) for
all s ≤ t, the stratum containing γ(s) is contained in the closure of the stratum containing
γ(t). The object we will want to consider is a variation on the exit path category of Ran(M):
its strata are unordered configuration spaces and its morphisms are paths of configurations
where once points move apart they can’t collide again.
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This variation makes two modifications: (i) we will remember the identification of the
points with a finite set, (ii) we will allow ourselves to add new points. That is,

Definition 3.3. The configuration category Con(M) is the ∞-category over FinSet with
objects ⊔

S

Emb(S,M),

and morphisms

⊔
f : S→T

(xS , xT , γ)

∣∣∣∣∣∣
reverse exit path γ from

xS ∈ Emb(S,M) to ~xT ◦ f with
xT ∈ Emb(T,M).


That is, a morphism from xS to xT is a “sticky” path from xS to a subset of the point in

xT . The function f : S → T keeps track of which points in xT are hit and which points in
xS collide.

Remark 3.4. Observe that con(M) only depends on M as a topological manifold.

These configuration categories will serve to produce approximations to spaces of embed-
dings: the space of functors

Maph/FinSet(con(M), con(N))

receives a map from Emb(M,N), and embedding calculus aims to understand to what extent
this is an equivalence. When M = N we can further consider the automorphisms

Auth/FinSet(con(M)).

It is these mapping spaces and automorphisms that are related to En-operads:

Lemma 3.5. Maph/FinSet(con(Rm), con(Rn)) ' Maph(Em, En) and Auth/FinSet(con(Rn)) '
Auth(En).

Proof indication. con(Rn) is essentially the PROP built from En, and when the 0-ary and
1-ary operations of O and P are contractible then maps between the PROPs associated to
O and P are the same as the maps between the operad O and P. �

Remark 3.6. It should now be evident that there is a map Top(n)→ Auth(En): obviously
the homeomorphisms of Rn acts on the configuration category of Rn.

One thing that the space of functor

Maph/FinSet(con(M), con(N))

doesn’t capture, is the derivative of an embedding. We can add it in to get an even better
approximation to embeddings:

Theorem 3.7 (Boavida de Brito–Weiss). There is a homotopy pullback square

T∞Emb(M,N) Maph/FinSet(con(M), con(N))

Bun(TM, TN) Maph/FinSet(conloc(M), conloc(N)).



THURSDAY SEMINAR: AUTOMORPHISMS OF En-OPERADS 13

One obtained in this theorem hasn’t appeared yet: conloc(M). It is the “comma category”
whose objects are morphisms {xS , x{1}, γ} for f : S → {1}. Through the equivalence of the
previous lemma, this is the space of invertible maps from the family of En-operads indexed
by TM from the family indexed by TN .

Thus, just as there is a fiber sequence

Lininj(Rm,Rn) −→ Bun(TM, TN) −→ Map(M,N),

there is a fiber sequence

Maph(Em, En) −→ Maph/FinSet(conloc(M), conloc(N)) −→ Map(M,N).

Example 3.8. If M = N = Dn and we work relative to the boundary, the Alexander trick for
configuration categories tells us that Maph∂,/FinSet(con(Dn), con(Dn)) ' ∗, and we get a fiber
sequence

T∞Emb∂(Dn, Dn) −→ ΩnO(n) −→ ΩnAuth(En).

Example 3.9. If instead we take m ≤ n− 3, convergence of the embedding calculus tower
gives us a fiber sequence

Emb∂(Dm, Dn) −→ ΩmInjLin(Rm,Rn) −→ ΩmMaph(Em, En).

That is, up to some easy contributions from a Stiefel manifold, the homotopy groups of
automorphisms of the mapping spaces Maph(Em, En) are those of the spaces of “long knots.”

4. Further open problems

Question 4.1. What happens in the p-complete or profinite setting?

The case n = 2 is treated in work of Horel [Hor17], and the answer is the direct analogue
of the rational case.

Willwacher has recently announced some results related to the following question:

Question 4.2. What happens for other manifolds? That is, we can associate to a framed
manifold a right En-module EM , and one may wonder about Auth(EM ), Auth(EQ

M ), or
various mapping spaces between such modules.

Graph homology appeared in the study of embedding spaces and diffeomorphisms in a
different but tantalizingly similar way: through configuration space integrals. To make this
more concrete, if we let G3

n denote the predual cochain complex (so the differential is given
by collapsing edges), then Kontsevich constructed for every disk bundle E → B with B a
manifold (and which admits a propagator),1 a map of cochain complexes

G3
n −→ Ω∗dR(B).

That is, he constructed characteric classes of disk bundles (which admit a propagator).
Watanabe has given a number of examples of disk bundles on which these evaluate non-
trivial, in high odd dimensions and dimension 4 [Wat09, Wat18].

Question 4.3. What is the precise relationship between the appearence of graph cohomology
here and the graph homology which appears in the automorphisms of En-operads?
1This is parenthical because we nowadays know a better way of phrasing these results that removes the need
for this condition.
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Part 2. Graph complexes

The next part picks up after a few talks in the seminar, and we recap what has been
discussed in those talks. From now on, we specialize to n = m, so automorphisms of EQ

n

instead of mapping spaces, and n ≥ 3
Recall that we want compute the homotopy type of the monoid

Aut(EQ
n ) := MaphOp(S)(EQ

n , E
Q
n )×

of homotopy-invertible (derived) self-maps of the rationalized En-operad, for n ≥ 3. In Jun
Hou’s talk we learned that for n ≥ 3, we can replace topological operads with cooperads in
CDGAQ (E∞-algebras in rational chain complexes or equivalently CDGA’s):

Aut(EQ
n ) ' MapCoOp(CDGAQ)(C∗(En;Q), C∗(En;Q))×.

In Lucy’s talk, we learned that En-operad was formal over the reals: the Kontsevich
admissible graphs cooperad Graphscn,R is both weakly equivalent to the the cooperad of real
cochains on En, via configuration space integrals, and weakly equivalent to its cohomology:

C∗(En;R) '←− Graphscn,R
'−→ H∗(En;R)

∼=−→ Poiscn,R,

where I have used to that in Dexter’s talk we saw the cohomology operad of En is the
n-Poisson cooperad. In fact, Lucy stated an even stronger result: that En is intrinsically
formal. This is proven by obstruction theory, and since the obstruction groups over R are
just tensored up from those over Q, this in particular implies that we have weak equivalences
as above over the rationals. So for the sake of simplicity, I’ll use rational coefficients instead
of real ones.

We are going to use the full range of these weak equivalences to our advantage: we may
replace the C∗(En;Q) in the domain and target of MaphCoOp(CDGAQ)(C∗(En;Q), C∗(En;Q))×
with our favorite weakly equivalent model. It’ll turn out be convenient to not take the
smallest possible choice, Poiscn, but instead take choices inspired by two considerations. Both
tend to bias “larger” models:

Large strict automorphisms: If we have a strict action of a simplicial group G on
C, then for each f ∈ MaphCoOp(CDGAQ)(C,D)× we get a map

G −→ MaphCoOp(CDGAQ)(C,D)×

g 7−→ f ◦ g.

It would be great if we could pick a model for C nice enough that it admits an action
of a large enough G so that the above map is weak equivalence.

Thus our first objective will be to find a model for C∗(En;Q) with many strict
automorphisms.

Freeness and cofreeness: The structure of a cooperad is quite involved, and we
would like to trade away some of it at the cost of making C and D larger.

Jun Hou also explained that morphisms of cooperads can be computed as Maurer–
Cartan elements

Homh
CoOp(CDGAQ)(C,D) ' MC(Def(C,D)),

in an L∞-algebra Def(C,D) of biderivations.
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This L∞-algebra takes a simple form in the following special case. Recall that an
object is refered to as quasi-free or quasi-cofree if it is so after forgetting the differen-
tials.2 Suppose C is a cooperad that is arity-wise quasi-free on a symmetric sequence
V ∈ SymSeq(GrVectQ) of graded vector spaces, and suppose that D is a cooperad
which is quasi-cofree cogenerated by a symmetric sequence W ∈ SymSeq(GrAlgQ) of
graded-commutative algebras, then the underlying graded-vector space of Def(C,D)
is given by

Def(C,D) = HomSymSeq(GrVectQ)(V,W ).
As symmetric sequences are much easier to understand than cooperads, our second

objective will hence be to find models for C∗(En;Q) which are arity-wise quasi-free,
resp. quasi-cofree.

Example 4.4. Eventually, we will take the domain

C = Graphsc,2n
very similar to Dn from the previous lecture, which has an action of the graph complexes GC2

n

we introduced in the first lecture. We will take the target to be the bar-cobar-construction
for cooperads

D = BΩ(Poiscn).

Convention 4.5. I will not try to be precise about signs, since it is difficult to parse the
formula’s anyway. In general, all should arise from the following:

(i) the Koszul sign rule,
(ii) the orientations of graphs,
(iii) any operation that is performed on graph involves moving the vertices and edges

involved to the front/back of the order (depending on which side of a tensor product
those vertices and edges appear).

5. Mapping spaces of cooperads and actions

From an action of a DGLA g in cochain complexes on a cooperad C in CDGA by
biderivations, we construct a simplicial group Z•(g) with map to the simplicial monoid
MapCoOp(CDGAQ)(C, C)× of the homotopy-invertible endomorphisms, and more generally,
given a weak equivalence h : C ∼→D we give a map

(1) Z•(g) −→ MapCoOp(CDGAQ)(C,D)×.

We will then give a criterion to determine whether this is a weak equivalence, in the case
that C is arity-wise quasi-free and D is quasi-cofree.

5.1. The construction of the map (1).

5.1.1. A model for mapping spaces of cooperads. We have avoided talking about a model for
the (derived) mapping spaces

MapCoOp(CDGAQ)(C,D)

2Warning: these notions are not homotopy-invariant, so in general on should probably work with filtered
objects whose associated graded is free (the filtration here being simply by degree).
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so far. However, its construction is quite straightforward. For any cooperad C and CDGA A,
C ⊗A with r-ary cooperations given by CDGA C(r)⊗A is also a cooperad in CDGAA, the
CDGA’s over A. The cooperad structure is given by A-linearly extending the cooperations.

Definition 5.1. We define a mapping space

MapCoOp(CDGAQ)(C,D) ∈ sSet

by taking its p-simplices to be

HomCoOp(CDGAΩ∗(∆p))(C ⊗ Ω∗(∆p),D ⊗ Ω∗(∆p)).

The following is a consequence of some model-categorical considerations:

Lemma 5.2 (Fresse–Willwacher). The simplicial set MapCoOp(CDGAQ)(C,D) computes the
derived mapping space when C is arity-wise cofree and D = W (D′).

5.1.2. Simplicial groups from DGLA’s. Suppose that g is a pro-nilpotent DGLA in cochain
complexes. That is, its differential increases degree, it comes with a complete descending
filtration

g = F1g ⊃ F2g ⊃ F3g ⊃ · · · ,
by DGLA’s, such that [Fpg, Fqg] ⊂ Fp+qg. This implies that the associated graded is
nilpotent. Then we assign to it a group

Z : LieAlg(CoChQ)pro-nilp −→ Grp

g 7−→
(
{γ ∈ g0 | dγ = 0}, ∗

)
,

with product ∗ given by the Baker–Campbell–Hausdorff formula

γ ∗ η = BCH(γ, η) = γ + η + 1
2[γ, η] + · · · .

For example, the unit is 0 and inverse of γ is just −γ. That g has a complete filtration
compatible with the bracket is necessary for the convergence of this series.

A DGLA can be tensored with a CDGA; the result g⊗A is again a DGLA with differential
as usual and [γ ⊗ a, η ⊗ b] = (−1)|a||η|[γ, η]⊗ ab. If g comes with a filtration as above, this
may not be complete and we should instead take the completion g⊗̂A of the filtered object
(Fpg⊗A)p≥1. Thus we can use the standard simplicial CDGA Ω∗(∆•) to built a simplicial
group

Z : LieAlg(CoChQ)pro-nilp −→ sGrp
g 7−→ Z•(g) = Z(g⊗̂Ω∗(∆•)).

5.1.3. DGLA’s acting on cooperads. Next suppose that the pro-nilpotent DGLA g acts
nilpotently on a cooperad C ∈ CoOp(CDGAQ) by biderivations, in the strong sense that for
all c ∈ C we have ad(Fpg)(c) = 0 for some p ≥ 1.

This already uses our notation for the action: the action of x ∈ g on c ∈ C is denoted
ad(γ)(c); this is the value of the map

ad: g⊗ C(r) −→ C(r)

on the elements γ ⊗ c.
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Recall that a biderivation is a map which is a derivation for the commutative algebra
structure arity-wise, and a coderivation for the cooperad structure. That is, we have

ad(γ)(c · c′) = ad(γ)(c) · c+ (−1)|γ||c|c · ad(γ)(c′),

and if ∆(c) =
∑
j cj ⊗ (cr1 ⊗ · · · ⊗ crj

), then

∆(ad(γ)(c)) =
∑
j

ad(γ)(cj)⊗ (cr1 ⊗ · · · ⊗ crj
)

+
∑
j

∑
i

(−1)|γ|(|cj |+|cr1 |+...+|cri−1 |)cj ⊗ (cr1 ⊗ · · · ⊗ ad(γ)(cri)⊗ · · · ⊗ crj ).

That this is an action means that ad is linear, compatible with the differential, and
[ad(γ), ad(η)] = ad([γ, η]), where the left hand side is the commutator of linear maps
C → C.

Lemma 5.3. Assigning γ ∈ Z(g) the automorphism of C given by

c 7−→ exp(ad(γ))(c) =
∞∑
n=0

1
n! ad(γ)n(c)

gives an homomorphism
Z(g) −→ HomCoOp(CDGAQ)(C, C)×.

Proof sketch. The nilpotency of the action makes the sum converge. The BCH formula is
defined such that

exp(ad(γ)) exp(ad(η)) = exp(BCH(ad(γ), ad(η)),

and since ad(−) is an action we have

BCH(ad(γ), ad(η)) = ad(BCH(γ, η)) = ad(γ ∗ η).

This implies that exp(ad(−)) is compatible with composition and thus lands in the invertible
endomorphisms.

Let’s check that if ad(γ) is a derivation of the commutative algebra structure, then
exp(ad(γ)) is a homomorphism. That it is a map of cooperads if ad(γ) is a coderivation
of the cooperad structure is the dual argument: since ad(γ) is a derivation, we have that
ad(γ)k(c · c′) =

∑
i+j=k

(
k
i

)
adi(c)adj(c′) (there are no signs since |γ| = 0). Dividing by k!

we get
∑
i+j=k

1
i!j!adi(c)adj(c′) and it is now evident that

exp(ad(γ))(c · c′) = exp(ad(γ))(c) · exp(ad(γ))(c′). �

If g acts on C, then g⊗̂A acts on C⊗̂A by

ad(γ ⊗ a)(c⊗ a′) = (−1)|a||c|ad(γ)(c)⊗ aa′.

This is evidently a map of A-algebras, so by tensoring with the simplicial CDGA Ω∗(∆•) we
get a map

Z•(g) = Z(g⊗̂Ω∗(∆•)) −→ HomCoOp(CDGAΩ∗(∆•))(C ⊗ Ω∗(∆p), C ⊗ Ω∗(∆•))×

= MapCoOp(CDGAQ)(C, C)×.
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Finally, given a weak equivalence h : C → D we get a map

MapCoOp(CDGAQ)(C, C)× −→ MapCoOp(CDGAQ)(C,D)×.

Composing by it gives (1):

Z•(g) −→ MapCoOp(CDGAQ)(C,D)×.

5.2. Return to Maurer–Cartan spaces. We now return to the setting discussed by Jun
Hou. Firstly, we assume that C is arity-wise quasi-free, that is, forgetting the differential C(r)
is a free graded-commutative algebra S(V (r)) for some symmetric sequence V in graded
vector spaces. Secondly, we assume that C is quasi-cofree, that is, forgetting the differential
D is a cofree cooperad Fc(W ) for some symmetric sequence W in graded vector spaces.

If we let (−)[ denote forgetting the differential, then these assumptions imply that

HomCoOp(GrAlgQ)(C[,D[) = HomSymSeq(GrVectQ)(V,W ).

We then explained that respecting the differential on the left hand side, on the right hand side
corresponds to satisfying the Maurer–Cartan equation for a certain L∞-algebra structure.
The right hand side with this L∞-structure is denoted

Def(0 : C → D).

That is,
HomCoOp(CDGAQ)(C,D) ∼= MC(Def(0 : C → D)).

This justifies the notation 0: MC has a specified basepoint given by the zero element,
corresponding to the trivial cooperad map, the one given by the zero map of symmetric
sequences. Indeed, we could recover the Maurer–Cartan element x corresponding to f by

x = πfι,

where ι : V → C is the inclusion of generators and π : D → W is the projection to the
cogenerators.

We can pick a Maurer-Cartan element x corresponding to a morphism h of cooperads
and twist the L∞-structure with this (if it were a DGLA, we would replace d with d+ [x,−],
in general there are higher brackets):

Def(f : C → D) := Def(0 : C → D)x.

This doesn’t really affect the set of Maurer–Cartan elements: if y was a Maurer–Cartan
elements for the original L∞-structure, then y− x is for the twisted one. Instead, you should
think of this as rechosing the basepoint. For us, 0 is not a good choice of basepoint, and we
would rather pick a specified weak equivalence h : C → D. It is then equally valid to write

HomCoOp(CDGAQ)(C,D) ∼= MC(Def(h : C → D)).

Example 5.4. If D = C, we’d take h = id. Indeed, intuitively g gives a deformation of the
identity rather than the zero map.

Let us upgrade this to a statement on the level of spaces:

Definition 5.5. For an L∞-algebra L, we define the Maurer–Cartan space MC•(L) by

[p] 7−→ MCp(L) := MC•(L⊗ Ω∗(∆p)).
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Here we have used that just like we can tensor a DGLA with a CDGA, we can tensor an
L∞-algebra with a CDGA.

Example 5.6. Z•(g) = MC•(g[−1]) with g[−1] considered as an abelian L∞-algebra, i.e. only
the 1-ary bracket/differential is non-zero.

Tensoring C and D with Ω∗(∆•), we obtain an isomorphism of simplicial sets

MapCoOp(CDGAQ)(C,D) ∼= MC•(Def(h : C → D)),

and the previous construction affords a map of Maurer spaces

MC•(g[−1]) −→ MC•(Def(h : C → D)).

We claim this arises from an L∞-morphism of L∞-algebras

g[−1] −→ Def(h : C → D).

Recalling that as a graded-vector space, Def(h : C → D) = HomSymSeq(GrVectQ)(V,W ), this is
given by

γ 7−→ π (h ◦ (exp(γ)− 1)) ι.
I won’t verify the L∞-properties for this, though it is not so hard.

5.3. The Goldman–Millson theorem and variations. What is the point of L∞-algebras?
These types of algebras often arise from the homotopy transfer theorem; this answers the
question whether there is a (presumably very complicated) algebraic structure which we can
put on the (presumably very simple) graded vector spaces H∗(A) to remember the homotopy
type of an algebraic structure on the cochain complex A. That is, passing to L∞-algebras
trades simple algebraic structures on complicated objects to complicated algebraic structures
on simple objects.

In our case we traded a question about the simplicial monoids Z•(g) and MapCoOp(CDGAQ)(C,D)
to the question about the L∞-algebras g[−1] and Def(h : C → D). We now hope to forget
most of the algebraic structure on these L∞-algebras. This uses the following variation of
the Goldman–Millson theorem. Suppose that g and h are complete filtered L∞-algebras, and
U : g→ h an L∞-morphism. Every L∞-algebra is in particular a cochain complex,3 so we
get a map of filtered cochain complexes and hence an associated spectral sequence.

Theorem 5.7 (Schwarz). Suppose that g and h are complete filtered L∞-algebras, and
U : g→ h an L∞-morphism that induces an isomorphism on the E2-page of the aforemen-
tioned spectral sequences. Then the induced map

MC•(g) −→ MC•(h)

is a weak equivalence when H1(g/F2g), H1(h/F 2h) and H0(h/F2h) all vanish.

In other words, we have given conditions under which the map

MC•(g[−1]) −→ MC•(Def(h : C → D))

3Recall we use a cohomological grading convention, so the r-ary bracket is an operation of degree 2 − r.
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being a weak equivalence amounts to some homology computations, involving only the
original differential of the L∞-algebras and the connecting homomorphism in

· · · −→ H∗(Fk+1g/Fk+2g) −→ H∗(Fkg/Fk+2g) −→ H∗(Fkg/Fk+1g) −→ · · · ,

and similarly for h.

6. Intermezzo: specializing to En-operads

Recall that we were attempting to compute Aut(EQ
n ) by picking C,D ∈ CoOp(CDGAQ)

weakly equivalent to C∗(En;Q) such that (i) C is arity-wise quasi-free, (ii) C has an action
of a large DGLA g by biderivations, (iii) D is quasi-cofree. Our hope is that we have chosen
g correctly, so that

g[−1] −→ Def(h : C → D)
satisfies the conditions in Theorem 5.7. In this lecture, we will construct C, D and g. In
the next lecture, we will prove that the above map satisfies the conditions in Theorem 5.7.
There will be a small wrinkle to the story, as the construction in terms of graphs misses
some of the path components.

Remark 6.1. This gives the computation of the rational homotopy groups, the path com-
ponents of MC•(g[−1]) are just H0(g[−1]) and given a Maurer–Cartan elements γ, we can
compute the homotopy groups by π∗(MC•(g[−1]), γ) = H∗(g[−1]γ).

7. The graphs cooperad and the action of the graph complex

We will take the cooperad C to be Graphs2,c
n , closely related to the Dn from last lecture.

We will verify this satisfies the two desired properties: (i) it is arity-wise quasi-free, and (ii)
it has an action of the graph complex GC2

n.

7.1. The graphs cooperad. Let me define the cooperad Graphsc,2n .

Definition 7.1. Graphsc,2n ∈ Op(CDGAQ) is given as follows:4

· The r-ary operations Graphsc,2n is the CDGA with underlying vector space Graphsc,2n (r)
generated by oriented finite graphs Γ; these have r “external vertices” labeled 1, . . . , r,
additional ordered “internal vertices.” We set to zero those graphs with (i) connected
components not containing an external vertex, (ii) each internal vertex has valence
≥ 2, as well as say that changing the orientation induces a sign:

· For n even an orientation is an ordering of the set of edges, and for n odd an
orientation is an ordering of the set of internal vertices and a direction on each of the
edges. If Γ differs from Γ′ by changing the orientation by a (pair of) permutation,
Γ ∼ sign Γ′ with sign (the product of) the sign(s) of the permutation(s).

· The grading on Graphsc,2n (r) is given by grading the graphs: deg(Γ) = (n−1)#edges−
n#internal vertices.

· The differential on Graphsc,2n (r) is given by a sum over edge collapses, with sign
given by moving the edge and vertices to the front of the order before collapsing. It
increases degree by 1 (we lose an edge of edge (n− 1) and a vertex of edge −n, so
gain 1 in total).

4The signs should be taken with a grain of salt, I’m not confident of them.
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It is helpful to think of the linear dual differential: this is a signed sum over edge
expansions, moving vertices to the front of the order and adding new edges and
vertices at the front of the order.

· The product Γ1 · Γ2 is given by union along the external vertices, with vertices and
edges in lexicographic order.

It is helpful to think of the linear dual coproduct: this is a signed sum over
decomposition along the external vertices, with sign given by moving the edges and
vertices in the first component to the front before decomposing the graph.

· The cocomposition of Γ ∈ Graphsn(r) is given by a signed sum over all “microscopic
divisions”/“subgraph collapses” Γ1, . . . ,Γs of the external vertices 1, . . . , r and some
edges, rearranging the edges and vertices so that the remaining ones appear first and
then Γ1, etc., and taking Γ̄⊗ Γ1 ⊗ · · · ⊗ Γs ∈ Graphsc,2n (s)⊗

⊗
i Graphsc,2n (ri). Here

Γ̄ is obtained by collapsing the Γi’s in Γ.
It is helpful to think of the linear dual operation: this is inserting the Γ1, . . . ,Γr

into Γ̄ and connecting the edges in all possible ways, with edges and vertices
lexicographically ordered.

Remark 7.2. Setting all graphs with bivalent internal vertices to zero gives another cooperad
Graphscn ∈ Op(CDGAQ). The quotient map Graphsc,2n → Graphscn is a weak equivalence
of cooperads. Most of the results below have an analogue without the decoration by a
superscript 2, but for the sake of brevity I will not mention these.

Remark 7.3. Graphscn is not exactly what Lucy defined; she also set to zero graphs with
loops and double edges to get Dn. Loops are ruled for n odd by the orientations, and
double edges for n even. In either case, allowing them does not affect the homotopy type as
Graphscn → Dn is a weak equivalence of cooperads.

Observe that every graph is a uniquely a product of its internally connected pieces: let
IG2

n(r) ⊂ Graphs2,c
n (r) denote the symmetric sequence in graded vector spaces spanned by

internally connected oriented graphs as above.

Lemma 7.4. If we forget the differential,

Graphs2,c
n (r) = S(IG2

n(r)).

That is, these cooperads are quasi-free.

7.2. The graph complex. The graph complex is roughly Graphs2,c
n but without the external

vertices:

Definition 7.5. G2
n ∈ CoChQ is given as follows:5

· The underlying vector space is generated by oriented finite graphs γ. We set to
zero those graphs which (i) are not connected, (ii) can be split into two components
by deleting a vertex, (iii) have univalent vertices, as well as say that changing the
orientation induces a sign:

· For n even an orientation is an ordering of the set of edges, and for n odd an
orientation is an ordering of the set of vertices and a direction on each of the edges. If

5Again the signs should be taken with a grain of salt
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γ differs from γ′ by changing the orientation by a (pair of) permutation, γ ∼ sign γ′
with sign (the product of) the sign(s) of the permutation(s).

· The grading on G2
n is given by grading the graphs: deg(γ) = (n − 1)#edges −

n#vertices− n.
· The differential on G2

n is given by a sum over edge collapses. It is helpful to think of
the linear dual differential: this is a signed sum over edge expansions.

Remark 7.6. Setting all graphs with bivalent vertices to zero gives another cochain complex
Gn. As mentioned in the first lecture, the quotient map G2

n → Gn induces an isomorphism
on homology.

Remark 7.7. This is not exactly the complex we mentioned in the first lecture. Firstly, there
is a harmless dualization. Secondly, we didn’t have condition (ii) of vertex 1-irreducibility.
However, this does not affect the homology.

This complex in fact has a Lie cobracket. This is constructed as follows: in ∆(γ) there
is a contribution for each subgraph γ′ of γ. This is declared to be “microscopic”, moving
the edges and vertices in γ′ to the back, and letting γ̄ be obtained from Γ by collapsing γ′.
Then the contribution to ∆(γ) is given by

γ̄ ⊗ γ + (−1)|γ||γ
′|γ ⊗ γ̄.

This is another instance of subgraph collapsing.
The graph complex GC2

n is the linear dual of G2
n. By duality, this has a Lie bracket. This

is constructed by anti-symmetrizing a “pre-bracket” γ̄ ◦ γ′ given by inserting γ′ in all vertices
of γ̄ and reconnecting in all possible ways, with edges and vertices lexicographically ordered.

7.3. The graph complex acts on the graphs cooperad. We claim that GC2
n acts on

the cooperad Graphs2,c
n by biderivations, i.e. derivations of the commutative algebra structure

and coderivations with respect to the cooperad structure. This will be obtained by dualizing
a co-action of Gn, that is, it is given by

GC2
n ⊗Graphs2,c

n
id⊗coact−−−−−→ GC2

n ⊗Gn ⊗Graphs2,c
n

ev⊗id−−−−→ Graphs2,c
n .

More precisely, a graph γ in GC2
n is an indicator function on Gn and the above construction

picks out the contributions with first term γ from the coaction. (Note that for this to be
reasonable, it is better to think of GC2

n as a cochain complex and hence reverse the grading
in comparison to Definition 2.8.)

The coaction is given by subgraph collapses; each subgraph γ of Γ which lies in Gn and
has ≤ 1 external vertex has a contribution ±γ ⊗ Γ/γ. You should verify as an exercise that
this is compatible with the differential (i.e. edge collapses), at least up to signs. Condition
(ii) (that γ can’t be split into two components by deleting a vertex) then guarantees that
coact(Γ · Γ′) = coact(Γ) · (1⊗ Γ′)± (1⊗ Γ) · coact(Γ′). Thus dualizing, the action of GC2

n is
by derivations of the commutative algebra structure.

7.4. The loop grading. We claimed in the introduction that π0 Aut(EQ
n ) is either one or

two copies of Q×. However, if n ≥ 3 usually GC2
n will vanish in low degrees. The reason is

that GC2
n is missing some of the automorphisms of Graphs2,c

n .
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Let the abelian Lie-algebra Q · L act on GC2
n by sending γ to #loops · γ. This gives a

semi-direct product Lie algebra Q · Ln GC2
n. The action of GC2

n to Graphsc,2n extends to
this semi-direct product by letting L send Γ to (#edges−#internal vertices)Γ.

From this we obtain a map

Q× n Z•(GC2
n) −→ MapCoOp(CDGAQ)(Graphsc,2n ,Graphsc,2n )×,

where we had to cheat a bit becauase QLn GC2
n is not pro-nilpotent. Similarly, for a weak

equivalence h : Graphsc,2n → D we get a map

Q× n Z•(GC2
n) −→ MapCoOp(CDGAQ)(Graphsc,2n ,D)×.

Part 3. Finishing the computation

We just constructed the map (1):

Z•(g) −→ MapCoOp(CDGAQ)(C,D)×.

Our intention is to apply to this morphism the variation of the Goldman–Millson theorem
described in Theorem 5.7. The loop order action can be handled separately, at the cost of
restricting our attention to the subspace Def1 ⊂ Def consisting of those deformations which
induces the identity on cohomology (equivalently are the identity on the Browder cobracket).
Filtering by number of edges will endow both

g := GC2
n and h := Def1(h : Graphsc,2r → BΩ(Poiscn))

with the structure of complete filtered L∞-algebras. As every L∞-algebra is in particular a
chain complex, we get a map of filtered chain complexes and hence an associated spectral
sequence. The result is then that if this morphism induces an isomorphism on the E2-page
of this spectral sequences, the induced map

Q× Z•(GC2
n) = MC•(g) −→ MC•(h) = MapCoOp(CDGAQ)(Graphsc,2n , BΩ(Poiscn))×

is a weak equivalence as long as H1(g/F2g), H1(h/F 2h) and H0(h/F2h) all vanish. Verifying
these conditions is the goal of this talk:

Theorem 7.8. Writing g = GC2
n and h = Def1(h : Graphsc,2r → BΩ(Poiscn)), the L∞-

morphism U : g → h induces an isomorphism on the E2-page of the associated spectral
sequences and H1(g/F2g), H1(h/F 2h) and H0(h/F2h) all vanish.

This theorem is the final step in the computation of the automorphisms of the rationalized
En-operads, for n ≥ 3 at least, as given in Theorem 5.7.

8. Understanding h

Our first goal is to explain the target in h = Def(h : Graphsc,2n → BΩ(Poiscn)), and how
to obtain the differential of the L∞-structure on this deformation complex.

8.1. Bar-cobar duality for (co)operads. Let 1 be the operad/cooperad given by 1(1) =
Q and 0 otherwise. Indeed, as the unit for the composition product in symmetric sequences,
it has a canonical algebra and coalgebra structure.
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An operad O is a unital algebra in symmetric sequences, so comes with a map 1→ O.
An augmented operad is an operad with an augmentation C → 1, and is reduced if this is
a weak equivalence in arities 0 and 1. Any augmented operad has a augmentation ideal
Ō = ker(O → 1).

Dually, a cooperad is counital coalgebra in symmetric sequences, so comes with a map
C → 1. A coaugmented cooperad comes with a coaugmentation 1→ C, and is reduced if this
is a weak equivalence in arities 0 and 1. Any coaugmented cooperad has a coaugmentation
ideal C̄ = coker(1→ C).

For an coaugmented cooperad, we can take the cobar construction

Ω: CoOp(CDGAQ)coaugm −→ Op(CDGAQ)augm,

and dually, for an augmented operad, we can take the bar construction

B : Op(CDGAQ)augm −→ CoOp(CDGAQ)coaugm.

Theorem 8.1 (Bar-cobar duality for (co)operads). The bar and cobar construction participate
in an adjunction and the unit and counit

C −→ BΩC, ΩBO → O

are weak equivalences when C or O are reduced.

We have not defined B and Ω yet, but shall give a construction of these that is most
convenient for our purposes. In particular, we would like BO and ΩC to be quasi-(co)free,
i.e. (co)free (co)operads after forgetting the differentials. Let us hence just define them this
way (below we shall explain a general equivalent construction):

ΩC = (F(C̄[1]), d),

the free operad on the desuspension of the coaugmentation ideal of C, with a differential
mixing the internal differential of C and one coming from the cooperad structure.

BO = (Fc(Ō[−1]), d),

the free operad on the suspension of the augmentation ideal of O, with a differential mixing
the internal differential of O and one coming from the operad structure.

Let us describe the differential in the first case, the second one being dual: it has two
terms

d = dint + dcooperad.

Forgetting the cooperad structure, Fc(C[1]) is just a direct sum over trees of tensor product
of C̄[1] and thus has an internal differential dint coming from the differential of C (this
increases degree by our conventions). The second part dcooperad will be defined by demanding
that it is a coderivation of cooperads. Since the domain is free, we can describe it by
specifying its value on C[1]; there it is given by mapping c ∈ C[1] to its cocomposition in
C[1] ◦ C[1] (which increases degree by 1 due to the suspension). Since the internal differential
of C is compatible with cocomposition, [dint, dcooperad] = 0 and since the cocomposition is
coassociative d2

cooperad = 0. This implies that (dint + dcooperad)2 = 0.

Remark 8.2. There are more general equivalent construction of B and Ω, by literally taking
the (co)bar construction for (co)augmented (co)algebras in symmetric sequences. That is, if
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◦ denotes the composition product,

Ω(C) ' CoBar(1, C,1)

is the totalization of the cosimplicial object [p] 7−→ C◦p (the coaugmentation is used for the
outer coface maps). Similarly,

B(O) ' Bar(1,O,1)
he realization of the simplicial object [p] 7→ O◦p (the augmentation is used for the outer face
maps).

(In other words, BO is the derived indecomposables of O as operad and ΩC is the dual of
that. This makes clear that BO(r) still admits the structure of a bimodule over O(r), and
dually for ΩC(r).)

8.2. Maps of cooperads into ΩB. We describe how to compute the differential on

Def(ψ : C → BΩD)

when ψ arises for a morphism of cooperads C → D followed by the unit of the bar-cobar
adjunction, and C is arity-wise quasi-free. That is, we are assuming that C(r)[ = S∗(V (r)) for
some symmetric sequence V ∈ SymSeq(GrVectQ), where (−)[ means we forget the differentials.
By definition BΩD is quasi-cofree, i.e. (BΩD)[ = Fc(ΣΩC). For simplicity we will introduce
the notation W := ΣΩC.

8.2.1. Recalling the deformation complexes. Let us recall the definition of the above de-
formation complex, as an L∞-algebra. Recall that we obtained it by first forgetting the
differentials, and then seeing what was needed to restrict attention to cooperad maps which
preserve the differentials. In particular, the above quasi-(co)freeness assumptions imply that

Ψ: HomCoOp(GrVectQ)(C[, (BΩD)[) −→ HomSymSeq(GrVectQ)(V,W )
θ 7−→ π ◦ θ ◦ ι

where ι : V → C is the inclusion of generators and π : (BΩD)[ →W is the projection to the
cogenerators. Let us denote Φ := Ψ−1.

We then observed that the subspace of the left hand side of maps which preserves the
differentials, can be identified with the subspace of the right hand side of Maurer–Cartan
elements of a particular L∞-structure. To describe this L∞-structure, it suffices to give the
power series

M(x) =
∑
n≥1

1
n!µn(x, . . . , x),

as the multi-linear operation µn(x1, . . . , xn) may be recovered from it by extending scalar to
the algebra Q[ε1, . . . , εn]/(ε21, . . . , ε2n) and looking at the ε1 · · · εn-component of M(x1ε1 + · · ·+
xnεn). If M(m) = 0, we say that m is a Maurer–Cartan element. If we want Maurer–Cartan
elements to correspond to cooperad maps compatible with the differentials this forces us to
take

M(f) = π(dΩBDΦ(f)− Φ(f)dC)ι.
We then defined Def(0 : C → BΩD) to be HomSymSeq(GrVectQ)(V,W ) with this L∞-structure.

To get Def(ψ : C → BΩD) we take ψ to the Maurer–Cartan element µ = Φ(ψ), and twist
the L∞-structure by it. By tensoring with Ω∗PL(∆•), we then upgrade the map Ψ from a
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bijection of morphisms to an isomorphism of simplicial sets

MapCoOp(CDGAQ)(C, BΩD)
∼=−→ MC•(Def(ψ : C → BΩD)).

Since C, resp. BΩC, are cofibrant and fibrant the right hand side is the derived mapping
space. For particular models C and D of the cochains on En, this is what we set out to
compute.

8.2.2. Describing the differential. Our goal is now to describe the differential in Def(ψ : C →
BΩD) explicitly, using that the map ψ : C → ΩBD factors over D. This is the linear part of
M(x). To obtain it, we note that Φ can formally be written as a sum

∑∞
n=1 Φn(x, . . . , x) with

Φn(x1, . . . , xn) a multilinear function (again, you can obtain this by adding nilpotents). The
linear part Φ1(f) of an element f ∈ Def(ψ : C → BΩD) is then a biderivation θf : C → ΩBD
of ψ, i.e. derivation with respect to the multiplicative structure and a coderivation with
respect to the cooperad structure. The latter only makes sense relative to a fixed cooperad
map, in our case ψ.

In these terms, the differential on Def(ψ : C → ΩBD) is given by

d(f) = π(dBΩDθf − θfdC)ι.

We shall write
d′(f) := π(dBΩDθf )ι, d′′(f) := π(θfdC)ι,

and compute both separately. The first we call the operadic part, the second the internal
part.

Lemma 8.3. For a generator x ∈ V we have that the operadic part of the differential is
given by

d′(f)(x) = dΩDf(x)

+
∑

rth cocomposition

∑
i

±(ψ(x′1) · · · f(x′i) · · ·ψ(x′m)) ◦r π(ψ(x′′1 · · ·x′′k))

+
∑

rth cocomposition

∑
j

±π(ψ(x′1 · · ·x′m)) ◦r ψ(x′′1) · · · f(x′′j ) · · ·ψ(x′′k)

where inner sum uses the rth cocomposition of x into
∑
x′1 · · ·x′m⊗ x′′1 · · ·x′′k with x′i, x′′j ∈ V

generators.

Proof idea. The difficulty is determining Φ(f). This is made easier as the map factors
over D → BΩD: this implies that π(ψ(a) · b) = ψ(a) · π(b). It is this fact that makes the
computation possible. �

To make sense of these formulas, we use that ΩD[1] is an operad, as well as its r-ary
operations form a bimodule over D.

Lemma 8.4. For a generator x ∈ V we have that the internal part of the differential is
given by

d′′(f)(x) =
∑∑

j

±ψ(x1) · · · f(xj) · · ·ψ(xm)

where the outer sum is over dC(x) =
∑
x1 · · ·xm.
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9. Hairy graph complexes

Our next goal is to understand

Def(∗ : Graphsc,2n → BΩPoiscn),

where ∗ is the composition

Graphsc,2n → Comc → Poiscn → BΩPoiscn
where the first map determined by sending graphs with internal vertices to 0 and sending
two external vertices to µ∨2 and an edge connecting two external vertices to 0. The middle
expresses the fact that every n-Poisson coalgebra is a coalgebra. The last one is the unit
of the bar-cobar adjunction. This is not the complex we are interested in at first, but it is
something that will appear as an associated graded in the next section.

Recall that Graphsc,2n is arity-wise quasi-free on the symmetric sequence IG2
n of the

internally connected graphs, so that we can identify the chain complex underlying the
L∞-algebra Def(h : Graphsc,2n → ΩBPoiscn) with(

MapSymSeq(GrVectQ)(∗ : IG2
n → ΩPoiscn[1]), d

)
with differential d computed as above. Here Map denotes the graded vector space of
morphisms of symmetric sequences of varying degrees.

9.1. Koszul duality for the n-Poisson cooperad. The (co)bar construction come with
natural filtrations; In the construction we gave in terms of (co)free (co)operads with twisted
differential, these are given by the filtration by number of vertices in trees.

Let us focus on the case of the cobar construction ΩC = (F(C[1]), d) and make this more
concrete. Additively, F(C[1]) is a direct sum over rooted trees labels of the vertices in C[1].
In fixed arity r, since d = dint + dcooperad where dint preserves the number of vertices while
dcooperad increases the number of vertices by 1, this is the total cochain complex of a double
complex

· · · −→
⊕

T , ≤ r − 2 vertices
(F(C[1])T , dint)

dcooperad−−−−−−→
⊕

T , ≤ r − 1 vertices
(F(C[1])T , dint) −→ 0,

since C is concentrated in arity ≥ 2 and a bivalent tree with r leaves has r − 1 vertices.
We see from this that ΩC may be projected to the last filtration quotient of the associated

graded, which we shall denote C⊥.

Definition 9.1. C is Koszul if the map of cooperads

ΩC −→ C⊥

is an equivalence.

Dually, there is a map O⊥ → BO and O is Koszul if this is an equivalence. If O is
quadratically presented then O⊥ is the quadratic dual cooperad O!. The following will be
helpful: an operad O is Koszul if and only if quadratic dual O⊥ is, and in this case O is the
Koszul dual of O⊥ and vice versa.

Theorem 9.2 (Getzler–Jones [GJ94]). Poisn is Koszul.
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Remark 9.3. Before we get confused about gradings: Poiscn arises as the cohomology of the
En-operad, while Poisn arises as its homology. By our conventions to make cohomological
gradings positive, Poisn is non-positively graded!

What is its Koszul dual? The operad Poisn is cogenerated by a product µn of degree 0
and a bracket λn of degree −(n− 1), with relations given by associativity, commutativity,
(anti-)symmetry, the Jacobi identity, and that the bracket is a derivation of the product.
I’m not going to compute the quadratic dual, but the claim is that this is n-fold operadic
desuspension Λ−nPoiscn. Then dually, Poiscn is Koszul with Koszul dual ΛnPoisn, with now
explicitly the operadic suspension given by ΛnPoisn(r) := Poisn(r)[(1− r)n]⊗ sign⊗n; thus
it has product µ̃n of degree n and a bracket λ̃n of degree 1.

In conclusion, we have an equivalence

ρ : ΩPoiscn −→ ΛnPoisn
of operads. To describe its underlying morphism, it suffices to give this on the generators
of (ΩPoiscn)[ = F(Poiscn[1]): it is determined by mapping the coproduct µ∨n to λ̃n and the
cobracket λ∨n to µ̃n, and sending all other generators to 0. (The suspension makes the degrees
work out correctly.)

We obtain from this a weak equivalence(
MapSymSeq(GrVectQ)(∗ : IG2

n → ΩPoiscn[1]), d
)

(
MapSymSeq(GrVectQ)(∗ : IG2

n → ΛnPoisn[1]), d
)
.

'

The differential d on the right hand side is defined to make this a map of cochain complexes.
That is, one uses Lemma 8.3 and Lemma 8.4 and projects from ΩPoiscn to ΛnPoisn.

In those formula’s ψ here is given as follows. Firstly, we map a graph Γ ∈ Graphs2,c
n (r),

which is multiplicatively generated by IG2
n(r), to 0 unless it has no internal vertices. If it has

no internal vertices we first map to Poiscn, a map which is determined by sending an edge
between two vertices to 0 and two disjoint vertices to a comultiplication µ∨n . These terms
can then be included in BΩPoiscn.

Precomposing with ι : IG2
n(r) → Graphs2,c

n (r) is easy, and postcomposition with ρ ◦
π : BΩPoiscn → ΛnPoisn is the projection determined by λ∨n 7→ µ̃n and µ∨n 7→ λ̃n. Thus
concretely, since ΛnPoisn has a zero internal differential and ρ ◦ π ◦ ψ vanishes unless
we evaluate on a graph without edges, the cooperadic part d′(f) is given by taking the
cocompositions of Γ ∈ IG2

n, collecting those terms
∑
s vertices⊗Γ′ in the ith cocomposition

or
∑

Γ′′ ⊗ s vertices in the jth cocomposition, and taking

d′(f)(Γ) =
2∑
i=1
±λ̃s−1

n ◦i f(Γ′) +
r∑
j=1
±f(Γ′′) ◦j λ̃s−1

n .

The internal part d′′(f) is given on Γ by f(dΓ).

9.2. The hairy graph complex. Our next goal is to construct the hairy graph complex
HCGn,n, map it into the above version of the deformation complex, and show this is an
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equivalence:

HGCn,n
'−→
(

MapSymSeq(GrVectQ)(∗ : IG2
n → ΛnPoisn[1]), d

)
.

9.2.1. Defining the hairy graph complex. Recall the CDGA’s Graphsc,2n (r) which appeared
in Definition 7.1. They are free graded-commutative algebras on IG2

n(r). The hairy graph
complex is essentially obtained by dualizing the latter, and regarding the r external vertices
as indistinguishable hairs, with a sign if n is odd and a grading shift:

Definition 9.4. Let IG2,=1
n (r) be the quotient of IG2

n(r) where we set to 0 all graphs where
some external vertices has valence > 1. The hairy graph complex is the cochain complex

HCG2
n,n =

∏
r≥1

(IG2,=1
n (r))∨ ⊗Σr

sign[n]⊗n[−n],

with differential induced from that on Graphs2,c
n (r).

This is to be regarded as a complete filtered cochain complex, given by functions that are
invariant up to a sign under rearranging the external vertices. A function Ξ of degree −s is
non-vanishing on graphs of degree s.

9.2.2. Mapping hairy graphs to deformations. We now write a cochain map

ω : HCG2
n,n −→

(
MapSymSeq(GrVectQ)(∗ : IG2

n → ΛnPoisn), d
)
.

The idea is to send a function Ξ to the map ω(Ξ) which sends an internally connected
graph Γ ∈ IG2

n(r) to 0 if it has external vertices of valence > 1 and Ξ(Γ) · µ̃rn otherwise,
where µ̃rn is the r-fold multiplication in ΛnPoisn, which lives in degree (r − 1)n. The degree
shifts and signs in the definition of HCG2

n,n are designed to make this work.
We next need to check that this is compatible with the differentials: since the internal

part is given by d′′(Ξ)(Γ) = Ξ(dΓ), we need to verify that the cooperadic part d′(Ξ) vanishes.
This is given by (a) a term Ξ(Γ′)λ̃n ◦i µ̃rn if Γ can be obtained by inserting Γ′ into the ith
vertex of two disjoint vertices, and (b) a term Ξ(Γ′′)µ̃r−1

n ◦j λ̃n if Γ can be obtained by
inserting the two disjoint vertices into the ith one of Γ′′. We claim these cancel. This uses
two observations: for (a) to appear we need Γ to have a disjoint external vertex, for (b) to
appear we need Γ to have a disjoint external vertex and the reconnecting to be performed
solely to one of them (because Γ′′ would otherwise have an external vertex of valence 2, and
Ξ would vanish on it). For the sake of simplicity, let’s thus assume that Γ has 1 as a unique
disjoint external vertex; then (a) will give Ξ(Γ′)λ̃n ◦2 µ̃rn and (b) will give

∑
±Ξ(Γ′)µ̃r−1

n ◦j λ̃n.
That these cancel is the fact that the bracket is a derivation for the product.

Theorem 9.5. The map

ω : HCG2
n,n −→

(
MapSymSeq(GrVectQ)(∗ : IG2

n → ΛnPoisn[1]), d
)

is an equivalence.

Sketch of proof. We filter both by the number of edges and hairs, observe that ω is compatible
with these filtrations, and get from it a map on the corresponding spectral sequence. It
suffices to prove that this is an isomorphism on E1-pages.
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Let us first investigate the associated graded, i.e. the E0-pages. Since the differential on
the hairy graph complex involves edges expansions, on the left hand side it is filtered away
and we just get the underlying graded vector space (HCG2

n,n)[. On the right hand side, the
internal part d′′ vanishes for a similar reason. what remains is the cooperadic part d′. This
differential sends f to

∑
λ̃n ◦i f(Γ′) +

∑
f(Γ′′) ◦j λ̃n. Thinking of a function in terms of

its coefficients for each graph (let’s call them cographs), this is a product of complexes for
each cograph “character,” obtained by deleting the external vertices and leaving half-edges
behind. This is because we are only looking at composition with two disjoint vertices. These
complexes are rather simple, as they don’t depend the graph except through its number
of half-edges: they always have homology concentrated in a single degree, which is exactly
given by case where the labels in ΛnPoisn is µ̃n. �

10. Verifying the conditions in Theorem 7.8

Recall the graph complex g = GC2
n[−1] as the linear dual of G2

n from 7.5. The map
g→ h was obtained through an action ad(γ) of the functions γ in GC2

n on Graphsc,2n ; you
do a subgraph collapse to obtain graphs without external edges from Γ ∈ Graphsc,2n and
evaluate γ on these. The L∞-morphism U : g → h encoding the action of GC2

n[−1] on
Def1(h : Graphsc,2n → BΩPoiscn) is then given by the formula

U(γ) = πh(exp(ad(γ))− 1)ι.

Recall that both g and h have complete descending filtrations by number of edges, and
that to prove that U induces an equivalence

MC•(g) −→ MC•(h)

is suffices to verify that its linear part induces an isomorphism on the E2-pages of the
corresponding spectral sequences, as well as that H1(g/F2g), H1(h/F2h) and H0(h/F2h) all
vanish (Theorem 5.7).

Firstly we study the associated graded: since the internal differentials change the number
of edges as well as cocomposition involving anything but disjoint unions of external vertices,
we may as well replace in the deformation complexes the homotopy equivalence

h : Graphscn −→ Poiscn −→ BΩPoiscn
with the trivial map

∗ : Graphscn −→ Comc −→ Poiscn −→ BΩPoiscn.

Thus on the E0-page we are looking at a map

gr(GC2
n[−1]) −→ gr Def1(h : Graphsc,2n → BΩPoiscn) = gr Def1(∗ : Graphsc,2n → BΩPoiscn).
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This fits into a larger diagram

gr(GC2
n[−1]) gr Def1(∗ : Graphsc,2n → BΩPoiscn)

gr Map1(∗ : IG2
n → ΛnPoisn)

gr HCG2,1
n,n.

ω

with HCG2,1
n,n obtained by deleting the summand spanned by a single hair (so no vertices).

Upon passing to E1-pages, the bottom vertical map becomes an isomorphism by considering
the case ∗ instead of h. We also know that eventually the top vertical map becomes an
equivalence.

At this point I am going to drop my conviction to distinguish between graphs and
functionals on graphs, as it becomes hard to talk in the latter language. If we had used ∗
instead of h, then on E1-pages the differentials of both GC2

n[−1] and HCG2,1
n,n already have

their usual differentials, as these differentials change the number of edges by 1. However,
since we are interested in the case h instead of ∗ this requires a modification to the differential
HCG2

n,n: an additional term dattach is added which adds a hair in possible locations, because
in the formula for the cooperadic part of the differential, we now allow a single cocomposition
involving an edge. We shall call this cochain complex with modified differential

(HCG2
n,n, d+ dattach).

Tracing through the definitions, the map on E1-pages can be extended to a commutative
diagram

GC2
n[−1] E1 Def1(h : Graphsc,2n → BΩPoiscn)

E1 Map1(IG2
n,ΛnPoisn)

(HCG2,1
n,n, d+ dattach).

$

ω

by the cochain map
$ : GC2

n[−1] −→ HCG2,1
n,n

given by adding a single hair to a graph in all possible ways. That is, it is the linear dual
to subgraph extraction on IG2,=1

n (1) of a single edge to the external vertex. Recalling that
GC2

n was shifted in degree by n relative Graphs2,c
n and observing this adds an edge but no

internal vertex, this is compatible with the degrees. This is compatible with the differentials
since the dattach($(Γ)) = 0 since hairs cancel.

Hence it suffices to prove that $ is equivalence, at least if we remember that we needed
to add a copy of Q for the automorphism that changes the loop order. Alternatively, we
may subtract the corresponding copy of Q from the target.

Theorem 10.1. The map $ : GC2
n[−1]→ (HCG2,1

n,n, d+ dattach) is an equivalence.
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Proof. The mapping cone of $ (with codomain restricted as above) is equivalent to the
complex HCG2,1

n,n of hairy graphs with at least one vertices and one hair, and it suffices to
prove that this is acyclic. We filter by number of edges once more, and get an associated
graded with only dattach as differential. This complex splits as a direct sum over “characters”
of graphs, now obtained by removing all hairs. These complexes only depends on the number
of vertices. If we ignore the symmetries, they are given by the tensor product of terms
(Q · no hair→ Q · one hair), each of which is acyclic. If we remember the symmetries, they
are the invariants in such a tensor product under some group and hence are still acyclic. �

This implies that the map g → h is an isomorphism on E2-pages. It remains to verify
that H1(g/F2g), H1(h/F2h) and H0(h/F2h) all vanish:

· The quotient g/F2g is generated by graphs with exactly one edge, which is only the
tadpole living in degree (n− 1)− n− n = −1− n 6= 1. Hence its first cohomology
vanishes.

· We may compute H1(h/F2h) and H0(h/F2h) using the hairy graph complex. Since
the relevant quotient of the hairy graph complex consists of hairy graphs with exactly
one edge or hair and we removed this to get HCG2,1

n,n, these vanish as well.

Appendix A. The cooperadic W -construction

The paper [FTW17] uses a cooperadic W -construction, which I did not use. However, I
wrote some notes trying to understand it which are reproduced below:

A.1. The operadic W -construction in spaces. The W construction was first given as
cofibrant replacement of operads in topological spaces. Informally, the points in WO are
metric rooted trees whose internal vertices are labeled by elements of O topologized such
that if the length of an edge goes to 0, i.e. collapses, we compose the operations at its two
endpoints. Let us give its definition, just to get used to its features, before doing the less
familiar case of cooperads in CDGA’s.

Let us recall some terminology: a tree with root is a finite graph with a designated 1-valent
vertex called the root; the remaining 1-valent vertices are called leaves. For a finite set S
(eventually to be inputs for operations), let TreeS be the category whose objects are trees
with root whose leaves are indexed by S. The morphisms are generated by isomorphisms
and inner edge collapses. Operads in S are canonically augmented, and to make sense of
the augmentation ideal we suppose that O(0) = ∅ and O(1) = ∗ (O(1) ' ∗ is fine as well,
and at any rate we can replace O(1) by the image of the unit): Ō(1) is then obtained by
replacing O(1) with ∅. Every such operad gives rise to a functor

OS : TreeS −→ S

T 7−→
∏

internal vertices v
Ō(in(v)),

where in(v) is the set of incoming edges at v (those not going towards the root). A morphism
given by an edge collapse is sent by composition in the operad.
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On the other hand, there is a functor

LengthS : Treeop
S −→ S

T 7−→
∏

internal edges e
[0, 1],

where for a morphism given by an edge expansion (opposite of edge collapse) we add a new
number with value 0. This functor should be thought as assigning length in an interval [0, 1]
to an edge.

The W -construction has k-ary operations given by the coend

W (O)(S) =
∫ T∈TreeS

LengthS(T )×OS(T ) = LengthS ×Tree(S) OS .

Concretely, this is given by metric trees with operations at each vertex. If an edge has length
going to 0, one uses the operad composition to compose the vertex labels. This makes clear
that there is an operad structure given by grafting of trees. Observe that edges adjacent to
the leaves or root have no length; when a new edge is created by grafting it is given length 1.

Remark A.1. To get this operad structure, it is convenient to consider a category Forests
of finite forests of trees with roots. Its morphisms are generated by isomorphisms, edge
collapses and cutting open edges into a root and a leaf. This is symmetric monoidal under
disjoint union. Then a topological operad is a symmetric monoidal functor Forests→ S which
sends cutting morphisms to isomorphism (a Segal-like condition). We can then upgrade a
functor Length to a functor

Length : Forests× Forestsop −→ S

sending pair (F1, F2) to disjoint union over the morphisms f : F2 → F1 which preserve
connected components of ∏

edges collapsed by f
[0, 1]×

∏
edges cut by f

{1}.

A morphism (f1 : F1 → F ′1, f2 : F ′2 → F2) sends f to f2 ◦ f ◦ f1; if this collapses an additional
edges we add 0 in the corresponding term, if this cut an additional edge we add a 1 in
the corresponding term. It is symmetric monoidal under disjoint union, and satisfies the
Segal-like condition in the first entry. Thinking of this as a convolution kernel we can form
the functor

WO : Forests −→ S
F 7−→ Length(F,−)×Forests O.

This is then again symmetric monoidal and satisfies the Segal-like condition. In particular, to
understand its value we only need to evaluate it on a corolla F = ∗S with leaves in indexed
by S; this is the coend over Forests/S of Length(S,−)×OS . Since Forests/S = TreeS since
cutting edges increases the number of connected components, we see we get exactly WO(S).

The natural transformation LengthS → ∗S , the terminal functor assigning a point to all
trees, induces a map

WO(S) = LengthS ×Tree(S) OS −→ ∗S ×Tree(S) OS .
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The latter is nothing but the colimit of Tree(S) of O(S); since Tree(S) has a terminal object
this is O(S). This natural transformation can be upgraded as in the previous remark to give
a map of operads

WO −→ O.

Lemma A.2 (Boardman–Vogt). The map WO → O is a weak equivalence.

Proof. The natural transformation LengthS → ∗S is a natural weak equivalence. �

Lemma A.3. The operad of sets underlying WO is a free operad.

Proof. Let ◦WO be the symmetric sequence of sets given by those labeled metric trees whose
edges have length < 1. There is an inclusion ◦WO →WOδ of symmetric sequences of sets,
which induces a map

F(◦WO) −→WOδ

of operads of sets. It is easy to see that this is a bijection. �

Remark A.4. By the construction of the coend there are maps O(S)→ WO(S), which of
course do not assemble to a map of operads. However, it is does induce a map FO(S) →
WO(S).

A.2. The cooperadic W -construction. We now dualize the foregoing construction, adapted
to cooperads in CDGAQ. Every augmented cooperad gives rise to a functor

CS : Treeop
S −→ CDGAQ

T 7−→
⊗

internal vertices v
C̄(in(v)),

where in(v) is the set of incoming vertex at v (those not going towards the root). A morphism,
corresponding to an edge expansion, is given by cocomposition in the cooperad.

On the other hand, there is a functor

Length∨S : TreeS −→ S

T 7−→
⊗

internal edges e
(Q[t, dt], d(t) = dt).

One should think of these functions on length of edges, and a morphism amounts to setting
the corresponding generators t, dt equal to 0.

The W -construction then has k-ary cooperations given by the end

W cC(S) =
∫
T∈TreeS

CS(T )⊗ Length∨S = SS ⊗TreeS Length∨S .

Intuitively, this is given by functions ξ assigning to trees with values S a collection of
decorations by polynomial differential forms on internal edges and labels in C to internal
vertices. This has a cooperad structure given by degrafting: given a pair of trees T ′, T ′′ such
that T = T ′ ◦i T ′′, the component ξ(T ′)⊗ ξ(T ′′) in the cocomposition of ξ ∈ C(T ) is given by
evaluating the form on the grafted edges at t = 1. Maybe more concretely, it takes the same
decorations on edges and vertices of subtrees, and evaluates the polynomial differential forms
on the deleted edge at t = 1. More precisely, I think one may proceed as in the remark.
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There is an inclusion Q→ (Q[t, dt], d(t) = dt) as constant functions. This is upgrades to
a natural transformation of functors TreeS → S from the constant functor QS to Length∨S .
This induces a map of ends

C(S) = CS ⊗TreeS QS −→ SS ⊗TreeS Length∨S = W cC(S).

Lemma A.5. The map C →W cC is a weak equivalence.

Proof. The natural transformation QS → Length∨S is a natural weak equivalence. �

Lemma A.6. The cooperad of graded vector spaces underlying W cC is cofree, i.e. W cC is
cofree.

Proof. We start by constructing the map W cC[ → ◦W cC which will be projection to the
cogenerators. This induces a map

W cC[ −→ Fc(◦W cC)

of cooperads in graded vector spaces, which we will verify to be an isomorphism.
The maps (Q[t, dt], d(t) = dt)[ = Q[t, dt] → ker(ev1 : Q[t, dt] → Q) given by p(t, dt) 7→

p(t, dt)− tp(1, 0) induces a natural transformation

Length∨S −→ ◦Length∨S :=
⊗

internal edges
ker(ev1 : Q[t, dt]→ Q),

and hence a map of ends

SS ⊗TreeS Length∨S −→ SS ⊗TreeS ◦Length∨S =: ◦WC(S).

In other words, ◦WC(S) consists of those functions on trees with leaves S which have the
property that the evaluation at 1 of the polynomial differential forms associated to an edge
vanish.

At this point we have to prove that the map W cC[ → Fc(◦W cC) is an isomorphism. It
suffices to prove it is surjective, since it is injective on cogenerators and the target is cofree.
I’ll leave surjectivity to [FTW17, Lemma 5.3]. �

A.3. Relation to the bar construction. It is not the case that W cC is cofree.. To under-
stand better the isomorphism W cC[ = Fc(◦W cC), we shall upgrade this to an isomorphism
that takes into account the differential.

We start with two observations. Firstly, ◦W cC is actually a symmetric sequence in
CDGA’s, as the condition that the evaluation at 1 of edge labels vanish is compatible with
the product and differential. Secondly, ◦W cC can be made into an operad in CDGA’s. We
need to describe how to assign to functions ξ′, ξ′′ on trees with leaves S′ or S′′ a function on
trees with leaves S = S′ ◦i S′′ (i.e. delete i ∈ S′ and insert S′′ there): a tree T with leaves
S has at most one decomposition T = T ′ ◦i T ′′ into trees T ′ and T ′′ with leaves S′ and S′′

respectively. If it does not, ξ′ ◦i ξ′′ assigns to it the value 0. If it does decompose, we assign
to it the values ξ(T ′)⊗ dt⊗ ξ(T ′′), i.e. label the new edge dt.

Let us now give a different perspective on this:

Lemma A.7. There is isomorphism W cC ∼= B(◦W cC) of cooperads in CDGA’s.

As a consequence, we can up to weak equivalence identify the cogenerators with the cobar
construction:
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Corollary A.8. ΩC ' ◦W cC.

In other words, we have been writing a smaller bar-cobar construction.

Remark A.9. I would like to say the following, but I haven’t checked it: just like the W -
construction for operads, the W -construction for cooperads depends on a choice of interval. If
it had use ∆1

• and the copowering over simplicial sets, this would actually give BΩC = W cC,
but we choose a smaller interval instead.
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