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Abstract

These are collected lecture notes on differential topology. Starting from the
definitions, we discuss the foundational geometric results on smooth manifold.
We also give an introduction to intersection theory, de Rham cohomology, and
Morse theory.
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Introduction

These are the collected lecture notes on differential topology. They are based on
[BJ82, GP10, BT82, Wal16]. Our reference for multivariable calculus is [DK04a, DK04b].

Differential topology is the study of smooth manifolds; topological spaces on which
one can make sense of smooth functions. This is done by providing local coordinates.
Through these, many of the results of multivariable calculus can be extended to manifolds.
The latter provide a convenient language, the former the technical details: state globally,
prove locally.

The motivating goal of differential topology is the classification of smooth manifolds,
and maps between smooth manifolds. This is done through numerical invariants extracted
from geometric objects living in our manifolds (e.g. submanifolds) or on our manifolds
(e.g. differential forms). Particular instances of these ideas are intersection theory and de
Rham cohomology.

Acknowledgments

Thanks to the students of Math132 and MAT1300HF for many corrections.

vii





Chapter 1

Spheres in Euclidean space

In this first chapter we give a taste of differential topology, with a discussion of
spheres which are embedded or immersed in Rk. The highlight will be Smale’s result
that the two-dimensional sphere can be everted. Along the way, we meet a significant
portion of the cast of this course: smooth manifolds, embeddings, isotopies, orientations,
immersions, regular homotopies, winding numbers, and transversality.

1.1 Circle eversion

We are all familiar with the circle

S1 := {(x, y) ∈ R2 | x2 + y2 = 1},

which we can thicken to an annulus

A2 := {(x, y) ∈ R2 | (1 + δ)−1 < x2 + y2 < 1 + δ}

for some small δ > 0. There is of course a standard inclusion id of A2 into R2, given by
sending (x, y) ∈ A2 to (x, y) ∈ R2.

A2

S1

Figure 1.1 The circle S1 inside the annulus A2.

There are many other inclusions of A2 into R2. We could rotate by 90◦ degrees
counterclockwise

rot90 : A2 −→ R2

(x, y) 7−→ (−y, x),

1



2 Chapter 1 Spheres in Euclidean space

reflect in the x-axis

refl: A2 −→ R2

(x, y) 7−→ (x,−y),

or invert the circle

inv : A2 −→ R2

(x, y) 7−→
(

x

x2 + y2 ,
y

x2 + y2

)
,

These injective maps are not only continuous, but have three further properties. Firstly,
they are smooth: all partial derivatives exist and are continuous at each point in
(x, y) ∈ A2. Secondly, not only does the total derivative exists at each point, but it is
injective (in fact, invertible). Thirdly, they are homeomorphisms onto their image.

Definition 1.1.1. A continuous map A2 → R2 is called an embedding if it is a smooth
map, which is a homeomorphism on its image and whose total derivative is injective
everywhere.

reflrot90 inv

Figure 1.2 Three embeddings A2 ↪→ R2.

How different are these embeddings from each other? The maps id and rot90 are
closely related to each other: they can be connected by a path of embeddings. This path
is given by varying the rotation angle

rott : [0, 1]× A2 −→ R2

(t, (x, y)) 7−→
(
cos(π2 · t)x+ sin(π2 · t)y,− sin(π2 · t)x+ cos(π2 · t)y

)
,
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a path of embeddings. It is called an isotopy because it is also smooth as a map with
domain [0, 1]× A2.

However, the cases of reflection and inversion are more subtle.

Proposition 1.1.2. Both refl and inv can not be connected to id (or equivalently rot90)
by such an isotopy.

Proof. The reason is that both refl and inv reverse orientations. The Euclidean space R2

has a so-called orientation, given by a consistent choice of direction of “counterclockwise
rotation,” and so does A2 as an open subset of R2. As can be seen in Figure 1.3, rotations
such as rot90 preserve orientation, but reflection refl and inversion inv do not.

	

counterclockwise

reflrot90 inv

	

clockwise

	

counterclockwise

	

clockwise

Figure 1.3 The effect of our three embeddings on orientations.

If the identity map id and reflection refl (or inversion inv) were isotopic then the
latter would have to preserve orientation, because id does and the embeddings in an
isotopy can not switch from being orientation-preserving to being orientation-reversing.
(This is the crux of the argument, and making it rigorous is something we will do in
these notes.)

However, the composition of reflection and inversion does preserve orientation; re-
versing orientation twice preserves it. This map

eve: A2 −→ R2

(x, y) 7−→
(

x

x2 + y2 ,
−y

x2 + y2

)
is called eversion. Can eversion be connected to the identity by an isotopy?
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To answer this question, we look at S1 ⊂ A2. This is our first example of a smooth
manifold which is not Euclidean space Rn or an open subset thereof. More precisely, it is
a one-dimensional smooth manifold; a topological space which locally looks like R and on
which we can make sense of smooth functions. To do the latter, we use local coordinates
on S1 and our understanding of smooth maps between open subsets of Euclidean space:
the two charts (“coordinate patches”)

φ0 : (0, 2π) −→ S1

θ 7−→ (cos(θ), sin(θ))
φ1 : (0, 2π) −→ S1

θ 7−→ (cos(θ + π), sin(θ + π))

cover all of S1, and we say that f : S1 → R2 is smooth if both f ◦ φ0 and f ◦ φ1 are
smooth. Similarly, it is a embedding if it is a smooth map which is a homeomorphism
onto its image and whose total derivative is injective everywhere. It is easy to recognize
it is a homeomorphism on its image; when we restrict the target to its image we get a
continuous bijection between compact Hausdorff spaces.

If eve : A2 → R2 were isotopic to id, then by restricting the isotopy to S1 we would
be able to prove that eve|S1 is isotopic to id|S1 = id. So, to prove that eve is not isotopic
to id, it suffices to show that eve|S1 is not isotopic to id|S1 .

Figure 1.4 An example of the image of S1 under an immersion into R2.

In fact, we will prove something even stronger. We can drop the condition that an
embedding is injective. Since the derivative controls the local behavior of smooth maps,
that the derivative is everywhere non-zero means it is still locally injective. A smooth
map S1 → R2 with everywhere non-zero derivative is called an immersion, and a smooth
map [0, 1]× S1 → R2 consisting of immersions is called a regular homotopy. This is a
family of smooth maps where we allow self-intersections to occur, but not the pulling
tight of loops (the derivative would blow up there).

Proposition 1.1.3. The embeddings eve|S1 and id|S1 are not regularly homotopic.

Proof. Suppose a regular homotopy et : [0, 1]×S1 → R2 existed between eve|S1 and id|S1 ,
then for each s ∈ [0, 1], the map es : S1 → R2 is an immersion. Thus, when we take for
θ ∈ S1 the derivative d

dθes(cos(θ), sin(θ)) we get a non-zero vector in R2. If we normalize
these to have length 1, we get a smooth map

gauss(es) : S1 −→ S1.
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Here the domain S1 is the circle which is the domain of our immersions, and the target
S1 is the space of unit length vectors in R2. You can think of the latter as the space
of lines through the origin in R2 with a choice of orthonormal basis (in this case just a
single vector).

If eve|S1 and id|S1 are regularly homotopic through et, then gauss(eve|S1) and
gauss(id|S1) can be connected the path gauss(es) of maps S1 → S1. In other words,
they would be homotopic. But they are not; as gauss(eve|S1) = refl ◦ rot90 and
gauss(id|S1) = rot90 wind around the origin a different number of times; the first
once clockwise (so −1 times) and the second once counterclockwise (so 1 times). The
difference between these winding numbers implies that gauss(eve|S1) and gauss(id|S1) are
not homotopic. (Again, this is the crux and we need to rigorously justify this claim.)

1.2 Knots

Let us now increase the dimension of the target; instead of looking at circles in R2 we
will look at circles in R3. Immersions are significantly easier to study than embeddings;
though both are smooth maps with injective total derivative, a local condition, embeddings
need to be injective, a global condition. This distinction becomes evident when we try to
discern the difference between embeddings S1 ↪→ R3 and immersions S1 # R3.

Proposition 1.2.1. Each immersion S1 # R3 is regularly homotopic to an embedding.

Proof. This uses a technique called transversality. Informally, this allows you take smooth
maps to be “generic” without loss of generality. This means that by making an arbitrary
small change to an immersion e0 : S1 → R3, we can make its self-intersections have the
“expected dimension.”

Here “arbitrarily small” means that for each ε > 0, we can find an e1 : S1 → R3 whose
values and derivatives are within ε of those for e0. By taking ε to be small enough, during
a linear interpolation

et : S1 × [0, 1] −→ R3

(t, θ) 7−→ (1− t) · e0(θ) + t · e1(θ)

the derivative never becomes 0. In particularly, e0 is regularly homotopic to e1.
The advantage of e1 is that its self-intersections have the expected dimension. This

expected dimension is that of the intersection of two affine lines R3 with arbitrarily chosen
coefficients: two such lines do not intersect, and thus generically the self-intersections are
empty as well.

Isotopy classes of embeddings S1 ↪→ R3 are called knots. The isotopy class of the
standard circle id : S1 ↪→ R3 is the unknot, but there are of course many more interesting
and complicated knots. At first sight many seem obviously distinct, or at least non-trivial.
This is an artifact of our tendency to draw rather simple knots: it is by no means clear
to me that Figure 1.5 is not the unknot. It should furthermore not be obvious how to
prove that two knots are distinct, as you need to rule out the existence of some extremely
complicated isotopy. To do so one uses knot invariants, with such disparate sources as
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algebraic topology, combinatorics, number theory, hyperbolic geometry, or quantum field
theory [Ada04, Sos02]. We will discuss some of these later in Chapter 16. At any rate,
your intuition is correct:

Figure 1.5 Haken’s “gordian knot,” which is actually unknotted (from [Sos02]).

Proposition 1.2.2. There are infinitely many distinct isotopy classes of embeddings
S1 ↪→ R3. That is, there are infinitely many knots.

Remark 1.2.3. This doesn’t mean distinguishing knots, or recognizing unknots, is easy.
Even though there exists an algorithm that says whether a knot is the unknot, these
algorithms are not very efficient [HLP99].

Armed with this knowledge, Proposition 1.2.1 seems rather useless. All we have
shown is that immersions of a circle into R3 can be represented by knots. However,
we can use that this representation is not unique. In particular, if we are interested in
immersions we are allowed to make the strands of a knot self-intersect! Using this, it is
not hard to give an informal proof of the following:

Proposition 1.2.4. All immersions S1 # R3 are regularly homotopic.

Proof sketch. By another application of transversality, it is possible to draw each knot
as you are used to; a circle in the plane with some crossings, which never occur at the
same point. As we just explained, you can change any crossing using a regular homotopy.
Let us explain through an example a procedure to change crossings to end up with an
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unknot. Suppose our starting point is:

•↓ p0

We fix a point p0 in the knot, and start moving along it in an arbitrary direction. When
we cross under a strand, we (a) keep it as it is if we haven’t seen the crossing yet, but (ii)
if we have seen it we change the crossing. For example, the first crossing clockwise from
p0 is not changed but the second one is. The result will be:

•

I’ll leave it to the reader to understand why this procedure always produces an unknot
(hint: look at the height of the strands).

1.3 Sphere eversion

Let us now increase the dimension of the domain. There is a two-dimensional sphere
S2 := {(x, y, z) ∈ R3 | x2+y2+z2 = 1}. This is a two-dimensional smooth manifold which
is a subset of the thickened sphere A3 := {(x, y, z) ∈ R3 | (1+δ)−1 < x2 +y2 +z2 < 1+δ}
for some small δ > 0.

Again, in addition to the identity map id: A3 ↪→ R3 there are many other inclusions;
we could rotate by applying an element A ∈ SO(3) (the group of rotations around some
axis through the origin in R3), reflect in the (x, y)-plane

refl: A3 −→ R3

(x, y, z) 7−→ (x, y,−z),

or invert it

inv : A3 −→ R3

(x, y, z) 7−→
(

x

x2 + y2 + z2 ,
y

x2 + y2 + z2 ,
z

x2 + y2 + z2

)
.

All of these are smooth maps, and in fact embeddings. The rotation by A is isotopic to
the identity because the group SO(3) is path-connected (move the rotation angle to 0),
while both refl and inv are not isotopic to the identity because they do not preserve the
orientation.
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However, the eversion

eve := refl ◦ inv : A3 −→ R3

(x, y, z) 7−→
(

x

x2 + y2 + z2 ,
y

x2 + y2 + z2 ,
−z

x2 + y2 + z2

)
does preserve the orientation. Is it isotopic to the identity? The answer turns out to
be negative; in fact, eve|S2 is already not isotopic to id|S2 . If it were, we could “drag
along” the disk D3 ⊂ R3 that bounds the image of id|S2 on the inside along an isotopy
of embeddings—a result called isotopy extension (which requires the embeddings and
isotopy are proper)—and would have to end up with a disk that bounds the image of
eve|S2 on the outside, which is clearly impossible. (This requires justification.)

However, it is a surprising result of Smale that eve|S2 is regularly homotopic to id|S2

[Sma58]. That is, these two embeddings can be connected by a family of immersions;
self-intersections are allowed to form, but not the pulling tight of the fabric of S2.
The procedure is rather complicated, but you can watch a video of it called Outside
In online. The reason this works is that the two-dimensional versions of the Gauss
maps, gauss(eve|S2) and gauss(id|S2), which are maps from S2 to the space V2(R3) of
two-dimensional planes though origin with a choice of orthonormal basis, are homotopic.
This homotopy can then be approximated by a regular homotopy using holonomic
approximation, a instance of general philosophy called an h-principle [EM02]. Explicitly
implementing this approximation gives the video referred to above.

1.4 Problems

Problem 1.4.1. Is the following knot trivial (i.e. isotopic to the unknot)?



Chapter 2

Smooth manifolds

In this chapter we give the modern definition of a smooth manifold, which is the one
we will use throughout this course. It is given in [BJ82, Chapter 1], but unfortunately
not in [GP10]. References for further reading are [Tu11, Chapter 5] or [Wal16, Section
1.1]. We also give a number of examples (you need to know Sn, RPn, and CPn, but not
the examples of moduli spaces).

2.1 Topological manifolds

Underlying every smooth manifold is a topological manifold. This is a topological
space which locally looks like Euclidean space, though we will ask it safisfies some
point-set topological conditions to make it more well-behaved.

A local property of a topological space is one which concerns sufficiently small open
subsets. For a k-dimensional topological manifold the relevant local condition is “being
homeomorphic to an open subset of Rk:”

Definition 2.1.1. A topological space X is locally Euclidean of dimension k if each
point x ∈ X has an open neighborhood Vx ⊂ X which is homeomorphic to an open
subset Ux ⊂ Rk.

This models a “world” which, for a tiny creature living in it, is indistinguishable from
Rk. This intuition is not compatible with certain pathological examples. The “world” is
not supposed to “split into two points” somewhere, as occurs in a plane with doubled
origin [SS95, §74]. This is ruled out by demanding X is Hausdorff (any two distinct
points have distinct open neighborhoods). Furthermore, the “world” should admit a
notion of distance, i.e. a metric. For a Hausdorff locally Euclidean topological space,
being metrizable is equivalent to being second-countable (admitting a countable basis
for its topology) [Gau09], and hence we demand that X is also second-countable. An
example of a locally Euclidean space which is Hausdorff but not second-countable is the
long line, created by “concatenating” uncountably many real lines [SS95, §45].

Definition 2.1.2. A k-dimensional topological manifold is a second-countable Hausdorff
space X which is locally Euclidean of dimension k.

9
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This definition only involves properties of X. We can rephrase the property that it is
locally Euclidean as data instead, which will be necessary to define smooth manifolds.

Vα ⊂ X
φα

Rk ⊃ Uα

Figure 2.1 A chart.

Definition 2.1.3. A triple (Uα, Vα, φα) of open subsets Uα ⊂ Rk, Vα ⊂ X, and a
homeomorphism φα : Uα → Vα is called a chart or a local parametrization.

Definition 2.1.4. A collection of charts (Uα, Vα, φα) such that ⋃α Vα = X is a k-
dimensional atlas for X.

Two local parametrizations φα : Rk ⊃ Uα → Vα ⊂ X and φβ : Rk ⊃ Uβ → Vβ ⊂ X
give two competing identifications of Vα ∩ Vβ ⊂ X with an open subset of Rk, which we
can compare by the transition function

ψαβ := φ−1
β ◦ φα : Rk ⊃ φ−1

α (Vα ∩ Vβ) φα−→ Vα ∩ Vβ
φ−1
β−→ φ−1

β (Vα ∩ Vβ) ⊂ Rk. (2.1)

(It would be better to use the notation φ−1
β ◦φα|φ−1

α (Vα∩Vβ) to point out we are restricting
the domain, but this notation would quickly become unwieldy.)

An atlas for a topological manifold X is not unique, but it turns out there is a unique
maximal one. We shall not discuss this in detail now, saving a discussion of maximal
atlases for smooth manifolds (where there is no longer a unique one, i.e. there are exotic
smooth structures). An alternative equivalent definition of a k-dimensional topological
manifold is then:

Definition 2.1.5. A k-dimensional topological manifold is a second-countable Hausdorff
space X with a maximal k-dimensional atlas.

2.2 Smooth manifolds

On a topological manifold, as on any topological space X, we can make sense of
continuous function X → Rm. A smooth manifold is a refinement of a topological
manifold which allows us to make sense of smooth functions X → Rm. This will use that
we know what a smooth function Rk → Rm is: a map which has partial derivatives of
arbitrary degree, in other words, an infinitely-many times differentiable function.

As the domain of a chart is an open subset of Rk, we know what it means for a
continuous function to be smooth with respect to the local coordinates provided by a
chart. To make guarantee consistency between charts, we require that the transition
functions ψαβ are smooth.
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Definition 2.2.1. A k-dimensional smooth atlas for a topological space X is a collection
of triples (Uα, Vα, φα) consisting of

· an open subset Uα ⊂ Rk,

· an open subset Vα ⊂ X, and

· a homeomorphism φα : Uα → Vα,
so that ⋃Vα = X and all maps

ψαβ = φ−1
β ◦ φα : φ−1

α (Vα ∩ Vβ) −→ φ−1
β (Vα ∩ Vβ)

are smooth maps between open subsets of Rk. The triples (Uα, Vα, φα) are called charts
and the maps φ−1

β ◦ φα are called transition functions.

Observe that these transition function have the following properties:

ψαα = id and ψαβ ◦ ψβγ = ψαγ .

Taking γ = α, this gives
ψαβ ◦ ψβα = id,

as smooth maps Rk ⊃ φ−1
α (Vα ∩ Vβ) → φ−1

β (Vα ∩ Vβ) ⊂ Rk. This shows that ψαβ is a
smooth bijection with smooth inverse, and hence is what we call a diffeomorphism. Thus,
in a smooth atlas the transition functions are always diffeomorphisms.

φ−1
β ◦ φα

φα φβ

Rk ⊃ Uα Uβ ⊂ Rk

X

Figure 2.2 A transition function.

Two atlases for X are said to be compatible if their union is an atlas. A maximal atlas
is one with the property that every atlas compatible with it, is in fact contained in it.

Lemma 2.2.2. Every k-dimensional smooth atlas is contained in a unique maximal
k-dimensional smooth atlas.
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Proof. For uniqueness, it suffices to prove that every two k-dimensional smooth atlases
A′ = {(U ′β, V ′β, φ′β)} and A′′ = {U ′′γ , V ′′γ , φ′′γ)} containing a given one A = {(Uα, Vα, φα)}
are compatible. That is, we must prove that every map

(φ′′γ)−1 ◦ φ′β : (φ′β)−1(V ′β ∩ V ′′γ )→ (φ′′γ)−1(V ′β ∩ V ′′γ )

is smooth. Since being smooth is a local property, it is enough to prove that each
x ∈ (φ′β)−1(V ′β ∩ V ′′γ ) has an open neighborhood such that the restriction of (φ′′γ)−1 ◦ φ′β
to this open neighborhood is smooth. Let us pick a chart (Uα, Vα, φα) ∈ A so that
φ′β(x) ∈ Vα. Then we can write the restriction of (φ′′γ)−1 ◦ φ′β to (φ′β)−1(Vα ∩ V ′β ∩ V ′′γ ) as

((φ′′γ)−1 ◦ φα) ◦ (φ−1
α ◦ φ′β),

which is a composition of two smooth functions because both A′ and A′′ are compatible
with A. Hence it is smooth, and hene so is (φ′′γ)−1 ◦ φ′β . Thus A′ and A′′ are compatible.

Now that we have proven that A ⊂ A′ and A ⊂ A′′ implies that A′ and A′′ are
compatible, we can just define

Amax :=
⋃
A⊂A′

A′.

Definition 2.2.3. A k-dimensional smooth manifold is a Hausdorff second-countable
topological space X with a maximal k-dimensional smooth atlas.

In essence, it is a k-dimensional topological manifold where all transition functions
are smooth. Some questions and answers about this definition:
(a) How should I think of the smooth atlas? The interpretation that follows directly

from the definition is that it provides local coordinates, via the maps φ−1
α , and the

transition between two of these coordinate systems is smooth.
A different perspective on the role of an atlas is that it tells you when a continuous
function f : X → R is smooth:
Definition 2.2.4. A continuous function f : X → R is smooth when

f ◦ φα : Rk ⊃ Uα −→ R

is smooth for all charts (Uα, Vα, φα).
This definition generalizes with ease to the case where the target is Rm. To generalize
to the case that the target is another smooth manifold, we involve the charts of the
target. We discuss the following definition in more detail in Chapter 4:
Definition 2.2.5. Let X and Y be manifolds with atlases {(Uα, Vα, φα)} and
{(U ′α′ , V ′α′ , φ′α′)} respectively. A continuous map f : X → Y is smooth if

(φ′α′)−1 ◦ f ◦ φα : Rk ⊃ φ−1
α (Vα ∩ f−1(V ′α′)) −→ U ′α′ ⊂ Rk

′

is smooth for all charts.
(b) When are two manifolds “the same”? Saying when two manifolds are equivalent

involves Definition 2.2.5:
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Definition 2.2.6. A smooth map f : X → Y is a diffeomorphism if it is a bijection
with smooth inverse.
Two manifolds X and Y are to be considered equivalent when they are diffeomorphic.

(c) Why demand X is Hausdorff and second-countable? We mentioned that this “fits our
intuitions,” but there is a more utilitarian answer. First, atlases on topological spaces
without these properties rarely arise in practice. Second, having these properties is
helpful, as they imply the existence of certain smooth functions X → R. For example,
Hausdorffness will mean we can construct a smooth function which separates two
distinct points, and both properties are used to construct partitions of unity.

(d) Why demand that the atlas is maximal? If we did not, then S2 with two charts would
be a different smooth manifold than S2 with three charts. This would be absurd.
Furthermore, we often want certain nice charts to exist. If our atlas has few charts
this may not be the case.
However, in practice we will want to specify a smooth manifold with an atlas that is
as small as possible; a finite amount of data is easier to comprehend that an infinite
amount. Then Lemma 2.2.2 generates for us a unique maximal atlas.

(e) Can a topological space X have more than one maximal atlas? The answer is yes, as
you can always change the charts by a homeomorphism X → X. Many of these will
result in a diffeomorphic manifold. Problem 2.3.8 gives an example of this.
However, even up to diffeomorphism a topological space X can have more than one
maximal atlas. Another term for a maximal atlas is a smooth structure. Milnor
surprised the mathematical community when he proved that S7 admits more than
one smooth structure up to diffeomorphism [Mil56a]; there are in fact 15.1 This is a
global phenomenon except when n = 4, as Rn admits a unique smooth structure up
to diffeomorphism when n 6= 4. On the other hand, R4 admits uncountable many
smooth structures up to diffeomorphism [Sco05, Section 5.4], and yes, you should be
surprised by that.2

(f) Can a topological space X have atlases of different dimensions? This is not possible
by a famous result of algebraic topology due to Brouwer called invariance of domain,
which says that any injective map from an open subset of Rk to Rk has image given
by an open subset [Hat02, Theorem 2.B.3]. (A weaker smooth version is Problem
4.4.1.)
If two such atlases did exist, charts from them would give a homeomorphism f : Rk ⊃
U → V ⊂ Rk′ between open subsets of Rk and Rk′ for say k > k′. But invariance of
domain implies that the composition of f with the inclusion

i ◦ f : Rk ⊃ U −→ V ⊂ Rk
′ −→ Rk

1The more well-known figure is that the group Θ7 of oriented exotic spheres up to orientation-
preserving homeomorphism is isomorphic to Z/28 (see Chapter 28). In this group, inverse is given by
reversing the orientation, so that when we allow (not necessarily orientation-preserving) diffeomorphisms
there are 15 elements, corresponding {0}, {14} and {a, 28− a} for 1 ≤ a ≤ 13.

2It is more accurate to think of this as there being many distinct 4-dimensional smooth manifolds
that for a magical reason happen to be homeomorphic to R4.
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has image both an open subset of Rk and contained in the subset Rk′ ⊂ Rk, which is
impossible.

2.2.1 Examples of manifolds

Example 2.2.7 (Euclidean spaces). The prototypical example of a k-dimensional smooth
manifold is Rk itself. It has second-countable and Hausdorff, and has an atlas with a
single chart: (U, V, φ) = (Rk,Rk, id).
Example 2.2.8 (Spheres). Recall that the k-sphere is the subspace of Rk+1 defined by

Sk :=
{

(x0, . . . , xk)
∣∣∣∣∣
k∑
i=0

x2
i = 1

}
.

As a subspace of a second-countable Hausdorff topological space, it is second-countable
and Hausdorff, Problem 2.3.1. We will now describe a k-dimensional smooth atlas on it,
making it a k-dimensional smooth manifold, in terms of 2(k+ 1) different hemispheres. It
suffices to describe the φ−1’s (and then we can of course recover the φ’s as their inverse).
For 0 ≤ j ≤ k and i ∈ {0, 1}, we have a chart given by

φ−1
ij : Sk ⊃ Vij = {x ∈ Sk | (−1)ixj > 0} −→ Uij = int(Dk) ⊂ Rk

(x0, . . . , xk) 7−→ (x0, · · · , x̂j , · · · , xk).

The transition functions have most entries of the form xi, except that one has the form√
1−∑i 6=j x

2
i . These are clearly smooth.

A different but compatible k-dimensional smooth atlas with only two charts is given
by stereographic projection. As before, we describe the φ−1’s: if CN , CS ⊂ Sk denote
small closed neighborhoods of the north and south pole (±1, 0, . . . , 0), then φ−1 is given
by casting rays form N through Sk \ CN onto a plane below the sphere, see Figure 2.3.

•N

V = Sk \ CN

Rk U

Rk+1

Figure 2.3 To obtain φ−1 : V → U , the inverse of a local parametrization of Sk ⊂ Rk+1, follow
the rays.

Example 2.2.9 (Real projective spaces). The real projective space RP k is the space of lines
through the origin in Rk+1. Such a line is specified by a unit vector, up to multiplication
by ±1. That is, it is the quotient space

RP k = Sk/∼
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with ∼ the equivalence relation generated by (x0, . . . , xk) ∼ (−x0, . . . ,−xk). We will
denote an example class as [x0 : · · · : xk].

The first of the atlases for Sn given in the previous example induces a k-dimensional
smooth atlas on RP k. It has (k + 1) charts given as follows: for 0 ≤ j ≤ k it is

φ
−1
j : RP k ⊃ Vj = {x ∈ RP k | xj 6= 0} −→ Uj = int(Dk) ⊂ Rk

[x0 : . . . : xk] 7−→ sign(xj)(x0, · · · , x̂j , · · · , xk).

Example 2.2.10 (Surfaces of genus g). We will not describe atlases for these yet, but for
each g ≥ 0 there is a compact surface of genus g. It looks like a sphere with g handles
added to it:

Figure 2.4 A surface of genus g = 2.

The classification of surfaces say that all compact orientable two-dimensional smooth
manifolds (we will define “orientable manifolds” in Chapter 17) are diffeomorphic to Σg

for some g.

2.2.2 Constructions of manifolds

Example 2.2.11 (Open subsets). Suppose U ⊂ X is an open subset of a k-dimensional
smooth manifold. If {(Uα, Vα, φα)} is an atlas of X, then the maps

φα|φ−1
α (Vα∩U) : Rk ⊃ Uα ⊃ φ−1

α (Vα ∩ U) −→ Vα ∩ U ⊂ U

endow U with a k-dimensional smooth atlas. If the atlas of X is maximal, so is this atlas
of U .
Example 2.2.12 (Disjoint unions). Let M and N be smooth manifolds with smooth atlases
{(Uα, Vα, φα)} and {(U ′β, V ′β, φ′β)}, of same dimension m = n. Then their union is an
atlas for the disjoint union M tN , though it is in general not maximal even if the atlases
on M and N were. This is the disjoint union of smooth manifolds.
Example 2.2.13 (Products). Now let M and N be smooth manifolds with smooth atlases
{(Uα, Vα, φα)} and {(U ′β, V ′β, φ′β)}, of dimension m and n respectively. Then the maps

φα × φ′β : Rm × Rn ⊃ Uα × U ′β −→ Vα × V ′β ⊂M ×N
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endow the cartesian product M ×N with an (m+n)-dimensional smooth structure. This
is the product of smooth manifolds.
Example 2.2.14 (Pre-manifolds). A k-dimensional smooth pre-manifold is a set X together
with a collection {(Uα, Vα, φα)} of Uα ⊂ Rk an open subset, Vα ⊂ X a subset, and
φα : Uα → Vα a bijection. We require that all maps

ψαβ = φ−1
β ◦ φα : Rk ⊃ φ−1

α (Vα ∩ Vβ) −→ φ−1
β (Vα ∩ Vβ) ⊂ Rk

are smooth.
Then we can give X the smallest topology such that all φα are continuous. If this is

Hausdorff and second countable, then {(Uα, Vα, φα)} serves as a k-dimensional smooth
atlas on X and hence makes it into a k-dimensional smooth manifold.

2.2.3 Riemann’s vision

In this more advanced section, we recall some historical context. You should not be
surprised if much of this material is unfamiliar to you.

One-dimensional complex manifolds

If you have studied complex analysis, the following example may illuminate the
definition of a k-dimensional smooth manifold.

We will define complex manifolds by replacing R by C and smooth maps by holomor-
phic maps: a 1-dimensional complex atlas for topological space X is a collection of triples
(Uα, Vα, φα) of an open subset Uα ⊂ C, an open subset Vα ⊂ X, and a homeomorphism
φα : Uα → Vα, so that ⋃Vα = X and all maps

φ−1
β ◦ φα : φ−1

α (Vα ∩ Vβ) −→ φ−1
β (Vα ∩ Vβ)

are holomorphic maps between open subsets of C. A 1-dimensional complex manifold is
then a second-countable Hausdorff topological X with a maximal 1-dimensional complex
atlas.

Since C can be identified with R2 and all holomorphic maps are smooth, any 1-
dimensional complex manifold is a 2-dimensional smooth manifold. However, since it is
much harder for a function to be holomorphic than for it to be smooth, it is harder to
produce 1-dimensional complex manifolds than 2-dimensional smooth manifold.
Remark 2.2.15. By replacing C by Ck, this definition generalizes to that of a k-dimensional
complex manifold. Such a complex manifold always gives rise to a 2k-dimensional smooth
manifold.

The moduli spaces of Riemann surfaces

It is in Riemann’s Habilitationsvortrag that the general concept of a manifold first
appeared [Rie13].3 He proposed that geometry should study “extended magnitude or

3You can read it at https://www.emis.de/classics/Riemann/Geom.pdf. More about the history of
manifolds can be found in [Sch99].

https://www.emis.de/classics/Riemann/Geom.pdf
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quantity,” objects made of points with a continuous transition from one to another. To
be mathematically useful, these objects should have sufficiently many functions so that
it is possible to find coordinate functions which specify points uniquely, at least locally.
One example he had in mind is quite advanced even from our modern point of view: the
moduli space of Riemann surfaces of genus g with n marked points.

A Riemann surface is a compact one-dimensional complex manifold, as above. It is a
rather deep result that all of these are algebraic, that is, cut out by polynomial equations
in a complex projective space. Riemann’s idea was that deformations of a Riemann
surface structure on a fixed surface of genus g with n marked points as pictured in
Figure 2.5 are uniquely specified (up to isomorphism) by 3g − 3 + n complex parameters.
He wanted to use this to show that one can organize all such Riemannn surfaces into
(something like) a (6g − 6 + 2n)-dimensional smooth manifold, each complex parameter
giving rise to two dimensions [Loo00], so that you could study all Riemann surfaces at
the same time. This has proven wildly successful, with entire fields doing dynamics and
geometry on such moduli spaces.

We are far from having the theory to make this precise, but this example holds an
important lesson: unlike spheres, many examples of smooth manifolds do not arise as
subsets of some Euclidean space.

•

•
•

Figure 2.5 A surface of genus g = 2 with n = 3 marked points.

2.3 Problems

Problem 2.3.1 (Point-set topology of subspaces).
(a) Prove that every subspace of a Hausdorff space is Hausdorff.
(b) Prove that every subspace of a second-countable space is second-countable.

Problem 2.3.2 (Connected vs. path components). Prove that for a topological manifold,
connected components coincide with path components.

Problem 2.3.3 (Gluing smooth structures). Suppose that if U, V ⊂ X is an open cover
of a second-countable Hausdorff space, and that we are given smooth atlases on U and
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V which agree on U ∩ V . Prove that there exists a unique smooth maximal atlas on X
which is compatible with the given ones on U and V .

Problem 2.3.4 (Some examples). Draw three 2-dimensional smooth manifolds that are
pairwise non-diffeomorphic. You do not need to prove that they are not diffeomorphic to
each other.

Problem 2.3.5 (Real projective plane revisited). An alternative definition of the real
projective plane is as the quotient

(Rk+1 \ {0})/∼

where ∼ is the equivalence relation generated by (x0, . . . , xk) ∼ (λx0, . . . , λxk) for λ ∈
R \ {0}. We will denote an equivalence class by [x0 : . . . : xk].

(a) Show that (Rk+1 \ {0})/∼ is homeomorphic to RP k as in Example 2.2.9.
(b) Explain why we can think of RP k as the set of lines through the origin in Rk+1.

There is a smooth atlas on RP k provided by homogeneous coordinates, which is diffeo-
morphic to that in Example 2.2.9: for 0 ≤ j ≤ k these are given by

φj : Rk −→ RP k

(x1, . . . , xk) 7−→ [x1 : · · · : xj−1 : 1 : xj : · · · : xk].

(c) Compute explicitly the transition functions and verify they are smooth.

Problem 2.3.6 (Complex projective plane). There is a complex analogue of the real
projective plane RP k. The complex projective plane CP k has points given by complex
lines in Ck+1, or equivalently by the quotient

(Ck+1 \ {0})/∼

where ∼ is the equivalence relation generated by (z0, . . . , zk) ∼ (λz0, . . . , λzn) for λ ∈
C \ {0}. Give CP k a 2k-dimensional smooth atlas.

Problem 2.3.7. Recall that the quaternions H are the 4-dimensional non-commutative
R-algebra with generators i, j, k and relations

i2 = j2 = k2 = −1, ij = −ji, ik = −ki, jk = −kj

ij = k, jk = i, ki = j.

In analogy with the previous exercise, construct the quaternionic projective plane HP k.4
What is its dimension?

Problem 2.3.8 (Different atlases on the same topological manifold). Let g : R→ R be
the homeomorphism x 7→ x3. Let A = {(Uα, Vα, φα)} be the usual maximal smooth atlas
on R, that is, the unique one containing (R,R, id). Let g(A) be the maximal smooth
atlas {(Uα, g(Vα), g ◦ φα)}, that is, the unique one containing (R,R, g).

4There is even an octionic projective space OP 2, also known as the Cayley projective plane, but no
OP k for k > 2. This is harder to construct.
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(i) Prove that the atlases A and g(A) are not compatible.
(ii) Prove that (R,A) and (R, g(A)) are diffeomorphic (Hint: g is the diffeomor-

phism!).



Chapter 3

Submanifolds and tori

In the previous chapter we defined smooth manifold, and we now discuss smooth
submanifolds. We will use some calculus to produce examples of submanifolds of Euclidean
spaces. I will assume you know the relevant results, but if you do not you can find these
in Chapters 3 & 4 of [DK04a]. After that we will give five constructions of the 2-torus.

3.1 Submanifolds

A loop of string in R3 can be thought of as a subset S of R3. Which subsets S
describe such loops of string? Let us abstract the situation by declaring that the string
is infinitely thin and bendable, but can not make sharp corners. Certainly an ordinary
circle {(x, y, z) | x2 + y2 + z2 = r2} ⊂ R3 describes a loop of string, but so do many other
subsets. Some differ from the circle by being more wiggly, and some by being knotted,
see Figure 3.1.

Figure 3.1 Some subsets of R3 which describe strings.

However, in spite of their complicated global behavior all locally look like smooth
line segments: they are one-dimensional smooth submanifolds of R3, subsets of R3 that
locally looks like R. This illustrates why the study of smooth manifolds is so interesting:
they have a straightforward local structure, but a rich global structure.

20



3.2 Examples of submanifolds using calculus 21

Of course, we need not restrict ourselves to one-dimensional objects: spheres, tori
and the surface of a coffee mug locally look like R2. Indeed, for any r ≥ 0 we can define
r-dimensional smooth submanifolds as subsets of Rk that locally look like Rr. More
generally, we use charts to replace the ambient space Rk by a k-dimensional smooth
manifold N .

3.1.1 The definition

To give a precise definition of a submanifold of a manifold, we recall the definitions in
Chapter 2. A k-dimensional topological manifold is a second-countable Hausdorff space X
which is locally homeomorphic to an open subset of Rk. To make this into a k-dimensional
smooth manifold, we need to give the additional data of a maximal k-dimensional smooth
atlas. This is a collection (Uα, Vα, φα) of homeomorphisms φα : Rk ⊃ Uα → Vα ⊂ X such
that (i) ⋃α Vα = X, and (ii) all transition functions φ−1

β ◦ φα are smooth maps between
open subsets of Rk.

Intuitively, a submanifold is a manifold which lives inside another manifold. This
is made precise by demanding it looks like a linear subspace of Euclidean space with
respect to the atlas.

Definition 3.1.1. Let N be a k-dimensional smooth manifold. A subset X ⊂ N is an
r-dimensional submanifold if for each p ∈ X there is a chart (Uα, Vα, φα) of N around p
such that φ−1

α (X) = Uα ∩ Rr.

If X is a submanifold, it comes with a canonical structure of an r-dimensional smooth
manifold. Firstly, X with the subspace topology is second countable and Hausdorff by
Problem 2.3.1. We produce an atlas on this by taking a chart (Uα, Vα, φα) for N as
above, and creating from it a chart (U ′α, V ′α, φ′α) for X as follows:

U ′α := Uα ∩ Rr, V ′α := X ∩ Vα, and φ′α := φα|U ′α .

3.2 Examples of submanifolds using calculus

We now concentrate on submanifolds of Euclidean space, so that we can apply tools
from multivariable calculus. We will eventually generalize these tools to manifolds, the
philosophy being that differential topology is globalized multivariable analysis.

3.2.1 Sn by equations

Last chapter we defined the n-sphere by equations

Sn =
{

(x0, . . . , xn) ∈ Rn+1
∣∣∣∣∣
n∑
i=0

x2
i = 1

}
,

and by hand gave an atlas for it.
However, when you define a manifold by equations, it is much easier to obtain the

atlas using a result from multivariable calculus; the inverse function theorem. This uses
the notion of a total derivative of a map g : Rn → Rp (or between open subsets thereof)
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[DK04a, Section 4.5]: at x ∈ Rn, the total derivative Dgx of g at x is the linear map
described by the (p× n)-matrix of partial derivatives

∂g1
∂x1

(x) ∂g1
∂x2

(x) · · · ∂g1
∂xn

(x)
∂g2
∂x1

(x) ∂g2
∂x2

(x) · · · ∂g2
∂xn

(x)
...

... . . . ...
∂gp
∂x1

(x) ∂gp
∂x2

(x) · · · ∂gp
∂xn

(x)

 .

The local version of the inverse function theorem then says [DK04a, Theorem 3.2.4]:

Theorem 3.2.1 (Inverse function theorem). Let U0 ⊂ Rn be open and a ∈ U0. Suppose
g : U0 → Rn is a smooth map whose total derivative Dga at a is an invertible linear map.
Then there exists an open neighborhood U ⊂ U0 of a such that g(U) is open and

g|U : U −→ g(U)

is a diffeomorphism onto this open subset.

By adding dummy variables, you can deduce the implicit function theorem [DK04a,
Theorem 3.5.1] from this. The following is a consequence of that result [DK04a, Section
4.5]:

Theorem 3.2.2 (Submersion theorem). Let U0 ⊂ Rn be open and a ∈ U0. Suppose
g : U0 → Rp, p ≤ n is a smooth map whose total derivative Dga of g at a is a surjective
linear map. Then there exist open neighborhoods U ⊂ U0 of a and V ⊂ Rp of g(a), and
diffeomorphisms ψ : Rn → U and ϕ : Rp → V , such that

(i) ψ(0) = a,
(ii) ϕ(0) = g(a), and

(iii) the following diagram commutes

Rn U ⊂ U0 ⊂ Rn

Rp V ⊂ Rp,

πp

∼=
ψ

g

∼=
ϕ

with πp the projection (x1, . . . , xn) 7→ (x1, . . . , xp). That is,

g(ψ(x1, . . . , xn)) = ϕ(x1, . . . , xp).

Remark 3.2.3. A stronger version of this theorem, which is the one stated as [DK04a,
Theorem 4.5.2(iv)], says that ϕ can be taken to be translation near 0.

Parts (i) and (ii) are just normalizations, part (iii) is where the magic happens: the
diffeomorphism ψ restricted to {0} × Rn−p ⊂ Rn gives a local parametrization of the
inverse image g−1(g(x)) around x, identifying it with an open subset of the origin in
Rn−p. We conclude that the subset g−1(c) for c ∈ Rp is an (n− p)-dimensional smooth
submanifold of Rn when each of the total derivatives Dgx for x ∈ g−1(c) is surjective.
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Example 3.2.4. If we take

g : Rn+1 −→ R
(x0, . . . , xn) 7−→ x2

0 + . . .+ x2
n,

and c 6= 0 ∈ R, then the total derivative at x = (x0, . . . , xn) satisfying x2
0 + . . .+ x2

n = c
is given by the (1× n)-matrix [

2x0 2x1 · · · 2xn
]

with not all xi zero. If c 6= 0, then not all entries can vanish at the same time and this
matrix is surjective. In particular, we can take c = 1 to obtain another proof that the
n-sphere is a smooth manifold.
Example 3.2.5. Let p, q be positive integers, and take

g : C2 −→ C× R
(z1, z2) 7−→ (zp1 + zq2, |z1|2 + |z2|2).

This is smooth, and its total derivative is surjective at all points g−1(0, ε) for (0, ε) ∈
C× R with ε > 0 small enough. Thus the inverse image g−1(0, ε) is a one-dimensional
submanifold of C2, which lies inside of S3. It is in fact also a one-dimensional submanifold
of S3, and if we remove a point from S3 and identify this with R3, the result is a so-called
(p, q)-torus link. See Figure 3.2 for an example.

Figure 3.2 A (3, 7)-torus knot (since 3 and 7 are coprime, there is only a single component).

3.2.2 Sn by parametrizations

One can often parametrize solution sets of equations, e.g. S1 is the image of

h : R −→ R2

θ 7−→ (cos(θ), sin(θ)).
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This map is not a bijection, but it is locally a bijection. It seems quite plausible that
it is in fact a local diffeomorphism of R onto S1, though giving an explicit formula may
be hard. However, the difficulty of finding explicit formula’s can be avoided by using the
inverse function theorem again, in a slightly different guise [DK04a, Section 4.3].

Theorem 3.2.6 (Immersion theorem). Let U0 ⊂ Rp be an open subset and a ∈ U0.
Suppose h : U0 → Rn, p ≤ n, is a smooth map whose total derivative Dha of h at a is
injective. Then there exist open neighborhoods U ⊂ U0 of a and V ⊂ Rn of h(a), and
diffeomorphisms ψ : Rp → U and ϕ : Rn → V , such that

(i) ψ(0) = a,
(ii) ϕ(0) = h(a), and

(iii) the following diagram commutes

Rp U ⊂ Rp

Rn V ⊂ Rn,

ιp

∼=
ψ

h

∼=
ϕ

with ιp the inclusion (x1, . . . , xp) 7→ (x1, . . . , xp, 0, . . . , 0). That is,

h(ψ(x1, . . . , xp)) = ϕ(x1, . . . , xp, 0, . . . , 0).

Remark 3.2.7. As before, there is a stronger version stated as [DK04a, Theorem 4.3.1]
which says that ψ can be taken to be translation near 0.

Again part (iii) is the important part: it provides a chart for h(U) as in the definition
of a submanifold. We will later see that the image of h is a submanifold if we not
only suppose that its derivative is injective everywhere but also that the map h is a
homeomorphism onto its image.
Example 3.2.8. If we want to parametrize the n-sphere Sn, we will need more than one
function hi. For example, we can use 2(n+ 1) ones indexed by 0 ≤ i ≤ n and a sign ±1:

h±i : {y ∈ Rn | ||y|| < 1} −→ Rn+1

(y1, . . . , yn) 7−→ (y1, . . . , yi−1,±
√

1− ||y||2, yi, . . . , yn).

Each covers one of the two hemispheres in each of the n+ 1 directions of Rn+1.

3.3 Five constructions of the 2-torus

Another important example of a smooth manifold is the 2-torus, one of the basic
surfaces. We will now give five constructions of the torus,

(1) By specifying it as a submanifold of R3 using equations.
(2) By parametrizing it as a submanifold of R3.
(3) As a product of two circles.
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(4) By gluing edges of a square [0, 1]2.
(5) As a quotient R2/Z2.

All these constructions give us diffeomorphic smooth manifolds, but we will not prove
this. The first three can be thought of as naturally being subsets of some Euclidean
spaces, but the underlying topological space of a smooth manifold obtained by gluing or
quotients is not naturally a subset of a Euclidean space. This is one of the reasons we
gave an abstract definition of manifold in the last chapter.

3.3.1 The 2-torus specified by equations

Our first construction of a 2-torus is as those points that are distance 1 from a
circle of radius

√
2: it consists of those points (x, y, z) in R3 satisfying the equation

(2−
√
x2 + y2)2 + z2 = 1. More precisely, define

g : R3 −→ R

(x, y, z) 7−→
(

2−
√
x2 + y2

)2
+ z2.

This is smooth and has surjective total derivative at all points in the pre-image of 1. Thus
the submersion theorem tells us that g−1(1) is a two-dimensional smooth submanifold of
R3:

T2 = g−1(1).

3.3.2 The 2-torus parametrized

This is a incomplete construction, and we will revisit it in XXX. We can parametrize
the 2-torus, defined as g−1(1) ⊂ R3, as the image of

h : R2 −→ R3

(θ, φ) 7−→ [(2 + cos(θ)) cos(φ), (2 + cos(θ)) sin(φ), sin(θ)].

This is smooth and has injective total derivative at all points in its domain. Thus the
immersion theorem provides local charts for the image of h. These exhibit the image of h
as a submanifold of R3, and give another description of the 2-torus as a two-dimensional
smooth submanifold of R3:

T2 = im(h).

Some care is require now, as h is not a homeomorphism onto its image. Trying to amend
this leads one to the definition of the 2-torus as a quotient.

3.3.3 The 2-torus as a product

There is a general method to produce new submanifolds out of old ones.

Lemma 3.3.1. Suppose that X ⊂ Rn and Y ⊂ Rm are submanifolds of dimensions p
and q respectively. Then X×Y ⊂ Rn×Rm = Rn+m is a (p+ q)-dimensional submanifold
of Rn+m.
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Sketch of proof. Local parametrizations of X near x and Y near y combine a local
parametrization of X × Y near (x, y).

This gives a different construction of T2 as a submanifold of R4: take the product of
S1 ⊂ R2 with itself. Of course, we can forget that S1 is a submanifold of R2, and instead
take the abstract product of manifolds discussed in the previous chapter, Example 2.2.13:

T2 = S1 × S1.

3.3.4 The 2-torus by gluing

Let us take a square [0, 1]2 and make identifications along its boundary ∂[0, 1]2 =
{(x, y) ∈ [0, 1]2 | x ∈ {0, 1} or y ∈ {0, 1}} as in Figure 3.3: take [0, 1]2/∼ with ∼ the
equivalence relation generated by

(0, y) ∼ (1, y) and (x, 0) ∼ (x, 1).

That is, the left edge {0}× [0, 1] gets identified with right edge {1}× [0, 1] and the bottom
edge [0, 1]× {0} with the top edge [0, 1]× {1} Such a gluing of the square produces a
torus.

[0, 1]2� �

>

>

Figure 3.3 The 2-torus is obtained by identifying edges of [0, 1]2.

We now give a 2-dimensional smooth atlas on [0, 1]2/∼, see Figure 3.4. It is easy to
give charts for a point represented by (x, y) ∈ (0, 1)2; just use a small open disk Bε(x, y)
contained in (0, 1)2. For equivalence classes [(x, 0)] represented by (x, 0) with x ∈ (0, 1)
we use the chart determined by

φ : Bε(x, 0) −→ [0, 1]2/∼

(x′, y′) 7−→
{

[(x′, y′ + 1)] if y′ < 0,
[(x′, y′)] if y′ ≥ 0,

and similarly for the element represented by (0, y) with y ∈ (0, 1). For the equivalence
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class [(0, 0)] we use the chart determined by

φ : Bε(0, 0) −→ [0, 1]2/∼

(x′, y′) 7−→


[(x′ + 1, y′ + 1)] if y′ < 0, x′ < 0,
[(x′ + 1, y′)] if x′ < 0,
[(x′, y′ + 1)] if y′ < 0,
[(x′, y′)] otherwise.

� �

>

>

Figure 3.4 The open subsets Vα for three charts, one of each type.

The transition functions are mostly given by the identity map which is obviously
smooth, but sometimes by a translation which is also obviously smooth. See Figure 3.5
for the hardest case. We conclude that

T2 = [0, 1]2/∼.

� �

>

> Bε(0, y)

Bε(0, 0)

translation by (0, 1)

φα

φβ

Figure 3.5 A transition function.

The lesson is, using terms we have not defined yet: a sufficiently nice gluing of a k-
dimensional manifold with corners along its boundary is again a k-dimensional manifold.
In the above example k = 2, the manifold with corners is [0, 1]2 and the boundary is
∂[0, 1]2.
Example 3.3.2. Changing the identifications to those in Figure 3.6 and using similar
charts we can endow the Klein bottle and real projective plane with a 2-dimensional
smooth structure.
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[0, 1]2� �

<

>

Klein bottle

[0, 1]2� �

<

>

real projective plane

Figure 3.6 Two more 2-dimensional smooth manifolds obtained by identifying edges of [0, 1]2.

3.3.5 The 2-torus as a quotient

Let us recast this definition in terms of group theory. If you are not familiar with
group theory, you should take a look at a textbook on it, e.g. [Arm88].

We can add elements of R2 from which we obtain an action of the abelian group Z2 on
R2: the element (n,m) ∈ Z2 acts on (x, y) by sending it to its translate (n,m) · (x, y) :=
(x+ n, y +m). Let us look at the set

R2/Z2 := R2/∼ with (x, y) ∼ (x′, y′) if (n,m) · (x, y) = (x′, y′) for (m,n) ∈ Z2

with the quotient topology. This is still Hausdorff and second countable.
We claim that R2/Z2 inherits from R2 the structure of a 2-dimensional smooth

manifold. To do so we describe a 2-dimensional smooth atlas on R2/Z2: for a point
(x, y) ∈ R2 we can consider the open disks Bε(x, y) for ε < 1

4 . The composition of the
inclusion with the quotient map

Bε(x, y) ↪→ R2 q−→ R2/Z2

is injective as ε < 1
4 . We denote its image by V ε

(x,y) and resulting map by

φε(x,y) : Bε(x, y) −→ V ε
(x,y).

We claim these chart give an atlas. Since the map q : R2 → R2/Z2 is surjective, the V ε
(x,y)

cover. For any two open subsets V ε
(x,y), V ε′

(x′,y′), the transition function is just given by
translation and hence is smooth.

One way to visualize the result is to give a fundamental domain: an open subset
U ⊂ Rn such that U → R2/Z2 is injective and Ū → R2/Z2 is surjective. Then you can
think of R2/Z2 as being obtained from Ū by making identifications along ∂U . In this
case a moment’s reflection produces (0, 1)2 ⊂ R2 as a candidate; no two elements differ by
translation by (m,n) ∈ Z2 so (0, 1)2 → R2/Z2 is injective, but (x, y) ∼ (x−bxc, y−byc) ∈
[0, 1]2 so [0, 1]2 → R2/Z2 is surjective. Thus R2/Z2 is homeomorphic to [0, 1]2/∼ as
in the previous section, and thus we have produced another description of the 2-torus.
Under this identification, the charts we have described to go the charts in the previous
section. We get

T2 = R2/Z2.
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There is a general lesson here: a quotient of a k-dimensional smooth manifold by a
sufficiently nice action of a discrete group G is again a k-dimensional smooth manifold.
In the above example k = 2, the manifold is R2 and G = Z2.

Example 3.3.3. Can we come up with other examples? One idea would be to use with
some subgroup G of Z2, and take

R2/G := R2/∼ with (x, y) ∼ (x′, y′) if g · (x, y) = (x′, y′) for g ∈ G,

instead of R2/Z2. Most of these seem to give variations on the 2-torus, but the subgroup
Z× {0} ⊂ Z2 does not. In this case a fundamental domain is given by (0, 1)× R, and
R2/(Z× {0}) is given by identifying the left edge {0} × R of the infinite strip [0, 1]× R
with the right edge {1} × R; an infinite cylinder.

3.4 Quotients of the upper half plane

In Section 2.2.3, we discussed moduli spaces of Riemann surfaces with marked points
as manifolds. Let me explain how this works in the case of genus 1 surfaces with a single
marked point. Again, this material may be unfamiliar to you.

3.4.1 The moduli space of genus 1 Riemann surfaces with a marked point

Let us ignore some technical issues, and consider the “coarse” moduli space of genus
1 Riemann surfaces with a marked point. Here “genus 1” means that they look like
a 2-torus, i.e. have a single “handle”, and “with a marked point” means that we have
decided we have declared a single point to be special. Riemann surfaces were defined
in Section 2.2.3, but you can get along fine without knowing the details by thinking of
everything we do here as studying “lattices in C up to the action of multiplying with
non-zero complex numbers.”

Recall that Riemann tells us that we can parametrize genus g Riemann surfaces with
n marked points at least locally with 6g − 6 + 2n real parameters. Specializing to g = 1
and n = 1, we expect that there is a moduli space of genus 1 Riemann surfaces with a
marked point, which should ideally be a 6g − 6 + 2n = 2-dimensional smooth manifold.

It turns out that each genus 1 Riemann surfaces with a marked point arises as a
quotient space C/(τZ + Z) with τ ∈ H2 = {z ∈ C | im(z) > 0}, with marked point given
by the image of 0. That is, they are given as a quotient space1

C/(τZ + Z) = C/∼ with z ∼ z′ if z − z′ = τp+ q with p, q ∈ Z.

By the same argument as for the 2-torus, these are 2-dimensional smooth manifolds.
1These are called elliptic curves. Note that since τZ + Z is closed under addition and inverses, the

C-vector space structure on C descends to a group structure on C/(τZ + Z), which is the addition on the
corresponding elliptic curve. Elliptic curves have automorphisms; there is always negation, and for those
coming from particular lattices (the square and hexagonal ones) there are additional automorphisms. In
the actual moduli space we remember these automorphism groups, and so it is not a manifold but an
orbifold.
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Many of these Riemann surfaces with a marked point are the same; Riemann would
consider C/(τZ + Z) to be isomorphic to C/(τ ′Z + Z) if there is a non-zero complex
number λ ∈ C such that λ(τ ′Z+Z) = τZ+Z. When is this the case? For the image of 1
to lie in τZ + Z, λ should be some cτ + d with c, d ∈ Z. Similarly, for the image of τ
to lie in τZ + Z, λτ ′ should be aτ + b with a, b ∈ Z. In particular, we can recover τ ′ as
λτ ′/λ = aτ+b

cτ+d . It turns out that aτ + b and cτ + d are generators of τZ + Z if and only if
the matrix [

a b
c d

]
has determinant ±1. However, note that

2 · im(τ ′) = 2 · im
(
aτ + b

cτ + d

)
= aτ + b

cτ + d
− aτ + b

cτ + d

= (aτ + b)(cτ + d)− (cτ + d)(aτ + b)
|cτ + d|2

= 2(ad− bc)im(τ)
|cτ + d|2

= det
[
a b
c d

]
2im(τ)
|cτ + d|2

.

So im(τ ′) > 0 means the determinant should be +1; the group (2 × 2)-matrices with
integer entries and determinant +1 is called SL2(Z).

The upshot is that we get the isomorphic Riemann surfaces with marked point if we
replace the parameter τ by

τ 7−→ aτ + b

cτ + d
for

[
a b
c d

]
∈ SL2(Z).

As two matrices differing by ±1 in all entries act in the same manner, a genus 1
Riemann surface is described by an element τ ∈ H2 up to the action by quotient group
PSL2(Z) := SL2(Z)/{±id}. Thus we conclude that this moduli space is (roughly) given
by the quotient space H2/PSL2(Z). We will prove later in this lecture that this is indeed
a 2-dimensional manifold, but given its description as being obtained from the upper-half
plane by making some identifications this should not be surprising.

3.4.2 Fuchsian groups acting on H2

The formula [
a b
c d

]
· z = az + b

cz + d

extends to an action of PSL2(R) := SL2(R)/{±id} on H2, and these are in fact all the
isometries of H2 with the hyperbolic metric. A subgroup G ⊂ PSL2(R) acts properly
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discontinuously on H2 if only and if it is discrete, in which we call it a Fuchsian group
[Fun04, Chapter 1]. If so, its stabilizers have to be finite.

As suggested by our lesson about group quotients, for any freely-acting Fuchsian group
G ⊂ PSL2(R) the quotient space H2/G inherits from H2 the structure of a 2-dimensional
smooth manifold. It is not so hard to recognize a freely-acting Fuchsian group: because
stabilizers are finite any torsion-free Fuchsian group acts freely. It is a consequence of the
uniformization theorem that the 2-dimensional compact smooth manifolds obtained as a
quotient of H2 by a torsion-free Fuchsian group are exactly the surfaces of genus ≥ 2.

Because PSL2(Z) ⊂ PSL2(R) is a discrete subgroup, the (coarse) moduli space of
genus 1 Riemann surfaces with marked point H2/PSL2(Z) should be a 2-dimensional
smooth manifold apart from issues with stabilizers. However, these issues can be resolved:
there are only two orbits with stabilizers Z/3 and Z/2 respectively and the quotient map
looks like z 7→ z2 : C → C or z 7→ z3 : C → C is suitable coordinates around points in
these orbits. Since the target C is still a manifold, this means that even though our lesson
does not directly apply, the quotient H2/PSL2(Z) still inherits from H2 the structure of
a 2-dimensional smooth manifold. It is in fact diffeomorphic to C.

Let us at least describe the map H2/PSL2(Z)→ C, though we shall not prove that it
is a diffeomorphism. For k ≥ 1 there is an Eisenstein series

G2k(τ) =
∑

(m,n)∈Z2\(0,0)

1
(mτ + n)2k ,

which converges on H2 to a holomorphic function. Note that given τ , its value G2k(τ) is
given by a sum over the function z 7→ 1/z2k applied to the points in the lattice τZ + Z.
Suppose we apply an element of SL2(Z) to τ , we get

G2k

(
aτ + b

cτ + d

)
=

∑
(m,n)∈Z2\(0,0)

1
(maτ+b

cτ+d + n)2k

=
∑

(m,n)∈Z2\(0,0)

(cτ + d)2k

(m(aτ + b) + n(cτ + d))2k .

In our derivation of the action above, we saw that aτ + b and cτ + d just give a different
set of generators for τZ + Z than τ and 1, so the latter is equal to the sum∑

(m,n)∈Z2\(0,0)

(cτ + d)2k

(mτ + n)2k = (cτ + d)2kG2k(z).

A holomorphic function f : H2 → C satisfying f(az+bcz+d) = (cz + d)2kf(z) (as well as a
condition on its behavior as z → i∞) is called a modular form of weight 2k.2

It turns out that the G2k are modular forms of weight 2k (that is, they satisfy the
aforementioned condition as z → i∞). Using them we can define the following modular
forms of weight 4, 6 and 12 respectively

g2(τ) = 60
∑

(m,n)∈Z2\(0,0)

1
(mτ + n)4 , g3(τ) = 140

∑
(m,n)∈Z2\(0,0)

1
(mτ + n)6

2For more about the link between elliptic curves and modular forms see [Kob93].
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∆(τ) = g2(τ)3 − 27g3(τ)2.

If we then define the j-invariant by j(τ) = 1728g2(τ)3

∆(τ) , we get a function which satisfies

j

(
az + b

cz + d

)
= j(z),

and hence induces a function

j : H2/PSL2(Z) −→ C

[τ ] 7−→ 1728g2(τ)3

∆(τ) .

Of course we must be careful that this is well-defined, as we are dividing by something
that may vanish, but it is not only well-defined but in fact a diffeomorphism (you can
see its values in Figure 3.7).3

3The more advanced reader may be surprised; the moduli space of genus g Riemann surfaces with n
marked points is supposed to have fundamental group given by mapping class group Γg,n of isotopy-classes
of orientation-preserving diffeomorphisms of such a surface; for g = 1 and n = 1 this is SL2(Z). In
this statement we are supposed to take the orbifold fundamental group, which takes into account the
finite automorphisms we ignored when discussing the coarse moduli space. In the quotient one point
has automorphism group Z/6, one has Z/4, and the remainder Z/2; SL2(Z) is the amalgated product
Z/6 ∗Z/2 Z/4.
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Figure 3.7 A plot of of the function j (norm is greyscale, argument is hue). Can you guess
a fundamental domain of the action of PSL2(Z) on H2 based on this image? Source: https:
//en.wikipedia.org/wiki/J-invariant#/media/File:KleinInvariantJ.jpg.

https://en.wikipedia.org/wiki/J-invariant#/media/File:KleinInvariantJ.jpg
https://en.wikipedia.org/wiki/J-invariant#/media/File:KleinInvariantJ.jpg


Chapter 4

Smooth maps and their derivatives

In this chapter we will define smooth maps, and their derivatives. This material
appears at the end of Section 1 of [BJ82], as well as Section 2. For more details, see
[Tu11, Chapters 6, 8].

4.1 Smooth maps and diffeomorphisms

Let us recall some definitions from Chapter 2, on which we shall elaborate now:

Definition 4.1.1. Let M and N be smooth manifolds of dimension m and n, with
smooth atlases {(Uα, Vα, φα)} and {(U ′β, V ′β, φ′β)}. A continuous map f : M → N is said
to be smooth if for all charts (Uα, Vα, φα) of M and (U ′β, V ′β, φ′β) of N , the map

(φ′β)−1 ◦ f ◦ φα : Rm ⊃ φ−1
α (Vα ∩ f−1(V ′β)) −→ (φ′β)−1(V ′β) = U ′β′ ⊂ Rn (4.1)

between open subsets of Euclidean spaces is smooth.

It may be helpful to expand (4.1) into a commutative diagram

Rm ⊃ φ−1
α (Vα ∩ f−1(V ′β)) Vα ∩ f−1(V ′β) ⊂M

Rn ⊃ U ′β′ = (φ′β)−1(V ′β) V ′β ⊂ N.

(φ′β)−1◦f◦φα

φα
∼=

f

φ′β
∼=

Using this definition we can say when we consider two smooth manifolds to be the
same:

Definition 4.1.2. A smooth map g : M → N between smooth manifolds is a diffeomor-
phism if it is bijective with smooth inverse.

We say M and N are diffeomorphic if there is a diffeomorphism between them. This
is an equivalence relation.
Example 4.1.3. The real projective space RP 1 is diffeomorphic to S1.
Example 4.1.4. The complex projective plane CP 1 is diffeomorphic to S2.

34
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Example 4.1.5. All five definitions of T2 that we gave—by equations, by parametrization,
as a product, by gluing, and a quotient—are diffeomorphic.
Example 4.1.6. Rk is diffeomorphic to Rl if and only if k = l, see Problem 4.4.1.

4.1.1 Properties of smooth maps

Definition 4.1.1 at first sight involves a condition that is hard to check, as both
atlases will in general have infinitely many charts. However, it suffices to only verify the
condition on a smaller collection of charts; all these need to do is cover the entire domain
M , as well as the image f(M) ⊂ N in the target.

Lemma 4.1.7. Let {(Ui, Vi, ψi)}i∈I and {(U ′j , V ′j , ψ′j)}j∈J be collections of charts of M
and N respectively, such that

⋃
i∈I Vi = M and f(M) ⊂ ⋃j∈J V ′j . If for all i ∈ I and

j ∈ J , the map

(ψ′j)−1 ◦ f ◦ ψi : Rm ⊃ ψ−1
i (Vi ∩ f−1(V ′j )) −→ (ψ′j)−1(V ′j ) = U ′j ⊂ Rn

between open subsets of a Euclidean space is smooth, then f is smooth.

Sometimes you can pick a few charts particularly well-suited to your situation:
Example 4.1.8. A map f : Rm → Rn is smooth in the above sense if and only if it is
smooth in the sense of multivariable calculus, since we may use the identity as a single
chart for both Rm and Rn.
Example 4.1.9. If M and N are spheres Sm and Sn, we know that each of them can be
covered by two charts using stereographic projection and hence we can get away with
checking only four cases.

You do not need to explicitly pick a collection of charts beforehand:

Corollary 4.1.10. A map f : M → N is smooth if and only if for all m ∈ M there is
a chart (Uα, Vα, φα) around m in M and a chart (U ′β, V ′β, φ′β) around f(m) in N , such
that the map

(φ′β)−1 ◦ f ◦ φα : Rm ⊃ φ−1
α (Vα ∩ f−1(V ′β)) −→ (φ′β)−1(V ′β) = U ′β ⊂ Rn

between open subsets of Euclidean spaces, is smooth at m.

Proof. Pick charts as in the hypothesis for each m ∈M and apply Lemma 4.1.7 to this
collection.

Example 4.1.11. The diagonal map

∆: M −→M ×M
p 7−→ (p, p)

is smooth, where the target is made into a smooth manifold as in Example 2.2.13.
Indeed, we can verify this using charts (Uα, Vα, φα) on the domain and charts of the form
(Uα ×Uα, Vα × Vα, φα × φα) on the target. The result then amounts to verifying that the
diagonal Rk → Rk × Rk given by x 7→ (x, x) is smooth.
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In practice, one often constructs new smooth maps out of old ones using one of the
following tools. Parts (iii) and (iv) use the construction, from the Example 2.2.11, of a
smooth structure on an open subset of a smooth manifold.

Lemma 4.1.12.
(i) For every smooth manifold M , the identity map idM is smooth.

(ii) If {Ui} is an open cover of M and each f |Ui : Ui → N is smooth, then f : M → N
is smooth.

(iii) If f : M → N and g : N → P are smooth, then so is g ◦ f : M → P .
(iv) If f : M → N is smooth and U ⊂M is open, then f |U : U → N is smooth.

Note that (iv) gives the converse to (ii), so we can replace “if” by “if and only if”
there.

Proof. (i) If f = idM , then (4.1) becomes

φ−1
β ◦ φα : φ−1

α (Vα ∩ Vβ) −→ φ−1
β (Vβ),

which is smooth by definition of an atlas, as it is a transition function followed by
the inclusion of an open subset.

(ii) By Lemma 4.1.7, it is enough to verify smoothness with respect to the collection
of charts (Uα, Vα, φα) with the property that Uα ⊂ Ui for some i. In that case, we
can replace in (4.1) the map f by f |Ui and smoothness follows from the hypothesis
that f |Ui is smooth.

(iii) We write out (4.1) as

(φ′′γ)−1 ◦ g ◦ f ◦ φα : Rm ⊃ φ−1
α (Vα ∩ (g ◦ f)−1(V ′′γ )) −→ (φ′′γ)−1(V ′′γ ) = U ′′γ ⊂ Rp

Then for each chart (U ′β, V ′β, φ′β) we can write (φ′′γ)−1 ◦ g ◦ f ◦ φα as

((φ′′γ)−1 ◦ g ◦ φ′β) ◦ ((φ′β)−1 ◦ f ◦ φα)

when restricting to φ−1
α (Vα ∩ f−1(V ′β) ∩ (g ◦ f)−1(V ′′γ )). This is a composition of

a smooth map between open subsets of Rm and Rn with a smooth map between
open subsets of Rn and Rp, and hence is smooth. Since the open subsets φ−1

α (Vα ∩
f−1(V ′β)∩(g◦f)−1(V ′′γ )) give an open cover of φ−1

α (Vα∩(g◦f)−1(V ′′γ )) and smoothness
is a local property, this tells us that ((φ′′γ)−1 ◦ g ◦ f ◦ φα) is smooth.

(iv) It suffices to prove that the inclusion iU : U → M is smooth, as then f |U is the
composition f ◦iU of two smooth maps. Using the chart on U obtained by restricting
those on M , (4.1) becomes

φ−1
β ◦ φα : φ−1

α (U ∩ Vα ∩ Vβ) −→ φ−1
β (Vα ∩ Vβ),

which is just the restriction of the smooth map φ−1
β ◦ φα to an open subset.
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Remark 4.1.13. Using part (i) and (iii) we can define a category Mfd of smooth manifolds;
its objects are smooth manifolds and morphisms from M to N are smooth maps. Part
(i) then implies that this category has identity morphisms and part (iii) implies that
composition is well-defined. We takes this up again in Section 20.1.4.

Category theory is a useful language for studying topology and related fields, as
many objects of interest can be defined in terms of universal properties saying how other
objects should map to them or receive maps from them. Let us give two examples.

Recall that in Example 2.2.12 we defined the disjoint union of M tN of two manifolds
of the same dimension. It is a consequence of parts (ii) and (iv) that a map f : MtN → P
is smooth if and only if f |M and f |N are. This exhibits M t N as the (categorical)
coproduct in Mfd.

We also defined the product M ×N of two smooth manifolds, in Example 2.2.13. By
Problem 4.4.2 the projection π1 : M ×N →M and π2 : M ×N → N are smooth. Thus
by (iii) if f : P →M ×N is smooth so are its components π1 ◦ f and π2 ◦ f . Note that
we can recover f as

P
∆−→ P × P (π1◦f)×(π2◦f)−−−−−−−−−→M ×N,

which is smooth as a consequence of (iii), Example 4.1.11, and Problem 4.4.2 (d). We
conclude that f : P → M ×N is smooth if and only if its components π1 ◦ f : P → M
and π2 ◦ f : P → N are. Thus M ×N is the (categorical) product in Mfd.

It is particularly easy to construct smooth maps into or out of submanifolds.

Lemma 4.1.14. Suppose that X ⊂M is a submanifold.
(i) The inclusion i : X →M is a smooth map.

(ii) If f : X → N extends to a smooth map f̃ : M → N , then f is smooth.
(iii) If g : N → X is such that i ◦ g is smooth, then g is smooth.

Proof. (i) Since X is a submanifold, we can find charts (Uα, Vα, φα) of M covering
X such that φ−1

α (Vα ∩X) = Uα ∩ Rk. In fact, it is these charts that generate the
atlas on X. By Lemma 4.1.12 (ii), it suffices to prove that i|Vα∩X : Vα ∩X →M is
smooth. Since we can cover Vα ∩X by the single chart (Uα ∩Rk, Vα ∩X,φα|Uα∩Rk)
and its image by the chart (Uα, Vα, φα), by Lemma 4.1.7 it suffices to prove that

φ−1
α ◦ i|Vα∩X ◦ φα|Uα∩Rk : Uα ∩ Rk −→ Uα

is smooth. But it is just the inclusion of those points with last m− k coordinates
equal to 0, which is clearly smooth!

(ii) Since f = f̃ ◦ i, this follows from (i) and Lemma 4.1.12 (iii).
(iii) We again use charts (Uα, Vα, φα) of M covering X such that φ−1

α (Vα∩X) = Uα∩Rk.
By Lemma 4.1.7, g is smooth if and only if

(φα|Uα∩Rk)−1 ◦ g ◦ φ′β

is smooth for all charts (U ′β, V ′β, φ′β) of N . However, we are guaranteed that all
maps

(φα)−1 ◦ g ◦ φ′β
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are smooth, which differ from the previous maps by composition with the standard
inclusion Rk → Rm, m ≥ k. Thus the proof amounts to the observation that a map
from an open subset of Rn to an open subset of Rk is smooth when its composition
with this standard inclusion is smooth.

Remark 4.1.15. We will later be able to prove that (ii) is actually an “if and only if” (see
Problem 13.4.3).
Example 4.1.16 (Rotations as diffeomorphisms of Sn). By Lemma 4.1.14 (ii) and (iii), a
map Sn → Sn is smooth if it extends to a smooth map Rn+1 → Rn+1. We will use this
to construct diffeomorphisms of Sn. Let us take a matrix A ∈ O(n + 1), the group of
orthogonal (n+ 1)× (n+ 1)-matrices. By definition an orthogonal matrix preserves the
Euclidean norm ||x||, and hence x 7→ Ax sends Sn to Sn. Furthermore, each entry of
Ax is just a linear combination of the entries of x so is easily seen to be smooth. Thus
x 7→ Ax gives an example of a smooth map Sn → Sn. It has an evident smooth inverse
given by x 7→ A−1x.

We have thus just produced a map O(n + 1) → Diff(Sn), the latter the group of
diffeomorphisms of Sn. The latter can be endowed with a natural topology which makes
this map continuous. If n ≤ 3, it is a homotopy equivalence by work of Smale and
Hatcher [Sma59, Hat83] (see Problem 25.4.2). If n ≥ 4, it is not a homotopy equivalence;
the case n = 4 was only proven recently [Wat18].
Example 4.1.17 (General linear groups). The set Mn(R) of (n× n)-matrices with real
entries can be identified with Rn2 , and through this identification can be made into a
smooth n2-dimensional manifold. Matrix multiplication gives a map

µ : Mn(R)×Mn(R) −→Mn(R)
(A,B) 7−→ AB

which we claim is smooth. To check this, we use that there is a single chart covering
Mn(R), the standard identification, and similarly a single chart covering Mn(R)×Mn(R),
a product of two standard identifications. By Lemma 4.1.7 it suffices to prove that matrix
multiplication is smooth with respect to these charts only; this is true because it is a
polynomial in the entries of the matrices and hence smooth.

The open subset GLn(R) ⊂Mn(R) of invertible matrices, which can be described as
the complement of the closed subset determined by the equation det = 0, is hence also
a smooth n2-dimensional manifold. Since a composition of invertible matrices is again
invertible, Lemma 4.1.14 implies that matrix multiplication restricts to a smooth map

µ : GLn(R)×GLn(R) −→ GLn(R).

We can also take the inverse of an invertible matrix, giving a map

ι : GLn(R) −→ GLn(R)
A 7−→ A−1,

which is also smooth. Indeed, using again the standard identifications as charts, we can
use Cramer’s rule:

A−1 = 1
det(A)C

T
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with C the cofactor matrix; its (i, j)th entry is given by (−1)i+j det(Âij) where Âij is
obtained from A by deleting the ith row and jth column. The details are not important,
only that it is a smooth function of the entries of an invertible matrix.

An example of a group which compatibly is a smooth manifold deserves a name:

Definition 4.1.18. A Lie group is a smooth manifold G which is also a group, such
that multiplication µ : G×G→ G and inverse ι : G→ G are both smooth.

4.2 Derivatives and tangent spaces

We want to extend the notion of a derivative of a smooth map between two open
subsets of Euclidean space, to a smooth map between manifolds. This is useful because
the derivative determines the local behavior of smooth maps. Using it, we will be able to
formulate and prove global versions of the submersion and immersion theorem.

If you are unfamiliar with the total derivative of smooth maps between open subsets
of Euclidean spaces, take a look at Chapter 2 of [DK04a]. For each x ∈ Rk, we can
think of Rk as a space of vectors based at x. It has a standard basis. A smooth map
g : Rk ⊃ U → Rk′ has a total derivative at x given by the linear map, whose matrix with
respect to the standard bases is the (k′ × k)-matrix of partial derivatives

∂g1
∂x1

(x) ∂g1
∂x2

(x) · · · ∂g1
∂xk

(x)
∂g2
∂x1

(x) ∂g2
∂x2

(x) · · · ∂g2
∂xk

(x)
...

... . . . ...
∂gk′
∂x1

(x) ∂gk′
∂x2

(x) · · · ∂gk′
∂xk

(x)

 ,

with gj : U → R the jth component of g.
Our goal will be to construct for each point m in a k-dimensional manifold M a tangent

space TmM , as well as for each smooth map f : M → N a derivative dmf : TmM →
Tf(m)N . The tangent space should satisfy the following properties:

(I) Each tangent space TmM is a k-dimensional R-vector space.
(II) In local coordinates it can be identified with Rk in a natural manner.

The derivative should satisfy similar properties:
(I’) Each derivative dmf is a linear map.

(II’) It satisfies dm(idM ) = idTmM , and the chain rule dm(g ◦ f) = df(m)g ◦ dmf .
(III’) In local coordinates it can be identified with the total derivative in a natural

manner.
We haven’t explained what “in a natural manner” means here. It is intended informally,
but can be given some content by demanding that the identifications are compatible with
changing coordinates.

There is a number of perspectives on tangent spaces and derivatives, leading to
different but equivalent definitions. Which is most useful depends on your setting, so
we will discuss all five of them eventually. In the end, the “stating globally” part of our
philosophy to state globally and prove locally, will allow us to dispense with the details
of the definitions.
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4.2.1 The algebraicists’ definition

Intuitively, the tangent space to a k-dimensional submanifold of Euclidean space at
some point is the k-dimensional affine linear subspace that best approximates it. However,
we do not know (yet) that every smooth manifold is a submanifold of some Euclidean
space, nor do we want to verify that the resulting definition is independent of the choice
of such an embedding. So instead, we give a definition of TmM that only refers to M
and its maximal atlas. The first definition we will give, the algebraicists’ one, does so,
and will be our official one. However, you are free to use one of the definitions in the
next section, if those are more convenient for solving the problem at hand.

Germs of smooth maps and smooth functions

We start with the observation that the derivative of f : M → N at m ∈M should only
depend on the behavior of f in a small neighborhood of m. Let us define an equivalence
relation ∼ on the set

{f : U → N | U ⊂M an open neighborhood of m, f smooth},

by saying that

f ∼ g if there exists an open neighborhood V of m such that f |V = g|V .

Definition 4.2.1. The equivalence class of f : U → N under ∼ is called germ of f at m,
and denoted f : (M,m)→ N . If we like to stress that f(m) = n, we will use the notation
f : (M,n)→ (N,n).

We can compose germs: given f : (M,m) → (N,n) and g : (N,n) → (P, p), their
composition is

g ◦ f := g ◦ f.
I’ll leave it to you check this is well-defined, i.e. independent of the choice of representatives.

Definition 4.2.2. A function germ is a germ α : (M,m)→ R. The set of function germs
is denoted E(M,m).

Pointwise addition, scaling, and multiplication of functions induces on E(M,m)
the structure of an R-algebra: this means it has addition, scaling, and multiplication
operations

f + g := f + g, λf = λf, and fg := fg.

These should behave in the usual manner, i.e. satisfy commutativity, associativity,
unitality, and distributivity axioms. I’ll leave it to you to check these operations are
well-defined, and satisfy the required properties (which will follow directly from the
corresponding properties of the real numbers)
Example 4.2.3. Evaluation at m ∈M induces a map

E(M,m) −→ R
f 7−→ f(m).

This is an R-algebra homomorphism, i.e. preserves addition, scaling, and multiplication.
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We can precompose function germs in E(M,m) by a germ f : (Q, q)→ (M,m), and
thus get an R-algebra homomorphism

f∗ : E(M,m) −→ E(Q, q)
α 7−→ α ◦ f = α ◦ f.

The usual properties of composition of functions imply:

Lemma 4.2.4.
· f∗ is an R-algebra homomorphism,
· id∗ = id, and
· (g ◦ f)∗ = f∗ ◦ g∗.

In particular, if φ is a diffeomorphism then φ∗ is an isomorphism of R-algebras; its
inverse is given by (φ−1)∗. Furthermore, since germs only involve small open neighbor-
hoods of m, it suffices that φ is a local diffeomorphism, since then its restriction to an
open neighborhood around the point at which we take germs is a diffeomorphism.

We can apply this observation to a chart (Uα, Vα, φα) with m ∈ Vα. By translation,
we may assume without loss of generality that φα(0) = m. This is a local diffeomorphism
and hence induces an isomorphism

(φα)∗ : E(M,m) −→ Ek,

of E(M,m) with Ek := E(Rk, 0), the R-algebra of functions germs (Rk, 0)→ R. Any two
such identifications differ by an isomorphism (ψβα)∗ induced by a transition function.

From germs to the algebraicists’ definition of tangent spaces

The idea behind this definition is that a vector ~v based at m ∈M induces a directional
derivative of functions f : M → R, which we can imprecisely write as

f 7−→ d~v(f) := df(m+ t~v)
dt

(0) ∈ R. (4.2)

(The difficulty is that we can’t make sense of m+ tv, but let’s just go with it.) This only
depends on the germ f of f at m. Furthermore, by the linearity of derivatives and the
product rule, this satisfies

d~v(f + g) = d~v(f) + d~v(g), d~v(λf) = λd~v(f),

and d~v(fg) = d~v(f)g(m) + f(m)d~v(g).

Let us abstract this definition:

Definition 4.2.5. A derivation X : E(M,m)→ R is a function which satisfies
· X(f + g) = X(f) +X(g),
· X(λf) = λX(f), and
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· X(fg) = X(f)g(m) + f(m)X(g).

Example 4.2.6. The value of X on the constant function 1 is given by

X(1) = X(1 · 1) = X(1) · 1 + 1 ·X(1) = 2 ·X(1),

so X(1) = 0. As a consequence of linearity, X(constant function) = 0.
We can add and scale such derivations, making them into a R-vector space: (X +

Y )(f) = X(f) + Y (f) and (λX)(f) = λX(f).

Definition 4.2.7. The tangent space TmM is the vector space Der(E(M,m)) of deriva-
tions X : E(M,m)→ R.

Let us recap: E(M,m) us the R-algebra of germs at m of smooth functions M → R.
We take derivations of this algebra, a notion inspired by directional derivatives; these
form a vector space as in desideratum (I).

It remains to show that the vector space TmM is k-dimensional if M is k-dimensional,
as in desideratum (II). To do so, we use that the isomorphism (ϕα)∗ : E(M,m) ∼→ Ek =
E(Rk, 0) induced by a chart induces a linear isomorphism

T0Rk = Der(Ek)
∼−→ Der(E(M,m)) = TmM.

Thus it suffices to prove that T0Rk is k-dimensional. Unlike on M , on Rk we can make
sense of addition, and hence the directional derivatives of (4.2) with respect to each of
the k coordinate directions give derivations

∂

∂xi
: Ek −→ R

f 7−→ ∂f

∂xi
(0).

These are linearly independent, by applying them to the coordinate functions x =
xj : (x1, . . . , xk) 7→ xj . Every other derivation is a linear combination of these:

Proposition 4.2.8. The derivations ∂
∂xi

form a basis of T0Rk, and in particular the
latter is k-dimensional.

We will use the following lemma:

Lemma 4.2.9. Let U ⊂ Rk be an open neighborhood and f : U → R a smooth function.
Then there exist smooth functions f1, . . . , fk : U → R such that

f(x) = f(0) +
k∑
i=1

xifi(x).

Proof. The fundamental theorem of analysis implies

f(x)− f(0) =
∫ 1

0

d

dt
f(tx1, . . . , txk)dt =

n∑
i=1

xi

∫ 1

0
dif(tx1, . . . , txn)dt,

with dif the partial derivative in the ith coordinate direction. So we have that

fi(x) =
∫ 1

0
dif(tx1, . . . , txn)dt.
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This implies that for germs we have f = f(0) +∑
i xifi.

Proof of Proposition 4.2.8. We prove that X = ∑k
i=1X(xi) ∂

∂xi
by proving that

Y := X −
k∑
i=1

X(xi)
∂

∂xi

vanishes on all germs. By construction, it vanishes on the coordinate function. Then we
have that

Y (f) = Y
(
f(0) + xifi

)
= Y (f(0)) +

∑
i

Y (xifi)

=
∑
i

Y (xi)fi(0)

= 0.

Here we use that xi evaluates to 0 at the origin, and that Y (xi) vanishes by construction.

The algebraicists’ definition of derivatives

A smooth map f : M → N sending m to n induces a map of germs f∗ : E(N,n)→
E(M,m), which in turn induces a map of tangent spaces

dmf : TmM −→ TnN

X 7−→ X ◦ f∗.

This is the derivative of f at m. From the properties of f∗, we easily deduce the basic
properties of the derivative, desiderata (I’) and (II’):

Lemma 4.2.10.
(i) dmf is a linear map

(ii) dmid = id, and
(iii) dm(g ◦ f) = df(m)g ◦ dmf .

You may recognize (iii) as an incarnation of the chain rule. We will compare it to the
chain rule in multivariable calculus later in this section.
Example 4.2.11. If f : M → N is a diffeomorphism, then it follows from (ii) and (iii) that
dmf is invertible with inverse df(m)f

−1.
Example 4.2.12. To compute the derivative, you can often exploit the chain rule. Recall
from Problem 4.4.2 that π1 : X × Y → X has derivative

d(x,y)π1 : TxX ⊕ TyY = T(x,y)(X × Y ) −→ TxX,



44 Chapter 4 Smooth maps and their derivatives

is given by projection onto the first summand. The analogous statement is true for
π2 : X × Y → Y .

We will deduce from this that the diagonal map

∆: M −→M ×M
m 7−→ (m,m)

has derivative Tm∆: TmM → Tm×m(M ×M) = TmM ⊕ TmM given by v 7→ (v, v). To
see this, observe that π1 ◦∆ and π2 ◦∆ have derivatives given by the first and second
components of Tm∆. We apply the chain rule to π1 ◦∆ = idM = π2 ◦∆. For example,
for the first equality: the first component of Tm∆(v) is given by

T(m,m)π1 ◦ Tm∆(v) = Tm(π1 ◦∆)(v) = Tm(idM )(v) = v.

For example, this implies that the diagonal map has injective derivative everywhere.
Let us finally describe explicitly Tmf in terms of charts, and verify desideratum

(III’). Fix a pair of charts (Uα, Vα, φα) such that φα(0) = m and (U ′α′ , V ′α′ , φ′α′) such that
φ′α′(0) = f(m). Let us denote f(m) by n. What is the dashed linear map which makes
the following diagram commute?

TmM TnN

Rk ∼= T0Rk Rk′ ∼= T0Rk
′
.

dmf

∼= d0φα ∼= d0φ′α′ (4.3)

Lemma 4.2.13. It is the total derivative D0((φ′α′)−1 ◦ f ◦ φα).

Proof. As (d0φ
′
α′)−1 = dn((φ′α′)−1) by Example 4.2.11, and

dn(φ′α′)−1 ◦ dmf ◦ d0φα = d0((φ′α′)−1 ◦ f ◦ φα)

by (iii), it suffices to compute explicitly the derivative of g : Rk → Rk′ at the origin; we
will substitute g = (φ′α′)−1 ◦ f ◦ φα. We write gj : Rk → R for the jth component of g,
1 ≤ j ≤ k′.

Given h ∈ Ek′ , we can use the chain rule to compute that

d0g( ∂
∂xi

)(h) = ∂(h ◦ g)
∂xi

=
k′∑
j=1

∂h

∂yj
(0)∂gj

∂xi
(0) =

k′∑
j=1

∂gj
∂xi

(0) ∂
∂yj

(h).

As this is true for all h, the ∂
∂yj

-component is ∂gj
∂xi

(0). These are exactly the entries of the
total derivative matrix.

We can use this to justify calling dm(g ◦ f) = df(m)g ◦ dmf a chain rule, by proving
that under charts it reduces to the chain rule you already know. Fixing a third chart, we
have a triple of commutative diagrams (three instances of (4.3))

TmM TnN

Rk ∼= T0Rk Rk′ ∼= T0Rk
′
,

dmf

∼= T0φα

D0((φ′
α′ )
−1◦f◦φα)

∼= T0φ′α′
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Tf(m)N Tg◦f(m)P

Rk′ ∼= T0Rk
′ Rk′′ ∼= T0Rk

′′
,

df(m)g

∼= T0φ′α′

D0((φ′′
α′′ )
−1◦g◦φ′

α′ )

∼= T0φ′′α′′

TmN Tg◦f(m)P

Rk ∼= T0Rk Rk′′ ∼= T0Rk
′′
.

dm(g◦f)

∼= T0φα

D0((φ′′
α′′ )
−1◦g◦f◦φα)

∼= T0φ′′α′′

Identifying the term df(m)g ◦ dmf in charts using the vertical arrows in the three
commutative diagrams pictured above, we get a composition of total derivatives

D0((φ′′α′′)−1 ◦ g ◦ φ′α′) ◦D0((φ′α′)−1 ◦ f ◦ φα).

By the ordinary chain rule this is the total derivative

D0((φ′′α′′)−1 ◦ g ◦ φ′α′ ◦ (φ′α′)−1 ◦ f ◦ φα) = D0((φ′′α′′)−1 ◦ g ◦ f ◦ φα),

which is indeed dm(g ◦ f) under the above identification.
Thus, we can combine the three squares into a larger commutative diagram combining

the general chain rule and the chain rule in local coordinates:

TmM TnN dg◦f(m)P

Rk ∼= T0Rk Rk′ ∼= T0Rk
′ Rk′′ ∼= T0Rk

′′

dmf

dm(g◦f)

Df(m)g

∼= T0φα

D0((φ′′
α′′ )
−1◦g◦f◦φα)

D0((φ′
α′ )
−1◦f◦φα)

∼= T0φ′α′

D0((φ′′
α′′ )
−1◦f◦φ′

α′ )

∼= T0φ′′α′′

4.3 Alternative definitions of tangent spaces and derivatives

Recall that we are giving five definitions of the tangent space TmM , and have just
given the first. In this section we give three other definitions, leaving a final one to the
Problem 4.4.6.

4.3.1 The definition for submanifolds of Euclidean space

You probably have an intuition for the tangent space at m to some k-dimensional
smooth submanifold M ⊂ Rn. Informally, it is the k-dimensional affine plane in Rn
through m ∈M , which is the best linear approximation to M . Before making this precise,
we give an example:
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Example 4.3.1. By definition, a point x ∈ Sk ⊂ Rk+1 is given by a unit length vector in
Rk+1. Then the tangent space TxSk is the k-dimensional affine plane given by

TxS
n = {x+ v | v ⊥ x}.

Note that, upon translating m back to the origin, this affine plane yields a linear
subspace of Rn. This gives TmM the structure of an m-dimensional real vector space.

To define TmM rigorously, we fix a charts (Uα, Vα, φα) of M such that m ∈ Vα, and
let x = φ−1

α (m). Then from the inclusion i : M → Rn, we can construct a smooth map
between open subsets of Euclidean space

i ◦ φα : Rk ⊃ Uα −→ Rn.

The best linear approximation to this smooth map at x is given in terms of the total
derivative Dx(i ◦ φα) as

Rk ⊃ Uα 3 y 7−→ (i ◦ φα)(x) +Dx(i ◦ φα)(y − x) ∈ Rn.

It is a consequence of the definition of a submanifold that D(i ◦ φα)x is an injective
linear map; indeed, in terms of some other chart of Rn it is a restriction of the inclusion
Rk ↪→ Rn. This tells us that:

Definition 4.3.2. One definition of the tangent space TmM is as

T submfd
m M := m+Dx(i ◦ φα)(Rk),

considered as a k-dimensional real vector space by its identification with Dx(i ◦ φα)(Rk).

We need to verify that this is independent of the choice of chart. This is the case
because if we use another chart (Uβ, Vβ, φβ), we have

i ◦ φβ = (i ◦ φα) ◦ (φ−1
α ◦ φβ) = (i ◦ φα) ◦ ψβα,

so its total derivative is given by Dx(i ◦ φα) ◦Dx′(ψβα). Since ψβα is a diffeomorphism,
Dx′(ψβα) is a linear isomorphism and hence

Dx′(i ◦ φβ)(Rk) = Dx(i ◦ φα)(Rk).

Relation to algebraicists’ definition

We have previously identified T0Rn with the n-dimensional real vector space spanned
by the derivations ∂/∂xi. You can think of this as applying the formalism above to
M = Rn, using the standard chart (Rn,Rn, id).

Given an inclusion i : M → Rn, where without loss of generality we may assume by
translation that i(m) = 0, we can compute the derivative of i at m with respect to the
standard chart of Rn and some chart (Uα, Vα, φα) of M with φα(0) = m. By the chain
rule there is a commutative diagram of linear maps

TmM T0Rn

Rk ∼= T0Rk Rn ∼= T0Rn.

dmi

∼= T0φα

D0(i◦φα)

∼= id
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Because M is a submanifold dmi is injective, as in terms of appropriate charts it is the
derivative of the inclusion Rk → Rn. This tells us that we could have defined TmM as
the image of the linear map dmi. By the commutative diagram, this linear subspace is
the same as the image of the total derivative D0(i ◦ φα). Undoing the translation of i(m)
to the origin, we recover the T submfd

m M . We conclude that there is a linear isomorphism

TmM ∼= T submfd
m M.

4.3.2 The physicists’ definition

For physicists, a tangent vector is described in terms of a chart (thought of as a
local coordinate system), which transforms in a certain way when passing to other local
coordinates. That is, an element of TmM is an equivalence class of a chart (Uα, Vα, φα)
such that φα(0) = M and a vector v ∈ Rk. The equivalence relation tells us that v
transforms as expected: by applying the total derivative of the transition function ψβα.

Definition 4.3.3. The physicists’ definition of the tangent space of M at m is

T phys
m M =

 ⊔
(Uα,Vα,φα)

Rk
 /'

where the disjoint union is over all charts with m = φα(0) and the equivalence relation
' is given by

(α,~v) ' (β, ~w) if and only if ~w = D0ψβα(~v).

Remark 4.3.4. This definition reflects the experimental roots of physical theories: the
transformation rule under change of local coordinates for physical quantities is determined
experimentally, and a mathematical framework is built on top of these results.

Since each D0ψβα is a linear map, addition and scalar multiplication in each copy of
Rk induce a vector space structure on T phys

m M . Since each copy of Rk is identified with
every other copy, this is a k-dimensional vector space. Finally, the maps

Rk −→ TmM

(α,~v) 7−→ (D0φα)
(∑

i

vi∂/∂xi
)

are compatible with the equivalence relation, and thus induce a linear map

T phys
m (M) −→ TmM.

On representatives (α,~v), its composition with the linear isomorphism (D0φα)−1 : TmM →
Rk is given by (α,~v) 7→ ~v, so this is an isomorphism. We conclude that

TmM ∼= T phys
m (M).
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This identification is compatible with the construction of derivatives. Any smooth
map f : M → N induces a map

dphys
f : T phys

m M −→ T phys
f(m)N

[α,~v] 7−→
[
α′, D0((φ′α′)−1 ◦ f ◦ φα)(~v)

]
.

Under the identification of the left and right sides with the tangent spaces TmM and
Tf(m)M defined using derivations, this is the ordinary derivative:

Lemma 4.3.5. The following diagram of linear maps commutes

T phys
m M T phys

f(m)N

TmM Tf(m)N.

∼=

dphys
m f

∼=
dmf

4.3.3 The geometers’ definition

For geometers, a tangent vector is the derivative of a curve. As such, it is an
equivalence class of germs of smooth maps

γ : (R, 0) −→ (M,m).

Because we want to avoid a circular definition, we can not refer to the derivative of this
map. However, we can take a function germ g : (M,m)→ R and compute

d
dtg ◦ γ(0),

a derivative of a real-valued function on a neighborhood of the origin in R.
Then the equivalence relation ≈ on curves through m is given by

γ ≈ η if and only if d
dtg ◦ γ(0) = d

dtg ◦ η(0) for all g : (M,m)→ R.

That is, if γ and η define the same directional derivative.

Definition 4.3.6. The geometers’ definition of the tangent space of M at m is

T geom
m M := {germs (R, 0)→ (M,m)}/≈.

There is a map

T geom
m M = {germs (R, 0)→ (M,m)}/≈ −→ TmM = Der(E(M,m))

[γ] 7−→
(
h 7→ d(h ◦ γ)

dt

)
By evaluation on coordinate functions in a chart, this is seen to be injective. By

construction of curves in the same chart, this is seen to be surjective. Hence it is a
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bijection. In particular, we can use this to make T geom
m M into a vector space, getting

tautologically a linear isomorphism.

TmM ∼= T geom
m M.

Again, this is compatible with the construction of derivatives. Any smooth map
f : M → N induces a map

dgeom
f : T geom

m M −→ T geom
f(m)N

[γ] 7−→ [f ◦ γ].

Under the identifications with tangent spaces defined using derivations, this is the ordinary
derivative:

Lemma 4.3.7. The following diagram of linear maps commutes

T geom
m M T geom

f(m)N

TmM Tf(n)N.

∼=

dgeom
m f

∼=
dmf

4.4 Problems

Problem 4.4.1 (Smooth invariance of domain). Prove that Rk and Rl are not diffeo-
morphic if k 6= l. (Hint: look at the derivative of a hypothetical such diffeomorphism.)

Problem 4.4.2 (Maps in or out of products). Let X,Y be smooth manifolds.
(a) Prove that the projection maps π1 : X × Y → X given by π1(x, y) = x and

π2 : X × Y → Y given by π2(x, y) = y are both smooth.
(b) Show that

T(x,y)(X × Y ) −→ TxX ⊕ TyY
v 7−→ (d(x,y)π1(v), d(x,y)π2(v))

(4.4)

is an isomorphism of R-vector spaces.
(c) Fixing a point y ∈ Y , there is an injection map

iy : X −→ X × Y
x 7−→ (x, y),

which you may assume is smooth. Prove that its derivative dxiy : TxX →
T(x,y)(X × Y ) ∼= TxX ⊕ TyY is given by w 7→ (w, 0).

(d) Let f : X → X ′ and g : Y → Y ′ be smooth maps. Prove that

f × g : X × Y −→ X ′ × Y ′

(x, y) 7−→ (f(x), g(y))

is smooth. Prove that its derivative d(x,y)(f×g) : T(x,y)(X×Y )→ T(f(x),g(y))(X ′×
Y ′) is given by (v, w) 7→ (dxf(v), dyg(w)) under the isomorphism (4.4).
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Problem 4.4.3 (Complex general linear groups). Show that GLn(C) is a (2n)2-dimensional
Lie group.

Problem 4.4.4 (Orthogonal groups). Show that O(n) ⊂ GLn(R) is an n(n−1)
2 -dimensional

Lie group.

Problem 4.4.5 (Derivatives of addition and inverse). Let G be a Lie group as in
Definition 4.1.18, and e ∈ G denote its identity element.

(a) What are the restrictions of µ to G× {e} and {e} ×G?
(b) Use the chain rule to prove that the derivative de,eµ : TeG⊕ TeG→ TeG is given

by addition (v, w) 7→ v + w.
(c) Let ∆: G→ G×G denote the diagonal map g 7→ (g, g). What is the composition

µ ◦ (id× ι) ◦∆?
(d) Use the chain rule to prove that the derivative deι : TeG → TeG is given by

negation v 7→ −v.

Problem 4.4.6 (The algebraic geometers’ definition). In this problem you will give the
algebraic geometers’ definition of a tangent space.

(a) Prove that there is a unique maximal ideal of E(M,m), given by mm = {f |
f(m) = 0}.

(b) Prove that for (M,m) = (Rk, 0), the maximal ideal m0 is spanned by the coordi-
nate functions x1, . . . , xk.

(c) Prove that E(M,m)/mm is a 1-dimensional R-vector space, and mm/m
2
m is k-

dimensional if M is k-dimensional.
The algebraic geometers’ definition of the tangent space of M at m is

T ag
mM := (mm/m

2
m)∗.

(d) Construct a linear map dag
mf : T ag

mM → T ag
f(m)N for each smooth map f : M → N .

Prove it satisfies dag
m id = id and dag

m (g ◦ f) = dag
f(m)g ◦ d

ag
mf .
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Tangent bundles

We now assemble the tangent spaces to tangent bundles, and the derivatives of a
smooth map to a map of tangent bundles. This appears in Chapter 2 of [BJ82]. See also
[Tu11, Chapters 6, 8].

5.1 Vector bundles

The tangent bundle is the prototypical example of a mathematical object which is
worth studying by itself.

5.1.1 The definition of a vector bundle

Recall that in its most concrete form, the total derivative of a smooth map f : Rm →
Rn at a point a ∈ Rm is the (n×m)-matrix of partial derivatives of its components at
x, a linear map Rm → Rn. Thus the total derivative of f is a collection of linear maps
Rm → Rn parametrized by x ∈ Rn. On smooth manifolds the domains Rm and targets
Rn will depend on x and f(x) respectively; they will be collections of vector spaces
parametrized by a manifold. Such an object is called a vector bundle. It is one of the
other geometric objects studied by differential topology in addition to smooth manifolds.

Definition 5.1.1. A k-dimensional vector bundle over a topological space X is a topology
on the disjoint union E = ⊔

x∈X Ex of a collection of real vector spaces, such that for
each x ∈ X there exists an open subset V ⊂ X containing x and a homeomorphism

ζ :
⊔
x∈V

Ex
∼=−→ V × Rk

that restricts to an invertible linear map Ex → {x} × Rk for each x ∈ V .

Let p : E → X denote the function that sends Ex the point {x}. It is a consequence
of the definition that p is continuous. The map p is called the projection, E the total
base, X the base, and each Ex is a fiber. Finally, the pair (V, ζ) is called a bundle chart.
Example 5.1.2. The cartesian product X×Rk has an evident structure of a k-dimensional
vector bundle. We call this the trivial k-dimensional vector bundle over X. The property
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in Definition 5.1.1 is often referred to as a local triviality condition, as it is says that E
locally looks like such a trivial bundle.

Example 5.1.3. The real projective space RPn is the space of lines in Rn+1. There is a
1-dimensional vector bundle over it with fiber of L given by those v ∈ Rn+1 which lie in
L. This is the canonical bundle. More precisely, writing RPn = Sn/{±1}, we have

E[x] = {v ∈ Rn+1 | v = λx for some λ ∈ R}.

We topologize ⊔[x]E[x] as a subspace of RPn × Rn+1. The local triviality condition is
verified using charts.

5.1.2 Maps between vector bundles

Definition 5.1.4. Let p : E → X and p′ : E′ → X ′ be vector bundles (possibly of
different dimension). For a continuous map F : E → E′ to be a map of vector bundles,
the first requirement is that there is a continuous map f : X → X ′ the following diagram
commute

E E′

X X ′.

F

p p′

f

Then F restricts to a map of fibers Fx : Ex → E′f(x), and the second requirement is that
this is a linear map.

Note that f is uniquely determined by F , and we say that F covers f or F is over f .
It is clear that the identity is a map of vector bundles, and that maps of vector bundles
are closed under composition.

Definition 5.1.5. An isomorphism of vector bundles is a map of vector bundles which
is bijective and whose inverse is also a map of vector bundles.

Example 5.1.6. Over S1 we have exactly two 1-dimensional vector bundles up to isomor-
phism: the trivial one and the “Mobius strip” bundle. More precisely, the latter is the
canonical bundle over RP 1 ∼= S1. The latter is given by taking [0, 1]× R and identifying
the endpoints by (0, v) ∼ (1,−v).

Example 5.1.7. Let X × Rm be a trivial bundle. The (m ×m)-matrices Matm(R) are
topologized by identifying them with Rm2 through their entries. Then any continuous
map A : X → Matm(R) gives rise to a map of vector bundles

X × Rm −→ X × Rm

(x, v) 7−→ (x,A(x)(v)).

This is an isomorphism of vector bundles if and only if A takes values in GLm(R) ⊂
Matm(R), the subset of invertible matrices.
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5.1.3 Smooth vector bundles

As for topological manifolds, we can package the data of k-dimensional vector bundle
over a topological space into an atlas: the collection of bundle charts (V, ζ) for (p,E,X)
with V covering X is called a bundle atlas. As in the case of smooth atlases, we can
define maximal bundle atlases and prove that every bundle atlas is contained in a unique
maximal bundle atlas.

Such a bundle atlas has transition functions: taking (Vα, ζα) and (Vβ, ζβ), the compo-
sition

(Vα ∩ Vβ)× Rk ζ−1
α−→ p−1(Vα ∩ Vβ) ζβ−→ (Vα ∩ Vβ)× Rk

is necessary of the form (x, v) 7→ (x, ξαβ(x)(v)) for a linear map ξαβ(x) : Rk → Rk
depending continuously on x.

If the base were a smooth manifold, so are the Vα ∩ Vβ. Recall that GLk(R) is an
open subset of Rk2 and hence inherits a smooth structure, we can make sense of whether
these transition functions are smooth.

Definition 5.1.8. Suppose M is a smooth manifold. Then a vector bundle (p,E,M) is
smooth if all transition functions ξβα : Uα ∩ Uβ → GLk(R) are smooth.

The proof of the following is left as a problem:

Lemma 5.1.9. If (p,E,M) is a smooth vector bundle then E has a unique smooth
structure such that all bundle charts ζα : p−1(Vα)→ Vα × Rk are diffeomorphisms. Then
p : E →M is a smooth map.

When we have a pair of vector bundles (p,E,M) and (p′, E′,M ′) and a map F : E →
E′ of vector bundles over f : M →M ′, then we can use the bundle charts to write

(Vα ∩ f−1(V ′α′))× Rk ζ−1
α−→ p−1(Vα ∩ f−1(V ′α′))

F−→ (p′)−1(V ′α′)
ζ′
α′−→ V ′α′ × Rk

′
.

As before, this preserves the first coordinate and hence is encoded by a continuous map
(Uα ∩ f−1(V ′α′))→ Lin(Rk,Rk′).

We can ask this to be smooth, and if the vector bundles are smooth this is independent
of the choice of bundle charts. If all these maps are smooth, we say that the map
F : (p,E,M)→ (p′, E′,M ′) of vector bundles is smooth. This is in particular always a
smooth map between the manifolds M and M ′.

5.2 The tangent bundle and the derivative

In the previous chapter, we described how to assign a vector space TmM to each
m ∈M , as well as maps

dmf : TmM −→ Tf(m)N,

which satisfy the desiderata
(I’) dmf is a linear map.

(II’) dmid = id and dm(g ◦ f) = df(m)g ◦ dmf .
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(III’) In local coordinates TmM is Rk and dmf is the total derivative.
We next explain how to patch together the vector spaces TmM to a “vector bundle

TM over M” and the linear maps dmf to a map df : TM → TN for each smooth map
f : M → N . These should satisfy analogous desiderata

(I”) df is a map of vector bundles.
(II”) d(id) = id and d(g ◦ f) = dg ◦ df ,

(III”) In local coordinates TM is given by Rk’s and df by the total derivatives.

5.2.1 Constructing the tangent bundle

To construct the tangent bundle TM of a manifold, we shall employ a general
construction. This is the analogue for vector bundles of Example 2.2.14.

Definition 5.2.1. A k-dimensional pre-vector bundle over a space X is a disjoint
union E = ⊔

x∈X Ex of a collection of real vector space Ex, together with a collection
B = {(Vα, ζα)} of open subsets covering X and bijections

ζα :
⊔
x∈Vα

Ex
∼=−→ Vα × Rk

that restrict to invertible linear maps Ex → {x} × Rk. Furthermore, we require that all
transition functions ξαβ : Vα ∩ Vβ → GLk(R) are continuous.

That is, a pre-vector bundle is essentially a vector bundle that is of yet without a
topology on its total space. However, we have:

Lemma 5.2.2. There is exactly one topology on E so that B = {(Vα, ζα)} is a bundle
atlas for (p,E,B).

Proof sketch. Give E the smallest topology such that all ζα are continuous.

If we replace X by a manifold M , we can similarly define k-dimensional smooth
vector bundles, by demanding that all ξαβ are smooth. Using the above construction then
makes (p,E,M) into a smooth vector bundle. In particular, we can define the tangent
bundle TM by prescribing a smooth pre-vector bundle on M :

· TM = ⊔
m∈M TmM ,

· B = {Vα, ζα} where (Uα, Vα, φα) is ranges over the charts of the maximal atlas of
M , and

· ζα : ⊔m∈M TmM → Vα × Rk is given by

(m, v) 7−→
(
m, (dφ−1

α (m)φα)−1(v)
)
.

Implicitly, we are using here the identifications of Dφ−1
α (m)R

k with Rk using the
basis ∂

∂x1
, . . . , ∂

∂xk
.
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Definition 5.2.3. The smooth vector bundle TM over M constructed from this pre-
vector bundle is the tangent bundle to M .

Example 5.2.4. If U ⊂ Rk is open, then TU = U × Rk.
Observe that the tangent bundle is itself a smooth manifold. Indeed, there is a

unique 2k-dimensional smooth structure on TM such that each of the local trivializations
TM |U ∼= U × Rk induced by a chart of M is a diffeomorphism. As a consequence, the
projection map TM → M is a smooth map, and the zero section s0 : M → TM is an
embedding whose image is a codimension k submanifold called the 0-section.

5.2.2 The derivative and its properties

It is now easy to define the derivative df : TM → TN of a smooth map f : M → N .
This will be a map of vector bundles which covers f , and hence it suffices to give linear
maps dmf : TmM → Tf(n)N and verify that these are continuous and in fact smooth. Of
course, we will take these linear maps the derivatives as we defined before.

Lemma 5.2.5. The derivatives dmf : TmM → Tf(n)N assemble to a smooth bundle map
df : TM → TN .

Proof. Since being smooth is a local property, it suffices to check this with respect to the
bundle charts defining TM and TN , i.e. those arising from charts. That is, we need to
prove that

(Vα ∩ f−1(V ′β))× Rk −→ V ′β × Rk
′

(m, v) 7−→
(
f(m), [(d(φ′

β
)−1(f(m))φ

′
β)−1 ◦ dmf ◦ d(φ′

β
)−1(m)φ

′
β(m)](v)

)
is smooth. To do so, we precompose it with the diffeomorphism

φα × id : φ−1
α (Vα ∩ f−1(V ′β))× Rk

∼=−→ (Vα ∩ f−1(V ′β))× Rk

and postcompose it with the inverse of

φβ × id : U ′β × Rk
∼=−→ V ′β × Rk.

The result is the map φ−1
α (Vα∩f−1(V ′β))×Rk −→ U ′β×Rk′ between trivial vector bundles

over open subsets of Euclidean space given by

(x, v) 7−→
(
(φ′β)−1 ◦ f ◦ φα(x), [(d(φ′

β
)−1(f(φα(x)))φ

′
β)−1 ◦ df(x)f ◦ dxφα](v)

)
Using the chain rule, we identify the right term as dx((φ′β)−1 ◦ f ◦ φα), which equals

the total derivative Dx((φ′β)−1 ◦ f ◦ φα). That is, we are dealing with the map

(x, v) 7−→
(
(φ′β)−1 ◦ f ◦ φα(x), Dx((φ′β)−1 ◦ f ◦ φα)(v)

)
.

This is evidently linear on each fiber and smooth.
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Example 5.2.6. If U ⊂ Rk and V ⊂ Rk′ are open and f : U → V is a smooth map, then
df : TU → TV is the map

TU = U × Rk −→ TV = V × Rk

(x, v) 7−→ (f(x), Dxf(v))

obtained by applying pointwise the total derivative of f .
Applying dm(id) = id and dm(g ◦ f) = df(m)g ◦ dmf in each fiber, we see that:

Lemma 5.2.7. The derivative satisfies d(id) = id and d(g ◦ f) = dg ◦ df .

5.3 Linear algebra of vector bundles

We want to generalize our usual definitions and constructions for vector spaces to
vector bundles.

5.3.1 Subbundles

The generalization of a subspace of a vector space is a subbundle.

Definition 5.3.1. Let p : E → X be a k-dimensional vector bundle. A subspace E′ ⊂ E
is a k′-dimensional subbundle if each E′x := p−1(x)∩E′ is a k′-dimensional linear subspace
of Ex = p−1(E) and there are local trivializations φ : ⊔x∈U Ex ∼= U×Rk sending ⊔x∈U E′x
to U × Rk′ .

If (p,E,M) is a smooth vector bundle, we can make sense of a smooth subbundle, by
requiring that the local trivializations are smooth.

5.3.2 Kernels

Using this we can make sense of the kernel and image of certain maps of vector
bundles. This requires the following technical lemma, whose proof you do not need
to know. Let Lin(Rp,Rp′) denote the space of linear map Rp′ → Rp, topologized by
identifying it with Rpp′ .

Lemma 5.3.2. If Γ: Rn → Lin(Rp,Rp′) is a continuous map with image in the linear
maps of rank r, then there exists an open neighborhood W ⊂ Rn of 0 and continuous
maps B : W → GLp′(R) and C : W → GLp(R) so that C(w)Γ(w)B(w) = Γ(0) for all
w ∈W . If Γ is smooth, then B and C can also be taken to be smooth.

Proof. We may as well change bases to something more convenient: pick a basis of Rp
and Rp′ such that in this basis Γ(0) is given by the (p×p′)-matrix (the 0’s are rectangular
matrices filled with 0’s of the correct size)

πr =
[
idr 0
0 0

]
.
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With respect to these bases, for w in an open neighborhood W of 0 the matrix of Γ(w)
is given by

πr +A =
[
idr +A11 A12
A21 A22

]

with ||A||2 < 1/2 (with ||A||2 the sum of the squared entries). In fact, because the first r
rows contains a unique entry > 1/2, A21 and A22 have to be 0 for this to have rank r.

We will use C(w) to get rid of A11:

C(w) =
[
(idr +A11)−1 0

0 idp′−r

]

with the inverse in the top-right square existing because each row contains a unique entry
> 1/2. We compute that

C(w)Γ(w) = πr +A =
[
idr (idr +A11)−1A12
0 0

]

We will then use B(w) to get rid of the (r × p− r)-matrix (idr +A11)−1A12: it will
be the (p× p)-matrix given by

B(w) =
[
idr −(idr +A11)−1A12
0 idp−r

]

and it is a simple computation that C(w)Γ(w)B(w) = Γ(0).
Since the construction of C(w) and B(w) depends continuously on the entries of Γ(w)

these maps are continuous.

Lemma 5.3.3. Suppose p : E → X and p′ : E′ → X ′ are vector bundles, and G : E → E′

is a map of vector bundles so that Gx : Ex → E′g(x) has the same rank for all x ∈ X.
Then

ker(G) :=
⊔
x∈X

ker(Gx)

is a subbundle of E. If the vector bundles and the map between them are smooth, then
ker(G) is a smooth subbundle.

Proof. Passing to local trivializations of p and p′, we may assume that G is a continuous
map U × Rp → V × Rp′ over a continuous map g : U → V so that G(u,−) : Rp → Rp′

is linear of fixed rank r. In other words, G is described by a g and a continuous map
Γ: U → Lin(Rp′ ,Rp) landing in the subspace of linear spaces that have rank r. By the
previous lemma, on a neighborhood of each point u0 ∈ U we adjust the local trivializations
is that Γ is constant with value πr.
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5.3.3 Images

The image of a vector bundle map is not defined in general. On the one hand, if the
underlying map on base spaces is not injective, it will try to assign two fibers to the
same point in the target. On the other hand, if the underlying map on base spaces is
not surjective, it will not know what fibers to assign to some points in the target. These
issues are resolved by restricting our attention to inclusions of base spaces only, and
constructing the image of the vector bundle map only over the image of this inclusion.

Definition 5.3.4. Suppose that p : E → X is a vector bundle and Y ⊂ X a subspace,
then E|Y := ⋃

y∈Y Ey with the subspace topology is a vector bundle over Y .

This definition makes sense, because the local trivializations of E restrict to local
trivializations of E|Y .
Example 5.3.5. The local triviality condition in the definition of a k-dimensional vector
bundle p : E → X can rephrased as saying that for all x ∈ X there exists an open subset
U ⊂ X such that E|U is isomorphic to the trivial bundle U × Rk.

A similar argument as for kernels now tells us that:

Lemma 5.3.6. Suppose p : E → X and p′ : E′ → X ′ are vector bundles and X ⊂ X ′,
and G : E → E′ over the inclusion so that Gx : Ex → E′x has the same rank for all x ∈ X.
Then

im(G) :=
⊔
x∈X

im(Gx)

is a subbundle of E′|X . If the vector bundles and the map between them are smooth, then
im(G) is a smooth vector bundle.

5.3.4 Quotients

Given a subspace of a vector space, we can take the quotient. Similarly, we can take
the fibewise quotient of a vector bundle by a subbundle.

Lemma 5.3.7. Let E → X be a vector bundle and E′ ⊂ E a subbundle. Then the
quotients of the vector space Ex by the subspace E′x assemble to a vector bundle

E/E′ :=
⊔
x∈X

Ex/E
′
x

over X using the quotient topology, which we call the quotient bundle. If E was a smooth
vector bundle and E′ a smooth subbundle, then E/E′ is also a smooth vector bundle.

5.4 Problems

Problem 5.4.1 (Construction of smooth vector bundles). Prove Lemma 5.1.9.

Problem 5.4.2 (The tangent bundle of a Lie group). Let G be a Lie group as in
Definition 4.1.18, with identity element e.
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(a) Let µg : G → G be the map h 7→ µ(g, h). Prove that it is smooth and that
deµg : TeG→ TgG is an isomorphism.

(b) Prove that the tangent bundle TG is isomorphic to a trivial vector bundle.

Problem 5.4.3 (Tangent bundles to submanifolds). Let M ⊂ Rn be a k-dimensional
smooth submanifold.

(a) Prove that

T submfdM = {(m, v) ∈M × Rn | v +m ∈ T submfd
m M}

is a k-dimensional smooth vector bundle.
(b) Prove that TM and T submfdM are isomorphic as smooth vector bundles.



Chapter 6

Immersions and submersions

In this chapter we continue with implementation of one of the slogans of differential
topology: state globally, prove locally. We do so by importing the inverse function
theorem and its corollaries into the language of smooth manifolds. The main difficulty is
figuring out the correct statements, as most proofs will start by passing to charts and
then work on open subsets of Euclidean space.

This covers 1.§3 of [GP10], as well as a version of pages 51–52.

6.1 Globalizing the inverse function theorem

The easiest example of the above slogan is a characterization of diffeomorphisms
where you do not need to go through the effort of finding the inverse and proving it is
smooth. We start by recalling the statement of the inverse function theorem [DK04a,
Theorem 3.2.4]:

Theorem 6.1.1 (Inverse function theorem). Let U0 ⊂ Rn be open and a ∈ U0. Suppose
g : U0 → Rn is a smooth map whose total derivative Dga at a is an invertible linear map.
Then there exists an open neighborhood U ⊂ U0 of a such that g(U) is open and

g|U : U −→ g(U)

is a diffeomorphism onto this open subset.

To translate this into the language of smooth manifolds we recall the notions we
introduced in the previous lecture. We constructed for each k-dimensional smooth
manifold M a tangent bundle TM , which is a k-dimensional smooth vector bundle over
M . Each smooth map f : M → N with M k-dimensional and N k′-dimensional induces
a map of vector bundles df : TM → TN called the derivative.

Both of the tangent bundle and the derivative are easy to understand when viewed
through the lens of a chart. A chart (Uα, Vα, φα) of M with p ∈ Uα gives an identification
the restriction of TM to Vα with Uα × Rk. A chart (U ′β, V ′β, φ′β) with f(p) ∈ V ′β gives
a similar identification of the restriction of TN to V ′β with U ′β × Rk′ . Under these
identifications, the derivative dpf : TpM → Tf(p)N is the total derivative of (φ′β)−1◦f ◦φα

60
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at φ−1
α (p). That is, the following diagram of vector spaces and linear maps commutes:

TpM Tf(p)N

Rp Rl.

∼=

dpf

∼=

D
φ−1
α (p)((φ′β)−1◦f◦φα)

(6.1)

We shall translate the hypothesis on dpf into one about the bottom linear map, and
then apply the inverse function theorem to get:

Lemma 6.1.2. Let f : M → N be a smooth map with M k-dimensional and N k′-
dimensional, and suppose that dpf : TpM → Tf(p)N is an isomorphism. Then k = k′ and
f is a local diffeomorphism at p, i.e. there is an open neighborhood V of p in M such
that f |V : V → f(V ) is a diffeomorphism.

Proof. Using (6.1), the hypothesis translates into the statement that the total derivative
of the map

(φ′β)−1 ◦ f ◦ φα : Uα ⊃ φ−1
α (Vα ∩ f−1(V ′β)) −→ φ−1

α (f(Vα) ∩ V ′β) ⊂ U ′β.

at φ−1
α (p) is an isomorphism. This is only possible if the total derivative is a square

matrix, so k = k′.
When we call this function g and apply the inverse function theorem to it at a = φ−1

α (p),
we get an open subset U ⊂ φ−1

α (f(Vα) ∩ V ′β) such that g(U) is open and g|U : U → g(U)
is a diffeomorphism. Translating this back into M and setting V := φα(U) through the
commutative diagram

Vα ⊃ V f(V ) ⊂ V ′β

Uα ⊃ U g(U) ⊂ U ′β,

f

g

φα φ′β

this is saying that f(V ) = φβ(g(U)) is open in N and f |V : V → f(V ) is a diffeomorphism.

Theorem 6.1.3. A bijective smooth map f : M → N which has a bijective differential
at all p ∈M is a diffeomorphism.

Proof. Since f : M → N is a bijection, it has an inverse f−1 : N →M . To see that this
is smooth at f(p) ∈ M , apply the previous lemma and observe that on f(V ), f−1 of
course coincides with (f |V )−1. The latter is smooth as the inverse of the diffeomorphism
f |V .

Example 6.1.4. The quotient map R2 → R2/Z2 is a surjective smooth map which has
bijective differential at all p ∈ R2, but it is not a diffeomorphism as it is not even a
homeomorphism.
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We can avoid having to check that f is surjective by demanding M is compact and
N is connected.

Corollary 6.1.5. If M is non-empty compact and N is connected, an injective smooth
map f : M → N which has a bijective differential at all p ∈M is a diffeomorphism.

Proof. In light of the previous theorem it remains to prove that f is surjective. By Lemma
6.1.2 the image of f is open. The image of every compact space under a continuous map
is compact and in a Hausdorff space every compact set is closed, so the image of f is
both open and closed. This means it is a union of connected components of N and by
assumption N has a single such component, hence f must be surjective.

6.2 Globalizing the immersion theorem

We next globalize the immersion theorem [DK04a, Section 4.3]. This immersion
theorem said:

Theorem 6.2.1 (Immersion theorem). Let U0 ⊂ Rk be an open subset and a ∈ U0.
Suppose we have a smooth map h : U0 → Rk′ such that the total derivative Dha of h at a
is injective. Then k ≤ k′ and there exist open neighborhoods U ⊂ U0 of a and V ⊂ Rn of
h(a), and diffeomorphisms φ : Rk → U and φ′ : Rk′ → V such that

(i) φ(0) = a,
(ii) φ′(0) = h(a), and

(iii) the following diagram commutes

Rk U ⊂ Rk

Rk′ V ⊂ Rk′ ,

ιk

∼=
φ

h

∼=
φ′

with ιk the inclusion (x1, . . . , xk) 7→ (x1, . . . , xk, 0, . . . , 0).

Let us give a name the condition that the differential is injective at some point in
domain:

Definition 6.2.2.
· A smooth map f : M → N is an immersion at p if dpf : TpM → Tf(p)N is an

injective linear map.
· A smooth map f : M → N is an immersion if it is an immersion at all p ∈M .

Applying the immersion theorem to (φ′β)−1 ◦ f ◦ φα for charts (Uα, Vα, φα) and
(U ′β, V ′β, φ′β) around p and f(p) respectively, we deduce:

Lemma 6.2.3. Let f : M → N be a smooth map which is an immersion at p, with M
k-dimensional and N k′-dimensional. Then k ≤ k′ and there exists a chart (Uα, Vα, φα)
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of M around p and a chart (U ′α, V ′α, φ′α) of N around f(p) so that the following diagram
commutes

Rk ⊃ Uα M

Rk′ ⊃ U ′β N,

φα

ιk f

φ′β

with ιk the inclusion onto first k′ coordinates.

Remark 6.2.4. Note that a linear map being injective is an open condition, which is
reflected in the above lemma by the observation that if f looks like the standard inclusion
in some coordinates at p, then it does so near p, namely on all of φα(Uα).

Unlike being a diffeomorphism, being an immersion is a purely local condition. This
means that its image may be pathological. Of course since an immersion need not be
injective it may intersect itself, see the first example of Figure 6.1. However, even an
injective immersion need not be a homeomorphism onto its image, see the second example
of Figure 6.1.
Example 6.2.5. One of the worst examples is the immersion

h : R −→ T2 = R2/Z2

x 7−→ [x, θx]

with θ ∈ (0, 1) irrational. This immersion has dense image in T2. To see it is an immersion
define h̃(x) : R → R2 by x 7→ (x, θx) and consider the commutative diagram of vector
spaces

TxR Th̃(x)R
2

Th(x)R2/Z2.

dxh̃

dxh
dh̃(x)q

The linear map dh̃(x)q is an isomorphism because the map h̃ is a local diffeomorphism,
and since dxh̃ = Dxh̃ is easily seen to be injective, dxh must also be injective.

Figure 6.1 The image of two different immersions of R into R2.
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The latter is the real problem: we would like f(M) not to intersect φ′β(U ′β) again. If
f were a homeomorphism onto its image, then f(Vα) would be open in f(M) and this
means that there is an open neighborhood V ′ in N such that V ′ ∩ f(M) = f(Vα) so
by shrinking φ′β(U ′β) we could arrange that φ′β(U ′β) ∩ f(M) = f(Vα). That such a open
subset V ′ exists is proven by contradiction: if it did not exist then there would be a
sequence of points yi ∈ f(M) \ f(Vα) converging to y ∈ f(M), which contradicts the fact
that f(Vα) is open. In this case the charts from the immersion theorem give the image
of f the structure of an r-dimensional submanifold of N . We will make this precise in a
moment.
Remark 6.2.6. The advantage of the condition on an immersion being purely local is that
we can classify them up to regular homotopy using an h-principle, as discussed in the
first lecture.

6.2.1 Embeddings

Definition 6.2.7. An embedding is an injective immersion which is a homeomorphism
onto its image.

Example 6.2.8. If m,n are integers such that gcd(m,n) = 1, then the map

ẽ : R 3 t 7→ (mt, nt) ∈ R2

is easily seen to be an embedding. Taking the quotient by the action of Z2 on R2 induces
an injective smooth map e : R/Z→ R2/Z2 which is automatically proper. To see this its
differential is injective everywhere, we use the commutative diagram of smooth maps

R R2

R/Z R2/Z2

ẽ

e

and fixing p ∈ R we get a commutative diagram of linear maps

TpR Tẽ(p)R2

T[p]R/Z Te([p])R2/Z2.

dpe

d[p]e

The vertical maps are isomorphisms by a previous example, and the top map is injective.
Hence the bottom map is also injective.

This gives an example of many embeddings of circles into T2, one in each homotopy
class (m,n) ∈ Z2 = π1(T2) which gcd(m,n) = 1. These are the only elements of the
fundamental group which can be represented by embeddings (if we use the convention
gcd(0, 0) = 1) [Rol90, Theorem 2.C.2].

Proposition 6.2.9. A subset X ⊂M is a submanifold if and only if it is the image of
an embedding.
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Proof. For ⇐, observe that we can use the local charts provided by Lemma 6.2.3 to
make e(X) a submanifold. For ⇒, it suffices to prove that the inclusion ι : X ↪→ M is
an embedding. It is visibly a homeomorphism onto its image, and by computing locally
in the charts provided by the fact ι is an immersion, we see that its differential dι is
injective everywhere.

In the proof of Theorem 6.2.9, the charts used to make e(X) into a submanifold exhibit
e : X → e(X) as a bijective smooth map which has bijective differential at all x ∈ X. By
Theorem 6.1.3, e is not just a homeomorphism onto its image but a diffeomorphism. Let
us record this:

Corollary 6.2.10. If e : X ↪→M is an embedding then it is a diffeomorphism onto its
image.

Let us discuss furter the condition that an embedding is homeomorphism onto
its image. If the domain of an injective immersion X ↪→ M is compact, it restricts
to a continuous bijection X → im(X) of compact Hausdorff spaces and hence is a
homeomorphism onto its image. If the domain is not compact, we can instead add the
following condition:

Definition 6.2.11. A continuous f : X → Y is proper if f−1(K) ⊂ X is compact for all
compact K ⊂ Y .

Intuitively, a proper map is one that “maps infinity to infinity.” In particular, none
of the examples with domain A2 or A3 in Chapter 1 is proper. One way to see this is
to recall that proper maps between locally compact Hausdorff spaces are closed. This
shows that embeddings need not be proper.

Theorem 6.2.12. A proper injective immersion is an embedding.

Proof. It suffices to prove that if e : X →M is an proper injective immersion then it is a
homeomorphism onto its image.

Since e is presumed continuous and injective, we will use properness to deduce that e
is open. Thus we need to show that if W is open in X then e(W ) open in e(X). We will
do so by contradiction, and hence suppose there is a sequence y1, y2, . . . in e(X) but not
in e(W ), and converging to y ∈ e(W ). As {y, y1, y2, . . .} is compact in M , so is its inverse
image in X because e is proper. Thus it has an accumulation point, and by passing to a
subsequence we may assume that the e−1(yi) converge to some z ∈ X. Then e(e−1(yi))
converges both to y ∈ e(W ) and e(z) ∈ e(X) so y = e(z) and by injectivity of e thus
e−1(y) = z. But since W is open in X this means that e−1(yi) ∈W for i large enough,
contradicting yi /∈ e(W ).

Corollary 6.2.13. An injective immersion with compact domain is an embedding.

Proposition 6.2.14. A closed subset X is a submanifold if and only if the image of a
proper embedding.
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Proof. For ⇐, use that proper maps are closed. For ⇒, suppose that K ⊂M is compact
and {Ui} is an open cover of ι−1(K). Then there exists an open cover {Ũi} of X∩K ⊂M
and since X ∩K is closed inside a compact it is compact, and there is a finite subcover
Ũ1, . . . , Ũn. The corresponding open subsets U1, . . . , Un are finite subcover of ι−1(K) in
X.

6.3 Globalizing the submersion theorem

We can similarly globalize the submersion theorem [DK04a, Section 4.5].

Theorem 6.3.1 (Submersion theorem). Let U0 ⊂ Rk be open and a ∈ U0. Suppose
we have a smooth map g : U0 → Rk′ such that the total derivative Dga of g at a is a
surjective linear map. Then k′ ≤ k and there exist open neighborhoods U ⊂ U0 of a and
V ⊂ Rk′ of g(a) and diffeomorphisms φ : Rk → U and φ′ : Rk′ → V such that

(i) ψ(0) = a,
(ii) ϕ(0) = g(a), and

(iii) the following diagram commutes

Rk U ⊂ U0 ⊂ Rk

Rp V ⊂ Rk′ ,

πk′

∼=
φ

g

∼=
φ′

with πk′ the projection (x1, . . . , xk) 7→ (x1, . . . , xk′).

Definition 6.3.2.
· A smooth map f : M → N is a submersion at p if dpf : TpM → Tf(p)N is a

surjective linear map.
· A smooth map f : M → N is a submersion if it is a submersion at all p ∈M .

Lemma 6.3.3. Let f : M → N be a smooth map which is a submersion at p, with M
k-dimensional and N k′-dimensional. Then k′ ≤ k and there exists a chart (Uα, Vα, φα)
of M around p and a chart (U ′α, V ′α, φ′α) of N around f(p) so that the following diagram
commutes

Rk ⊃ Uα M

Rk′ ⊃ U ′β N,

φα

πk′ f

φ′β

with πk′ the projection onto first k′ coordinates.

Remark 6.3.4. Note that a linear map being a submersion is open condition, which
is reflected in the above lemma by the observation that if f looks like the standard
projection in some coordinates at p, then it does so near p, namely on all of φα(Uα).
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However, its main use is that if we denote c := f(p) it says that f−1(c) is a (k − k′)-
dimensional submanifold near p; in the charts it is just Uα ∩ {(0, . . . , 0, xk′+1, . . . , xk)}.
Furthermore, as in these chart the tangent spaces to this subset are given by the kernel
of the derivative of πk′ , the tangent space to f−1(c) at p is given by the kernel of dpf
when we identify it with a subspace of TpM using the derivative of the inclusion map
f−1(c)→M .

This leads to the following definition and theorem:

Definition 6.3.5. Let f : M → N be a smooth map. Then a point c ∈ N is called a
regular value of f if f is a submersion at all x ∈ f−1(c).

Theorem 6.3.6 (Preimage theorem). If f : M → N is a smooth map and c ∈ N a
regular value, then f−1(c) is a (k − k′)-dimensional submanifold of M and Tpf−1(c) =
ker(dpf : TpM → Tf(p)M) for all p ∈ f−1(c).

It is often more convenient to remember not the dimension of f−1(c), but how much
this is smaller than the dimension of M ; this is the codimension and in the previous
theorem f−1(c) has codimension k′.

Example 6.3.7. If f : M → N is a submersion, then all points in N are regular values.

It may also be helpful to name those points in N that arenot regular values.

Definition 6.3.8. Let f : M → N be a smooth map. Then a point c ∈ N is called a
critical value of f if it is not a regular value of f .

Example 6.3.9. The map Rk → R given by

(x1, . . . , xk) 7−→ x2
1 + . . .+ x2

i − x2
i+1 − . . .− x2

k

has 0 has its only critical value; all other t ∈ R are regular values.

6.4 Problems

Problem 6.4.1 (Images of immersions). Are following subsets of R2 the image of
an immersion and/or an embedding R → R2 (you should imagine them continuing
indefinitely)? You need to explain your reasoning for each example, but do not need to
give proofs.
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(i) (ii)

(iii) (iv)

Problem 6.4.2 (Submersions with compact domain).
(a) Suppose f : M → N is a submersion with M a compact smooth manifold and N

a connected smooth manifold. Show that f is surjective. (Hint: show that its
image is both open and closed.)

(b) Show that there exists no submersion from a compact smooth manifold to a
Euclidean space of positive dimension.

Problem 6.4.3 (Submersions, immersions, and smooth maps).
(a) Suppose that f : M → N is an immersion and h : P →M is a continuous map.

Prove that h is smooth if and only if f ◦ h is.
(b) Suppose that f : M → N is a surjective submersion and g : N → P is a continuous

map. Prove that g is smooth if and only if g ◦ f is.

Problem 6.4.4 (A family of surfaces). Prove that the subspace

X = {(x, y, z) | (x4 − x2 + y2)2 + z2 = ε} ⊂ R3

is a 2-dimensional smooth submanifold for ε > 0 sufficiently small. Sketch it. What
happens when we increase ε?

Problem 6.4.5 (Special orthogonal groups). Let O(n) ⊂ GLn(R) be the subgroup of
orthogonal matrices, i.e. A such that At = A−1. This is known as the orthogonal group.

(a) Using the submersion theorem to prove that O(n) is a 1
2n(n − 1)-dimensional

manifold.
(b) Prove that O(n) is a Lie group.
(c) Show that O(n) has two path components.

The path component SO(n) ⊂ O(n) containing the identity is a Lie group known as the
special orthogonal group.
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Problem 6.4.6 (Some orthogonal Stiefel manifolds). Let V2(Rn) be the subset of (Rn)2

of pairs (v1, v2) of vectors such that ||v1||2 = 1 = ||v2||2 and v1 · v2 = 0.
(a) Prove that V2(Rn) is a smooth manifold.
(b) Prove that V2(R3) is diffeomorphic to the special orthogonal group SO(3).
(c) Let Wn be the subset of Cn of n-tuples (z1, . . . , zn) satisfying z2

1 + · · ·+z2
n = 0 and

|z1|2 + · · ·+ |zn|2 = 2. Prove that Wn is a smooth manifold which is diffeomorphic
to V2(Rn).

Problem 6.4.7 (Configuration spaces in robotics). Fix an integer n ≥ 1 and real
numbers ri > 0, 1 ≤ r ≤ n. We consider the space C of configurations of a robot arm
with n segments of lengths r1, . . . , rn. We take the attaching point of the arm as the
origin, and for simplicity assume that the segments are constrained to move in the plane
R2. That is, C is the subspace of Cn ∼= R2n of points (z1, . . . , zn) such that |zi−zi−1| = ri
for 1 ≤ i ≤ n (with the convention that z0 = 0).

(a) Use the submersion theorem to show that C is a submanifold of Cn. What is its
dimension?

(b) Show that C is diffeomorphic to (S1)n.
(c) Is it still a submanifold when we add the requirement that the segments of the

arm do not intersect outside the joints? That is, we take the subspace D ⊂ C
of those (z1, . . . , zn) such that for all 1 ≤ i, j ≤ n satisfying i 6= j, j − 1 we have
zi /∈ {tzj−1 + (1− t)zj | t ∈ [0, 1]} (again with the convention that z0 = 0). You
have to explain your answer or give a counterexample, but do not need to give a
full proof.

•z2

r2

•z0 = 0

•z1

r1

Figure 6.2 A point (z1, z2) in C for n = 2, visualized as an arm with two segments.

Problem 6.4.8 (Embeddings between projective spaces). Prove that the following are
smooth embeddings:
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(a) The standard inclusion Rn+1 → Rn+2 induces a continuous map

i : RPn −→ RPn+1

[x0 : · · · : xn] 7−→ [x0 : · · · : xn : 0].

(b) The Segre embedding is the continuous map

S : CP 1 × CP 1 −→ CP 3

([x0 : x1], [y0, y1]) 7−→ ([x0y0 : x1y0 : x0y1 : x1y1]).

Generalize this to an embedding CP i × CP j → CP (i+1)(j+1)−1.
(c) Complexification Rn → Cn induces a continuous map

j : RPn −→ CPn

[x0 : . . . : xn] 7−→ [x0 : . . . : xn],

where the left hand side is an equivalence class of (n+ 1) real numbers, which is
considered as an equivalence of (n+ 1) complex numbers on the right hand side.



Chapter 7

Quotients and coverings

In this chapter we discuss smooth manifolds which are evenly covered by another
smooth manifold. Such covering maps often arise as quotients by discrete groups, and
we end with a discussion of quotients by Lie groups.

7.1 Covering spaces

In point-set topology, there is a notion of a covering of one topological space by
another. One should imagine many sheets of fabric covering a surface.

Definition 7.1.1. A continuous map p : E → B is a covering map if each point b ∈ B
has an open neighborhood U such that p−1(U) can be written as a union ⊔i Vi of disjoint
open subsets of E, such that p|Vi : Vi → U is a homeomorphism for each i.

Example 7.1.2. Prototypical examples are

R −→ S1 = {z ∈ C | |z| = 1}
t 7−→ e2πit,

where each z ∈ S1 has infinite pre-image, and

S1 −→ S1

z 7−→ zn,

where each z ∈ S1 has exactly n pre-images.
Is a cover of a smooth manifold again a smooth manifold? If p : E → B is a covering

map and B is Hausdorff or locally Euclidean then so is E, and E is second-countable
when B is and p has countable fibers. Thus E satisfies all the point-set topological
properties necessary for being a smooth manifold. It remains to lift the smooth structure
on B to one on E:

Theorem 7.1.3. If p : E → B is a covering map such that p−1(b) is countable for all
b ∈ B and B is a k-dimensional smooth manifold, then there is a unique k-dimensional
smooth structure on E such that p : E → B is a local diffeomorphism.

71
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Figure 7.1 A three-fold covering of S1 t S1 by S1.

Proof. Let us first take care of point-set topological requirements. We start by proving
that E is Hausdorff if B is: e 6= e′ ∈ E with p(e) 6= p(e′) can be separated by p−1(U)
and p−1(U ′) where U,U ′ ⊂ B are disjoint open subsets such that p(e) ∈ U , p(e′) ∈ U ′. If
e 6= e′ ∈ E but p(e) = p(e′), then they must lie in different Vi’s and these open subsets
separate them.

To see that E is second countable, we first observe that the condition on p−1(b)
implies that each disjoint union ⊔i Vi as in Definition 7.1.1 is a countable one. Take
{Uj} a countable basis for the topology of B. By possible discarding some of the larger
subsets, we may without loss of generality assume that p−1(Uj) is a countable union of
open subsets Vj,i of E homeomorphic to Ui. The countable collection {Vj,i} is a basis for
the topology of E.

We shall give a chart around each e ∈ E: pick U around b = p(e) as in the definition
of a covering map, and a chart (Uα, Vα, φα) around b in B such that Vα ⊂ U . If Vi
is such that e ∈ Vi, then we produce a chart around e by taking U ′α,i = Uα, taking
V ′α,i = (p|Vi)−1(Vα) and setting φ′α,i to be

φ′α,i : Rk ⊃ Uα
φα−→ Vα

(p|Vi )
−1

−→ V ′β ⊂ E.

The transition function between (U ′α,i, V ′α,i, φ′α,i) and (U ′β,j , V ′β,j , φ′β,j) is only non-trivial if
V ′α,i∩V ′β,j 6= ∅ and then it lies in Vi. Thus we can write φ′α,i = p|−1

Vi
◦φα and φ′β,j = p|−1

Vi
◦φβ ,

and the transition function is a restriction of (p|−1
Vi
◦ φβ)−1 ◦ (p|−1

Vi
◦ φα) = φ−1

β ◦ φα and
hence smooth. This completes the construction of the smooth structure on E.

To see that p is a local diffeomorphism with respect to this smooth structure, we use
that with respect to coordinates given by the charts (Uα, Vα, φα) and (U ′α,i, V ′α,i, φ′α,i) it
is the identity map between the equal open subsets U ′α,i and Uα of Rk.

To see that this smooth structure is uniquely determined by this property, we must
prove that the identity map of E is smooth with respect to any two smooth structures
A1,A2 on E such that p : E → B is a local diffeomorphism. It suffices to verify this
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locally in E. The diagram

(Vi,A1|Vi) (Vi,A2|Vi)

Ui Ui

id

p|Vi∼=∼= (p|Vi )
−1

id

evidently commutes, and we can think of the left map as a diffeomorphism with respect
to A1|Vi , the right map as a diffeomorphism with respect to A2|Vi . Since the bottom
map is smooth, the top map must also be smooth (e.g. as an application of Problem
6.4.3).

In fact, many local diffeomorphisms arise this way:

Proposition 7.1.4. Suppose E and B are smooth manifolds, and p : E → B is a smooth
map whose derivative is bijective at all points in E. Then p is a covering map if E is
compact.

Proof. The conditions imply that E is a local diffeomorphism whose image is a collection
of components of B so we may as well assuming p is surjective by discarding some
components. For each b ∈ B, p−1(b) is a finite set and for each e ∈ p−1(b) the fact
that p is a local diffeomorphism gives us an open subset Ve of E containing e such that
p|Ve : Ve → p(Ve) is a diffeomorphism. Using the fact that E is Hausdorff we may assume
that the Ve are pairwise disjoint. Then let U = ⋂

e p(Ve), which is an open neighborhood
of b because it is a finite intersection of open subsets containing b.

We claim that p−1(U) is a union of the disjoint open subsets p−1(U) ∩ Ve of E, at
least after shrinking U . If so, p|Ve provides not just a homeomorphism p−1(U) ∩ Ve ∼= U
but in fact a diffeomorphism and we would be done.

We will give a proof of the claim by contradiction: suppose that no matter how much
we shrink U it is always the case that p−1(U) \⋃e Ve 6= ∅. Then there exists a sequence
of xi ∈ E \

⋃
e Ve such that the xi converges to some x ∈ E (since E is compact) and the

p(xi) converges to b. This means that x ∈ p−1(b), and hence xi lies in some Ve for i large
enough. This gives a contradiction.

Example 7.1.5. The Lie group SO(n) has a path-connected double cover Spin(n) for
n ≥ 3. Proposition 7.1.3 shows that Spin(n) has a unique smooth structure making
Spin(n)→ SO(n) a local diffeomorphism.

7.2 Quotients by discrete groups

Let us discuss a major source of examples of covering maps; as quotients of sufficiently
nice group actions. Recall an action of a discrete group G has to be continuous in the
sense that the map

G×X −→ X

(g, x) 7−→ gx

is continuous. This is equivalent to each map g : X → X being a homeomorphism.
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Definition 7.2.1. Suppose a (discrete) group G acts on a topological space X. It acts
freely if gx = x for some x ∈ X implies g = e.

We would like a condition on a free action that guarantees the quotient map q : X →
X/G is a quotient map. The following strengthening of a free action will suffice:

Definition 7.2.2. Suppose a (discrete) group G acts on a topological space X. We
say this is a covering action if each x ∈ X has an open neighborhood U such that
g(U) ∩ U 6= ∅ if and only if g = e.

Lemma 7.2.3. If the action of G on X is a covering action, then the quotient map
q : X → X/G is a covering map.

Proof. For q(x) ∈ X/G, take the image q(U) in X/G of U in Definition 7.2.2. Then
q−1(q(U)) = ⋃

g gU and this is a disjoint union because

gU ∩ hU 6= ∅ ⇐⇒ h−1gU ∩ U 6= ∅

and this implies h−1g = e so g = h. Furthermore, each gU is open as U is open and
g : X → X is a homeomorphism. In particular we conclude that q−1(q(U)) is open so
q(U) is open by definition of the quotient topology.

To see that the restriction of q to a map gU → q(U) is a homeomorphism, we first
observe that there is a commutative diagram

U gU

qU

g
∼=

g|U q|g(U)

with horizontal map a homeomorphism. Hence it suffices to prove that this only for
g = e. As q|U : U → q(U) is clearly a continuous bijection, it remains to see it is open.
But for W ⊂ U open, q|U (W ) ⊂ q(U) is open if and only if q−1(q|U (W )) is. Since
q−1(q|U (W )) = ⋃

g gW this is true.

It is clear from the definition of the quotient topology that X/G is second-countable
if X is second-countable. However, it is not obvious that X/G is again Hausdorff; this
requires a stronger definition:

Definition 7.2.4. Suppose a (discrete) group G acts on a topological space X. It acts
properly if the map

G×X −→ X ×X
(g, x) 7−→ (x, gx)

is proper, as in Definition 6.2.11.

Concretely the action being proper means that g(K) ∩K 6= ∅ for only finitely many
g ∈ G whenever K ⊂ X is compact. For locally compact Hausdorff X, this is equivalent
to the following:



7.2 Quotients by discrete groups 75

(i) each x ∈ X has an open neighborhood U such that g(U) ∩ U 6= ∅ for only
finitely many g ∈ G, and

(ii) any two x, x′ ∈ X in distinct orbits have open neighborhoods U,U ′ such that
g(U) ∩ U ′ = ∅ for all g ∈ G.

Note that smooth manifolds are always locally compact and Hausdorff.

Example 7.2.5. Zn acts freely and properly on Rn by translation.

Example 7.2.6. If X is locally compact Hausdorff and G is finite then G acts freely and
properly if and only if it acts freely. To see this, observe that latter implies that for each
x all elements gx for g ∈ G are distinct. Using the Hausdorff property we can find for
each g ∈ G an open subset Ug around gx with the property that Ug ∩Uh 6= ∅ if and only
if g = h. Then U := ⋂

g g
−1(Ug) is an open subset around x which satisfies g(U)∩U 6= ∅

if and only if g = e. A similar argument shows that any two x, x′ ∈ X in distinct orbits
have open neighborhoods U,U ′ such that g(U) ∩ U ′ = ∅ for all g ∈ G.

If the action is free in addition to being proper and X is still locally compact Hausdorff,
we can shrink U as in (i) and get that each x ∈ X has an open neighborhood U such
that g(U) ∩ U 6= ∅ if and only if g = e. Thus it will be a covering action as in Definition
7.2.2.

Lemma 7.2.7. If G acts properly and freely on a locally compact Hausdorff space X,
then q : X → X/G is a covering map and X/G is Hausdorff.

Proof. Lemma 7.2.3 says that the quotient map q : X → X/G is a covering map. It
thus suffice to prove the quotient is Hausdorff. For two distinct orbits [x], [x′] ∈ X/G
we can take two representatives and U,U ′ as in (ii). Then q−1(q(U)) = ⋃

g∈G gU and
q−1(q(U ′)) = ⋃

g∈G gU
′ are disjoint and open, so q(U) and q(U ′) are open sets separating

[x] and [x′].

If X/G happens to be a smooth manifold, this gives a smooth structure on X. We
now want to go the other direction, taking X to be a smooth manifold M and assuming
that the action is compatible with the smooth structure in the following sense:

Definition 7.2.8. We say that a group G acts smoothly on a smooth manifold M if the
action map

G×M −→M

is smooth.

As G is discrete, this is equivalent to each g : M →M being a diffeomorphism. It is
also equivalent to the map

G×M −→M ×M
(g,m) 7−→ (m, gm)

being smooth, by Remark 4.1.13.
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Theorem 7.2.9. If a discrete group G acts freely, properly, and smoothly on a k-
dimensional smooth manifold M , then there is a unique k-dimensional smooth structure
on M/G such that q : M →M/G is a local diffeomorphism.

Proof. We know from Lemma 7.2.7 that q is a covering map, and that M/G is Hausdorff
and second countable. We next produce a smooth atlas on M/G. Let us take for each
orbit [p] ∈M/G an open neighborhood U as in Definition 7.1.1, so that q−1(U) = ⊔

i Vi.
Let us also take charts (Uα, Vα, φα) such that Vα ⊂ Vi for some i and [p] ∈ q(Vα). The
charts in our atlas for M/G are then given by the (Uα, q(Vα), q|Vi ◦ φα).

The transition function between (Uα, q(Vα), q|Vi ◦ φα) an (Uβ, q(Vβ), qVj ◦ φβ) has
non-empty domain and target if and only if q(Vα) ∩ q(Vβ) 6= ∅, which happens only if
Vα ∩ q−1(q(Vα)∩ q(Vβ)) ⊂ Vi and Vβ ∩ q−1(q(Vα)∩ q(Vβ)) ⊂ g(Vi) for some g ∈ G. Hence
for the sake of computing transition functions we may replace q|Vj by q|g(Vi). Then the
transition function is given by

(q|g(Vi) ◦ φβ)−1 ◦ (q|Vi ◦ φα) = φ−1
β ◦ g ◦ φα,

which is smooth by the assumption that g : M →M is a diffeomorphism. This completes
the construction of the smooth structure on M/G.

To see q is a local diffeomorphism with respect to this smooth structure, we use that
in to the coordinates given by the chart (Uα, Vα, φα) and (Uα, q(Vα), q ◦ φα) it is the
identity map of Uα ⊂ Rk.

To see that this smooth structure is uniquely determined by this property, we must
prove that the identity map of M/G is smooth with respect to any two smooth structures
A1,A2 on M/G such that q : M →M/G is a local diffeomorphism. The diagram

M M

(M/G,A1) (M/G,A2)

q

id

q

id

evidently commutes, and we can think of the left map as a local diffeomorphism with
respect to A1, of the right map as a local diffeomorphism with respect to A2. Since the
top map is smooth, the top-right composite is. Since q is a submersion, the bottom map
must also be smooth as a application of Problem 6.4.3.

Example 7.2.10. Since Zn acts freely, properly, and smoothly on Rn by translation,
Theorem 7.2.9 gives another way to construct the smooth structure on the n-torus
Tn = Rn/Zn.
Example 7.2.11. Fix two coprime integers p and q. Let Z/p act on S3 = {(z1, z2) |
|z1|2 + |z2|2 = 1} ⊂ C2 by

k · (z1, z2) = (e2πik/pz1, e
2πiqk/pz2).

This is a free smooth action of the finite group Z/p on the 3-dimensional smooth manifold
S3, so by Theorem 7.2.9, L(p, q) := S3/(Z/p) is again a 3-dimensional smooth manifold.
These are lens spaces. As an example, let us take L(2, 1). This is the quotient of S3 by
the equivalence relation generated by (z1, z2) ∼ (−z1,−z2), so is diffeomorphic to RP 3.
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Example 7.2.12. Define the configuration space of n ordered particles in a manifold M as

Confn(M) := {(m1, . . . ,mn) ∈Mn | mi 6= mj if i 6= j}.

As an open subset of a finite product of manifolds, this has a canonical smooth structure.
The permutation action on Mn by the symmetric group Sn is proper and smooth, but
not free. The subset Confn(M) exactly consists of all free orbits, so the restriction of
this action to Confn(M) is smooth, proper, and free. Thus the configuration space of n
unordered particles

Cn(M) := Confn(M)/Sn

again has a canonical smooth structure.

7.3 Quotients by Lie groups

Above we gave conditions on an action of a discrete group G on a smooth manifold M ,
so that the quotient M/G is again a smooth manifold. What can we say if we instead we
take G to be a Lie group? The definitions, when phrased correctly, go through without
modification: as before, we say that G acts smoothly on M if the map

G×M −→M ×M
(g,m) 7−→ (m, gm)

is smooth, it acts properly if this map is proper, and acts freely if the action is free. A
generalization of Theorem 7.2.9 to Lie groups is the following, which we shall not prove
[Lee13, Theorem 21.10]:

Theorem 7.3.1. If a Lie group G of dimension r acts freely, properly, and smoothly on
a k-dimensional smooth manifold M , then there is a unique (k − r)-dimensional smooth
structure on M/G such that q : M →M/G is a submersion.

Example 7.3.2 (Complex projective space as quotients). The Lie group C× of non-zero
complex numbers under multiplication acts freely, properly, and smoothly on Cn \ {0}.
Thus

CPn = (Cn \ {0})/C×

is a smooth manifold, giving a construction of the complex projective plane without
having to give charts by hand.

In many application we fix a Lie group G, as well as a Lie subgroup H ⊂ G, which
is a subgroup which is also a smooth submanifold. It is evident that the action of H
on G by multiplication is smooth and free. Furthermore, as H must be closed [Lee13,
Corollary 15.30] it follows that the action is proper. The above theorem says that G/H
is a smooth manifold and the quotient map

G −→ G/H

is a submersion.



78 Chapter 7 Quotients and coverings

Example 7.3.3 (Orthogonal Stiefel manifolds). We identify O(n− 2) be the subgroup of
O(n) as

O(n− 2) 3 A 7−→
[
A 0
0 id2

]
which is also the subgroup which fixes the vectors en−1, en. Then

V2(Rn) := O(n)/O(n− 2)

is a smooth manifold, whose points are given by a pair of orthogonal vectors of length 1.
We saw these manifolds before in Problem 6.4.6. Replacing n− 2 by n− r, we obtain
the orthogonal Stiefel manifold

Vr(Rn) := O(n)/O(n− r)

of orthogonal frames of r vectors in Rn. Replacing orthogonal groups by general linear
groups we similarly obtain ordinary Stiefel manifolds.

7.4 Problems

Problem 7.4.1 (Higher-dimensional lens spaces). Fix an integer p and integers q1, . . . , qn
coprime to p. The higher-dimensional lens space L(p, q1, . . . , qn) is the quotient of
S2n−1 = {(z1, . . . , zn) | |z1|2 + · · ·+ |zn|2 = 1} ⊂ Cn by the smooth action

k · (z1, . . . , zn) = (e2πiq1k/pz1, . . . , e
2πiqnk/pzn).

Prove this admits a unique smooth structure such that the quotient map q : S2n−1 →
L(p, q1, . . . , qn) is a local diffeomorphism.

Problem 7.4.2 (Dold manifolds). Let Z/2 act on Sm × CPn by multiplication by −1
on Sm and by complex conjugation on CPn. Prove that

D(m,n) := (Sm × CPn)/Z/2

is a smooth manifold. This is called a Dold manifold.

Problem 7.4.3 (Orthogonal Grassmannians). We can O(r)×O(n− r) with a subgroup
of O(n) by

O(r)×O(n− r) 3 (A,B) 7−→
[
A 0
0 B

]
∈ O(n).

(a) Show that the quotient

Grr(Rn) := O(n)/(O(r)×O(n− r))

is a smooth manifold.
(b) Use Gram–Schmidt to explain why we can think of Grr(Rn) as a smooth manifold

of r-dimensional linear subspaces of Rn.
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The smooth manifold Grr(Rn) is called the orthogonal Grassmannian of r-planes in Rn.

Problem 7.4.4 (Complex polynomials without double roots). Let Xn ⊂ Cn be the
subset of those (a0, . . . , an−1) such that p(z) = a0 + a1z + · · ·+ an−1z

n−1 + zn has only
has roots with multiplicity one.

(a) Prove that Xn is a smooth manifold of dimension 2n.
(b) Prove that Xn is diffeomorphic to the configuration space

Cn(C) = {(z1, . . . , zn) ∈ Cn|zi 6= zj if i 6= j}/Sn,

of n unordered particles, where the symmetric group Sn acts by σ · (z1, . . . , zn) =
(zσ(1), . . . , zσ(n)). (Hint: fundamental theorem of algebra.)

(c) Is the subspace of Xn of polynomials which have at least one real root always a
smooth submanifold? Give a proof or give a counterexample.
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Three further examples of manifolds

In this chapter we describe three more manifolds, each interesting and an example of
a more general construction.

8.1 The Poincaré homology sphere

We start with one of the first manifolds ever described, due to Poincaré. For more
constructions, see [KS79].

The quaternions

Our construction starts with the quaternions H. These are an associative R-algebra,
generated as an R-vector space by elements 1, i, j, k which satisfy the relations

i2 = j2 = k2 = −1, ij = −ji, ik = −ki, jk = −kj
ij = k, jk = i, ki = j.

This is visibly not commutative, e.g. ij = k but ji = −k. The elements which commute
with every other element, the center, is given by R · 1. As a R-vector space, it is
4-dimensional, with a basis given by 1, i, j, k.

This is a so-called division algebra, which means that algebraically it behaves like
a non-commutative four-dimensional version of the complex numbers. Firstly, the
quaternions have a conjugation operation

a+ bi+ cj + dk := a− bi− dj − ck.

Lemma 8.1.1. Conjugation is linear and an antihomomorphism, i.e. satisfies xy = yx.

In terms of this, we define ||x||2 := xx. Explicitly, this is given by

||a+ bi+ cj + dk|| :=
√
a2 + b2 + c2 + d2,

and hence is visibly a norm (in fact the usual Euclidean one).
Every non-zero element of H has a unique multiplicative inverse, which can be written

in terms of the conjugation and norm

x−1 = x̄

||x||2
.

80
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The 3-sphere as a Lie group

The subset S3 ⊂ H of quaternions with norm 1 is a smooth manifold; it is just the
subspace {a+ bi+ cj + dk | a2 + b2 + c2 + d2 = 1} ⊂ H. The multiplication and inversion
of H restrict to S3. This uses the following lemma:

Lemma 8.1.2. ||xy|| = ||x||||y||

Proof. Since the conjugation is an anti-homomorphism, we have

||xy||2 = xyxy = xyȳx̄ = ||x||2||y||2.

This exactly says that the product of two elements of norm 1 has norm 1. It also
implies that the inverse of an element of norm 1 has norm 1: more generally, if x 6= 0 we
have

1 = ||1|| = ||xx−1|| = ||x||||x−1||,

so ||x−1|| = ||x||−1.
To see that both multiplication and inverse are smooth maps on H \ {0}, observe

they are given by polynomials in a, b, c, d. In fact, inverse is particularly easy: g−1 = g.
Hence their restriction to the submanifold S3 is also smooth, and we conclude that S3 is
a Lie group.
Remark 8.1.3. S1 and S3 are the only spheres that admit the structure of a Lie group.
Example 8.1.4. In fact, this is isomorphic to the Lie group SU(2) of unitary (2 × 2)-
matrices with complex entries and determinant 1. The correspondence is given by
thinking of a quaternion a+ bi+ cj + dk ∈ H, on which S3 acts, as a pair (a+ bi, c+ di)
of complex numbers, on which SU(2) acts. Explicitly, the isomorphism of Lie groups is
given by

S3 3 a+ bi+ cj + dk 7−→
[
a+ bi c+ di
−c+ di −a− bi

]
∈ SU(2).

The Poincaré homology sphere via the binary icosahedral group

It follows from Theorem 7.2.9 that if G ⊂ S3 is a finite subgroup, S3/G admits a
3-dimensional smooth structure such that the quotient map

S3 −→ S3/G

is a local diffeomorphism.
Example 8.1.5. Taking G = {±1}, we obtain S3/{±1} = RP 3.

Our next goal is construct a particular rather large finite subgroup of S3. The first
observation is that for g ∈ S3 the conjugation

S3 3 h 7−→ ghg−1 ∈ S3

preserves the subset of quaternions of the form bi+ cj + dk.
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Figure 8.1 Haeckel’s “Fig. 1: Circogonia icosahedra, n. sp., × 80. The entire shell, with
twelve radial tubes and twenty triangular faces. In the centre of one face is the mouth, with
six teeth.” (from https://en.wikisource.org/wiki/Report_on_the_Radiolaria/Plates12#
/media/File:Radiolaria_(Challenger)_Plate_117.jpg.

We can identify this subset with R3 through bi + cj + dk ←→ (b, c, d). Under this
identification the norm on H corresponds to the Euclidean norm, and thus we get an
action of S3 on R3 which is orthogonal. The resulting homomorphism S3 → SO(3) has
kernel of order 2. That the kernel has order at least 2 is easy to see: both x,−x ∈ H
map to the same linear transformation. We leave it as an exercise to the reader that
there are no further elements in the kernel.

Let the icosahedral group I ⊂ SO(3) be the subgroup of symmetries of the icosahedron,
and let I∗ be its inverse image in S3. I∗ has order 120. The quotient manifold is the
Poincaré homology sphere:

P := S3/I∗.

Remark 8.1.6. Why is the Poincaré homology sphere interesting? As you might expect,
it was first constructed by Poincaré, though he did not construct it this way. Poincaré
produced it as a counterexample to the first version of the Poincaré conjecture: it
has the same homology as a 3-sphere, but it is not homeomorphic to S3 because it

https://en.wikisource.org/wiki/Report_on_the_Radiolaria/Plates12#/media/File:Radiolaria_(Challenger)_Plate_117.jpg
https://en.wikisource.org/wiki/Report_on_the_Radiolaria/Plates12#/media/File:Radiolaria_(Challenger)_Plate_117.jpg
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has fundamental group isomorphic to I∗. The correct Poincaré conjecture says that a
3-dimensional differentiable manifold that is homotopy equivalent to S3 is diffeomorphic
to it. This was eventually proven by Perelman in a series of papers in 2002–2003, for
which he received a Fields medal.1

Remark 8.1.7. For a while some scientists thought the cosmic microwave background
radiation was most consistent with the universe having space-like direction S3/I∗ instead
of R3, though with the acquisition of more data this is no longer the case.2

8.2 The K3-manifold

Our second example come from algebraic geometry, and is a particular case of a
general construction of a hypersurface in complex projective space.

Recall from Problem 2.3.6 the complex projective spaces CP k, defined as

CP k = (Ck+1 \ {0})/∼,

where the equivalence relation ∼ is generated by (z0, . . . , zk) ∼ (λz0, . . . , λzk) for λ ∈
C \ {0}. In other words, we are taking the quotient of the free action of the non-zero
invertible complex numbers C× by scalar multiplication on Ck+1 \ {0}. We denote the
equivalence class of (z0, . . . , zk) by [z0 : · · · : zk]. It is a 2k-dimensional smooth manifold,
covered by the k + 1 charts

φj : Ck −→ CP k

(z1, . . . , zk) 7−→ [z1 : · · · : zj−1 : 1 : zj : · · · : zk].

The image Vj of φj is given by {[z0 : . . . : zk] | zj 6= 0}.
Suppose we are interested in subsets of CPn given by points which satisfy some

equation, e.g. f(z0, . . . , zk) = 0. Whether or not a point [z0 : . . . : zk] satisfies this
equation ought to be independent of the choice of representative, and one way to
guarantee this is the case is to assume that f is homogeneous:

f(λz0, . . . , λzk) = λdf(z0, . . . , zk)

for some d ≥ 1. If so, if f vanishes on all representatives of [z0, . . . , zk] when it vanishes
on one of them.

We shall now restrict our attention to such f which are polynomial, homogeneous
polynomials. These are polynomials in z0, . . . , zk in which every term has the same total
degree d.
Example 8.2.1. The polynomial z2

0 + z2
1 of z0, z1 is homogeneous, but z0 + z2

1 is not.
We now use the submersion theorem to answer the following question: when does the

zero set of homogeneous polynomial describe a smooth submanifold of CP k?
1See https://www.ams.org/notices/200310/fea-milnor.pdf for the history and context of this

problem.
2See e.g. http://www.ams.org/notices/200406/fea-weeks.pdf and https://mathoverflow.net/

a/9717/798.

https://www.ams.org/notices/200310/fea-milnor.pdf
http://www.ams.org/notices/200406/fea-weeks.pdf
https://mathoverflow.net/a/9717/798
https://mathoverflow.net/a/9717/798
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Theorem 8.2.2 (Hypersurfaces in complex projective spaces). Let p be a homogeneous
polynomial of z0, . . . , zk such that

{(z0, . . . , zk) | p(z0, . . . , zk) = 0} ∩
k⋂
j=0

{
(z0, . . . , zk)

∣∣∣ ∂
∂zj
p(z0, . . . , zk) = 0

}
= {0},

then the subspace
{[z0 : . . . : zk] | p(z0, . . . , zk) = 0} ⊂ CP k

is a (2k − 2)-dimensional smooth submanifold.

This statement requires an explanation. We can identify the domain Ck+1 with R2k

by zj ←→ xj + iyj , and similarly identify the target C with R2. Then p is not only
differentiable as a function R2k+2 → R2, is in fact complex-differentiable as a function
Ck+1 → C. That is, for each 1 ≤ i ≤ k the limit p(z0,...,zj+h,...,zk)

h with as C 3 h → 0
exists, and these limits are the partial derivatives ∂p

∂zj
(z0, . . . , zk).

Proof. Let us write X := {[z0 : . . . : zk] | p(z0, . . . , zk) = 0}. If suffices to prove that X∩Vj
is a smooth submanifold for all 0 ≤ j ≤ k. To do so, we may pass to the local coordinates
provided by the chart φj , i.e. prove that φ−1

j (X ∩Vj) ⊂ Ck is a smooth submanifold. This
is given by the vanishing set of the polynomial qj given by p(z1, . . . , zj−1, 1, zj , . . . , zk) of
the k variables z1, . . . , zk (it is not homogeneous).

We now ought to identify the domain Ck with R2k and the target C with R2, and
show that when qj(x1 + iy1, . . . , xk + iyk) = 0, the (2× 2k)-matrix of partial derivatives
of the real and imaginary part of qj with respect to x1, . . . , xk and y1, . . . , yk is surjective.
However, it is more convenient not to leave the world of complex numbers, as qj is
complex-differentiable with respect to the k complex variables z1, . . . , zk. In this case,
we can form a (1× k)-matrix of complex numbers[

∂qj
∂z1

(z1, . . . , zk) · · · ∂qj
∂zk

(z1, . . . , zk).
]

This is surjective if and only if the (2× 2k)-matrix with real entries mentioned before is
surjective.

Thus the condition is that when qj vanishes, at least one of the partial derivatives of
qj does not vanish. We will get a contradiction with the hypothesis from the assumption
that qj and all its partial derivatives vanish simultaneously. We start by relating these
vanishing for qj and partial derivatives back to p:

qj vanishes at (z1, . . . , zk)⇐⇒ p vanishes at (z1, . . . , zj−1, 1, zj , . . . , zk),
∂qj
∂zr

vanishes at (z1, . . . , zk)⇐⇒ ∂p
∂zr′

vanishes at (z1, . . . , zj−1, 1, zj , . . . , zk),

with r′ = r if r < j and r′ = r + 1 if r ≥ j. This gives us information about all partial
derivatives except ∂p

∂zj
.

To understand this remaining partial derivative, we use a fact due to Euler:
k∑
j=0

∂p

∂zj
(z0, . . . , zk) · zj = d · p(z0, . . . , zk), (8.1)
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with d the degree of p. To prove this, consider the function p(λz0, . . . , λzk)−λdp(z0, . . . , zk).
This vanishes identically because p is homogeneous of degree d, hence so its derivative
with respect to λ. Evaluating this derivative at λ = 1 gives (8.1). If we use this at the
point (z1, . . . , zj−1, 1, zj , . . . , zk), we know the right hand side vanishes as do all terms on
the left hand side expect one. We get that

∂p

∂zj
(z1, . . . , zj−1, 1, zj , . . . , zk) = 0,

which contradicts the hypothesis. This completes the proof.

Remark 8.2.3. Implicitly we used the complex version of the submersion theorem, [DK04a,
Section 3.7].

A smooth manifold obtained as in Theorem 8.2.2 is called a hypersurface. The
example which plays such an important role in algebraic geometry is the K3-manifold,3
also known as the Fermat quartic. It is obtained by taking the homogeneous polynomial
p given by z4

0 + z4
1 + z4

2 + z4
3 :

K3 := {[z0 : · · · : z3]) | z4
0 + z4

1 + z4
2 + z4

3 = 0} ⊂ CP 3.

It is easy to verify that the polynomial p satisfies the conditions in Theorem 8.2.2, so this
is a 4-dimensional smooth manifold: if ∂

∂zj
p(z0, z1, z2, z3) = 0 then zj = 0, so all partial

derivatives vanish simultaneously only at the origin.
Remark 8.2.4. Why is the K3 manifold interesting? It plays an important role in algebraic
geometry and the study of 4-dimensional smooth manifolds.

When one does algebraic geometry over C, out of a smooth k-dimensional variety
one can extract a smooth 2k-dimensional manifold (“taking the analytic topology”). In
particular, the K3 manifold can be obtained this way from not one but many algebraic
surfaces. There are roughly three types of algebraic surfaces: Fano surfaces (which are
“easy”), surfaces of general type (which are “hard”), and Calabi–Yau surfaces (which are
“intermediate”). The latter class contains only complex 2-dimensional tori and the K3
surfaces, and all K3 surfaces have the same underlying 4-dimensional smooth manifold:
the K3 manifold that we constructed above.

Because it has an algebraic origin, the gauge-theoretic invariants used to study exotic
smooth structures on smooth 4-manifolds can be computed for K3 using more algebraic
approaches. This gives a starting point for constructing exotic smooth 4-manifolds: start
with K3, make a modification to it, and study how this changes the gauge-theoretic
invariants.

8.3 The Whitehead manifold

Our final example is quite peculiar. It is an example of a 3-dimensional smooth
manifold which from the perspective of algebraic topology looks like R3, but is not in

3The name is due to Andre Weil, who motivated it by “In the second part of my report, we deal with
the Kähler varieties known as K3, named in honor of Kummer, Kähler, Kodaira and of the beautiful
mountain K2 in Kashmir.”



86 Chapter 8 Three further examples of manifolds

fact diffeomorphic to it. It is an example of infinite phenomena leading to pathological
objects in differential topology.

We start with the following injective immersion S1 × R2 → R3 of an open torus. Let
us denote its complement in R3 by W1. This contains another, curiously linked, open
torus; its complement in R3 is denoted by W2. We can keep iterating this procedure,
finding a linked copy of S1 × R2 in the previous copy of S1 × R2, and denoting its
complement by Wn.

The Whitehead manifold is then defined to be increasing union

W :=
⋃
n

Wn.

This is an open subset of R3 and hence a smooth 3-dimensional manifold. It is the
complement of the intersection of all the linked open tori, which is known as the Whitehead
continuum.
Remark 8.3.1. Why is the Whitehead manifold interesting? The Whitehead manifold
is a contractible 3-dimensional smooth manifold which is not diffeomorphic or even
homeomorphic to R3. (Surprisingly, it is homeomorpic to a union of two copies of R3

intersecting in another copy of R3 [Gab11].)
The reason is that being contractible does not take into account the “topology at

infinity,” i.e. how W \ Kn behaves as for a sequence Kn of compact codimension 0
submanifolds exhausting W . This is a general phenomenon: if you want to use algebraic
topology to study non-compact manifolds you need to take into account the topology at
infinity.

8.4 Problems

Problem 8.4.1 (Klein quartic). Prove that the subspace

X = {[x : y : z] ∈ CP 2 | x3y + y3z + z3x = 0} ⊂ CP 2

is a 2-dimensional compact submanifold. It is called the Klein quartic. What is its genus?

Problem 8.4.2 (Milnor manifolds). Let m ≤ n. Prove that the subspaces

H(m,n) :=

([z0, . . . , zm], [w0, . . . , wn])

∣∣∣∣∣∣
m∑
j=0

zjwj = 0

 ⊂ CPm × CPn

are 2(m+ n− 1)-dimensional smooth submanifolds. These are called Milnor manifolds.



Chapter 9

Partitions of unity and the weak Whitney
embedding theorem

In this chapter we prove that every compact manifold can be embedded into a
Euclidean space, using partitions of unity.

9.1 The weak Whitney embedding theorem

We now prove that every smooth manifold M arises a smooth submanifold of some
RN , by constructing an embedding M ↪→ RN when M is compact. The result is true
even for non-compact smooth manifolds, but proving that requires more care and is
done in Section 12.1. Thus we could have set up the theory by demanding every smooth
manifold is of this form, as [GP10] does.

The new tool in our argument is the existence of partitions of unity, which is one of
the main reasons that we demanded M was second-countable and Hausdorff. Recall that
the support supp(η) ⊂ M of a continuous function η : M → [0, 1] is the closure of the
open subset η−1((0, 1]).

Definition 9.1.1. Let W = {Wi}i∈I be an open cover of M . Then a partition of unity
subordinate to W is a collection of smooth function ηi : M → [0, 1] with the following
properties:

(i) supp(ηi) ⊂Wi,

(ii) each p ∈ M has an open neighborhood on which only finitely many ηi are
non-zero,

(iii) for all p ∈M , ∑i ηi(p) = 1.

Theorem 9.1.2. Every open cover W = {Wi}i∈I of M admits a subordinate partition
of unity.

The main use of partitions of unity is to construct a function (or something similar)
on Wi, usually the codomain of a chart, multiply it with ηi and extend the result by 0
elsewhere. The result is then defined on all of M .

87
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Theorem 9.1.3 (Whitney). Every compact k-dimensional smooth manifold M has an
embedding into some Euclidean space RN .

Proof. Since M is compact it is covered by the codomains Vi of finitely many charts
(Ui, Vi, φi) for 1 ≤ i ≤ r. Let ηi : M → R be a subordinate partition of unity subordinate
to this cover. We then define

ηr(p)φ−1
r (p) :=

{
ηr(p)φ−1

r (p) if p ∈ Vi,
0 otherwise.

(Thus ηr(p)φ−1
r ought to be interpreted as a compound symbol.) This is smooth as the

support of ηi is contained in Vi and ηi is smooth.
Then we define the following map

ρ : M −→ Rr(k+1)

p 7−→ (η1(p), η1(p)φ−1
1 (p), . . . , ηr(p), ηr(p)φ−1

r (p)).

Since each of the components of ρ is smooth, so is ρ.
We must now verify ρ is injective and has injective differential for all p ∈ M (it is

automatically proper because M is compact). We start with injectivity and suppose
that ρ(p) = ρ(p′). Since the ηi are a partition of unity we can pick an ηi such that
ηi(p) = ηi(p′) 6= 0. From this we deduce that both p and p′ are in Vi. We can then divide
the equation ηi(p)φ−1

i (p) = ηi(p′)φ−1
i (p′) by ηi(p) 6= 0 to get φ−1

i (p) = φ−1
i (p′) and apply

the injective map φi to deduce p = p′.
Next we verify ρ has injective differential everywhere. Let p ∈M such that ηi(p) 6= 0

and set q = φ−1
i (p). Since projections are smooth and on η−1

i ((0, 1]) division by ηi is a
smooth map, the following is a smooth map η−1

i ((0, 1])→ Rk:

q 7−→ ρ(q) proj7−→ ηi(q)φ−1
i (q) divide7−→ φ−1

i (q).

It is visibly equal to φi, so it has bijective differential dpφi at p. By the chain rule we
can write

dpφi = dρ(p)(divide ◦ proj) ◦ dpρ

and since the left hand side is bijective the term dpρ on the right hand side must be
injective.

Example 9.1.4. The embeddings produced by this result are unnecessary wasteful. For
example, at best it produces an embedding of Sn into R2n+2, even though we know it
can be embedded into Sn+1. We shall later prove that every compact k-dimensional
manifold embeds into R2k+1.

9.1.1 Tangent bundles of submanifolds

Suppose M is a k-dimensional manifold and Z ⊂M is a submanifold of codimension
r. Then both M and Z have tangent bundles TM and TZ. The inclusion i : Z ↪→M is
an injective map whose derivative is injective at all z ∈ Z. Thus the map di : TZ → TM
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is injective; it maps at most one fiber to each TpM and on that fiber it is injective. We
claim that this allows us to think of TZ as a subbundle of TM |Z .

Indeed, taking E = TZ, X = Z, E′ = TN , X ′ = M and G = di in Lemma 5.3.6,
we see that im(di) is a subbundle of TM |Z . Of course it is also true that ker(di) is
subbundle of TZ, but it is 0-dimensional. This makes precise the statement that “TZ is
a subbundle of TM |Z .”
Example 9.1.5. By the Whitney embedding theorem, TM is a subbundle of TRN |M ,
which is the trivial bundle of dimension N over M . We conclude that the tangent bundle
to a compact manifold is always a subbundle of a trivial vector bundle.

9.2 Existence of partitions of unity

We now prove the existence of partitions of unity. But before doing so, we prove a
few results about the point-set topology of M . These results are the main reason we
demanded that M was second-countable and Hausdorff.

Lemma 9.2.1. M is a union of countable many open subsets with compact closure.

Proof. Let {Wi}i∈I denote the countable basis for the topology of M and let A =
{(Uα, Vα, φα)} be the atlas of M . If there is an Vα containing Wi, pick one and call it Vi.
This gives a collection of open {Vi}i∈I′ indexed by a subset I ′ ⊂ I. We have ⋃i∈I′ Vi = M ,
because the Vα cover M by definition of an atlas and Vα is a union of elements of the
basis {Wi}i∈I by definiton of a basis for a topology.

Given a chart (Ui, Vi, φi) for i ∈ I ′, take all open balls Bεj (xj) ⊂ Ui in its domain
such that εj > 0 is rational, xj ∈ Ui has rational coordinates and B̄εj (xj) ⊂ Ui. We
denote these

W j
i := φi(Bεj (xj)),

indexed by some countable set Ji. The collection of all of these is a countable union
of countable sets, so is countable. We will prove that {W j

i }i∈I′,j∈Ji is the sought-after
collection of open subsets.

To see that the W j
i cover M , we remark that for fixed i we have ⋃j∈JiW j

i = Vi and
then varying i we have ⋃

i∈I′

⋃
j∈Ji

W j
i =

⋃
i∈I′

Vi = M.

The image of the compact set B̄εj (xj) under φi is compact. Because M is Hausdorff each
compact subset is closed and thus the closure of φi(Bεj (xj)) is contained in φi(B̄εj (xj)).
Hence it is a closed subset of a compact set and hence compact.

Lemma 9.2.2. There are compact subsets Ki ⊂M , indexed by integers i ≥ 0, and open
subsets Vi+1/2 ⊂M such that K0 ⊂ V1/2 ⊂ K1 ⊂ V1+1/2 ⊂ · · · and

⋃
i≥0Ki = M .

Proof. Let M = ⋃
i∈NWi with Wi compact. We define the Ki inductively, starting with

K0 = W0. Suppose we have defined Kn−1, then let N be the smallest integer ≥ n such
that Kn−1 ⊂W1∪ · · · ∪WN . Set Vn−1/2 := W1∪ · · · ∪WN and Kn := W1∪ · · · ∪WN .
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If U is an open cover of X, a second open cover V is a refinement if each V ∈ V
is contained in some U ∈ U . One can deduce easily from the previous lemma that M
is paracompact, i.e. every open cover has a refinement to a locally finite subcover and
it is then a standard fact in point-set topology that partitions of unity by continuous
functions exist. We instead want partitions of unity by smooth functions, so there is no
getting around using the fact that M is a smooth manifold. We first prove a slightly
weaker version of Theorem 9.1.2 and along the way we will prove that M is paracompact.

Proposition 9.2.3. Every open coverW = {Wi}i∈I of M has a refinement which admits
a subordinate partition of unity.

Proof. Let K0 ⊂ V1/2 ⊂ K1 ⊂ V1+1/2 ⊂ · · · be as above M and W = {Wi}i∈I be the
open cover. Any p ∈M lies in a unique Kn \Kn−1, which has Vn+1/2 \Kn−1 as an open
neighborhood. We can then pick a chart (Uβ, Vβ, φβ) of M , a point z ∈ Uβ, and δ > 0,
such that Bδ(z) ⊂ Uβ, p = φβ(z) and φβ(Bδ(z)) ⊂Wi ∩ Vn+1/2 \Kn−1 for some i.

Ranging over all p ∈ M (and thus implicitly all n ≥ 0), the open sets φβ(Bδ/3(z))
in particular cover the compact set Km+1 \ Vm−1/2, hence there is a finite subcover
φβmi (Bδmi /3(zmi )), 1 ≤ i ≤ jm of Km+1 \ Vm−1/2. Taking the {φβmi (Bδmi /3(zmi ))}1≤i≤jm
for all m, these give a cover of M , as⋃

m≥0
Km+1 \ Vm−1/2 ⊃

⋃
m≥0

Km+1 \Km = M.

By construction φβmi (Bδmi /3(zmi )) is contained in Wi, so this is a refinement of W. It is
locally finite since the open subsets φβmi (Bδmi (zmi )) can only intersect the open subset
Vn+1/2 \Kn−1 for n = m− 1,m. At this point we have proven that M is paracompact.

In Problem 9.3.1 you will show that there exists a smooth function ρ̃mi : Uβmi → [0, 1]
which vanishes outside Bδmi /2(zmi ) and is equal to 1 on Bδmi /3(zmi ). We can then define a
smooth map η̃mi : M → [0, 1] by

η̃mi (p) =

ρ̃mi (φ−1
βmi

(p)) if p ∈ Vβ,
0 otherwise.

Since the collection of open subsets φβmi (Bδmi /3(zmi )) covers M and the collection of
open subsets φβmi (Bδmi (zmi )) is locally finite, we have that

p 7−→
∑

η̃mi (p)

is locally equal to a finite sum of non-zero terms, so is a smooth map M → R>0. We
then define ηmi : M → [0, 1] by

ηmi := η̃mi∑
η̃mi

.

This is the desired partition of unity subordinate to the refinement of W given by the
φβmi (Bδmi /3(zmi )).

Remark 9.2.4. If M is compact, the proof of Theorem 9.1.2 greatly simplifies as you can
forget about the Ki and Vi+1/2’s.
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The above construction has multiple functions with support in Wi. Instead, it is
often more convenient to have one function for each Wi in W.

Proof of Theorem 9.1.2. By the previous proposition we can find a refinement W ′ =
{Wj}j∈J of W = {Wi}i∈I and a partition of unity {η′j : M → [0, 1]} subordinate to it.

For j ∈ J , fix a Wi such that W ′j ⊂ Wi. This gives a function λ : J → I. We claim
that

ηi :=
∑

j∈J−1(i)
η′j

gives the desired partition of unity. By property (ii), this is a locally finite sum and hence
a smooth function. By property (i), the sum of the ηi is 1 everywhere. From property
(i), we know that supp(η′j) ⊂W ′j and hence is also contained in Wi. Now observe that

supp(ηi) = η−1
i ((0, 1])) =

⋃
j∈J−1(i)

(η′j)−1((0, 1]).

By property (ii), the latter is a closure of a locally finite union of open subsets. This is
equal to the union of the closures, by an elementary argument in point-set topology. So
we conclude that

supp(ηi) =
⋃

j∈J−1(i)
(η′j)−1((0, 1]) =

⋃
j∈J−1(i)

supp(η′j) ⊂Wi.

This finishes the proof.

9.3 Problems

Problem 9.3.1 (A bump function).
(a) Prove that

f : R −→ R

x 7−→
{
e−1/x2 if x > 0,
0 if x ≤ 0

is smooth.
(b) Observe that g(x) = f(x)f(1− x) is smooth, positive on (0, 1), and 0 outside of this

interval. Prove that
h(x) =

∫ x
−∞ g(y)dy∫∞
−∞ g(y)dy

is smooth, equal to 0 when x ≤ 0 and equal to 1 when x ≥ 1.
(c) Construct a smooth function on Rk which is 1 on an open neighborhood of the origin

and is supported in the unit ball.

Problem 9.3.2 (Smooth Urysohn theorem). Use partitions of unity to prove that if
A,B ⊂M are disjoint closed subsets of a smooth manifold M , then there is a smooth
function λ : M → [0, 1] such that λ|A = 0 and λ|B = 1.
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Problem 9.3.3 (Charts from coordinate axes). Suppose that M is a k-dimensional
smooth manifold and e : M → RN is a smooth embedding. Prove that for each p ∈M
there is an open subset U ⊂ M containing p and integers i1, . . . , ik in {1, . . . , N} such
that

M ⊃ U −→ Rk

p 7−→ (πi1 ◦ e(p), . . . , πik ◦ e(p))

is a diffeomorphism onto an open subset. Here πij : RN → R is the projection on the ijth
coordinate.
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Transversality and the improved preimage
theorem

In this chapter we improve the pre-image theorem to give a sufficient condition
under which pre-images of submanifolds are submanifolds. This will have many applica-
tions, among them a generalization of the Whitney embedding theorem to non-compact
manifolds.

10.1 The preimage theorem restated

Recall that given a submanifold Z ⊂M , with i : Z →M denoting the inclusion, we
have that by considering the image of di we can consider TZ as a subbundle of TM |Z .
This makes precise the statement that “TZ is a subbundle of TM |Z .”

Many submanifolds arise through the pre-image theorem: we have a smooth map
f : M → N with regular value c and Z = f−1(c). The pre-image theorem said that Z is
then (k − k′)-dimensional submanifold of M and Tpf

−1(c) = ker(dpf : TpM → Tf(p)M)
for all p ∈ f−1(c). The latter part about the tangent spaces to Z, can be improved to a
statement about tangent bundles. The proof is identical, but it is only now that we can
phrase it:

Theorem 10.1.1 (Preimage theorem). If f : M → N is a smooth map and c ∈ N
a regular value, then Z := f−1(c) is a (k − k′)-dimensional submanifold of M and
TZ = ker(df : TM |Z → TN) ⊂ TM |Z .

Example 10.1.2. Recall that Sn−1 can be written as g−1(1) with g : Rn → R given by
(x1, . . . , xn) 7→ x2

1 + . . .+x2
n. The map g is smooth and has total derivative [2x1, . . . , 2xn],

so all non-zero real numbers are regular values of g. In particular, Sn−1 is an (n− 1)-
dimensional differentiable manifold and TSn−1 is the kernel of the total derivative maps;
for x = (x1, . . . , xn) ∈ Sn−1 the kernel of [2x1, . . . , 2xn] is just the (n− 1)-dimensional
plane x⊥ of vectors orthogonal to x.
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10.2 Transversality

The most important geometric notion in differential topology is transversality. This
condition tells you in terms of tangent spaces when submanifolds (or the image of a map
and a submanifold) intersect nicely.

10.2.1 Submanifolds locally

We start by recalling the definition of a submanifold, and describe how in suitable
local coordinates all submanifolds are the inverse images of projection maps.

Suppose that we have a k′-dimensional differentiable manifold N with a submanifold
Z ⊂ N of codimension r (that is, Z is (k′ − r)-dimensional). Then for each z ∈ Z we
have a local parametrization, that is, open subsets U ⊂ Rk′ and V ⊂ N as well as a
diffeomorphism φ : U → V so that φ−1(Z ∩ V ) = U ∩ ({0} × Rk′−r). That is, on U we
can define πr : U → Rr projecting onto the first r coordinates and φ−1(Z ∩ V ) = π−1

r (0).
Thus we see that

Z ∩ V ⊂ V = φ(π−1
r (0)) ⊂ V.

If we want to explicit understand TzZ ⊂ TzN , then we may as well identify it in U by
applying the linear isomorphism dzφ

−1. Here it is the tangent space to U ∩ ({0}×Rk′−r)
at φ−1(z), which is just {0}×Rk′−r. Applying the inverse dφ−1(z)φ of dzφ−1, we see that
TzZ is the following (k′ − r)-dimensional linear subspace of TzN :

TzZ = dφ−1(z)φ({0} × Rk
′−r) ⊂ TzN. (10.1)

10.2.2 Improving the pre-image theorem

Now suppose we have a smooth map f : M → N . We will give a criterion that tells
us when f−1(Z) is a differentiable submanifold of M .

To find a local parametrization of f−1(Z) ⊂ M near p ∈ f−1(Z), we might as well
find one of f−1(Z ∩ V ) ⊂ f−1(V ) ⊂M . The advantage of passing to this open subset is
that on f−1(V ) we can use projection to define the smooth map

g := f−1(V ) ⊂M f−→ V ⊂ N φ−1
−→ U ⊂ Rk

′ πr−→ Rr.

This has the property that

g−1(0) = f−1(φ(π−1
r (0))) = f−1(φ(φ−1(Z ∩ V ))) = f−1(Z ∩ V ).

The pre-image theorem then tells us that f−1(Z∩V ) is a submanifold of f−1(V ) ⊂M
of codimension r whenever 0 is regular value of g. That is, g should be a submersion at
all p ∈ f−1(Z ∩ V ).

So we need to understand when dpg : TpM → T0Rr is surjective. Writing

dpg = dφ−1f(p)πr ◦ df(p)φ
−1 ◦ dpf,

we first observe that for dpg to be surjective, im(df(p)φ
−1 ◦ dpf) should be a linear

subspace of Tφ−1f(p)Rk
′ = Rk′ which surjects onto T0Rr = Rr under the linear map
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dφ−1f(p)πr : Rk′ → Rr. This is the case exactly when im(df(p)φ
−1◦dpf)+ker(dφ−1f(p)πr) =

Rk′ . Using the fact that ker(dφ−1f(p)πr) = {0} × Rk′−r we obtain the requirement

im(df(p)φ
−1 ◦ dpf) + {0} × Rk

′−r = Rk
′
.

Let us apply the linear isomorphism dφ−1f(p)φ to translate this back to a statement
about linear subspaces of the original tangent space Tf(p)N . By the chain rule dφ−1f(p)φ

sends im(df(p)φ
−1 ◦ dpf) to im(dpf), and by (10.1) it sends {0}×Rk′−r to Tf(p)Z. Since

a linear isomorphism preserves sums, we see that dpg is surjective if and only if

im(dpf) + Tf(p)Z = Tf(p)N.

Let us give this condition a name:

Definition 10.2.1. Let Z ⊂ N be a submanifold. We say that f : M → N is transverse
to Z at p ∈ f−1(Z), denoted f tp Z, when im(dpf) + Tf(p)Z = Tf(p)N .

Definition 10.2.2. Let Z ⊂ N be a submanifold. We say that f : M → N is transverse
to Z , denoted f t Z, when f is transverse to Z at all p ∈ f−1(Z).

Example 10.2.3. A smooth map f : R → R2 is transverse to R× {0} if and only if the
derivative ∂f2/∂t is non-zero whenever f(t) crosses the x-axis.

f(x) = (x, x2 − 1)

f t R× {0}

g(x) = (x, 1
3x

2(x− 3
2))

g 6t R× {0}

Figure 10.1 Examples of smooth functions R→ R2.

Then the above discussion tells us that f : M → N being transverse to Z at all
p ∈ f−1(Z ∩ V ) implies that f−1(Z ∩ V ) = g−1(0) is a submanifold. Varying the local
parametrizations, we see that f being transverse to Z implies f−1(Z) is a submanifold.
We can say a bit more; by the pre-image theorem the tangent space to f−1(Z∩V ) = g−1(0)
at p is given by the kernel of dpg, i.e. (dpg)−1(0), which is equal to (dpf)−1(Tf(p)Z).

Theorem 10.2.4 (Improved preimage theorem). Let Z ⊂ N a submanifold of codimen-
sion r and suppose that f : M → N that is transverse to Z. Then f−1(Z) ⊂M is also a
submanifold of codimension r and Tf−1(Z) = (df)−1(TZ) ⊂ TM |f−1(Z).
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Remark 10.2.5. This is an improvement of the preimage theorem, because we can recover
the preimage theorem by take Z to be a point c. Since the tangent space to the (rather
boring) 0-dimensional manifolds c is 0-dimensional, f is transverse to c at p ∈ f−1(c) if
and only if dpf is surjective.
Example 10.2.6. Suppose Z ⊂ N is a collection of points and M is of smaller dimension
than N . Then f : M → N is transverse to Z if and only im(f) ∩ Z = ∅, as it is
not possible for the sum of a 0-dimensional and < k′-dimensional subspace to equal a
k′-dimensional vector space.
Example 10.2.7. Though f t Z implies that f−1(Z) is a submanifold, the converse is not
true: the inclusion i : Z → N is very much not transverse to Z, but i−1(Z) = Z.
Remark 10.2.8. You may want to try to come up with the definition of two smooth maps
f : M1 → N and g : M2 → N being transverse, and then prove that {(m1,m2) | f(m1) =
g(m2)} ⊂M1 ×M2 is a submanifold.

10.2.3 Transversality for submanifolds

The case that is of most geometric interest is when f is the inclusion j : Y → N of
another submanifold. In that case, it is more convenient to forget about the maps i : Z →
N and j : Y → N and state the transversality condition in terms of the submanifolds:

Definition 10.2.9. Let Y, Z ⊂ N be submanifolds. Then Y and Z are transverse at
p ∈ Y ∩ Z, denoted Y tp Z, if TpY + TpZ = TpN .

Definition 10.2.10. Let Y,Z ⊂ N be submanifolds. Then Y and Z are transverse,
denoted Y t Z, if Y and Z are transverse at all p ∈ Y ∩ Z.

Example 10.2.11. If Y ∩Z = ∅, Y t Z because there are no points in p ∈ Y ∩Z at which
any conditions are imposed.

The improved pre-image theorem says that if Y t Z then Y ∩ Z is a submanifold of
Y , and hence a submanifold of N . (If this sounds surprising, you should go through the
definitions again and verify that a submanifold of a submanifold is a submanifold). At
each p ∈ Y ∩ Z, Tp(Y ∩ Z) = TpY ∩ TpZ. This in particular implies that

codim(Y ∩ Z) = codim(Y ) + codim(Y ).

You should think of Y t Z as saying that Y and Z intersect nicely. Let us make this
more precise:
Example 10.2.12. Two linear subspaces U and V in Rn of codimension r and s respectively
intersect transversally if and only if U ∩ V is a linear subspace of codimension r + s.

The direction ⇒ is a consequence of the general formula for the codimension of a
transverse intersection. For the direction ⇐, we note that at each p ∈ U ∩ V we can
identity TpU and TpV with U and V again. To compute their sum U + V we use the
inclusion-exclusion formula for the dimension of a sum of two linear subspaces:

dim(U + V ) = dim(U) + dim(V )− dim(U + V ) = (n− r) + (n− s)− (n− r − s) = n.

Hence U + V = Rn and U and V intersect transversally at p ∈ U ∩ V .
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transverse not transverse

Figure 10.2 Examples of 1-dimensional submanifolds of R2.

Any transverse intersection locally is of the form in Example 10.2.12 in the right
coordinates:

Lemma 10.2.13. Y tp Z if and only if there is a chart (Uα, Vα, φα) such that φ−1
α (Y )

and φ−1
α (Z) are given by the intersection with Uα of two linear subspaces intersecting

transversally.

Proof. ⇐ follows from transversality being preserved by diffeomorphisms, so we focus
on ⇒. Since the intersection is non-empty the codimensions r and s of Y and Z satisfiy
r + s ≤ k′.

The proof of the improved pre-image theorem provides a chart (U1, V1, φ1) in which
φ−1(Z) = U1 ∩ ({0} ×Rk′−r). We may assume that φ1(0) = p by translating. Translated
to this chart, Y tp Z says that T0φ

−1
1 (Y ) + {0}×Rk′−r = Rk′ . Thus by applying a linear

isomorphism of Rk′ preserving {0}×Rk′−r we may assume that T0φ
−1
1 (Y ) = Rk′−s×{0}.

So it remains to fix φ−1
1 (Y ). Consider the map π : φ−1

1 (Y ) → Rk′−s × {0} given
by restricting the projection map Rk′ → Rk′−s × {0}. The derivative of π at 0 is the
identity and hence bijective. Inverse function theorem then tells us that π is a local
diffeomorphism. Thus near the origin,

φ−1
1 (Y ) = {(w, ρ(w)) ∈ Rk

′−s × Rs}

for a smooth map ρ : Rk′−s → Rs with ρ(0) = 0. Thus there exists an open subset U2 of
the origin in Rk′ so that the diffeomorphism ρ̄ : Rk′ → Rk′ given by ρ̄(w, v) = (w, v+ρ(w))
maps U2 ∩ (Rk′−s × {0}) onto a neighborhood of the origin in φ−1

1 (Y ). Note that ρ̄
preserves {0} × Rk−r, we only translate in the last s coordinates and s ≤ k′ − r as
k′ ≥ r + s. Thus the desired chart is

(U2, V2, φ2) := (U2, φ1 ◦ ρ̄(V2), φ1 ◦ ρ̄).

10.3 Another construction of the Poincaré homology sphere

As an extended example, we will now give an alternative and at first sight completely
unrelated construction of the Poincaré homology sphere P = S3/I∗, which we first saw
in Section 8.1.
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To do so, we consider the map

f : C3 −→ C
(z1, z2, z3) 7−→ z2

1 + z3
2 + z5

3 .

We claim that
X = f−1(0) ∩ (C3 \ 0)

is a codimension 2 submanifold of C3 \{0}. We of course would like to use the submersion
theorem, and we could do by identifying the domain C3 with R6 by zj ←→ xj + iyj , and
similarly identify the target C with R2. We would then need to verify that the total
derivative, a (2× 6)-matrix, is surjective.

However, it is much convenient to keep working with complex numbers: as a polyno-
mial, p is not only differentiable as a function R6 → R2, is in fact complex-differentiable
as a function C3 → C. We can compile these into a (1× 3)-matrix of complex numbers[

∂f
∂z1

(z1, z2, z3) ∂f
∂z2

(z1, z2, z3) ∂f
∂z3

(z1, z2, z3)
]
.

This complex total derivative is surjective if and only if the total derivative is surjective.
In our case, the complex total derivative is given by[

2z1 3z2
2 5z4

3

]
(10.2)

and hence surjective for all (z1, z2, z3) ∈ C3 \ {0}. We conclude that X ⊂ C3 \ {0} is a
4-dimensional smooth manifold, or equivalently codimension 2.

To reduce the dimension by one, we will intersect with the sphere S5 := {(z1, z2, z3) |
|z1|2 + |z2|2 + |z3|2 = 1}, of codimension 1. We claim this is transverse to X. To see this
is the case, we use that the tangent bundle to X at x = (z1, z2, z3) ∈ X is given by the
kernel of the matrix (10.2); this has fibers isomorphic to C2 ∼= R4 so is 4-dimensional. A
particular vector in this kernel is

w = (z1/2, z2/3, z3/5).

The tangent bundle to S5 at x ∈ S5 is given by those vectors orthogonal to x; this
is 5-dimensional. It is convenient to work with complex numbers, and observe that
w = (w1, w2, w3) ∈ TxC3 being orthogonal to x is equivalent to

Re(x · w) = 0.

Let us evaluate this on the above vector in TxX: we get

Re(x · w) = |z1|2/2 + |z2|2/3 + |z3|2/5,

and since |z1|2 +|z2|2 +|z3|2 = 1, we see this is at least 1/5 so non-zero. Thus TxX 6⊂ TxS5

and by a dimension count we conclude that TxX + TxS
5 = TxC3. Thus f−1(0) ∩ S5

is a submanifold of S5. Its codimension is 2 + 1, so it is 3-dimensional. It is in fact
diffeomorphic to the Poincaré homology sphere [KS79, p. 128–132].



10.4 Problems 99

Remark 10.3.1. A smooth manifold which arises as the transverse intersection of a zero
set of a complex polynomial (here z2

1 + z3
2 + z5

3) with a small sphere around a singularity
(here we took the sphere of radius one around the origin), is called a link of a singularity.

These have been studied in detail, see e.g. [Mil68]. Particularly interesting are the
Brieskorn spheres Σ(k1, . . . , kn), constructed as the links of the singularity at the origin
of polynomials

zk1
1 + · · ·+ zknn .

These give examples of smooth manifolds which are homeomorphic of spheres but not
diffeomorphic to them [Bri66]. For examples, the cases

Σ(2, 2, 2, 3, 6k − 1)

give all examples of exotic 7-spheres up to diffeomorphism.

10.4 Problems

Problem 10.4.1 (Brieskorn manifolds). Verify that all Brieskorn spheres are (2n− 3)-
dimensional manifolds.

Problem 10.4.2 (RP 3 as a link of a singularity). Recall the smooth manifold Wn from
Problem 6.4.6. Use the map

f : C2 −→ C3

(w1, w2) 7−→ (w2
1 + w2

2, i(w2
1 − w2

2), 2iw1w2)

to produce a diffeomorphism RP 3 →W3. Conclude that SO(3) is diffeomorphic to RP 3.

Problem 10.4.3 (Transversality and eigenvalues). Prove that if A : Rk → Rk is a linear
map, then graph(A) = {(v,Av) | v ∈ Rk} ⊂ Rk × Rk is transverse to the diagonal
graph(id) ⊂ Rk × Rk if and only if 1 is not an eigenvalue of A.

Problem 10.4.4 (Whitney’s double point immersion). Consider the following smooth
map:

α : R −→ R2

x 7−→
( 1

1 + x2 , x−
2x

1 + x2

)
(a) Prove it is an immersion.
(b) Prove that it fails to be injective at a single pair of points in the domain R. That

is, prove its image has a single self-intersection.
(c) Prove that this self-intersection is transverse.

Problem 10.4.5 (Compact exhaustion by submanifolds). Suppose that M is a smooth
manifold. Prove that there exists a sequence K0 ⊂ K1 ⊂ · · · ⊂M of compact codimension
0 submanifolds (possibly with non-empty boundary) such that ⋃iKi = M .



Chapter 11

Stable and generic classes of smooth maps

It is a standard strategy to study the effect of small deformations on mathematical
objects. On the one hand such deformations can make the object more generic, and hence
easier to understand, and on the other hand small enough deformations often preserve
salient properties.

To start applying this strategy to certain types of smooth maps, we will need to do
the following:

(i) make precise what we mean by a “deformation,”
(ii) understand which types of smooth maps are “stable”, i.e. preserved by small

deformations, and
(iii) understand what a “generic smooth map” looks like.

11.1 Homotopies of smooth maps

A reasonable definition of deforming of a smooth map f0 is to situate it in a family of
smooth maps fs which depends smoothly on the parameter s. Restricting the parameter
s to lie in the closed interval [0, 1], we get the following definition:

Definition 11.1.1. A homotopy is a smooth map H : M × [0, 1]→ N .

Example 11.1.2. Out of a smooth map f : M → N , we can construct a constant homotopy
H : M × [0, 1]→ N by H(p, t) := f(p). This homotopy does not deform f at all!

We have not officially said what it means to have a smooth map with domain M×[0, 1];
we will later define manifolds with boundary, but for now it suffices to say that it should
extend to a smooth map whose domain is an open neighborhood of M × [0, 1] in M × R.

Since the restrictions of smooth maps are smooth, each f |M×{t} : M → N is a smooth
map. In particular this is the case for f0 := f |M×{0} and f1 := f |M×{1} and we say that
H is a homotopy from f0 to f1.

Definition 11.1.3. Two smooth maps f0, f1 : M → N are homotopic, denoted f0 ∼ f1,
if there is a homotopy from f0 to f1.

Lemma 11.1.4. Homotopy is an equivalence relation of smooth maps M → N .

100
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Proof. The constant homotopy shows it is reflexive. To see it is symmetric, note that if
H : M × [0, 1]→ N is a homotopy from f0 to f1 then H̄(p, t) := H(p, 1− t) is a homotopy
from f1 to f0. In Problem 11.5.1 you will show it is transitive.

11.2 Stable classes of maps

A class of smooth maps is stable if it is preserved by small perturbations, in the
following sense:

Definition 11.2.1. A subset U of the set of all smooth maps M → N is stable if for
each f0 ∈ U and smooth map H : M × Rr → N starting at f0 there exists an ε > 0 such
that H|M×{x} ∈ U for all ||x|| < ε.

This definition has a consequence for homotopies:

Lemma 11.2.2. If U is stable then for each f0 ∈ U and homotopy H : M × [0, 1]→ N
starting at f0 there exists an ε > 0 such that H|M×{t} ∈ U for all t < ε.

Proof. There exists a smooth map η : R → [0, 1] such that η(t) = 0 for t ≤ 0 and
η′(t) > 0 for t > 0. Now apply the condition in the definition of stable classes of maps to
H ◦ (id× η) : M × R→ N .

Remark 11.2.3. If we were to go to the trouble of defining a suitable topology on the set
C∞(M,N) of smooth maps M → N , open subsets of C∞(M,N) would be stable.

This remark makes us suspect that subsets which are defined by “open conditions”
should be stable. Let us look at an example: in the space Lin(Rp,Rp) of all linear maps
Rp → Rp the invertible linear maps are open (as they are defined by the condition that the
determinant is non-zero). This means that if an invertible A ∈ Lin(Rp,Rp) is perturbed
slightly, it remains invertible. Since a map f : M → N is a local diffeomorphism if and
only if all derivatives dpf are invertible, one might expect that this condition should be
preserved by a small perturbation of f , as it gives rise to a small perturbation of each
dpf . Thus, if we could somehow “bound the determinant of the dpf” away from 0, any
small perturbation of f will remain a local diffeomorphism.

The problem with this vague argument is of course that one can’t make sense of the
determinant of a linear map between two different vector spaces. The idea is to use the
determinant in finitely many charts, and to guarantee M is covered by finitely many
charts we assume it is compact.

Let us now make it precise:

Theorem 11.2.4. If M is compact, then the following classes of smooth maps f : M → N
are stable:

(i) local diffeomorphisms,
(ii) immersions,

(iii) submersions,
(iv) maps transverse to a submanifold Z ⊂ N ,
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(v) embeddings,
(vi) diffeomorphisms.

Proof. The case (i) is a special case of both (ii) and (iii). Case (ii) is very similar to case
(iii) and proven in Guillemin & Pollack, so we will only prove the latter. So suppose
f0 : M → N is a submersion and H : M × [0, 1] → N a homotopy starting at f0. We
can find a finite collection of charts {(Ui, Vi, φi)}, 1 ≤ i ≤ r, such that ⋃i Vi = M
and f(Vi) ⊂ V ′j(i) for some chart (U ′j(i), V ′j(i), φ′j(i)) of N . Taking a partition of unity
ηi : M → [0, 1], we find compact subsets supp(ηi) ⊂ Vi which also cover M . Each
compact subset f0(supp(ηi)) is contained in an open subset V ′j(i). Hence there exists
a δi > 0 such that H(supp(ηi) × [0, δi]) ⊂ V ′j(i). For suppose no such δi > 0 exists,
then there is a sequence (pk, tk) with pk ∈ supp(ηi), tk → 0 and H(pk, tk) ∈ N \ V ′j(i).
Since M is compact, without loss of generality pk converges to p. Since N \ V ′j(i) is
closed, we get N \ V ′j(i) 3 limkH(pk, tk) = H(p, 0) = f0(p) and thus a contradiction
as f0(supp(ηi)) ⊂ V ′j(i). So if we take δ = min(δi | 1 ≤ i ≤ r) > 0 we have that
H(supp(ηi)× [0, δ]) ⊂ V ′j(i) for all 1 ≤ i ≤ r.

All this setup has the following goal: whether there is an ε ∈ (0, δ) such that H|M×{t}
for all t < ε is a submersion is equivalent to whether each of the finitely many functions

f it := (φ′j(i))−1 ◦H|supp(ηi)×{t} ◦ φi

has surjective total differential all points in its domain for all t < ε.
Each f it is a smooth map from the compact subset φ−1

i (supp(ηi)) ⊂ Rk to the open
subset V ′j(i) ⊂ Rk′ . Consider now the continuous function

φ−1
i (supp(ηi))× [0, δ] 3 (p, t) 7−→ maximum of absolute value of determinants

of (k′ × k′)-submatrices of dpf it
.

The right hand side is > 0 if and only if there is a square submatrix of full rank, which
happens if and only if it is surjective. Hence we know that for t = 0, the total derivatives
at all x ∈ φ−1

i (supp(ηi)) are surjective and hence the above function is strictly positive.
Since φ−1

i (supp(ηi)) is compact, it is bounded away from 0 for t = 0, and by continuity
thus for all t in some small interval [0, εi] ⊂ [0, δ] with εi > 0. The argument this is
similar to the above argument that H(supp(ηi)× [0, δi]) ⊂ V ′j(i) for some δi > 0, and I
recommend you work it out yourself. Taking ε = min(εi | 1 ≤ i ≤ r) gives the desired
ε > 0.

We may reduce the case (iv) to the case (iii) by picking finitely many local parametriza-
tions covering the intersection of Z with an open neighborhood of f0(M). In the coordi-
nates coming from each of these local parametrizations, Z is given by {0} × Rr and by
composing with the projection πk′−r onto the first k′ − r coordinates we can rephrase
f t Z in terms of πk′−r ◦ f being a submersion.

For (vi) we may reduce to the case that M and N are connected by considering
each connected component separately. But an embedding f : M → N between compact
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connected manifolds of the same dimension is the same as diffeomorphism. Hence (vi)
reduces to (v).

Furthermore, (v) reduces to (ii) as soon as we prove that there must exist an
ε > 0 such that each H|M×{t} is injective for t < ε. Suppose this is not the case,
then we will derive a contradiction. Then if we define H̃ : M × [0, 1] → N × [0, 1] by
H̃(p, t) = (H(p, t), t) we can find a collection of pairs (pi, ti), (p′i, ti) ∈ M × [0, 1] with
ti → 0 , pi 6= p′i and H̃(pi, ti) = H̃(p′i, ti). Using the fact that M is compact, by passing
to a subsequence we can assume that both sequences pi and p′i converge to p and p′ in
M . Then f0(p) = limH(pi, ti) = limH(p′i, ti) = f0(p′) and since f0 is injective p = p′.
We may compute that

d(p,0)H̃ =
[
dpf0 ∗

0 1

]
: TpM ⊕ R→ Tf0(p)N ⊕ R,

which is injective. Hence H̃ is an embedding near (p, 0), so in particular injective and
hence (pi, ti) = (p′i, ti) for i large enough, contradicting the construction of the sequences
pi and p′i.

Example 11.2.5. If Z is a compact submanifold of M , then any sufficiently small pertur-
bation of the inclusion map i : Z ↪→M is still an embedding. Concretely, when you pick
any smooth function g : S1 → R2, there exists some ε > 0 such that

it : S1 −→ R2

p 7−→ p+ tg(p)

is an embedding for t < ε.

11.3 Generic classes of smooth maps

A class of smooth maps is generic if we can deform any smooth map to such a map
by an arbitrarily small perturbation. It will be technically convenient to allow these
perturbations to be indexed by Rr instead of R.

Definition 11.3.1. A subset D of the set of all smooth maps M → N is generic if
for all f0 : M → N there exists an r ≥ 0 and a smooth map H : M × Rr → N such
that M |M×{0} = f0 and for all ε > 0 there exists an x ∈ Rr with ||x|| < ε such that
H|M×{x} ∈ D.

Remark 11.3.2. If we were to define a suitable topology on the set C∞(M,N) of smooth
maps M → N , dense open subsets of C∞(M,N) would be generic.
Example 11.3.3. We will later prove that if the set of all smooth maps M → N transverse
to Z is generic. Thus every smooth map f : M → N can be approximated by maps
transverse to Z.

The main tool to find generic classes of smooth maps is Sard’s theorem, often applied
to homotopies or families of maps but incredibly useful in general:
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Theorem 11.3.4 (Sard). If f : M → N is a smooth map, then the critical values of f
have measure zero.

A subset C of Rp has measure zero if there is a countable collection of rectangles
Ri ⊂ Rp such that C ⊂ ⋃∞i=1Ri and ∑∞i=1 vol(Ri) < ε. A subset C of M has measure
zero if for each chart {(Uα, Vα, φα)} of M the subset φ−1

α (C) has measure zero.

Corollary 11.3.5. If fi : M → N is a countable number of smooth maps, then the set
of c ∈ N which are regular values for all fi is dense.

Proof. The countable union ⋃i crit(fi) ⊂ N of measure zero subsets has measure zero,
so it suffices to observe that the complement of a measure zero subset C is dense. If it
were not dense, C would have non-empty interior and in some chart contain a small ball
of some definite volume > 0.

Let us give some first applications of Sard’s theorem:
Example 11.3.6. There are space-filling curves, continuous maps f : [0, 1]→ [0, 1]2 which
are surjective. However, no smooth space-filling curve can exist: a regular value of such
a smooth map is a point in [0, 1]2 which is not in the image of f , and the regular values
need to be dense in [0, 1]2 by Sard’s lemma.

The following is an elaboration of that idea:

Definition 11.3.7. A path-connected differentiable manifoldM is said be tom-connected
if every smooth map f : Si →M is homotopic to a constant map for i ≤ m.

Remark 11.3.8. To connect this definition to a more familiar one in algebraic topology
involving continuous maps instead of smooth maps, one uses the fact that every continuous
map is homotopic to a smooth one.

Corollary 11.3.9. The sphere Sk is (k − 1)-connected.

Proof. As before, the regular values of smooth map f : Si → Sk for i ≤ k − 1 are those
that are not in the image of f . Since these must be dense f must miss some point x0 ∈ Sk.
We can then identify Sk \ {x0} with Rk and consider f as a smooth map f : Si → Rk.
This is homotopic to a constant map by the homotopy H : Si × [0, 1] → Rk given by
H(p, t) = tf(p).

Next chapter we will use Sard’s lemma to improve the Whitney embedding theorem.

11.4 The proof of Sard’s theorem

The following is the proof of Sard’s theorem, Theorem 11.3.4, which is essentially a
result in multivariable calculus and as such not part of the course proper. Its proof is
the standard one, and is included for completeness. It needs one fact regarding sets of
measure 0, a special case of Fubini’s theorem. This falls within the realm of measure
theory, so we will assert it without proof (but see Appendix 1 of [GP10] in the case C is
closed).
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Lemma 11.4.1. Suppose that we are given an open subset U ⊂ Rk+1 and a subset
C ⊂ U such that C ∩ ({t} × Rk) has measure 0 for all t ∈ R. Then C has measure 0.

Theorem 11.4.2. The set of critical values of any smooth map f : M → N has measure
0.

Proof. When we proved that partitions of unity exist, we prove that there exists a
countable collection of charts {(Ui, Vi, φi)} covering M and a countable collection of
charts {(U ′i(j), V ′i(j), φ′i(j))} covering N such that f(Vi) ⊂ V ′i(j). The set Crit(f) of critical
values of f is equal to

Crit(f) =
⋃
i

φ′j(i)

(
Crit((φ′j(i))−1 ◦ f ◦ φi)

)
.

We observed in the proof of Corollary 11.3.5 that subsets of measure 0 are closed under
taking countable unions, so it suffices to prove Sard’s theorem for each of the functions
on the right hand side. That is, it suffices to prove Sard’s theorem for smooth maps
f : U → Rk′ with U ⊂ Rk open. We will prove this by induction over k.

In the case k = 0, there are either no critical values (when k′ = 0) or a single one
(when k′ > 0), so this initial case is true. For the induction step from k − 1 to k, we let
C ⊂ U denote the set of critical points of f and filter it by

C ⊃ C1 ⊃ C2 ⊃ · · · ,

letting Ci be the subset where all partial derivatives of order 1 ≤ r ≤ i vanish. Now
we will write C as (C \ C1) ∪ ⋃i≥1Ci. We have to prove f(C) has measure 0. As
f(C) = f(C \ C1) ∪ ⋃i≥1 f(Ci) it suffices to prove that f(C \ C1) and f(Ci) for i ≥ 1
have measure 0.

This is done in three steps:
The case f(C \ C1). If k′ = 1 then C = C1 and there is nothing to prove, so assume

k′ ≥ 2. At c ∈ C \ C1, ∂fi
∂xj

(c) 6= 0 for some i and j. Without loss of generality
(reordering the coordinate directions) we may assume i = 1 and j = 1. Define a
smooth map

h : U −→ Rk

(x1, . . . , xk) 7−→ (f1(x), x2, . . . , xk),

which is easily seen to have bijective total derivative at c. Applying the inverse func-
tion theorem, we see it is a local diffeomorphism, i.e. there is an open neighborhood
V around c such that h restricts to a diffeomorphism U ⊃ V → h(V ) ⊂ Rk′ .
Now consider the composition of its inverse with f

f ◦ h−1 : h(V ) −→ Rk
′

(x1, . . . , xk) 7−→ (x1, f2(h(x)), . . . , fn(h(x))).

This sends the manifold h(V ) ∩ ({t} ×Rk−1) to {t} ×Rk′−1, and a point (t, c′) is a
critical point of f if and only if c′ is a critical point of

f̄t := (f2(t,−), . . . , fn(t,−)) : h(V ) ∩ ({t} × Rk−1) −→ {t} × Rk
′−1.
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Applying the inductive hypothesis to each of these, we see that the set of critical
values of f̄t has measure zero.
Letting C(f̄t) denote the critical points of f̄t, the application of Fubini’s theorem
discussed above then tells us that⋃

t

{t} × f̄t(C(f̄t))

also has measure 0. But that union is exactly the subset of the critical values
of g ◦ h−1 where not all first order partial derivatives vanish. Since h−1 is a
diffeomorphism, these are also the subset of such critical values of g|V . Thus
f((C \ C1) ∩ V ) has measure 0. Since a countable collection of V ’s cover C \ C1
(using second countability of M), we conclude that f(C \ C1) has measure 0.

The case f(Ci \ Ci+1). Starting as in the previous case, at c ∈ Ci \ Ci+1 we know that
∂i+1fj

∂xk1 ···∂xki+1
6= 0 for some j and k1, and without loss of generality we can assume

both are equal to 1. Then we define

h : U −→ Rk

(x1, . . . , xk) 7−→
(

∂if1
∂xk2 · · · ∂xki+1

, x2, . . . , xk

)
.

As before, h is a diffeomorphism onto its image when restricted to an open neigh-
borhood V of c. It also maps Ci into {0}×Rk−1, because the first entry involves an
ith partial derivative. Thus f ◦h−1 only has critical points of type Ci in {0}×Rk−1,
and we can apply the inductive hypothesis to (f ◦ h−1)|{0}×Rk−1 to see its critical
values have measure 0. An argument as in the first step finishes the argument.

The case Ci. Finally, one proves that CN has measure 0 for N > k/k′ − 1. Then
Ci = (Ci \ Ci+1) ∪ · · · ∪ (CN−1 \ CN ) ∪ CN , all of which have measure 0. To see
this final case, it is convenient to assume U = (0, 1)k, with f extending to an
open neighborhood of [0, 1]k. We may make this assumption because countably
many rescaled versions of closed cubes with these properties cover U . If c ∈ CN ,
the Taylor approximation to order ≤ N of f at c vanishes, in the sense that
||f(c+ h)− f(c)|| ≤ D||h||N+1 for some constant D > 0 and ||h|| < ε0, cf. [DK04a,
Theorem 2.8.3].
Since CN is closed in [0, 1]k it is compact, and the constants D and ε0 depend
continuously on c ∈ CN we may find constants D > 0 and ε0 > 0 that work for all
c ∈ CN . Then subdivide [0, 1]k into cubes with sides 1/L where 1/L < ε0/2. Then f
must map of each the cubes that intersects CN into a disk of radius ≤ D(

√
k/L)N+1.

Hence CN is contained in a set of volume ≤ LkD′(
√
k/L)k′(N+1). If N > k/k′ − 1

the exponent L is < k − k′k/k′ = 0, so goes this volume goes to 0 as L→∞.

11.5 Problems

Problem 11.5.1 (Concatenation of homotopies).
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(a) Suppose that H : M × [0, 1] → N is a homotopy from f0 to f1. Construct a
different homotopy H̃ : M × [0, 1]→ N from f0 to f1 such that H̃(−, t) = f0 for
t < 1/4 and H̃(−, t) = f1 for t > 3/4. (Hint: use Problem 9.3.1.)

(b) Use part (a) to show that the relation of homotopy is transitive, i.e. f0 ∼ f1 and
f1 ∼ f2 implies f0 ∼ f2.

Problem 11.5.2 (The fundamental group). For a smooth manifold M with chosen
basepoint m0 ∈ M , we consider the set of smooth maps γ : S1 → M sending 1 ∈ S1

to m0 ∈ M . We say that two such smooth maps γ0, γ1 : S1 → M are homotopic rel
endpoints if there is a homotopy H : M × [0, 1]→ N from γ0 to γ1 such that H(1, t) = m0
for all t ∈ [0, 1].

(a) Prove that being homotopic rel endpoints is an equivalence relation.
We denote the set of homotopy classes rel endpoints by π1(M,m0), the fundamental
group M at m0. As the name suggests it has a group structure, which you will construct
below:

(b) Use the ideas of Problem 11.5.1 to prove that concatenation of loops gives a
well-defined map

π1(M,m0)× π1(M,m0) −→ π1(M,m0).

(c) Show that concatenation makes π1(M,m0) into a group. (Hint: the inverse is
given by reversing loops.)

Problem 11.5.3 (Spaces of planar polygons). Let us fix positive real numbers `0, . . . , `n.
Then the space of polygons with edge lengths `0, . . . , `n is the space of ordered n-tuples of
points p1, . . . , pn in the plane R2 such that for each 1 ≤ i ≤ n the distance from pi to
pi+1 (with the convention that pn+1 = p1) is given by `i, up to rotation and translation.

(a) Explain why we may replace working up to rotation and translation by the
conditions that p1 = 0 and that pn lies in the half-line R>0 := {(x, 0) ∈ R2 | x >
0} ⊂ R2. That is, why we instead study the subspace M(`1, . . . , `n) defined as

{(p1, . . . , pn) | ||pi+1 − pi|| = `i for 1 ≤ i ≤ n, p1 = 0, and pn ∈ R>0} ⊂ (R2)n.

We will investigate for which edge lengths this is a manifold. To do so, it is helpful to
introduce the topological space A(`1, . . . , `n−1) defined as:

{(p1, . . . , pn) | ||pi+1 − pi|| = `i for 1 ≤ i ≤ n− 1, p1 = 0, and pn ∈ R>0} ⊂ (R2)n.

(b) Prove that A(`1, . . . , `n−1) is a (n− 2)-dimensional smooth manifold.
There is a smooth map

π : A(`1, . . . , `n−1) −→ R>0

(p1, . . . , pn) 7−→ first coordinate of pn.

(c) Prove that for a dense set of (`1, . . . , `n) ⊂ (R>0)n, M(`1, . . . , `n) is a (n − 3)-
dimensional smooth manifold. (Hint: Sard’s theorem.)



Chapter 12

Two applications of Sard’s theorem

In the previous chapter we proved Sard’s theorem, Theorem 11.3.4: the set of critical
values of a smooth map f : M → N has measure 0. Today we give two applications: (i)
the strong Whitney embedding theorem, (ii) the Brouwer fixed point theorem. This is
in Sections 1.§8, 2.§1 and 2.§2 of [GP10], and uses results from Appendices 1 and 2 of
[GP10].

12.1 The strong Whitney embedding theorem

Let’s recall the weak Whitney embedding theorem, Theorem, Theorem 9.1.3: any
compact manifold M can be embedded into some Euclidean space. Today we prove
the stronger statement that any compact k-dimensional manifold M can be embedded
into R2k+1, and deduce from it that a non-compact k-dimensional manifold M can be
embedded into R2k+2.

12.1.1 The compact case

Theorem 12.1.1 (Strong Whitney embedding theorem). If M is a compact k-dimensional
smooth manifold, then there exists an embedding of M into R2k+1.

This is a direct consequence of the following proposition using the weak Whitney
embedding theorem (Theorem 9.1.3) and the fact that all injective immersions with
compact domain are embeddings, since every continuous map with compact domain is
proper (Corollary 6.2.13).

Proposition 12.1.2. If M is a k-dimensional smooth manifold with an injective im-
mersion of M into RN for some N , then there exists an injective immersion of M into
R2k+1.

Proof. If N ≤ 2k + 1 there is nothing to prove. If this is not the case, we will show that
we can reduce N to 2k+1, one dimension at a time. That is, we suppose that N ≥ 2k+2
and show that M also has an injective immersion into RN−1. Let i : M → RN denote
the injective immersion.

108
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Consider the following two smooth maps

f inj : M ×M \ {(m,m) | m ∈M} −→ SN−1

(p, p′) 7−→ i(p)− i(p′)
||i(p)− i(p′)|| ,

f tang : TM \ 0-section −→ SN−1

v 7−→ di(v)
||di(v)|| .

These maps were chosen because of the meaning we can ascribe to their regular values.
For each x ∈ SN−1 there is a linear projection πx : RN → x⊥. If x /∈ im(f inj) then πx ◦ i
is injective, and if x /∈ im(f tang) then the derivative of πx ◦ i is injective. In particular, if
x /∈ im(f inj) ∪ im(f tang), then πx ◦ i : M → x⊥ ∼= RN−1 is an injective immersion of M
into a Euclidean space of lower dimension.

Both M ×M \ {(m,m) | m ∈M} and TM \M are 2k-dimensional. As N − 1 > 2k,
this means x is disjoint from the images of f inj and f tang if and only if x is a regular
value of f inj and f tang. By Sard’s theorem, Theorem 11.3.4, such joint regular values are
dense.

In fact, since the derivative is linear, to see that πx ◦ i has injective differential, we
only need to avoid the image of

f̄ tang : {v ∈ TM | ||di(v)|| = 1} −→ SN−1

v 7−→ di(v).

Its domain is (2k− 1)-dimensional, so we can go one dimension further if only care about
guaranteeing that the derivative remains injective. We can do a better by still picking
x to be a regular value of f inj : M ×M \ {(m,m) | m ∈ M} → S2k. In that case the
intersection points of the immersion will be transverse. If M is compact, then there must
be a finite number of them since transverse intersection points are isolated.

Corollary 12.1.3. If M is a compact k-dimensional smooth manifold, then there exists
an immersion of M into R2k with finitely many transverse intersections.

Example 12.1.4 (Whitney double point). We can always add more self-intersections, by
inserting in a local chart one of the following maps, due to Whitney [Whi44, Section 1.2].
These are immersions with a single transverse double point that are approximately linear
outside a compact set:

αk : Rk −→ R2k

(x1, . . . , xk) 7−→
(1
u
, x1 − 2x1

u
,
x1x2
u

, x2,
x1x3
u

, x3, · · · ,
x1xk
u

, xk
)

with u = (1 + x2
1) · · · (1 + x2

k).
Their existence is used in the proof that every compact k-dimensional smooth manifold

embeds into R2k [Whi44, Theorem 5]. This is the best possible bound: RP 2n does not
embed in R2n+1−1.
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12.1.2 Non-compact case

We continue with a discussion of the non-compact case. It is based on a double
application of Proposition 12.1.2 and the following lemma:

Lemma 12.1.5. Every smooth manifold M admits a proper smooth function λ : M →
[0,∞).

Proof. Using Lemma 9.2.2, pick compact subsets Ki and open subsets Vi+1/2 of M such
that K0 ⊂ V1/2 ⊂ K1 ⊂ V1+1/2 ⊂ · · · and ⋃iKi = M . Applying Theorem 9.1.2, let
ηi : M → [0, 1] be a partition of unity subordinate to the open cover by Vi+1/2 \Ki − 1.
Then we define

λ : M −→ [0,∞)
p 7−→

∑
i

iηi(p).

This sum is locally finite so smooth, and if λ(p) ≤ i then at least one of the ηj for j ≤ i
has to be non-zero, so p ∈ Ki+1. Thus λ−1([0, i]) is a closed subset of the compact set
Ki+1 and hence λ is proper.

Theorem 12.1.6. If M is a k-dimensional smooth manifold, then there exists an em-
bedding of M into some Euclidean space RN .

Proof. Using Lemma 9.2.2, pick compact subsets Ki and open subsets Vi+1/2 of M such
that K0 ⊂ V1/2 ⊂ K1 ⊂ V1+1/2 ⊂ · · · and ⋃iKi = M . Then Ki+1 \ Vi−1/2 is compact,
and hence can be covered by finitely many charts. The proof of the weak Whitney
embedding theorem then provides an injective immersion of an open neighborhood Wi of
Ki+1 \ Vi−1/2 in Vi+3/2 \Ki−1 into some Euclidean space. By Proposition 12.1.2 we may
assume this Euclidean space is in fact R2k+1.

Thus we have an open cover by Wi ⊂ M so that Wi ∩Wj 6= ∅ is only possible if
|i− j| ≤ 2, which come with injective immersion ρi : Wi → R2k+1. Now pick a partition
of unity ηi : M → [0, 1] subordinate to the Wi’s and define smooth maps

p 7−→ ηi(p)ρi(p) :=
{
ηi(p)ρi(p) if p ∈Wi,
0 otherwise.

We can then define for each i a new smooth map

ρ̃i : M −→ R9(2k+2)

p 7−→ (ηi(p), ηi(p)ρi(p))
put in the jth copy of R2k+2,
1 ≤ j ≤ 9, if i ≡ j (mod 9)

and zeroes in all other entries, and take

ρ : M −→ R1+9(2k+2)

p 7−→
(∑

i

iηi(p),
∑
i

ρ̃i(p)
)
.
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This is smooth since each sum is locally finite.
This is proper because ∑i iηi(p) is proper, as in Lemma 12.1.5. For each p there is

an open neighborhood on which only five terms in each sum are possibly non-zero; if
p ∈Wi then only the terms i− 2, i− 1, i, i+ 1, i+ 2 can be non-zero. In the second entry
all of these open subsets map to a different copy of R2k+2, so the differential is injective
by the same argument as used in the weak Whitney embedding theorem.

For injectivity, we further observe that if p ∈Wi then i− 2 ≤∑i iηi(p) ≤ i+ 2. That
is, if l := ∑

i iηi(p), then p ∈
⋃2
j=−2Wdle+j . From this we conclude that if ρ(p) = ρ(p′),

then both p and p′ are in ⋃2
j=−2Wdle+j . On this open subset only nine terms in the

second sum are possibly non-zero, all of which map to a different copy of R2k+2. Again we
can apply the proof of the weak Whitney embedding theorem to deduce injectivity.

In fact, we can now reduce the dimension again:

Corollary 12.1.7. If M is a k-dimensional smooth manifold, then there exists an
embedding of M into R2k+2.

Proof. We start with an embedding as in the previous lemma. Proposition 12.1.2
gives us an injective immersion of M into R2k+1. If we pick a proper smooth function
λ : M → [0,∞) as in Lemma 12.1.5, we get an embedding i := (λ, e) : M → R2k+2.

Remark 12.1.8. In fact, by the argument on pp. 53–54 of [GP10] you can decrease the
dimension once more to get an embedding M ↪→ R2k+1 by a projecting along a suitable
x ∈ S2k+1.

12.2 Manifolds with boundary

A k-dimensional smooth manifold M is a second countable Hausdorff space with a
k-dimensional smooth atlas. The atlas provides a local identification of M with an open
subset of Rk, such that transition functions are smooth.

Unfortunately, using these definitions such reasonable spaces as Dn and M × [0, 1]
are not smooth manifolds, because a point in ∂Dn resp. M × {0, 1} does not admit an
open neighborhood homeomorphic to an open subset of Rk. To allow these examples,
we need to broaden our scope and allow manifolds to have boundary. These are locally
modeled on [0,∞)× Rk−1 instead of Rk.

12.2.1 Definitions

Definition 12.2.1. A k-dimensional smooth atlas with boundary for topological space
M is a collection of triples (Uα, Vα, φα) consisting of open subsets Uα ⊂ [0,∞)× Rk−1,
Vα ⊂M and homeomorphisms φα : Uα → Vα, so that ⋃Vα = X and all maps

φ−1
β ◦ φα : φ−1

α (Vα ∩ Vβ) −→ φ−1
β (Vα ∩ Vβ)

are smooth maps between open subsets of [0,∞)× Rk−1 (they are then automatically
diffeomorphisms since they have smooth inverses). The triples (Uα, Vα, φα) are called
charts and the maps φ−1

β ◦ φα are called transition functions.
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Here we use that we already know what a smooth map between open subsets of
[0,∞)× Rk−1 is; it is a function which locally extends to a smooth function on an open
subset of Rk. All of the previously discussed machinery goes through, starting with the
definitions:

Lemma 12.2.2. Every k-dimensional smooth atlas with boundary is contained in a
unique maximal k-dimensional smooth atlas with boundary.

Definition 12.2.3. A k-dimensional smooth manifold with boundary is a Hausdorff
second countable topological space X with a maximal k-dimensional smooth atlas with
boundary.

Example 12.2.4. If M is a k-dimensional smooth manifold in the ordinary, it is also a
k-dimensional smooth manifold with boundary. Its boundary just happens to be empty.
Example 12.2.5. If M is a (k − 1)-dimensional smooth manifold, then M × [0, 1] is a
k-dimensional smooth manifold with boundary.

Suppose that a diffeomorphism between open subsets of [0,∞)× Rk−1 sends a point
in (0,∞) × Rk−1 to a point in {0} × Rk−1. Its derivative is bijective, so the inverse
function says it is local diffeomorphism. This means that it must also hit some points
in (−∞, 0)× Rk−1, which is not allowed. Hence a diffeomorphism must send points in
{0} × Rk−1 to points in {0} × Rk−1. Hence the following is a reasonable definition:

Definition 12.2.6. The boundary ∂M of a k-dimensional smooth manifold M with
boundary is the subset of those points that are in the image of {0} ×Rk−1 under a chart.

The charts of M restrict to charts for ∂M , and we get a smooth (k − 1)-dimensional
atlas for ∂M .

12.2.2 Theorems

Let us now explain the modifications that need to be made to the theory when
including manifolds with boundary. We will only state the results here, you should read
their proofs in 2.§1 of [GP10].

We can give the definitions of a smooth map between manifolds with boundary,
tangent bundles, and derivatives, as before. These behave with respect to the boundary
as follows: a smooth map f : M → N between manifolds with boundary restricts to a
smooth map ∂f : ∂M → N . At p ∈ ∂M , the tangent space Tp∂M is a (k−1)-dimensional
linear subspace of TpM , and dp∂f = (dpf)|Tp∂M .

The pre-image theorem and Sard’s lemma generalize in the following manner:

Theorem 12.2.7 (Pre-image theorem for manifolds with boundary). Let f : M → N be
a smooth map with M a manifold with boundary, N a manifold without boundary, and
Z ⊂ N a submanifold without boundary. If f t Z and ∂f t Z, then f−1(Z) ⊂ M is a
manifold with boundary ∂(f−1(Z)) = (∂f)−1(Z).

Moreover, the codimension of f−1(Z) is equal to the codimension of Z and Tf−1(Z) =
df−1(TZ).



12.3 The Brouwer fixed point theorem 113

Theorem 12.2.8 (Sard’s theorem for manifolds with boundary). For any smooth map
f : M → N with M a manifold with boundary and N a manifold without boundary, the
subset of points in N which are critical values of either f or ∂f has measure 0.

12.3 The Brouwer fixed point theorem

The Brouwer fixed point theorem says that every continuous map F : Dn → Dn has
a fixed point. This is deduced from the theorem that there are no continuous maps
f : Dn → ∂Dn which are the identity on ∂Dn.

We will prove a version of this result, which is stronger because it concerns all
manifolds with boundary, but weaker because it concerns only smooth maps. The latter
is however easily remedied by the use of certain smooth approximation results.

To prove our generalization we use another fact, which is proven in Appendix 2 of
[GP10] or the Appendix of [Mil97].

Theorem 12.3.1 (Classification of 1-dimensional manifolds). Every compact connected
1-dimensional manifold is diffeomorphic to either S1 or [0, 1].

Corollary 12.3.2. The boundary of every compact 1-dimensional manifold is an even
number of points.

Using this trivial observation, we prove Hirsch’s generalization of the Brouwer fixed
point theorem:

Theorem 12.3.3 (Hirsch). Let M be a compact manifold with boundary. Then there is
no smooth map M → ∂M which is the identity on ∂M .

Proof. Suppose for the sake of contradiction that such an f : M → ∂M does exist. By
Sard’s theorem we can pick an p ∈ ∂M which is a regular value of both f and ∂f .
This means that f−1(p) ⊂ M is a 1-dimensional manifold with boundary. It is closed
in a compact space hence compact, and thus by Theorem 12.3.1 has an even number
of boundary points. But ∂f−1(p) = (∂f)−1(p) = {p} since ∂f = id∂M . This is a
contradiction.

Remark 12.3.4. One easily generalizes this proof to say that there is no smooth map
M → ∂M which is injective on ∂M .

Let us deduce from this the Brouwer fixed point theorem for smooth maps:

Corollary 12.3.5 (Smooth Brouwer fixed point theorem). If F : Dn → Dn is a smooth
map, it has a fixed point.

Proof. For a proof by contradiction, we suppose that F has no fixed points. Then

f : Dn −→ ∂Dn

x 7−→ intersection with ∂Dn of half-line starting at F (x) through x

is a well-defined smooth function f : Dn → ∂Dn that is the identity on ∂Dn.
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•F (x)

•x

•f(x)

Figure 12.1 The map f in the proof of the Brouwer fixed point theorem.

Example 12.3.6. There is an anecdotal application of the Brouwer fixed point theorem
to physics. Trying to balance a pencil on a table, it seems intuitive that there is an
equilibrium point. You can of course prove this in an idealized setting, but it seems hard
if we use some realistic model of the forces acting upon and within the pencil.

Suppose there is no equilibrium point, then the pencil would always fall with eraser
facing some direction. This gives a map from the upper hemisphere S2

+ to S1, which is
clearly the identity on the boundary. The claim is that the Brouwer fixed point theorem
rules this out, so an equilibrium point must exist. However, it is far from obvious that
the described map is continuous (see the section “Courant–Robbins Train” of [Ste11]).

12.4 Problems

Problem 12.4.1 (Classification of 1-dimensional manifolds). Read Appendix 2 of [GP10]
and the Appendix of [Mil56b]. Which proof of the classification of 1-dimensional smooth
manifolds do you prefer, and why?
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Transverse maps are generic

Today we prove a result announced in Chapter 11: the set of smooth maps f : M → N
transverse to Z ⊂M is generic. As an application we deduce the tubular neighborhood
theorem. This is 2.§3 of [GP10].

13.1 Transverse maps are generic

Recall the following definition:

Definition 13.1.1. A subset D of the set of all smooth maps M → N is generic if for
all f0 : M → N we can find a perturbation H : M × Rr → N with H|M×{0} = f0 so that
for all ε > 0 there exists an x ∈ Rr with ||x|| < ε such that H|M×{x} ∈ D.

The pertubation H : M ×Rr → N is a particular example of a family of smooth maps
as below, where S = Rr. This is just a change of perspective; we think of a F not as a
single map M × S → N but a collection of maps M → N parametrized by S.

Definition 13.1.2. Let S be a smooth manifold, then a family of smooth maps M → N
indexed by S is a smooth map F : M × S → N .

Since the restriction of a smooth map to a submanifold is smooth, fs := F |M×{s} is a
smooth map for each s ∈ S.

Theorem 13.1.3. Suppose that F : M × S → N is a family of smooth maps M → N ,
where M may have boundary but S and N do not. Let Z ⊂ N be a submanifold without
boundary. If F t Z and ∂F t Z, then there is a dense set of s ∈ S such that fs t Z and
∂fs t Z.

As usual when applying Sard’s theorem, we will actually prove that the complement
of those s ∈ S such that fs t Z and ∂fs t Z has measure zero.

Proof. Let W = f−1(Z) ⊂M × S, a submanifold with boundary ∂W = W ∩ (∂M × S)
by the improved preimage theorem. Thus we can ask for regular values of the restriction
π|W : W → S of the projection M × S → S, as well as its restriction π|∂W : ∂W → S to
the boundary. Such common regular values are dense by Sard’s theorem.

115
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We claim that fs t Z if and only if s is a regular value of π|W , and similarly ∂fs t Z
if and only if s is a regular value of π|∂W . Let us only prove the first equivalence, the
second one being similar.

Let us first use the hypothesis that F t Z, at (p, s) ∈W ⊂M × S mapping to z ∈ Z
under F . Then the projections induce a linear isomorphism Tp,s(M × S) ∼= TpM ⊕ TsS,
and transversality exactly means that

d(p,s)F (TpM ⊕ TsS) + TzZ = TzN.

By the preimage theorem, we may describe T(p,s)W as (d(p,s)F )−1(TzZ) ⊂ TpM ⊕ TsS.
The derivative d(p,s)π|W : T(p,s)W → TsS is the restriction of projection TpM⊕TsS → TsS
to this subspace.

We next want to show that d(p,s)π|W : T(p,s)W → TsS is surjective if and only if
d(p,s)F (TpM) + TzZ = TzN . This is the linear-algebraic lemma following this proof,
applied with U = TpM , U ′ = TsS, V = TzN , W = TzZ, T = d(p,s)F .

Finally, observe that because d(p,s)F (TpM) = dpfs(TpM), the statement d(p,s)F (TpM)+
TzZ = TzN is true if and only if fs t Z at z.

Lemma 13.1.4. If T : U ⊕ U ′ → V is a linear map of finite-dimensional vector spaces,
W ⊂ V such that T (U ⊕U ′) +W = V . Then π2 : T−1(W )→ U ′ is surjective if and only
if T (U) +W = V .

Proof. For ⇒; if π2 : T−1(W ) → U ′ is surjective, it admits a section s : U ′ → T−1(W ).
Then we have

T (u+ u′) +W = T (u+ u′) + T (−s(u′)) +W = T (u+ u′ − s(u′)),

and since π2(u+ u′ − s(u′)) = 0, u+ u′ − s(u′) ∈ U .
For ⇐, take u′ ∈ U ′ and note that because T (U) +W = V we can find u ∈ U and

w ∈W such that T (u′) = T (u) + w. Then u′ − u ∈ T−1(W ) and π2(u′ − u) = u′.

We will now prove the maps transverse to Z are generic by showing that for every
f0 : M → N there exists a smooth map F : M × Rr → N such that F |M×{0} = f0 and
which satisfies F t Z and ∂F t Z.

To construct F we shall embed N into an Euclidean space Rr using the Whitney
embedding theorem, Theorem 12.1.6, and consider the rather uninteresting family

F̃ : M × Rr −→ Rr

(p, s) 7−→ f0(p) + s

This is obviously a submersion so transverse to the submanifold Z ⊂ N ⊂ Rr, and by
the previous theorem there is a dense set of s ∈ Rr such that f̃s := F̃ |M×{s} is transverse
to Z.

The obvious problem is now that f̃s doesn’t map M into N any more. To fix this, we
shall use the following theorem to “project back into N”:
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Theorem 13.1.5 (Regular neighborhood theorem). For every submanifold N ↪→ Rr
without boundary, there exists an open neighborhood U ⊂ Rr of N with a submersion
πN : U → N that is the identity on N . At n ∈ N ⊂ U , the linear map dnπ : TnRr =
TnN ⊕ TnN⊥ → TnN is given by orthogonal projection onto TnN .

Remark 13.1.6. In fact, if M is compact U can be obtained by picking a small enough
ε > 0, letting U be the set of points of distance < ε to N and πN be the map sending
x ∈ U to the unique closest point in N (so implicitly we are saying you can find an ε > 0
such that this exists and is unique). This follows from the proof of Theorem 13.3.4. For
non-compact M , ε is replaced by a smooth positive-valued function.

We shall prove the regular neighborhood theorem in Section 13.3, and first finish the
proof of genericity.

Theorem 13.1.7. Suppose M is a manifold possibly with boundary, N is a manifold
without boundary and Z ⊂ N is a submanifold without boundary. If f0 : M → N is a
smooth map, then there exists an r ≥ 0 and a smooth map H : M × Rr → N starting
at f0 so that for all ε > 0 there exists an x ∈ Rr with ||x|| < ε such that H|M×{x} is
transverse to Z.

Proof. Embed N into a Euclidean space Rr and identify N with its image in Rr. Take
U ⊂ Rr and πN : U → N as in the regular neighborhood theorem. Since U ⊂ N is an
open neighborhood, we can find a smooth function ε : N → (0,∞) such that for each
p′ ∈ N and x ∈ Rr satisfying ||x|| < ε(p′), p′ + x ∈ U . Then we define the smooth map

F : M × Rr −→ N

(p, s) 7−→ πN

(
f0(p) + ε(f0(p)) s

1 + ||s||2
)
.

By construction, F |M×{0} = πN ◦ f0 = f0 because πN is the identity on N .
Since πN is a submersion, F is a submersion if and only if the map M×Rr → U given

by (p, s) 7→ f0(p) + ε(f0(p)) s
1+||s||2 is. But when we fix p ∈M this is a diffeomorphism of

Rr onto a little ball, so has surjective differential at each point in M × Rr. The same
argument shows that ∂F : ∂M × Rr → N is a submersion.

Now that we have established that F and ∂F are submersions, they are clearly
transverse to Z and Theorem 13.1.3 gives the desired conclusion.

Picking a point s ∈ Rr such that F |M×{s} t Z and ∂F |∂M×{s} t Z, the homotopy
H : M × [0, 1]→ N given by (p, t) 7→ F (p, ts) proves:

Corollary 13.1.8. Suppose M is a manifold possibly with boundary, N is a manifold
without boundary and Z ⊂ N is a submanifold without boundary. Then any smooth map
f0 : M → N is homotopic to f1 : M → N satisfying f1 t Z and ∂f1 t Z.

13.2 Isotoping submanifolds

In the Chapter 1, we discussed how to deform embeddings. This is the notion of
isotopy, intuitively a one-parameter family of embeddings. Let us recall the definition:
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Definition 13.2.1. A homotopy H : M× [0, 1]→ N is an isotopy if M× [0, 1] 3 (x, t) 7→
(H(m, t), t) ∈ N × [0, 1] is an embedding.

This is implied by H being a smooth proper map such that H|M×{t} is an embedding
for all t ∈ [0, 1], as then the map M × [0, 1]→ N × [0, 1] is a proper injective immersion.
Note that if M is compact, we may drop the hypothesis that this map is proper.

Suppose we are given two submanifolds Y,Z ⊂M without boundary, with Y compact.
We can then consider the inclusion i : Y ↪→M as a smooth map. By Theorem 13.1.7 we
can find a map F : Y ×Rr →M such that the set of s ∈ Rr such that F |Y×{s} : Y →M
is transverse to Z, is dense.

Since the class of maps transverse to Z are stable when the domain is compact,
Theorem 11.2.4 (iv), we can find ε > 0 such that F |Y×{s} : Y →M is still an embedding
if ||s|| < ε. Take such an s with H|Y×{s} t Z. Then the homotopy

H : Y × [0, 1] −→M

(y, t) 7−→ F (y, ts)

is an isotopy of embeddings of Y into M from i to an embedding transverse to Z. In
other words, the maps H|Y×{t} tells us how to move submanifold Y to a new position at
which it is transverse to Z.

If Y is r-dimensional and Z is s-dimensional, satisfying r+s < k, then Y is transverse
to Z if and only if Y ∩ Z = ∅. Thus we have shown that in these conditions any two
submanifolds can be made disjoint by moving one of them.
Example 13.2.2. Suppose we take S1 = {(x, y, 0) | x2+y2} ⊂ R3 and any other embedding
i : S1 → R3. This gives us two submanifolds of R3 which are diffeomorphic to S1. They
may very well be linked in a complicated way in R3. However, if we increase the dimension
by 1 they become unlinked.

That is, we claim that we can isotope i(S1) ⊂ R4 in the complement of S1 ⊂ R4 so
that it becomes disjoint from the disk D2 ⊂ R4. This follows by applying the above
observations with Y = i(S1), Z = D2 \ S1 and N = R4 \ S1, as the dimensions of Y and
Z add up to 3 < 4.

13.3 The regular neighborhood theorem

It remains to prove Theorem 13.1.5. This uses a new vector bundle associated to a
submanifold Z ⊂M , the normal bundle. Over Z we have two vector bundles, the trivial
bundle TM |Z and its subbundle TZ.

Definition 13.3.1. The normal bundle NZ is the vector bundle over Z given by
TM |Z/TZ.

When M = Rr and Z = N , this admits a more concrete definition. In that case
TRr|N = N ×Rr and comes with a preferred inner product on each fiber (the restriction
of usual Euclidean inner product). The orthogonal complements (TpN)⊥ assemble to a
vector bundle TN⊥ over N , explicitly given by

{(p, v) ∈ N × Rr | v ⊥ TpN}.
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Orthogonal projection gives a map TRr|N → TN⊥ whose kernel is exactly TN . Thus
there is an induced isomorphism

TRr|N/TN
∼=−→ TN⊥

of vector bundles over N .
Example 13.3.2. Let us verify TN⊥ is a vector bundle. Suppose we have a local trivializa-
tion φ : N ∩ V ∼= U ∩Rk′ ⊂ Rr. For x ∈ Rk′ , the bilinear map (v, v′) 7→ 〈dxφ(v), dxφ(v′)〉
is an inner product on TxRr. We can think of this as a symmetric matrix Ax whose entries
vary smoothly with x; v ·Axv′ = 〈dxφ(v), dxφ(v′)〉. Every positive semidefinite symmetric
matrix A has a unique decomposition A = BtB with B again positive semidefinite, and
the entries of B depend smoothly on those of A. Thus we can identify TN⊥ with the
subbundle

{(x,B−1v) | x ∈ Rk
′
, v ∈ {0} × Rk

′−r} ⊂ (Rk′ × Rr),

visibly admitting a local trivialization.
Furthermore, it is clear from this description that the transitions between local

trivializations are smooth, so TN⊥ is a smooth vector bundle. In particular, TN⊥ is a
manifold and the projection map π : TN⊥ → N is a submersion.

We now prove the regular neighborhood theorem, which said that given a N ↪→ Rr
without boundary, there exists an open neighborhood U ⊂ Rr of N and a submersion
πN : U → N that is the identity on N . Furthermore, the linear map dpπ : TpRr =
TpN ⊕ TpN⊥ → TpN is given by orthogonal projection onto TpN .

Proof of Theorem 13.1.5. Define the smooth map

h : TN⊥ −→ Rr

(p, v) 7−→ p+ v.

Because TN⊥ is r-dimensional, so is the tangent space T(p,0)N
⊥. As the manifold TN⊥

contains the submanifolds N × {0} and {p} × TpN
⊥, which intersect only at (p, 0),

T(p,0)N
⊥ contains their tangent spaces at (p, 0), given by TpN and TpN

⊥ respectively.
This gives a linear map

TpN ⊕ TpN⊥ −→ T(p,0)TN
⊥,

which we claim is an isomorphism. Since both sides have the same dimension, and this
map is an inclusion on each summand, it suffices to prove that TpN and TpN⊥ intersect
only in {0}. This follows from the fact that the map d(p,0)π : T(p,0)N

⊥ → TpN is the
identity on TpN and 0 on TpN

⊥

With respect to this direct sum decomposition, the linear map

d(p,0)h : T(p,0)TN
⊥ −→ Rr

is given by sending the summand TpN onto TpN ⊂ TpRr and the summand TpN
⊥ to

TpN
⊥ ⊂ TpRr. In particular, it is bijective.

By the inverse function theorem, Theorem 6.1.1, it is a local diffeomorphism near N .
As it is an embedding on N , it is injective on an open neighborhood V of N by Lemma
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13.3.3 (take A = N , M = TN⊥, N = Rr). Let U := h(V ), an open subset of N in Rr,
and set

πN := π ◦ h−1 : U −→ V −→ N.

Since πN is a composition of a diffeomorphism and a submersion, it is a submersion.
Since π and h are the identity on N , so is πN . To prove the addendum, it remains
to observe that d(p,0)π : T(p,0)TN

⊥ ∼= TpN ⊕ TpN⊥ → TpN is projection onto the first
summand.

Lemma 13.3.3. If A ⊂M is closed and f : M → N is a smooth map which is a local
diffeomorphism near A and injective on A, then f is injective near A.

Proof. We first prove the case that A is compact. For contradiction, suppose there is
pair of sequence of points pi ∈ M , p′i ∈ M so that pi 6= p′i, f(pi) = f(p′i), which get
arbitrarily close to A. By compactness of A, we may assume they converge: pi → p ∈ A
and p′i → p′ ∈ A. Then by continuity f(p) = f(p′), so p = p′ since f is injective on p.
But since f is a local diffeomorphism near p it is injective near p and hence pi = p′i for i
large enough.

In general, take the subset D = {(p, p′) ∈ M × M | p 6= p′, f(p) = f(p′)}. By
assumption on A, it is disjoint from A × A. Its closure is contained in the union of
D with the diagonal, but the local diffeomorphism condition implies that every point
in the diagonal has an open neighborhood disjoint from D. Thus D is closed and its
complement is open. By exhausting M with compact subsets, e.g. using Lemma 9.2.2,
and applying the above argument, this open subset contains a product neighborhood
Wp,q ×W ′p,q ⊂M ×M of each point (p, q) ∈ A×A; by replacing Wp,q with Wp,q ∩W ′q,p
we may assume that Wp,q = Wq,p for all (p, q) ∈ A × A. Then ⋃p,qWp,q ⊂ M is the
desired open neighborhood.

13.3.1 The tubular neighborhood theorem

We will now slightly generalize Theorem 13.1.5, replacing Rr with an arbitrary
manifold and choosing a smaller but nicer neighborhood:

Theorem 13.3.4 (Tubular neighborhood theorem). For every submanifold Z ↪→ N ,
there is an open neighborhood W of Z in N and a diffeomorphism φ : NZ −→W that is
the identity on Z.

Proof. Given an embedding N ↪→ Rr, let U , V and πN be as in the proof of the regular
neighborhood theorem. We can then identify NZ with the orthogonal complement TZ⊥
of TZ in TN . The only thing we will use of this observation is that the orthogonal
projection map TN |Z → NZ has a section.

Define the smooth map

h̃ : NZ −→ Rr

(p, v) 7−→ p+ v.

and take W ′ = h̃−1(V ).
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The map πN ◦ h̃ has bijective differential at the 0-section, because by the chain
rule it is the composition of dph̃ : TpZ ⊕NZ ∼= TpN → TpN , which is the identity, and
TpπN : TpRr ∼= TpN ⊕ TpN⊥ → TpN the projection onto the first summand. It also is
the identity on N .

By the same argument as before, we find an open neighborhood W ′′ of the 0-section
in NZ on which is an embedding. We can find a smooth function ε : Z → (0,∞) such
that

W = {(p, v) ∈ NZ | ||v|| < ε(p)} ⊂W ′′,

where || − || is the norm from the inner product on TZ⊥ ⊂ Rr. The diffeomorphism is
given by

φ : νZ −→W

(p, v) 7−→
(
p, ε(p) v

1 + ||v||2
)
.

This completes the proof.

13.3.2 Collars

In a manifold M with boundary ∂M , the boundary admits particularly nice open
neighborhoods:

Definition 13.3.5. A collar of ∂M is a open neighborhood V ⊂ M of ∂M with a
diffeomorphism φ : V → ∂M × [0, 1) that is the identity on ∂M .

Theorem 13.3.6. Every manifold with boundary admits a collar.

We will construct the two components V : [0, 1) and V → ∂M independently.

Lemma 13.3.7. There exists a smooth map χ : M → [0,∞) such that (i) χ−1(0) = ∂(M)
and (ii) for each p ∈ ∂M there exists a v ∈ TpM \ Tp∂M with dχ(v) 6= 0.

Proof. Pick charts φα : Rk−1 × [0,∞) ⊃ Uα → Vα ⊂M whose codomains cover M . The
local coordinates gives a smooth function

fα : Vα −→ [0,∞)
p 7−→ π2 ◦ φ−1

α (p),

with π2 : Rk−1 × [0,∞)→ [0,∞) the projection onto the second coordinate.
Let us now pick an partition of unity subordinate to the open cover {Vα}, given

by smooth functions λα : Vα → [0, 1]. The function λαfα extends by zero to a smooth
function λαfα : M → [0,∞). Then the function

χ : M −→ [0,∞)
p 7−→

∑
α

λαfα(p)

has the desired properties. We will leave the verification of this to the reader.
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Lemma 13.3.8. There exists an open neighborhood U ⊂M of ∂M with a smooth map
r : V → ∂M that is the identity on ∂M .

Proof. The weak Whitney embedding theorem, Theorem 9.1.3, also holds for manifolds
with boundary, so we may pick an embedding e : M ↪→ RN and consider M as a
submanifold of Euclidean space. We may then apply the regular neighborhood theorem,
Theorem 13.1.5, to ∂M , resulting in an open neighborhood U ⊂ RN of ∂M with a
smooth map π∂M : U → ∂M that is the identity on ∂M . We then have V := U ∩M and
r = π∂M |V .

Proof of Theorem 13.3.6. We may combine χ|V and r to a smooth map

f := r × χ|V : V −→M × [0,∞).

By construction, this is the identity and has bijective derivative on ∂M . By the inverse
function theorem, it is thus a local diffeomorphism near ∂M . As a consequence of Lemma
13.3.3, it is injective onto some smaller open neighborhood V ′ of ∂M . Picking a smooth
function ε : ∂M → (0,∞) such that {(q, t) ∈ ∂M × [0,∞) | t ∈ [0, ε(q))} ⊂ f(V ′). Setting

U := f−1({(q, t) ∈ ∂M × [0,∞) | t ∈ [0, ε(q))})
φ := f |U

is the desired diffeomorphism.

Collars are unique up to isotopy. They have great use in reducing questions about
manifolds with boundary to separate questions about the boundary and the interior.

13.4 Problems

Problem 13.4.1 (Transversality and normal bundles). Let Y,Z ⊂ N be submanifolds.
Prove that Y t Z if and only if for all p ∈ Y ∩ Z, NpY ∩NpZ = {0}.

Problem 13.4.2 (Collared embeddings). Use collars to prove that there exists an
embedding e : M → RN × [0,∞) such that e−1(RN × {0}) = ∂M .

Problem 13.4.3 (Smooth maps and submanifolds). Suppose that X ⊂M is a subman-
ifold. Prove that a continuous map f : X → N is smooth if and only if it extends to a
smooth amp f̃ : M → N .

Problem 13.4.4 (Smooth approximation). It is a consequence of the Stone-Weierstrass
approximation theorem that for all open subsets U ⊂ Rk, compact subsets K ⊂ U ,
ε > 0, and continuous maps f : U → R, there exists a smooth map g : U → R such that
|g(x)− f(x)| < ε for all x ∈ K.

(a) Prove that for each compact k-dimensional smooth manifold M , ε > 0, and
continuous map f : M → R, there exists a smooth map g : M → R such that
|g(x)− f(x)| < ε for all x ∈M .

(b) Is this result still true when we drop the assumption that M is compact?
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Problem 13.4.5 (Gluing manifolds with boundary). Suppose that M0 and M1 are d-
dimensional smooth manifolds, and that we are given a diffeomorphism ϕ : ∂M0 → ∂M1.
Use the existence of collars to produce a smooth structure on the topological space
M0 ∪ϕM1 such that the inclusions M0 →M0 ∪ϕM1 and M1 →M0 ∪ϕM1 are smooth
embeddings.

Problem 13.4.6 (Configuration spaces are path-connected). Recall that the configura-
tion space of r ordered points in M is given by

Confr(M) := {(m1, . . . ,mr) | mi 6= mj if i 6= j} ⊂M r.

In other words, it is the complement in M r of the thick diagonal ∆ = {(m1, . . . ,mr) |
mi = mj for some i 6= j}.

(a) Write ∆ as a union of
(r
2
)

submanifolds ∆ij . rove that if X is compact, then
maps X →M r which are transverse to all ∆ij are generic.

(b) Use (a) to prove that if M is path-connected of dimension k ≥ 2 then Confr(M)
is path-connected.
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Mod 2 intersection theory

In this chapter we use a slight technical strengthening of the theorem that transverse
maps are generic to develop mod 2 intersection theory; this constructs invariants by
counting transverse intersection points.

14.1 A strongly relative transversality theorem

In the previous chapter we proved that if M and N are manifolds without boundary,
and Z ⊂M is a submanifold without boundary, then any smooth map f0 : M → N can
be homotoped to a map f1 : M → N such that f1 t Z.

Sometimes you already know that f0 is transverse to Z on an open neighborhood U
of closed subset C ⊂ M , and you don’t want to modify f0 near C. In fact, you might
want to control more precisely where you modify f0 and fix a closed subset D ⊂ M
(where we definitely want to modify f0) and an open subset V ⊂ M containing D \ U
(outside of which we definitely do not want to modify f0). Many results in differential
topology admit such refined forms, which are referred to as strong relative results.

Theorem 14.1.1 (Strongly relative transversality theorem). Suppose that M is a compact
manifold with boundary, N is a manifold without boundary, and Z is a submanifold
without boundary. Fix the following data:

· a smooth map f0 : M → N ,
· a closed subset C ⊂M such that f0 t Z and ∂f0 t Z on an open neighborhood U

of C,
· a closed subset D ⊂M and open neighborhood V ⊂M containing D \ U .

Then there is an open neighborhood U ′ ⊂M of C ∪D, as well as an r ≥ 0 and a smooth
map F : M × Rr → N with F |M×{0} = f0 such that

(i) F |M×{s} = f0 on M \ V ,
(ii) for each ε > 0 there exists an s ∈ Rr such that F |M×{s} and ∂F |M×{s} are

transverse to Z on U ′.

As preparation, we construct a particular smooth function which controls where we
manipulate f0:

124
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CU

D

V

Figure 14.1 The data in Theorem 14.1.1. Eventually U ′ will be an open neighborhood of C ∪D
inside U ∪ V .

Lemma 14.1.2. Suppose we are given closed subsets C,D ⊂M , an open neighborhood
U ⊂ M of C and an open neighborhood V ⊂ M of D \ U . Then there exists a smooth
function γ : M → [0, 1] with the following properties:

· it has support in V ,

· is 0 on an open neighborhood of C, and

· is 1 on an open neighborhood of D \ U .

Proof. Take a partition of unity subordinate to V \C, U , and M \ (C ∪D); we call them
ηV \C , ηU and ηM\(C∪D). The function ηV \C : M → [0, 1] is the desired γ.

By construction, it has support in V \ C ⊂ V . Both supp(ηU ) and supp(ηM\(C∪D))
are closed subsets not containing D \ U , so the complement of their union contains an
open neighborhood of D \U ; necessarily ηV \C = 1 there. Similarly, only U contains C so
ηU = 1 on C, and hence ηV \C = 0 on C.

The proof is now a small variation on the proof that maps transverse to Z are generic,
using γ to control the size of deformations.

Proof of Theorem 14.1.1. Embed N into Rr and take a regular neighborhood πN : U →
N . We can find a smooth function ε : N → (0,∞) such that for each p′ ∈ N and x ∈ Rr
satisfying ||x|| < ε(p′), p′ + x ∈ U . Then we define the smooth map

F : M × Rr −→ N

(p, s) 7−→ πN

(
f0(p) + γ(p)ε(f0(p)) s

1 + ||s||2
)
.
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By construction F |M×{0} = πN ◦ f0 = f0, because πN is the identity on N . Furthermore
fs = f0 on the complement of V ′ := γ−1((0, 1]) ⊂ V .

When we fix p ∈ V ′ we get a submersion, and the argument of Theorem 13.1.7
tells us that for a dense set of s ∈ Rr, we have that fs and ∂fs are transverse to Z at
p ∈ γ−1((0, 1]). Furthermore, f0 and ∂f0 were already transverse to Z at p ∈ U , and
since an open neighborhood W ⊂ U of C is contained in M \ V ′, the same is true for fs
and ∂fs at p ∈W . We conclude that fs and ∂fs are transverse to Z at p ∈ V ′ ∪W . This
is an open neighborhood (D \ U) ∪ C. Finally, if we take s small enough, the stability
of transverse maps will guarantee fs is transverse to Z an open neighborhood W ′ of a
closed subset D′ of D contained in U and satisfying C ∪D ⊂ V ′ ∪W ∪W ′.

To apply this result, it is helpful to know that f0 and ∂f0 are transverse to Z on an
open neighborhood U of C if and only if they are transverse to Z on C. One direction is
obvious, the other holds if Z is closed:

Lemma 14.1.3. If Z is closed and f0 and ∂f0 are transverse to Z on a closed subset
C ⊂M , then there exists an open neighborhood U of C such that f0 and ∂f0 are transverse
to Z.

The idea is essentially the same as the stability of maps transverse to C.

Proof. We prove that such an open neighborhood exists for each p ∈ C. If p /∈ f−1
0 (Z)

then M \ f−1(Z) works because Z is closed.
If p ∈ f−1

0 (Z), pick a local parametrization φ : Rk′ ⊃ U ′ → V ′ ⊂ N of Z near f0(x).
If Z is codimension r, Z ∩ V ′ = φ({0} × Rk′−r). Then f0 is transverse to Z ∩ V ′ at p′ if
and only if the derivative at p′ of πr ◦ φ−1 ◦ f0 is surjective. Because surjective linear
maps are open, if this is true at p it is true for all p′ in an open neighborhood of p.

Corollary 14.1.4. Suppose M,N,Z are all without boundary, M compact. If f0, f1 : M →
N are homotopic and both transverse to Z, then there exists a homotopy H : M × [0, 1]→
N from f0 to f1 which is transverse to Z.

Proof. Apply Theorem 14.1.1 with f0 a given homotopy H̃ : M × [0, 1] → N , C =
M × {0, 1} and D = M × [0, 1]. The open neighborhood U is provided by Lemma 14.1.3
and the open neighborhood V is an open subset of M × (0, 1) containing M × [0, 1] \ U .
Pick an s ∈ Rr such that F |M×[0,1]×{s} and ∂F |M×[0,1]×{s} are transverse to Z. Then
F |M×[0,1]×{s} is the desired homotopy H.

14.2 Mod 2 intersection theory

Suppose that Y, Z ⊂ M are compact submanifolds and that dim(Y ) + dim(Z) =
dim(M), the dimension of M . If Y t Z, then Y ∩ Z is a compact 0-dimensional
submanifold and hence a finite number of points. If Y is not transverse to Z, we know
we make it so by an isotopy. However, the number of points in the intersection make
depend on the way we make Y transverse to Z, see Figure 14.2. However, a bit of
experimentation suggests that whenever we change the number of intersection points,
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#Y ∩ Z = 1#Y ∩ Z = 3

Figure 14.2 Two transverse perturbations with a different number of intersection points.

we either add or remove two points; the number of intersection points mod 2 might be
independent of the transverse perturbation!

Let us prove this in a bit more generality:

Definition 14.2.1. Let Y be a compact manifold, M be a manifold, and Z ⊂M be a
submanifold, all without boundary and satisfying dim(Y ) + dim(Z) = dim(M).

Let f0 : Y →M be a smooth map, then the mod 2 intersection number I2(f0, Z) of
f0 with Z is defined as follows: take f1 homotopic to f0 with f1 t Z, and set

I2(f0, Z) := #f−1
1 (Z) (mod 2).

If f0 is the inclusion of Y as a submanifold, we shall use the notation I2(Y, Z) :=
I2(f0, Z).

Lemma 14.2.2. The number I2(f0, Z) ∈ Z/2 is well-defined.

Proof. Suppose that f1 and f ′1 are two different smooth maps homotopic to f0 and
transverse to Z. Since homotopy is an equivalence relation, f1 is homotopic to f ′1. Then
Corollary 14.1.4 provides a homotopy H : Y × [0, 1]→M from f1 to f ′1 which is transverse
to Z. This means that H−1(Z) is a 1-dimensional submanifold of Y × [0, 1] with boundary

∂H−1(Z) = (∂H)−1(Z) = (f−1
1 (Z)× {0}) ∪ ((f ′1)−1(Z)× {0}).

It is compact because Y × [0, 1] is compact.
Since ∂H−1(Z) is even by the classification of compact 1-dimensional manifolds,

Theorem 12.3.1, we see that

#f−1
1 (Z) + #(f ′1)−1(Z) = #∂H−1(Z) ≡ 0 (mod 2).

Example 14.2.3. If M = Rn, then I2(f, Z) vanishes when dim(Y ) > 0. To see this,
observe that M \ Z is non-empty and open, and hence contains a ball. By composing f
with translation and scaling we can homotope f so that its image lies in this little ball
and hence disjoint from Z.
Example 14.2.4. Let M be the Moebius strip, Y = Z the central circle. Then I2(Y, Z) = 1
because it is easy to find a small perturbation of Y which makes it intersect Z transversally
in a single point.
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Here are some basic properties of this invariant of smooth maps Y →M .

Proposition 14.2.5. The mod 2 intersection number has the following properties:
(i) If f, g : Y →M are homotopic then I2(f, Z) = I2(g, Z).

(ii) If f : Y →M is homotopic to a constant map and dim(Y ) > 0, then I2(f, Z) =
0.

(iii) If Y = ∂W for a compact manifold W and f : ∂W →M extends to a smooth
map W →M then I2(f, Z) = 0.

(iv) If we have a pair of smooth maps f : X → Y , g : Y → M with X compact,
dim(X) + dim(Z) = dim(M), and g transverse to Z, then I2(f, g−1(Z)) =
I2(g ◦ f, Z).

Proof. Part (i) follows from the definitions and the fact that homotopy is an equivalence
relation. Part (ii) follows because such an f is homotopic to a map disjoint from Z. Part
(iii) follows from the fact that we may assume f transverse to Z and then the extension
can be also chosen transverse to Z. In this case f−1(Z) is the boundary of a compact
1-dimensional manifold and must be an even number of points. Part (iv) follows by
noting that we may assume f transverse to g−1(Z) and then both intersection numbers
count the same set.

14.3 Applications of mod 2 intersection theory

14.3.1 Contractible compact manifolds

Let’s start with an easy consequence:

Proposition 14.3.1. The point is the only contractible compact manifold.

Proof. Suppose Y is contractible but not a point. Then Proposition 14.2.5 (ii) applied
to id : Y → Y implies 1 = I2(id, {p}) = 0 for any p ∈ Y , an obvious contradiction.

Remark 14.3.2. As the Whitehead manifold in Section 8.3 shows, this is false without
the compactness assumption.

14.3.2 The mod 2 degree of maps

In the extreme case that dim(Y ) = dim(M) and M is connected, we can define:

Definition 14.3.3. The mod 2 degree deg2(f) of a smooth map f : Y →M is given by
I2(f, {p}) for some p ∈M .

Lemma 14.3.4. This is well-defined.

Proof. We claim that p 7→ I2(f, {p}) is locally constant. Indeed, we may assume that f is
transverse to {p}. Then by the inverse function theorem and the fact that Y is compact,
there exists an open neighborhood U of p such that f−1(U) is a finite disjoint union⊔k
i=1 Vi with p|Vi : Vi → U a diffeomorphism. This means that the number of points in

the pre-image of f is locally constant, hence so is this number modulo 2.
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Example 14.3.5. The identity map id: M →M has mod 2 degree equal to 1.
Example 14.3.6. If φ : Y →M is a diffeomorphism, then it is transverse to all points in
M and the pre-image consists of a single point, so deg2(φ) = 1.
Example 14.3.7. If q : E → B is a covering map of degree d with B connected and E
compact, then deg2(f) ≡ d (mod 2).

We can translate the properties of Proposition 14.2.5 into properties for deg2:

Proposition 14.3.8. Suppose Y is compact, dim(Y ) = dim(M), and M is connected,
The mod 2 degree has the following properties:

(i) If f, g : Y →M are homotopic then deg2(f) = deg2(g).
(ii) If f : Y →M is homotopic to a constant map and dim(Y ) > 0 then deg2(f) = 0.

(iii) If Y = ∂W for a compact manifold W and f : ∂W →M extends to a smooth
map W →M then deg2(f) = 0.

(iv) If we have a pair of smooth maps f : X → Y , g : Y →M with X and Y compact,
Y and M connected and dim(X) = dim(Y ) = dim(M), then deg2(g ◦ f) =
deg2(g) · deg2(f).

Proof. Only (iv) is not obvious. By homotoping g we can make it transverse to p ∈M ,
and by homotoping f we can make it transverse to g−1(p) ⊂ Y . Then g ◦ f is transverse
to p and

deg2(g ◦ f) = #(g ◦ f)−1(p)
= #f−1(g−1(p))
=

∑
q∈g−1(p)

#f−1(q)

≡ #g−1(p) · deg2(f)
= deg2(g) · deg2(f),

where we have used that all values #f−1(q) (mod 2) are equal to deg2(f) by the argument
used to prove that deg2 is well-defined (this uses that Y is connected).

14.3.3 Winding numbers

If M is compact manifold of dimension k and f : M → Rk+1 is a smooth map, then
for x /∈ im(f) we can define a smooth map

wf,z : M −→ Sk

x 7−→ f(x)− z
||f(x)− z||

and then let define the mod 2 winding number W2(f, z) of f around z to be deg2(wf,z).
It only depends on the connected component of Rk+1 \ im(f) containing z.

If M = ∂W with W compact and f extends to a smooth map F : W → Rk+1, we can
often compute W2(f, z) in terms of F :
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Proposition 14.3.9. If z is a regular value of F , then W2(f, z) ≡ #F−1(z) (mod 2)
(that is, I2(F, z)).

W̄

V1 V2

V3

Proof. Because z is a regular value, we can find a small open disk U around z avoiding
f(∂W ), such that f−1(U) is a finite disjoint union ⊔ri=1 Vi with p|Vi : Vi → U a diffeo-
morphism, with r = #F−1(z). Then W̄ := W \

⊔r
i=1 Vi is another compact manifold

with boundary and F restricts to a smooth map F̄ : W̄ → Rk+1.
Since this avoids z, there is a smooth map

F̄ : W̄ −→ Sk

x 7−→ F (x)− z
||F (x)− z||

and by Sard’s theorem we can find a p ∈ Sk such that F̄ and ∂F̄ are transverse to p.
Hence F̄−1(p) is one-dimensional compact submanifold on W̄ , so its boundary is an

even number of points. This implies that

0 ≡ #∂F̄−1(p) (mod 2)

= #w−1
f,z(p) +

r∑
i=1

#w−1
F |∂Vi,z

(p)

= W2(f, z) +
r∑
i=1

W2(F |∂Vi , z).

Thus we may as well compute each W2(F |∂Vi , z).
Since F |∂Vi is a diffeomorphism, is given by the composition of the inclusion i : ∂U ↪→

Rk+1 with a diffeomorphism, each of these is equal to W2(i, z). Since wi,z : ∂U → Sk is
given by a composition of translation and scaling, it is a diffeomorphism; by Example
14.3.6 W2(i, z) = 1. We conclude that W2(f, z) ≡ k (mod 2), as desired.
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14.4 Problems

Problem 14.4.1 (Spheres are not products). Let M and N be compact connected
smooth manifolds of dimension k and n− k respectively, and suppose that k > 0 and
n− k > 0. Fixing q0 ∈ N there is an inclusion iq0 : M →M ×N given by p 7→ (p, q0).

(a) Prove that if Sn is diffeomorphic to M ×N then iq0 is homotopic to a constant
map.

(b) Prove that Sn is not diffeomorphic to M ×N using intersection theory.
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Two applications of mod 2 intersection theory

We continue of Chapter 14 with our discussion of mod 2 intersection theory and its
applications. This includes some applications from [Mat03] and Section 2.§5 of [GP10].

15.1 The Borsuk–Ulam theorem

Recall that if M is compact smooth manifold of dimension k and f : M → Rk+1 is a
smooth map, then for x /∈ im(f) we can define a smooth map

wf,z : M −→ Sk

x 7−→ f(x)− z
||f(x)− z|| .

The mod 2 winding number W2(f, z) of f around z is then deg2(wf,z). As an application
of mod 2 winding numbers we will prove the Borsuk–Ulam theorem. Before doing so, let
us start with an easier example of how conditions on a smooth map constrain its winding
number:

Proposition 15.1.1. If a smooth map f : Sk → Rk+1 \ {0} satisfies f(−x) = f(x), then
W2(f, 0) = 0.

Proof. We start with the observation that f is homotopic as a smooth map Sk →
Rk+1 \ {0} to f/||f || by (p, t) 7→ f/(1 − t + t||f ||), and that this satisfies the same
symmetry condition. Hence, without loss of generality we are dealing with a smooth map
f : Sk → Sk. Then wf,0 = f , and we are equivalently proving a result about the degree
of f . The symmetry condition implies that f factors as

Sn Sn

RPn

f

q
f̄

Since q is a double cover, deg2(q) ≡ 0 (mod 2) by Example 14.3.7, and Proposition 14.3.8
(iv) hence deg2(f) = deg2(q) deg2(f̄) = 0 as well.

132
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Theorem 15.1.2 (Borsuk–Ulam). If a smooth map f : Sk → Rk+1\{0} satisfies f(−x) =
−f(x), then W2(f, 0) = 1.

Proof. As above, without loss of generality we may assume we are dealing with a smooth
map f : Sk → Sk, and we may use W2(f, 0) and deg2(f) interchangeably. The proof is
by induction over k, with Proposition 14.3.9 playing a major role in the induction step.

We start with the initial case k = 0. Then f : S0 → S0 is either the identity
id: S0 → S0 or −id. Both id and −id are diffeomorphisms and hence have degree 1 by
Example 14.3.6.

For the induction step, we assume the result is true for k − 1 and prove it for k. We
are given a smooth map f : Sk → Sk satisfying f(−x) = −f(x), and define g := f |Sk−1

which also satisfies g(−x) = −g(x). By Sard’s theorem there exists an a ∈ int(Sk+), with
Sk+ = Sk ∩ [0,∞)× Rk the upper hemisphere, which is a regular value of both f and g.
By symmetry −a is also a regular value of both f and g. We can manipulate deg2(f) a
bit:

deg2(f) ≡ #f−1(a) = 1
2(#f−1(a) + #f−1(−a)).

To apply Proposition 14.3.9 we want to go from Sk to something diffeomorphic to
Rk. Let π : Rk+1 → a⊥ ∼= Rk by the orthogonal projection. That g t {a,−a} means that
the image of g is disjoint from a and −a and hence π ◦ g avoids 0. Since furthermore
f t {a,−a}, π ◦ f |Sk+ is transverse to 0 and we have

#(π ◦ f |Sk+)−1(0) = #(f |Sk+)−1(a) + #(f |Sk+)−1(−a) = 1
2(#f−1(a) + #f−1(−a)).

This means that deg2(f) ≡ #(π ◦ f |Sk+)−1(0).
Now Proposition 14.3.9 applies with W = Sk+, F = f |Sk+ and z = 0. It says that

#(π ◦ f |Sk+)−1(0) ≡W2(π ◦ g, 0) (mod 2).

But W2(π ◦ g, 0) = deg2(π ◦ g) and since π is linear, π ◦ g(−x) = −π ◦ g(x) so that the
inductive hypothesis applies and thus deg2(π ◦ g) = 1.

15.1.1 Applications of the Borsuk–Ulam theorem

In this section deduces several famous consequences of Theorem 15.1.2.

Corollary 15.1.3. If a smooth map f : Sk → Rk+1 \ {0} satisfies f(−x) = −f(x), then
f intersects every line through the origin at least once.

Proof. If the image of f does not intersect `, we compute that W2(f, 0) = 0 using an
element p ∈ Sk ∩ `, contradicting Theorem 15.1.2.

This corollary can be restated in a number of equivalent forms. We purposefully
are a bit whether the maps are smooth or not; by an application of the Weierstrass
approximation theorem the results for smooth maps imply those for continuous maps.

Theorem 15.1.4. The following are equivalent:
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(i) If f : Sk → Rk+1 \ {0} satisfies f(−x) = −f(x), then f intersects every line
through the origin at least once.

(ii) If g : Sk → Rk satisfies g(−x) = −g(x), then g has a zero.
(iii) Every h : Sk → Rk has an x such that h(x) = h(−x).
(iv) There is no F : Sk → Sk−1 satisfying F (−x) = −F (x).
(v) There is no G : Dk → Sk−1 satisfying G(−x) = −G(x) for x ∈ ∂Dk.

Proof.
· We start with (i) ⇒ (ii). If g has no zero then

f : Sk −→ Rk+1 \ {0}
x 7−→ (g(x), 0)

avoids the xk+1-axis, contradicting (i).
· For (ii) ⇒ (i), if f avoids ` and π : Rk+1 → Rk, then taking g(x) = π ◦ f(x) would

contradict (ii).
· For (ii) ⇒ (iii), take g(x) = h(x)− h(−x).
· For (iii) ⇒ (ii), there is an x such that −g(x) = g(−x) = g(x) so g(x) = 0.
· For (ii) ⇔ (iv), we just normalize.
· For (iv) ⇒ (v) use that from such an G we could produce an F by picking a

diffeomorphism φ : Sk+ → Dk that is the identity on the boundary and setting
F (x) = G(φ(x)) for x ∈ Sk+ and F (x) = −G(φ(−x)) for x ∈ int(Sk−).

· For (v) ⇒ (iv) use that from such an F we could produce a G by taking F |Sk+ ◦
φ−1 : Dk → Sk−1.

Example 15.1.5. Theorem 15.1.4 (v) gives another proof that there is no continuous map
Dk → ∂Dk which is the identity on ∂Dk, a special case of Theorem 12.3.3.

Part (iii) of Theorem 15.1.4 has several famous geometric applications; see [Mat03]
for even more:

Corollary 15.1.6 (Lusternik–Schnirelmann). If U0, . . . , Uk is an open cover of Sk then
there is an i ∈ {0, . . . , k} such that Ui ∩ (−Ui) 6= ∅.

Here (−Ui) is of course the set {z ∈ Sk | −z ∈ Ui}.

Proof. We first prove that if C0, . . . , Ck is a cover of Sk by closed sets then there is an i
such that Ci ∩ (−Ci) 6= ∅. Consider the continuous function

g : Sk −→ Rk

x 7−→
(
(d(x,C1), . . . , d(x,Cn)

)
with d(−,−) the ordinary Euclidean metric on Rk+1. By Theorem 15.1.4 (iii) there must
be an x such that g(x) = g(−x). If the ith entry of g(x) is 0, then x,−x ∈ Ci. If none of
the entries of g(x) are 0, then x,−x /∈

⋃n
i=1Ci and hence x,−x ∈ Cn+1.
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The version for open covers follows using the fact that a partition of unity subordinate
to an open cover U0, . . . , Uk of Sk such that all Ui ∩ (−Ui) = ∅ for all i, which exists by
Theorem 9.1.2, provides a closed cover supp(ηi) of Sk with the same property.

U2U1

Figure 15.1 A cover of S1 by two open subsets. The open subset U1 contains two antipodal
points.

Corollary 15.1.7 (Ham–Sandwich). Let M1, . . . ,Mn be bounded measurable subsets of
Rn of positive measure. Then there exists an affine hyperplane h ⊂ Rn such that each
of both of the half-spaces h± bounded by h we have µ(Mi ∩ h+) = µ(Mi ∩ h−) for all
1 ≤ i ≤ n.

Proof. Without loss of generality M1, . . . ,Mn ⊂ B1(0). For each x ∈ Sk we can define
a subspace h+

x when xk+1 6= ±1, h+
x := {(v1, . . . , vk) ∈ Rk |

∑k
i=1 xivi ≥ xk+1}. When

x = ek+1 we take h+
x = ∅, then x = −ek+1 we take h+

x = Rk.
We define a function

g : Sk −→ Rk

x 7−→ (µ(M1 ∩ h+
x ), . . . , µ(Mk ∩ h+

x )).

We will leave it to Theorem 3.1.1 in [Mat03] the proof that this is continuous. By
Theorem 15.1.4 (iii) there must be an x such that g(x) = g(−x). Since h+

−x is h−x , this
means that (µ(M1 ∩ h+

x ), . . . , µ(Mk ∩ h+
x )) = (µ(M1 ∩ h−x ), . . . , µ(Mk ∩ h−x )).

In other words, you can slice even an irregular sandwich with a slice of ham and a
slice of cheese, such that the bread, ham and cheese are all divided in half.
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Figure 15.2 There exists a half-plane which contains half of both the red and the blue figure
(this is probably not it).

15.2 The Jordan–Brouwer separation theorem

15.2.1 Its proof

One can also use the ideas behind mod 2 intersection theory to deduce the famous
Jordan–Brouwer separation theorem. Section 2.§5 of [GP10] deduces it from winding
numbers, but I think this direct proof is clearer.

Theorem 15.2.1. If Z ⊂ Sn is a compact connected non-empty submanifold of dimension
n− 1, then Sn \ Z is a disjoint union of two connected open subsets, each of which has
closure a compact submanifold with boundary Z.

By removing a point from Sn \ Z, we reduce to the case Rn \ Z; in this case we only
get the second claim for one of the both components but since we could have removed
any point the same is true for the other component.
Example 15.2.2. In dimension 2 we are saying that a curve in the plane divides it into
two pieces. See https://www.maths.ed.ac.uk/˜v1ranick/papers/jordan-revised
for some examples of complicated curves if you think this is obviously true.

Proof of Theorem 15.2.1. Pick an x0 ∈ Rn \Z. To simplify very end of the proof, we will
assume that x0 lies outside some closed disk around the origin containing the compact
subset Z.

We claim that there is locally constant assignment d : Rn \ Z → Z/2, given at
x ∈ Rn \Z by picking a smooth path γ from x to x0 which is transverse to Z and taking
d(x) to be #γ−1(Z) (mod 2). Let us prove that this is well-defined.

To show that such a γ exists, observe that for each x ∈ Rn \ Z there is an open ball
Bε(x) ⊂ Rn \ Z around x. We define a smooth map

F : [0, 1]×Bε(x) −→ Rn

(t, y) 7−→ ty + (1− t)x0,

https://www.maths.ed.ac.uk/~v1ranick/papers/jordan-revised
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which is visibly a submersion when restricted to fixed t ∈ [0, 1], so F t Z, ∂F t Z (in
fact, ∂F avoids Z all-together). By Theorem 13.1.3 there exists a dense set of y ∈ Bε(x)
such that F |[0,1]×{y} t Z. Now we let γ be the concatenation of the linear path from x
to y and F |[0,1]×{y}.

We claim that #γ−1(Z) is independent of the choice of γ. Given two choices γ, γ′,
consider the map

G : (0, 1)× [0, 1] −→ Rn

(t, s) 7−→ sγ(t) + (1− s)γ′(t),

This is transverse to Z on an open neighborhood of the closed subset

C = (0, ε]× [0, 1] ∪ [1− ε, 1)× [0, 1] ∪ (0, 1)× {0, 1

so by the strongly relative transversality theorem, Theorem 14.1.1, there is a homotopic
map which coincides with G near C and is tranverse to Z. Then G−1(Z) is a 1-dimensional
submanifold, which is contained in some compact subset of (0, 1)× [0, 1], since G avoids Z
on (0, ε′)× [0, 1] ∪ (1− ε′, 1)× [0, 1] for some ε′ > 0. Hence it is a compact 1-dimensional
submanifold, and hence its boundary contains an even number of points by Theorem
12.3.1. This implies that the difference between #γ−1(Z) and #(γ′)−1(Z) is even.

Z

•x
•x′

•x0

Figure 15.3 Proving that d : Rn \ Z → Z/2 takes both values.

By construction, this function d is constant on connected components. To see it
takes both values, look at a chart exhibiting Z as a submanifold, i.e. a diffeomorphism
φ : Rn ⊂ U → V ⊂ Rn such that φ−1(Z ∩ V ) = ({0} × Rn−1) ∩ U . Suppose that d takes
value 0 on say φ(((−∞, 0)×Rn−1) ∩U). Then by concatenating γ with the image under
φ of a straight line segment connecting a point x in (−∞, 0)× Rn−1 with a point x′ in
(0,∞)× Rn−1 we see that d takes value 1 on φ(((0,∞)× Rn−1) ∩ U). That is, crossing
Z changes d by 1. We conclude that Rn \ Z has at least 2 connected components.

To show it has exactly two connected components we need to use that Z is connected.
For any fixed x ∈ Rn \ Z, let V ⊂ Z be the subset of points z ∈ Z such that any open
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neighborhood U of z in Rn contains a point which has a path to x avoiding Z. This is
closed and open by looking at charts exhibiting Z as a submanifold, and is non-empty
by looking at a point in Z closest to x. Thus, V is union of connected components of Z
and hence all of Z.

Now let us look at opposite sides of Z in a fixed chart; by the above argument, each
x ∈ Rn \ Z can be connected to a point within this chart by a path avoiding Z. This
includes x0 and so can be used to divide the points of Rn \ Z into two path-components
(possibly empty); those that connect to x0 and those that do not. Hence Rn \ Z has
at most two connected components and hence exactly two, given by d−1(0) and d−1(1)
respectively.

To see that the closure of d−1(0) is a manifold with boundary we need to find
charts near boundary points. Note that for each local trivialization of Z, exactly one
of φ(((−∞, 0) × Rn−1) ∩ U) and φ(((0,∞) × Rn−1) ∩ U) lies in d−1(0), say the latter,
and then φ|([0,∞)×Rn−1)∩U) is the desired chart near the boundary. The same argument
applies to d−1(1).

Finally, any points x with ||x|| ≥ ||x0|| can be connected to x0 by a path avoiding Z,
so the closure d−1(1) is bounded and hence compact.

Let us reflect on the proof. What did we really use about Rn? Only that it is
connected and simply-connected. That is, for the definition of d we only need to be
able connect x to x0 by some path γ. To show it is well-defined, we need that any two
choices γ and γ′ are homotopic relative to their endpoints. Thus, the same proof gives
the following generalization of the Jordan-Brouwer separation theorem:

Theorem 15.2.3. Suppose M is a simply-connected connected compact manifold of
dimension n and Z ⊂M is a compact connected non-empty submanifold of dimension
n− 1, then M \ Z is a disjoint union of two connected open subsets, each of which has
closure a compact submanifold with boundary Z.

15.2.2 The Schoenflies theorem

In particular, if i : Sk−1 ↪→ Sk is a smooth embedding then i(Sk−1) divides Sk into
two connected components, and the closure of each of these is a compact submanifold
with boundary. What are these manifolds with boundary? Of course, taking i to be the
standard inclusion we get two disks Dk. Can other manifolds appear? The answer is “no”
in low dimensions:

Theorem 15.2.4 (Schoenflies, Alexander). If k ≤ 3, for each embedding i : Sk−1 ↪→ Sk

the closures of both components of Sk \ Sk−1 are diffeomorphic to Dk.

You can find a proof for k = 3 in [Hat07, Theorem 3.3], which you should be able to
adapt to k = 2 without much difficulty.

However, in high dimensions there can be. One of the successes of differential topology
is the determination of dimensions in which this can happen in terms of other well-studied
objects in algebraic topology (the groups of exotic spheres). In particular, in dimension
≤ 140 we have [BHHM17]:
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Theorem 15.2.5. If 5 ≤ k ≤ 140, for each embedding i : Sk−1 ↪→ Sk the closures of both
components of Sk \ Sk−1 are diffeomorphic to Dk if and only if k = 5, 6, 12, 56, 61.

There is one dimension remaining for k ≤ 140: k = 4. One of the big remaining open
questions of manifold theory asks about this case:

Conjecture 15.2.6 (Smooth Schoenflies conjecture in dimension 4). Given an embedding
i : S3 ↪→ S4, the closures of both components of S4 \ S3 are diffeomorphic to D4.

15.2.3 Codimension one knots

Just we called (isotopy classes of) embeddings of S1 in S3 are knots, we refer to
(isotopy classes of) embeddings Sk−r ↪→ Sk as codimension r knots. The most interesting
case is, unsurprisingly, codimension 2. What about codimension 1?

If for each embedding i : Sk−1 ↪→ Sk the closure of one of the components of Sk \Sk−1

are diffeomorphic to Dk, there exists only one embedding Sk−1 → Sk up to isotopy:

Theorem 15.2.7. If an embedding i : Sk−1 ↪→ Sk has the property that the closure of
one of the components of Sk \ Sk−1 is diffeomorphic to Dk, then i is isotopic to the
standard inclusion Sk−1 → Sk.

It will follow from:

Proposition 15.2.8. Every embedding Sk−1 ↪→ Rk which extends to an embedding
Dk ↪→ Rk is isotopic to either the standard inclusion i, or i composed with a reflection.

Proof. We prove that every embedding Dk ↪→ Rk is isotopic to one given by applying
invertible linear map A ∈ GLk(R) to Dk. The result follows from the observation that
the two different connected components of GLk(R) contain the identity and a reflection
respectively.

We claim that embeddings Dk ↪→ Rk up to isotopy are in bijection with injective
immersions Rk ↪→ Rk up to homotopy through injective immersions. This bijection is
given in one direction by the composing with the embedding i : Dk ↪→ Rk, and in the
other by composing with the injective immersion h : Rk ↪→ Dk given by z 7→ z

1+||z||2 . It is
easy to see that h ◦ i is isotopic to idDk , and i ◦ h admits an homotopy through injective
immersions to idRk .

Now apply Lemma 15.2.9, which classifies injective immersions Rk ↪→ Rk up to
homotopy through injective immersions.

Lemma 15.2.9. Every injective immersion f : Rk ↪→ Rk is homotopic through injective
immersions to an invertible linear transformation.

Proof sketch. Identify [0, 1] with [1,∞] and take

H : Rn × [1,∞] −→ Rn

(x, t) 7−→
{1
t · h(tx) if t <∞,
D0h(x) if t =∞.

To see that this is smooth at t =∞ apply Taylor’s theorem.
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We can now complete the argument:

Proof of Theorem 15.2.7. We may assume ek+1 ∈ Sk \ Sk−1 is not in the image of the
extension, and removing this point, we may as well work in Rk. The result follows by
observing that the embeddings Sk−1 ↪→ Sk given by i and i composed with a reflection
are isotopic, as the action of GLk(R) on Sn extends to an action of GLk+1(R) and there
is an element of GLk(R) with determinant +1 which acts on i by reflection.

Thus Theorem 15.2.5 tells us the following about the existence of codimension one
knots.

Corollary 15.2.10. If 4 6= k ≤ 140 and k = 0, 1, 2, 3, 5, 6, 12, 56, 61, then every embed-
ding Sk−1 ↪→ Sk is isotopic to the standard inclusion.

15.3 Problems

Problem 15.3.1. Use the Jordan–Brouwer separation theorem to prove that if M ⊂ Rk
is a compact codimension 1 submanifold, then its normal bundle NM is trivial.

Problem 15.3.2. Adapt the proof of Lemma 15.2.9 to prove that every diffeomorphism
of Rk is isotopic to an invertible linear transformation.
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Knot theory

In this chapter, we return to the knots that we first encountered in Chapter 1 and apply
some of the techniques we have learned so far. In particular, we will use transversality
and intersection theory. You can read more about knot theory in [Ada04, Sos02, Rol90].

16.1 Knot diagrams

Recall the following definition from the first lecture:

Definition 16.1.1. A knot is an isotopy class of embeddings S1 ↪→ R3.

(a) This is an interesting notion exactly because we are requiring both the map S1 → R3

and its derivative to be injective. Dropping conditions, all smooth maps S1 → R3

are homotopic to a constant map by linear interpolation. If we drop injectivity of the
map, we are dealing with immersions and Proposition 1.2.4 sketched an arugment
that there is only one of these up to regular homotopy. If we drop injectivity of the
derivative, then we can remove any knotting by moving it into a ball and shrinking
this ball to a point.

(b) Our knots come with a choice of orientation, intuitively a “direction of travel” along
the knot. The reverse of a knot is obtained by reversing this direction of travel,
or equivalently, composing the embedding with a reflection of the circle. It is not
necessarily true that a knot and its reverse are isotopic.

(c) There are other reasonable equivalence relations one can put on embeddings S1 ↪→ R3.
One could ask for embeddings up to diffeomorphisms of R3, or up to diffeomorphisms
of R3 isotopic to the identity (“ambient isotopy”). The latter is the same equivalence
relation as isotopy of embeddings, by Chapter 25, and so is the former once we
require the diffeomorphisms are orientation-preserving.

(d) Some references use piecewise-linear embeddings instead of smooth embeddings.
That is, for them a knot consists of straight line segments. These are of a more
combinatorial nature and simplify some technicalities. In dimension ≤ 3, piecewise
linear embeddings up to piecewise-linear isotopy are the same as smooth embeddings
up to isotopy [Moi77]. Warning: this type of statement tends to be false in higher
dimensions.

141
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We draw knots as follows: we project it to knot to the plane, and we indicate the
vertical ordering of intersections at the crossings (see Figure 16.1). Let me be more precise:
a knot diagram is an immersion S1 → R2 with only distinct transverse self-intersections,
together with the data at each self-intersection which of the two segments crosses over.
From this data we can reconstruct the knot up to isotopy; x- and y-coordinates can be
recovered from the diagram, and the z-coordinate can be inferred up to linear interpolation
from the crossing.

Figure 16.1 An example of a knot diagram. We leave out the orientations for the sake of
simplicity. (In this case, the knot is isotopic to its reverse.)

The following may seem obvious, but a rigorous proof requires some care. It uses
the same techniques used for the strong Whitney embedding theorem, in particular
Proposition 12.1.2.

Proposition 16.1.2. Every knot has a knot diagram.

Proof. We will prove that there exists a direction x ∈ S2 such that the composition of e
with orthogonal projection πx : R3 → x⊥ ∼= R2 gives a knot diagram. This uses the maps

f inj : S1 × S1 \ {(p, p) | p ∈ S1} −→ S2

(p, p′) 7−→ e(p)− e(p′)
||e(p)− e(p′)|| ,

f̃ tang : {v ∈ TS1 | ||v|| = 1} −→ S2

v 7−→ de(v)
||de(v)|| ,

where we use the identification of TS1 with S1 × R to define ||v||.
By Sard’s theorem, Theorem 11.3.4, there is a point x ∈ S2 which is a simultaneous

regular value of both these maps. As the domain of f tang is 1-dimensional (the domain
is just two copies of a circle), a regular value is a point which not in its image. That
x is not in its image means that πx ◦ e has injective differential and thus πx ◦ e is an
immersion.
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The domain and target of f inj are both 2-dimensional, so if a point x is a regular
means then if e(p)−e(p′) is a (necessarily non-zero) multiple of x, the derivative of f inj at
(p, p′) is surjective. This implies that even though πx ◦ e(p) = πx ◦ e(p′), their derivatives
are linearly independent. Thus the intersections are transverse.

The only issue is that πx ◦ e may have multiple self-intersections at the same location
in R2. Since these self-intersections are transverse there are only finitely many, and by a
small isotopy we can make them distinct.

A much stronger transversality result for families, a parametrized multi-jet transver-
sality theorem, allows one to modify the projection of an isotopy so that it is given by a
finite number of local moves:

Theorem 16.1.3 (Reidemeister). Any two knot diagrams differ by a finite sequence of
the following moves (see Figure 16.2):

· isotopies of R2,

· I: introducing or removing a twist,

· II: introducing or removing a poke,

· III: sliding over a crossing.

Figure 16.2 The three Reidemeister moves (from Fomenko–Matveev [FM97]).

Remark 16.1.4. The parametrized multi-jet transversality theorem concerns modifying
families of smooth functions so that they are transverse to certain “submanifolds” of
the space of all smooth functions. The study of the space of smooth functions and its
subspaces is the subject of singularity theory, see e.g. [GG73].

The upshot of this result is that we can define knot invariants using knot diagrams:
we need to assign something to each diagrams which is invariant under the above moves.
For example, tricolorings give the easiest example showing that some knots are not
isotopic to the standard inclusion S1 ↪→ R3.
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Definition 16.1.5. Given a knot diagram and the three colors {red, blue, green}, a
tricoloring is an assignment of a color to each line segment such that the three strands
coming into each crossing either have all three colors, or just a single color.

one color is allowed three colors are allowed two colors is not allowed

Figure 16.3 Rules for tricoloring.

Example 16.1.6. The trivial knot diagram (just a circle) has 3 tricolorings. The trefoil
below has 9 tricolorings:

Proposition 16.1.7. The number of tricolorings is an invariant of the knot; i.e. it is
invariant under isotopies and Reidemeister moves.

Proof sketch. You need to show that under a Reidemeister move, each tricoloring of
the right hand side corresponds to a unique tricoloring of the left hand side and vice
versa.

Example 16.1.8. The trefoil is not isotopic to the standard inclusion.

16.2 Links and linking numbers

One can also consider embeddings of more than one circle into R3. See Figure 16.4
for two examples.

Definition 16.2.1. A link with k components is an isotopy classes of embeddings
e : ⊔k S1 ↪→ R3.

We did not use anything about the circle in Section 16.1 except that it is a compact
1-dimensional smooth manifold. The same is true for the disjoint union ⊔k S1, so it is still
the case that we can represent them by diagrams (i.e. a sufficiently nice projection to the
plane), and that two such diagrams are related by isotopies and the three Reidemeister
moves. In particular, one could use tricolorings or other invariants of knots defined in
terms of diagrams to distinguish links.
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Figure 16.4 Two links, the trivial link and the Hopf link.

However, there is a new invariant which we can define if k = 2, that is, we have a
link with two components. Let S1

1 and S1
2 denote the two circles, then there is a map

g : S1
1 × S1

2 −→ S2

(p, p′) 7−→ e(p)− e(p′)
||e(p)− e(p′)|| .

As a map between compact manifolds of the same dimension, it has a degree deg2(w) ∈
Z/2. An isotopy of e induces a homotopy of w, so this is an invariant of the link; the mod
2 linking number . It is in fact a mod 2 reduction of the Gauss linking number, which is
an integer and requires a discussion of oriented manifolds and integral intersection theory
to define.
Example 16.2.2. If two circles are unlinked, this linking number is 0. For the Hopf link,
it is 1. Hence these links are not isotopic.

To prove the first case, we observe that we can pick our preferred representative
within an isotopy class. In the case of unlinked circles, we may assume that the circles are
contained in balls of radius 1, the first centered at (10, 0, 0) and the second at (−10, 0, 0).
In this case, −e1 is not in the image of g in S2 as we see in Figure 16.5, so using it to
compute deg(g) we see that it is 0.

S1
2 S1

1

•
•

Figure 16.5 The linking number of the trivial link is 0, because g is given by the direction of
the arrow from p′ ∈ S1

2 to p ∈ S1
1 .

16.3 A result of Klein

Knot theory goes back to the end of the 19th century, as a hypothetical model for
atoms due to Thomson and Maxwell (later Lord Kelvin) [Kel67]. In his 1877 foundational
paper on knot theory, Peter Tait wrote [Tai76]:

Klein himself made the very singular discovery that in space of four dimensions
there cannot be knots.
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Put more dramatically in a poem of Maxwell1:
My soul’s an amphicheiral knot
Upon a liquid vortex wrought
By Intellect in the Unseen residing,
While thou dost like a convict sit
With marlinspike untwisting it
Only to find my knottiness abiding;
Since all the tools for my untying
In four-dimensioned space are lying,
Where playful fancy intersperses
Whole avenues of universes;
Where Klein and Clifford fill the void
With one unbounded, finite homaloid,
Whereby the Infinite is hopelessly destroyed.

Klein’s “very singular discovery,” phrased in modern terms, is that every embedding
S1 ↪→ R4 extends to an embedding D2 ↪→ R4. You can probably come up with an
elementary proof yourself (“switch the crossings using fourth dimension”), but let us
prove the following weaker statement using transversality:

Proposition 16.3.1. Every embedding S1 ↪→ R5 extends to an embedding D2 ↪→ R5.

Proof. Given an embedding i : S1 ↪→ R5, we can write down an embedding j : D2 ↪→ R9

as follows. We write D2 as S1 × [0, 1] ∪ S2
+, the latter being the upper hemisphere, and

take

j : S1 × [0, 1] ∪ S2
+ −→ R5 × R× R3

p 7−→
{

(η(t)i(x), t, (1− η(t))x) if p = (q, t) ∈ S1 × [0, 1],
(0, 1 + z, (x, y, z)) if p = ((x, y), z) ∈ S2

+ ⊂ R2 × [0,∞),

with η : [0, 1]→ [0, 1] smooth, 1 near 0, and 0 near 1.
We can now repeat the proof of Theorem 12.1.1 with Sard’s theorem for manifolds with

boundary, finding a dense set of choices of x ∈ Sk−3 such that πx ◦ j is still an embedding.
In particular, we can pick one which is arbitrarily close to the last basis vector at each step.
In particular, the map πx|R5 : R5 → R8 will be close to the standard inclusion R5 ↪→ R8,
and hence there is an invertible linear map A : R8 → R8 such that A ◦ πx : R9 → R8 is
the identity on R5. Thus A ◦ πx ◦ j : D2 → R8 is an embedding extending i. We can
repeat this argument three more times to get an embedding j : D2 → R5 extending i.

Remark 16.3.2. Klein’s observation was noticed in non-mathematical circles and it became
part of popular culture. For example, the American magician and medium Henry Slade
was performing “magic tricks” claiming that he solves knots in fourth dimension. He was
taken seriously by a German astrophysicist J.K.F. Zöllner, who organized a number of
seances with Slade in 1877 and 1878 [Car07, Chapter II].

1See https://www.ams.org/notices/200810/tx081001266p.pdf.

https://www.ams.org/notices/200810/tx081001266p.pdf
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Figure 16.6 The knot that Slade’s spirits untied in the fourth dimension.
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16.4 Problems

Problem 16.4.1. Generalize Proposition 16.3.1 to show that any embedding Sr ↪→ Rk
extends to an embedding Dr+1 ↪→ Rk when 2(r + 1) < k.
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Orientations and integral intersection theory

The next part will be devoted defining de Rham cohomology, developing computational
tools for it, and drawing interesting topological conclusions from it. A prerequisite for
some of this material will be the notion of an orientation. We define this today, and give
a taste of Chapter 3 of [GP10], which we will not cover in detail in the course.

Convention 17.0.1. All vector spaces are finite-dimensional and over R unless mentioned
otherwise.

17.1 What is an orientation on a manifold?

We start with an intuitive description of orientations, before giving rigorous definitions:
an orientation of a manifold is “a smooth family of orientations of each of the
tangent spaces TpM .”

An orientation on a vector space such as TpM specifies for each of its ordered bases
whether it is “positively oriented” or “negatively oriented,” with the following requirement:
if one ordered basis can be obtained from another by applying an invertible matrix A
to each of its vectors, then they are similarly oriented if and only if det(A) > 0. Since
GLn(R) has two path components, this is equivalent to saying homotopic bases are
similarly oriented and reflecting a single basis vector changes the orientation of the basis.

That an orientation depends smoothly on p ∈M means that if you move a positively
oriented basis around M , it stays positive (and of course the same is true for negatively
oriented bases).
Example 17.1.1. For the circle S1, an orientation is a choice of “positive direction” along
the circle. There are two such choices: counterclockwise and clockwise.
Example 17.1.2. The real projective plane RP 2 admits no orientation. Suppose it did,
then starting with a basis e1, e2 at some point, say positively oriented, we can move
it around RP 2 and return to e1,−e2. This must simultaneously be positively oriented
(since moving a basis around shouldn’t change how it’s oriented) and negatively oriented
(since it is obtained from a positively oriented by reflecting a basis vector). This gives a
contradiction.

You can find more examples in the following table:

149
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� �

<

>

e1

e2

e1−e2

Figure 17.1 Moving a basis around RP 2 can return it with opposite orientation.

orientable not orientable
spheres Sn real projective spaces RP 2n (n ≥ 1)

surfaces of genus g ≥ 1 Klein bottle
Lie groups
Lens spaces

Poincaré homology sphere
Complex projective spaces

Quaternionic projective spaces
K3 surface

Whitehead manifold

Example 17.1.3. An LCD display is made from a nematic crystal, consisting of long
thin filaments. These prefer to be aligned the same way, so locally such a crystal has a
order parameter given by a direction in R3. This is an element of RP 2, a non-orientable
manifold. 1

Figure 17.2 An nematic crystal (from https://en.wikipedia.org/wiki/Liquid_crystal).

1See http://www.lassp.cornell.edu/sethna/pubPDF/OrderParameters.pdf.

https://en.wikipedia.org/wiki/Liquid_crystal
http://www.lassp.cornell.edu/sethna/pubPDF/OrderParameters.pdf
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17.2 A recollection of multilinear algebra

Linear algebra concerns not only the study of vector spaces and linear maps between
them, but also of multilinear maps with various properties. This is closely related to the
study of tensor products and variations thereof.

17.2.1 Tensor products

Definition 17.2.1. A bilinear map is a function b : V × V ′ →W which is linear in each
variable.

Definition 17.2.2. The tensor product V ⊗V ′ is the quotient of the free R-vector space
on the set V × V ′, whose basis elements we shall denote (v, v′), by the subspace spanned
by the elements

((v1 + v2), v′)− (v1, v
′)− (v2, v

′),

(v, (v′1 + v′2))− (v, v′1)− (v, v′2),

(av,w)− a(v, w),

(v, aw)− a(v, w).

We will denote the equivalence class of (v, w) by v ⊗ w.

Example 17.2.3. The tensor product Rk ⊗ Rl has a basis given by ei ⊗ e′j for 1 ≤ i ≤ k,
1 ≤ j ≤ l.

The relations are designed to make

b0 : V × V ′ −→ V ⊗ V ′

(v, v′) 7−→ v ⊗ v′

bilinear. It is in fact the initial bilinear map:

Lemma 17.2.4. For every bilinear map b : V × V ′ → W there is a unique linear map
β : V ⊗ V ′ →W such that b = β ◦ b0.

Proof. There is a unique linear map R[V × V ′]→W given by (v, v′) 7→ b(v, v′). Since b
is bilinear this factors over V ⊗ V ′, determining a linear map β : V ⊗ V ′ →W satisfying
b(v, v′) = β(v ⊗ v′) = β(b0(v, v′)). Since V ⊗ V ′ is generated by the elements b0(v, v′),
this determines β uniquely.

Remark 17.2.5. This universal property satisfied by the tensor product determines it
uniquely up to linear isomorphism.

There is a similar correspondence of multilinear maps V1 × · · · × Vk →W with linear
map V1 ⊗ · · · ⊗ Vk →W .
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Example 17.2.6. The universal property tells us what tensor product of a single or no
vector spaces is. A multilinear map V →W is just a linear map, so a tensor product of
a single vector space V is just V again.

The empty product of sets is a point, because such a product receives a unique map
from every other set. A multilinear map from an empty product is hence a map from a
point to V , with no condition imposed, so just an element of V . This is the same as a
linear map R→ V . Hence an empty tensor product is R itself.

17.2.2 Alternating multilinear maps

When all vector spaces Vi in the domain of a multilinear map are the same V , we
can require additional symmetry properties. Of specific interest to us are the alternating
multilinear maps, though the story for symmetric multilinear maps is similar:

Definition 17.2.7. An alternating multilinear map is a multilinear map w : V k → W
which satisfies w(vσ(1), . . . , vσ(k)) = (−1)ε(σ)w(v1, . . . , vk) for all v1, . . . , vk ∈ V and
permutations σ of {1, . . . , k}. Here ε(σ) ∈ Z/2 is the sign of the permutation.

Example 17.2.8. The sign of a permutation is uniquely determined by demanding it is a
homomorphism and it sends a transposition to the unique non-identity element of Z/2.

There is also an initial alternating multilinear map.

Definition 17.2.9. The kth exterior power ΛkV is the quotient of V ⊗k by the subspace
spanned by the elements

vσ(1) ⊗ · · · ⊗ vσ(k) − (−1)ε(σ)v1 ⊗ . . .⊗ vk with σ ∈ Σk.

We will denote the image of v1 ⊗ · · · ⊗ vk by v1 ∧ · · · ∧ vk.

Example 17.2.10. Λ2Rn has a basis ei ∧ ej for 1 ≤ i < j ≤ n. It is a well-known mistake
to think that every element of an exterior product is of the form v1 ∧ v2. This is not the
case, e.g. e1 ∧ e2 + e3 ∧ e4 can’t be written this way.
Example 17.2.11. Λ0V is the quotient of (V )⊗0 = R by the trivial subspace, so is equal
to R.

The subspace in Definition 17.2.9 is designed to make

w0 : V k −→ ΛkV
(v1, . . . , vk) 7−→ v1 ∧ · · · ∧ vk

alternating multilinear. This satisfies:

Lemma 17.2.12. For every alternating multilinear map w : V k →W there is a unique
linear map ω : ΛkV →W such that w = ω ◦ w0.

Remark 17.2.13. This universal property tells us that the map V ⊗k → ΛkV corresponding
to a natural assignment of an alternating multilinear map w(b) : V k → W to each
multilinear map b : V k →W . This is given by anti-symmetrizing:

w(b)(v1, . . . , vk) = 1
n!

∑
σ∈Σk

b(vσ(1), . . . , vσ(k)).
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The construction of ΛkV is natural in V : whenever we have a linear map A : V → V ′,
there is an alternating multilinear map

V ×k −→ Λk(V ′)
(v1, . . . , vk) 7−→ A(v1) ∧ · · · ∧A(vk),

which induces a unique linear map Λk(A) : Λk(V )→ Λk(V ′). This is explicitly given by

Λk(A)(v1 ∧ · · · ∧ vk) = A(v1) ∧ · · · ∧A(vk).

From this formula or the universal property one easily deduces the following:

Lemma 17.2.14.
· Λk(BA) = Λk(B)Λk(A),
· Λk(id) = id.

17.2.3 The top exterior power and orientations

Let us take a closer look at the case V = Rk. Then ΛkRk has a basis with a single
element e1 ∧ · · · ∧ ek, i.e. it is one-dimensional.
Example 17.2.15. For k = 2, R2 ⊗ R2 is spanned by e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1 and e2 ⊗ e2.
In Λ2(R2) some additional antisymmetry rules are imposed. These for example say
e1 ∧ e2 = −e2 ∧ e1. But they also say e1 ∧ e1 = −e1 ∧ e1 so e1 ∧ e1 = 0, and similarly
e2 ∧ e2 = 0. Thus Λ2(R2) is indeed 1-dimensional spanned by e1 ∧ e2.

Thus for each linear map A : Rk → Rk, the induced linear map Λk(A) : Λk(Rk) →
Λk(Rk) is given by multiplication with a number, which for now we denote d(A).
Example 17.2.16. For a matrix

A =
[
a b
c d

]
we can compute d(A) by determining which multiple of e1∧ e2 the element Λ2(A)(e1∧ e2)
is equal to. The latter is given by

A(e1) ∧A(e2) = (ae1 + ce2) ∧ (be1 + de2)
= abe1 ∧ e1 + ade1 ∧ e2 + cbe2 ∧ e1 + cde2 ∧ e2

= (ad− bc)e1 ∧ e2.

As the previous example shows, you are already familiar with the number d(A).

Lemma 17.2.17. d(A) = det(A).

Sketch of proof. There are two ways to prove this.
You could use that the determinant is uniquely determined a small number of

properties, namely that det(BA) = det(B) det(A) and its value on elementary matrices,
upper-diagonal matrices, and permutation matrices. Indeed, using elementary matrices
and permutation matrices you can row reduce all matrices to upper-diagonal ones.
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You then just need to verify that d(BA) = d(B)d(A), which follows from Λk(BA) =
Λk(B)Λk(A), and that d takes the same value as det on elementary matrices, upper-
diagonal matrices and permutation matrices.

Alternatively, you could just compute A(e1) ∧ · · · ∧ A(ek) directly. By linearity in
each entry and observing that those terms where a basis vector is repeated are 0, you get

A(e1) ∧ · · · ∧A(ek) =
∑
σ

(
k∏
i=1

Aiσ(i)

)
eσ(1) ∧ · · · ∧ eσ(k)

=
∑
σ

(
k∏
i=1

(−1)ε(σ)Aiσ(i)

)
e1 ∧ · · · ∧ ek

= det(A)e1 ∧ · · · ∧ ek.

An invertible matrix det(A) is a composition of rotations and an upper-diagonal
matrix with positive entries on the diagonal if and only if its determinant is positive. If
the determinant is negative, then it is a composition of such matrices with a reflection in
a hyperplane. If we think intuitively of an orientation has a notion of “handedness” (of
“chirality” if you want a fancier term), then rotations and upper-diagonal matrices with
positive entries on the diagonal should preserve this, but reflection should reverse this.
This makes the following definition reasonable:

Definition 17.2.18. An orientation of a finite-dimensional R-vector space V is a choice
of a non-zero element of Λdim(V )(V ) up to scaling by a positive real number.

This definition is set up so that an invertible linear map A preserves an orientation if
and only if det(A) > 0.

17.3 Orientations

17.3.1 Fiberwise constructions

We have already seen how natural constructions on vector spaces lead to natural
construction on vector bundles, by repeating this construction fiberwise:

vector spaces vector bundles
direct sum V ⊕ V ′ direct sum E ⊕ E′

quotient V/V ′ quotient E/E′
image im(A : V → V ′) image im(G : E → E′) (if rank constant)
kernel ker(A : V → V ′) kernel ker(G : E → E′) (if rank constant)

We proved that these constructions produce vector bundles by going to local trivial-
izations, and then observing that the corresponding constructions on general linear maps
are continuous or even smooth in the entries.

Let us repeat this with the top exterior power:



17.3 Orientations 155

Definition 17.3.1. Let p : E → X be a vector bundle of dimension k. Then its
top exterior power Λk(p) : Λk(E) → X is the vector bundle of dimension 1 given by⊔
x∈X Λk(Ex). We topologize this as follows: for every local trivializations ψ : p−1(U) =⊔
x∈U Ex → U × Rk we define declare that the local trivialization (Λk(p))−1(U) =⊔
x∈U Λk(Ex)→ U×Λk(Rk) given by taking (x, v) 7→ (x,Λk(ψx)(v)) is a homeomorphism.

The transition functions of Λk(E) are given by the determinant of the transition
functions of E. Thus Λk(E) will be a smooth vector bundle if E is a smooth vector
bundle.

Using this observation and similar ones for other exterior power or tensor products
we can extend our table as follows:

vector spaces vector bundles

top exterior power Λdim(V )(V ) top exterior power Λdim(E)(E)
tensor product V ⊗ V ′ tensor product E ⊗ E′
exterior power Λr(V ) exterior power Λr(E)

symmetric power Symr(V ) symmetric power Symr(E)
dual V ∗ dual E∗

17.3.2 Riemannian metrics

When thinking about smooth vector bundles it is sometimes helpful to have a
Riemannian metric around:

Definition 17.3.2. A Riemannian metric is a section g of (E ⊗ E)∗ such that on each
fiber gx : Ex ⊗ Ex → R is a positive definite symmetric bilinear form.

Lemma 17.3.3. Every smooth vector bundle p : E → X admits a Riemannian metric,
and this is unique up to homotopy.

Proof. For each local trivialization ψ : p−1(U)→ U ×Rk we can define on U the pullback
along ψ−1 of the standard Riemann metric: for v, v′ ∈ Ex,

(ψ−1)∗gstd(v, v′) := gstd(ψ−1
x (v), ψ−1

x (v′)).

Now take a partition of unity subordinate to an open cover of X by open subsets U
of a local trivialization; ηi : M → [0, 1] supported in Ui. Then we define

g :=
∑
i

ηi · (ψ−1
i )∗gstd.

This is positive define and symmetric since these properties are preserved by convex
linear combinations. For uniqueness, observe we can linearly interpolate between any
two Riemannian metric.

The main application of this is:
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Lemma 17.3.4. If E′ ⊂ E is a subbundle, then there is another subbundle E′′ ⊂ E such
that E′ ⊕ E′′ ∼= E. This subbundle E′′ is isomorphic to E/E′.

Proof. Equip E with a Riemannian metric. Then we can take E′′ = (E′)⊥, given by
fibers (E′)⊥x := (E′x)⊥. To get the second part, we observe that the map of vector bundles
E → (E′)⊥ given on fibers by orthogonal projection Ex → (E′)⊥x with kernel given by E′
and hence induces an isomorphism E/E′ → (E′)⊥.

17.3.3 Orientations of vector bundles

Recall that a map which picks a single element of each fiber is called a section:

Definition 17.3.5. A section of a smooth vector bundle p : E → X is a smooth map
s : X → E such that p ◦ s = idX .

Example 17.3.6. Every smooth vector bundle has a 0-section s0 : X → E picking out the
0 in each fiber.
Example 17.3.7. A smooth section of TM is also known as a smooth vector field.

When we have a section s : X → E of a smooth vector bundle and a smooth function
g : X → R, we can use fiberwise scalar multiplication to produce a new section g · s.

Definition 17.3.8. An orientation of a smooth vector bundle p : E → B is an everywhere
non-zero section s of Λdim(E)E, up to the equivalence relation of scalar multiplication by
an everywhere positive smooth function.

Thus, an orientation on E is smooth choice of non-zero elements of each Λdim(E)Ex
up to scaling, that is, a smooth choice of orientation of each of vector spaces Ex.
Example 17.3.9. Trivial vector bundles always admit an orientation.
Example 17.3.10. A much more interesting example is the Moebius strip, i.e. the tauto-
logical bundle over RP 1. We use the following straightforward observation: every section
s of a smooth vector bundle p : E → B is homotopic to the 0-section. Indeed, take
H : B × [0, 1]→ E given by

(p, t) 7−→ t · s(p).

Using this we prove that the tautological bundle γ over RP 1 (the one whose total space is
the Moebius strip) does not admit an orientation. Let us identify RP 1 with the 0-section.
If this bundle did admit an orientation, there would be an everywhere non-zero section s
and we would have I2(s,RP 1) = 0. But we also know that I2(s,RP 1) = I2(RP 1,RP 1),
and latter is 1 by exhibiting a particular section transverse to the 0-section. This gives a
contradiction.

A vector bundle E is said to be orientable if it admits an orientation.

Lemma 17.3.11. A vector bundle E is orientable if Λdim(E)E is isomorphic to a trivial
line bundle. Furthermore, an orientation is a trivialization of Λdim(E)E up to scalar
multiplication by a smooth positive function.
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Proof. Indeed, a representative s : X → Λdim(E)E of an orientation furnishes an isomor-
phism

X × R
∼=−→ Λdim(E)E

(b, t) 7−→ t · s(b).

Conversely, an isomorphism φ : Λdim(E) ∼= X × R gives an everywhere non-vanishing
section s : X → Λdim(E) by x 7→ φ−1(x, 1).

If E is orientable, how many orientations does it admit? Given an orientation
represented by s, any other orientation s′ differs by scalar multiplication of s with an
everywhere non-zero smooth function f . If we multiply f with an everywhere positive
smooth function we get the same s′, so the orientations are given by the set of everywhere
non-zero smooth functions up to multiplication by everywhere positive smooth function.
In other words, for each connected component of X we have to pick a choice of sign. We
conclude that:

Lemma 17.3.12. Let π0(X) denote the set of connected components of X, then if E is
orientable the set of orientations is (non-canonically) given by the set of functions

π0(B) −→ {±1}.

Given orientations for smooth vector bundles E,E′ over X, you can produce a
direct sum orientation on E ⊕ E′. The observation you need is that there is a natural
isomorphism

Λdim(E)E ⊗ Λdim(E′)E′
∼=−→ Λdim(E)+dim(E′)(E ⊕ E′)

(v1 ∧ · · · ∧ vdim(E))⊗ (v′1 ∧ · · · ∧ v′dim(E′)) 7−→ v1 ∧ · · · ∧ vdim(E) ∧ v′1 ∧ · · · ∧ v′dim(E′).

Thus trivializations of Λdim(E)E and Λdim(E′)E′ give a trivialization of Λdim(E)E ⊗
Λdim(E′)E′.

Conversely, if E = E′ ⊕ E′′ with E and E′ oriented, the trivializations of E and E′

give isomorphisms

B × R ∼= Λdim(E′)+dim(E′′)(E′ ⊕ E′′) ∼= Λdim(E′)E′ ⊗ Λdim(E′′)E′′ ∼= Λdim(E′′)E′′,

so an orientation of E′′.

17.3.4 Orientations of manifolds

If M is a k-dimensional manifold, then TM is a k-dimensional smooth vector bundle
M and hence ΛkTM is a 1-dimensional smooth vector bundle M , called the orientation
line bundle.

Definition 17.3.13. An orientation of M is an orientation of TM .

Remark 17.3.14. An orientation of M is equivalent to a choice of “oriented” atlas inside
its maximal atlas, where all transition functions are required to have total derivatives
with positive determinant.
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Let us give two examples of manifolds that are orientable and one which is not:
Example 17.3.15. If M = S1, the tangent bundle is isomorphic to a trivial bundle and since
Λdim(E)E = E for any 1-dimensional vector bundle so is its top exterior power. It hence
admits exactly two orientations. These correspond to the clockwise and counterclockwise
directions of the circle.
Example 17.3.16. If M = ∗, we have that Λ0TM = R, so the point admits exactly two
orientations. However, the one represented by 1 ∈ R should obviously be our preferred
choice.
Example 17.3.17. We claim that RP 2 admits no orientation. If it did then so would
TRP 2|RP 1 . This vector bundle is isomorphic to TRP 1 ⊕ NRP 1 ∼= R ⊕ γ, with γ the
canonical bundle over RP 1. This means its orientation line bundle is Λ2(R⊕ γ) ∼= γ and
we proved above that γ does not admit an everywhere non-vanishing section, i.e. is not
trivializable.

There are several constructions which produce new orientations on manifold form old
ones:
Example 17.3.18. Given a manifold M with orientation, we can produce another orien-
tation by multiplying a representative section s : M → ΛkTM with −1. This is called
reversing the orientation and we shall occasionally use the notion −M for this.
Example 17.3.19. If M and N are manifolds with orientations, then we get a direct sum
orientation on M ×N , as T(p,p′)(M ×N) ∼= TpM ⊕ Tp′N .

To phrase this in terms of vector bundles, we need a generalization of the restriction
of vector bundles: given any map f : X ′ → X we can pull back a vector bundle p : E → X
to X ′ by setting f∗E = ⊔

x′∈X Ef(x′). In the language of vector bundles we have
T (M ×N) ∼= π∗1TM ⊕ π∗2TN .
Example 17.3.20. If Z ⊂ N is a submanifold and both N and Z are oriented, then the
isomorphism TN |Z ∼= NZ ⊕ TZ shows that NZ also comes with an orientation.
Example 17.3.21. Suppose we have a smooth map f : M → N with M and N oriented,
and Z ⊂ M an oriented submanifold such that f t Z. Then f−1(Z) is a submanifold
and its tangent bundle satisfies f∗NZ ⊕ Tf−1(Z) ∼= TM |f−1(Z). Since both TM |f−1(Z)
and f∗NZ comes with orientations, we get an orientation of Tf−1(Z).

17.3.5 Induced orientation on the boundary

If M is a manifold with boundary ∂M , then its boundary ∂M inherits an orientation,
canonically so once we fix a single convention. To do so, it is convenient to pick a
Riemannian metric on M , that is, on TM . Then the restriction TM |∂M inherits a
Riemannian metric and thus splits as T∂M ⊕ (T∂M)⊥, the latter being a line bundle.

By Lemma 13.3.7, there exist a smooth function χ : M → [0,∞) such that χ−1(0) =
∂M and for each p ∈ ∂M , dpχ is non-vanishing on some vector v ∈ TpM \ Tp∂M . This
vector v decomposes as a sum of a vector v∂ ∈ Tp∂M and a vector v⊥ ∈ (Tp∂M)⊥. Since χ
is constant on ∂M , v∂ is zero so v⊥ is non-zero. Hence the restriction dpχ : (Tp∂M)⊥ → R
is non-zero.
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We call a vector v ∈ (Tp∂M)⊥ such that dpχ(v) < 0 outward pointing. Such a vector
is unique up to scaling by a positive real number. In particular, there is a canonical
section n of (TM |∂M )⊥ given at p ∈ ∂M by the unique element np of (Tp∂M)⊥ such
that dpχ(np) = 1.

Every vector v ∈ V provides a linear map v ∧− : Λk−1(V )→ Λk(V ). This generalizes
to a map of vector bundles

Λk−1(T∂M) −→ Λk(TM |∂M )
w 7−→ n ∧ w

of vector bundles, by thinking of Λk−1(T∂M) as a linear subspace of Λk−1(TM |∂M ) using
the inclusion of T∂M into TM |∂M .

Lemma 17.3.22. If an orientation of M is represented by the section s of ΛkTM , then
there is a unique orientation of M which is represented by a section s̄ of Λk−1T∂M
satisfying n ∧ s̄ = s.

Proof. For each p ∈ ∂M , fix a basis e1, . . . , ek−1 of Tp∂M . By adding np we get a basis
of TpM . Then s̄(p) is by definition c̄(p) · e1 ∧ · · · ∧ ek−1 for some c̄ ∈ R, and s(p) similarly
is c(p) · np ∧ e1 ∧ · · · ∧ ek−1 for some c(p) ∈ R. From the equation

np ∧ (c̄(p) · e1 ∧ · · · ∧ ek−1) = c(p) · np ∧ e1 ∧ · · · ∧ ek−1

we read off c̄(p) = c(p), so s̄ is uniquely determined by n and s.
Firstly s̄, up to multiplication by a positive smooth function, is independent of the

choice of representative s: if s changes by multiplying it with positive smooth function,
so does s̄.

Next, we have to verify the orientation is independent of the choice of Riemannian
metric g and smooth function χ. Modifying the latter just changes n by scalar multipli-
cation by a positive smooth function, and hence has the same effect on s̄. If we vary g,
then np gets replaced by n′p = anp +∑k−1

i=1 aiei with a > 0 so

n′p ∧ (c̄(p) · e1 ∧ · · · ∧ ek−1) = a · np ∧ (c̄(p) · e1 ∧ · · · ∧ ek−1),

and again s̄ just changes by scalar multiplication by a positive smooth function.

Definition 17.3.23. If M is oriented, we shall consider ∂M as oriented by the orientation
produced in the previous lemma. We refer to this as the induced orientation.

Example 17.3.24. There is a preferred choice of orientation on [0, 1], namely using
1 ∈ Λ1Tp[0, 1] ∼= Tp[0, 1] ∼= R. Then

∂[0, 1] ∼= {1} − {0},

where, for an oriented manifold N , −N denotes the same manifold with opposite
orientation.

More generally, if M is oriented without boundary, then

∂([0, 1]×M) = M × {1} −M × {0}.

However, if we do ∂(M × [0, 1]) we get (−1)dim(M)(M × {1} −M × {0}). This is an
unfortunate clash of our conventions for orientations and notation for homotopies.
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Example 17.3.25. Generalizing Example 17.3.21 to the case that M has boundary and
f t Z, ∂f t Z we get that ∂f−1(Z) = (∂f)−1(Z) comes with two orientations: one
as the boundary of an oriented manifold and one as the inverse image of an oriented
manifold. These are not equal but satisfy

∂f−1(Z) = (−1)codim(Z)(∂f)−1(Z).

17.4 Integral intersection theory

Chapter 3 of [GP10] upgrades the mod 2 intersection theory to an integral version.
The main input is the observation that

∂[0, 1] ∼= {1} − {0}

and the classification of compact 1-dimensional manifolds lead to the following result:

Proposition 17.4.1. If M is a compact oriented 1-dimensional manifold, then the
number of positively-oriented points in ∂M is equal to the number of negatively-oriented
points.

So we can define intersection numbers with values in Z instead of Z/2:

Definition 17.4.2. Suppose that Y is a compact oriented manifold without boundary,
M is an oriented manifold and Z ⊂M is an oriented submanifold such that dim(Y ) +
dim(Z) = dim(M).

Let f0 : Y →M be a smooth map. Then the intersection number I(f0, Z) is defined
as follows: take f1 homotopic to f0 and transverse to Z, and set

I(f0, Z) =
∑

p∈f−1
1 (Z)

orientation of p.

One proceeds as before, using Proposition 17.4.1 in place of the fact that the number
of points in the boundary of a compact 1-dimensional manifold is even, to prove that
I(f0, Z) is well-defined and establish its basic properties. You can then easily define
integral versions of the degree of a map and the winding numbers, and use these to great
effect.
Example 17.4.3. With these definitions in hand, the mod 2 linking numbers of Section
16.2 generalize to integer linking numbers.

17.5 Problems

Problem 17.5.1 (Codimension 1 submanifolds are orientable). Use the Jordan–Brouwer
separation theorem to prove that if M ⊂ Rk is a compact codimension 1 submanifold,
then it is orientable.

Problem 17.5.2. Define a degree deg(f) ∈ Z of a smooth map f : M → N between
compact oriented smooth manifolds of the same dimension, which reduces to deg2(f)
modulo 2.
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Problem 17.5.3. Use partitions of unity to prove that any vector v ∈ TpM is the value
at x of some smooth vector field X on M .

Problem 17.5.4 (The degree of multiplication).
(a) Suppose that f : M → N is a proper map between connected oriented smooth

manifolds of the same dimension. Give the definition of a degree deg(f) ∈ Z
which specializes to the usual one when M is compact.

(b) Indicate why deg(f) of part (a) is well-defined and invariant under homotopies
which are also proper maps. You do not need to give full proofs.

Let Pn be the space of monic polynomials of degree n with real coefficients. Through the
coefficients it may be identified with Rn, making it an n-dimensional smooth oriented
manifold. There is a multiplication map

µ : Pn × Pm −→ Pn+m

(p, q) 7−→ pq.

(c) Prove that µ is smooth and proper.
Thus µ has a well-defined degree as in part (a) and (b), which we will compute now when
n and m are even. Let Qn be the (n+ 1)-dimensional real vector space of all polynomials
of degree ≤ n with real coefficients.

(d) For p ∈ Pn, use the map Qn−1 → Pn given by u 7→ p+ u to identify the vector
space TpPn with Qn−1.

(e) With respect to these identifications, show that T(p,q)µ is given by

Qn−1 ×Qm−1 −→ Qn+m−1

(u, v) 7−→ uq + vp.

The determinant of the linear map of part (e) with respect to the standard bases given
by mononials is known as the resultant R(p, q). You may use without proof that it can
also be computed as R(p, q) = ∏

i,j(αi − βj) where αi runs over the complex roots of p
(with multiplicity) and βj over the complex roots of q (with multiplicity).

(f) Prove that the resultant is positive if the roots of p and q are all distinct and
non-real.

(g) Prove that r ∈ Pn+m is a regular value of µ if it is a product of pairwise distinct,
irreducible, quadratic monic polynomials.

(h) Show that the degree of µ when n = 2k and m = 2l, is given by the binomial
coefficient

(k+l
l

)
.

(i) Show that the degree of µ when n = 2k + 1 and m = 2l, is again given by the
binomial coefficient

(k+l
l

)
.

(j) Show that the degree of µ when n = 2k + 1 and m = 2l + 1, is zero. (Hint: is it
surjective?)
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Integration on manifolds

Today we define differential forms and one of their the raisons-d’etre: integration.
This is Section 4.§4 of [GP10], but you should also take a look at Sections 4.§1–3 if you
haven’t done so already.

18.1 Differential forms

We start with a discussion of differential forms, with a focus of forms of top degree.

18.1.1 The definition of differential forms

Every smooth manifold has a tangent bundle TM , which you are already familiar
with, and a cotangent bundle T ∗M . The fibers T ∗pM of the cotangent bundle, called
cotangent spaces, are the linear duals (TpM)∗ of the tangent spaces. If M has dimension
k, both are smooth vector bundles of dimension k.

Definition 18.1.1. A 1-form on M is a smooth section of T ∗M .

We can produce a 1-form from a smooth function f : M → R. Recall that the fibers
TmM of the tangent bundle are derivations on germs E(M,m) near m of smooth functions
M → R. In particular, these assign a number to each the germ f of f . We get an element
(df)m of (TmM)∗ by taking

df : TmM −→ R
X 7−→ X(f).

This produces an element of TmM for each m, hence a section. To see it is smooth we
use charts:

Example 18.1.2. If φ : Rk ⊃ U → V ⊂M is a chart around p ∈M , we get an isomorphism
of TpM with Tφ−1(p)Rk. The latter one thinks of as the R-vector space with basis
∂
∂x1

, . . . , ∂
∂xk

(this is just alternative notation for the standard basis vector e1, . . . , ek, but
now considered as elements of Tφ−1(p)Rk ∼= Rk). This in turn gives rise to a dual basis

162
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dx1, . . . , dxk of T ∗pM . Thus every 1-form α can be written in local coordinates as

α(x) =
k∑
i=1

ai(x)dxi.

We saw above that any smooth function f : M → R gives rise to a 1-form df . In terms of
the above coordinates this is given by

T ∗pM 3 (df)p :=
k∑
i=1

∂f

∂xi
(p)dxi.

To see this, observe that (df)p by construction evaluates on ∂
∂xi

to ∂f
∂xi

(p).
Example 18.1.3. The 1-form −ydx+ xdy on R2 restricts to a 1-form on S1 ⊂ R2 which is
nowhere-vanishing.

We extended the notion of a 1-form to a p-form as follows:

Definition 18.1.4. A p-form is a smooth section of ΛpT ∗M .

Example 18.1.5. As Λ0T ∗M = R, a smooth 0-form is a smooth function. As Λ1T ∗M =
T ∗M , this recovers the definition of a smooth 1-form given above.

Since the value at p ∈ M of a smooth section of a smooth vector bundle E lie in
R-vector spaces Ep, so we can define addition of smooth sections by pointwise addition.
Similarly, we can scale a smooth section with any smooth real-valued function. The result
is either operation is again smooth section, making the set Γ(M,E) into a C∞(M ;R)-
module. Since C∞(M ;R) contains R as the constant functions, Γ(M,E) is in particular
an R-vector space.

Definition 18.1.6. Ωp(M) is the R-vector space Γ(M,ΛpT ∗M) of p-forms.

Definition 18.1.7. Ω∗(M) is the graded R-vector space of differential forms on M , given
by putting the p-forms Ωp(M) in degree p. When the degree plays no role, we refer to a
p-form as a differential form of degree p.

Recalling that M is k-dimensional, we see that ΛpT ∗M = 0 if p > k, and hence there
are no non-zero differential forms of degree larger than the dimension of M . In this
lecture our main interest is the case p = k. Then ΛkT ∗M is one-dimensional, and we
shall refer to the k-forms as top forms.
Example 18.1.8. A chart φ : Rk ⊃ U → V ⊂M induces a local trivialization of TM . In
turn, this gives a local trivializations of T ∗M and hence of ΛpT ∗M . For this we see that
each p-form ω ∈ Ωp(V ) can be written in local coordinates as

ω(x) =
∑
I

aI(x)dxI

where for each index set I = 1 ≤ i1 < . . . < ip ≤ k, we write

dxI := dxi1 ∧ · · · ∧ dxip ,
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and aI : U → R is a some smooth function.
In particular, every top form can be written in local coordinates as

ω(x) = a(x)dx1 ∧ · · · ∧ dxk

for a smooth function a : U → R.
Example 18.1.9. Recall that an orientation was an everywhere non-vanishing section of
ΛkTM , up to scaling by everywhere positive function. Recall that a Riemannian metric
is a smooth family of non-degenerate bilinear forms on TM , and always exists. Such a
Riemannian metric gives an isomorphism of TM and T ∗M by sending a vector v ∈ TpM
to the linear functional w 7→ 〈w, v〉 in T ∗pM . This isomorphism induces an isomorphism
between the line bundles ΛkTM and ΛkT ∗M , and hence an orientation is also the same
as an everywhere non-vanishing top form up to scaling.

18.1.2 The wedge product

We defined a wedge product

∧ : Ωp(M)⊗ Ωq(M)→ Ωp+q(M),

induced by the corresponding wedge product on the exterior powers of the fiber. This
has the following property:

Theorem 18.1.10. The wedge product makes Ω∗(M) into a graded-commutative R-
algebra. That is, the wedge product has the following properties:

(1) It is unital with unit given by the function that is constant 1.
(2) It is bilinear.
(3) It is associative.
(4) If ω has degree p and ρ has degree q, then ω ∧ ρ has degree p+ q and

ω ∧ ρ = (−1)pqρ ∧ ω

Remark 18.1.11. Observe that Ω0(M) = C∞(M ;R), and the wedge product Ω0(M)⊗
Ωp(M) → Ωp(M) is equal to the multiplication of the C∞(M ;R)-module structure.
Hence we can replace linearity by C∞(M ;R)-linearity.

We can use the wedge products to produce many top forms, e.g. by wedging together
k 1-forms as below:
Example 18.1.12. Given k smooth functions f1, . . . , fk : Rk → R, we can produce a top
form

df1 ∧ · · · ∧ dfk,

whose value in local coordinates is given by

(df1 ∧ · · · ∧ dfk)p = det
(
∂fj
∂xi

)
dx1 ∧ · · · ∧ dxk.

If you don’t see how to do this computation, please ask about it in office hours or sections.



18.1 Differential forms 165

18.1.3 Pullback of differential forms

One of the advantages of differential forms is that we can pull them back along any
smooth map, unlike vector fields, which can only be pushed forward along a diffeomor-
phism:

Theorem 18.1.13. Each smooth map f : M → N induces a map f∗ : Ω∗(N)→ Ω∗(M)
of graded-commutative R-algebras by applying to p-forms the map Λp(dpf)∗ in each fiber.
Pullback has the following properties:

(1) On functions (that is, 0-forms), f∗ is given by precomposition, f∗g = g ◦ f .
(2) (g ◦ f)∗ = f∗ ◦ g∗ and (id)∗ = id.
(3) It commutes with wedge products:

f∗(ω ∧ ρ) = f∗(ω) ∧ f∗(ρ).

(4) It commutes with taking derivatives of functions:

f∗dg = d(f∗g).

Example 18.1.14. Let’s compute some pullback in local coordinates. Suppose f : Rk ⊃
U → V ⊂ Rk′ is a smooth map and recall that dx′i ∈ Ω1(V ) is the dual to the vector field
∂
∂x′i

that is constant equal to e′i. Then

f∗dx′i = df∗x′i′ = dfi′
k∑
i=1

∂fi′

∂xi
dxi,

with fi′ the i′th component of f .
A similar formula exists for p-forms, but we will focus on the case of top forms.

Suppose a p-form ω ∈ Ωp(V ) is given by

ω(x′) = a(x′)dx′1 ∧ · · · ∧ dx′k′ .

Since pullback commutes with wedge product, its pullback f∗ω ∈ Ωp(V ′) must given by

f∗ω(x) = a(f(x))f∗(dx′1 ∧ · · · ∧ dx′k′)
= a(f(x))f∗(dx′1) ∧ · · · ∧ f∗(dx′k′)

and above we saw how to compute each term f∗(dx′i′) in terms of the partial derivatives
of fi′ .

Given a submanifold X ⊂ M with inclusion denoted i : X ↪→ M , we can restrict a
p-form ω ∈ Ωp(M) to X:

Ω∗(M) 3 ω 7−→ i∗ω ∈ Ωp(X).

If X is p-dimensional, this gives a top form on X.
Example 18.1.15. The restriction to S1 ⊂ R2 of the 1-form ω = xdx+ ydy is identically 0.
This is because that ω is dg with g : R2 → R given by 1

2(x2 + y2). Hence i∗ω = i∗dg =
d(i∗g) and since i∗g constant equal to 1 its derivative vanishes.
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18.2 Integration of differential forms

Our next goal is the integration of k-forms over k-dimensional manifolds. This theory
of integration has a number of features which may differ from what you are used to:

(I) It is only defined for oriented manifolds.
(II) Over a k-dimensional oriented manifold, you can only integrate top forms (so

only k-forms, not functions).
(III) We will only define integration of compactly-supported top forms.

18.2.1 Integration on Rk

First suppose that
ω = a(x) dx1 ∧ · · · ∧ dxk,

is a top form on an open subset U ⊂ Rk. Then, as the notation suggests, we shall define∫
U
ω =

∫
U
a(x) dx1 ∧ · · · ∧ dxk :=

∫
U
a(x) dx1 · · · dxk,

and to guarantee that the integral exist we assume a has compact support in U . This is
not really necessary as some integrals of functions without compact support do converge,
but it is the only case we shall use. For smooth compactly-supported functions both the
Riemann and Lebesgue integral exist and are equal, so we don’t need to worry about the
technical details too much.
Example 18.2.1. The order of the entries of dx1 ∧ · · · ∧ dxk is important: if U = int(D2)
and ω = dy ∧ dx, then (ignoring the compact support requirement)∫

U
ω =

∫
int(D2)

dy ∧ dx = −
∫

int(D2)
dx ∧ dy = −π.

How does the integral of a top form transform under a change of coordinates? That
is, suppose we have a diffeomorphism ψ : U ′ → U . Then on the one hand, we have by
definition of the integral that∫

U ′
ψ∗ω =

∫
U ′
ψ∗a(x′)ψ∗dx1 ∧ · · · ∧ ψ∗dxk

=
∫
U ′

(a ◦ ψ)(x′) dψ1 ∧ · · · ∧ dψk

=
∫
U ′

(a ◦ ψ)(x′) det
(
∂ψj
∂x′i

)
dx′1 ∧ · · · ∧ dx′k,

and recognizing the matrix that we are taking the determinant of as the total derivative
of ψ, we get ∫

U ′
ψ∗ω =

∫
U ′

(a ◦ ψ)(x′) det(Dx′ψ) dx′1 · · · dx′k. (18.1)

On the other hand, the change-of-variables formula from multivariable calculus
[DK04b, Theorem 6.6.1] says:
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Theorem 18.2.2. With notation as above,∫
U
a(x)dx1 · · · dxk =

∫
U ′

(a ◦ ψ)(x′) |det(Dx′ψ)| dx′1 · · · dx′k. (18.2)

Remark 18.2.3. To see that the absolute values signs belong in this formula, observe that
in the integral you use the values of a and the volumes of blocks, without a sign.

That is, (18.1) and (18.2) could differ by a sign (or even worse if U has many
components) and to avoid this, we have to understand when the sign of det(Dx′ψ) is
positive. This determinant also appears as the multiple of e1 ∧ · · · ∧ ek one obtains when
applying

Λk(Dx′ψ) : ΛkTx′U ′ ∼= R · (e1 ∧ · · · ∧ ek) −→ ΛkTxU ∼= R · (e1 ∧ · · · ∧ ek)

to e1 ∧ · · · ∧ ek. We said that ψ preserves orientation if this multiple is positive. That is,
we conclude the following:

Corollary 18.2.4. If ω ∈ Ωk(U) is a compactly-supported top form and ψ : Rk ⊃ U ′ →
U ⊂ Rk is an orientation-preserving diffeomorphism, then∫

U ′
ψ∗ω =

∫
U
ω.

18.2.2 Integration on manifolds

We shall define the integral of a compactly-supported top form ω over an oriented
manifold M in several steps.

Theorem 18.2.5. There is a unique construction of an integral of top forms on oriented
k-dimensional manifolds with the following properties:

(1) If the manifold has an orientation-preserving diffeomorphism to an open subset
of Rk, it is the integral defined above (note that this is independent of the choice
of such diffeomorphism by Corollary 18.2.4).

(2) If ω is supported in U ⊂M then
∫
M ω =

∫
U ω.

(3) It is linear.

Proof. Desiderata (1) and (2) imply that if ω happens to be supported in the image of
an orientation-preserving chart φ : Rk ⊃ U → V ⊂M (using the standard orientation on
Uα inherited from Rk), we must define∫

V
ω :=

∫
U
φ∗ω.

If M is oriented, we can find an open cover of M by charts φα : Rk ⊃ Uα → Vα ⊂M
so that all transition functions are orientation-preserving. Now pick a partition of unity
ηα subordinate to the Vα, and observe that ω = ∑

α ηαωα which is a finite sum because
the support of ω is compact. Thus desideratum (3) forces us to define∫

M
ω :=

∑
α

∫
Vα
ηαωα,
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which makes sense because it is a finite sum.
We need to verify that this is independent of the choice of open cover and partition

of unity. Take a second collection of charts φ′β : Rk ⊃ U ′β → V ′β ⊂M and a subordinate
partition of unity ρ′β. Using the fact that ∑β ρ

′
β = 1 and the sums are finite so may be

interchanged, we get ∑
α

∫
Vα
ηαω =

∑
α

∫
Vα
ηα(
∑
β

ρ′βω)

=
∑
α

∑
β

∫
Vα∩V ′β

ηαρ
′
βω,

and by symmetry this is also ∑β

∫
V ′
β
ρ′βω.

Example 18.2.6. If −M denotes M with opposite orientation, then
∫
−M ω = −

∫
M ω.

Example 18.2.7. If ω is a p-form for p < k, we can’t integrate it over the k-dimensional
manifold M . However, we can integrate it over an oriented submanifold X ⊂ M of
dimension p: ∫

X
ω :=

∫
X
i∗ω

with i : X ↪→M the inclusion.
Remark 18.2.8. From the construction in Theorem 18.2.5, we see that if you have a
preferred collection of {(Ui, Vi, φ)} of M such that ⋃i Vi = M , you can use only these
charts in your construction of the integral.

Using this definition, Corollary 18.2.4 generalizes to manifolds:

Corollary 18.2.9. If f : M → N is an orientation-preserving diffeomorphism and
ω ∈ Ωk(N) is a compactly-supported top form, then∫

M
f∗ω =

∫
N
ω.

This definition of the integral is useful for proving theorems, but hard to use in practical
computations. In practice one does the following. We start with two observations: the
above construction goes through for Riemann-integrable forms, not just smooth ones,
and for manifolds with boundary (or even corners).

Now suppose one has a finite collection of orientation-preserving embeddings ϕi : Rk ⊃
Ni →M of submanifolds with boundary (or even corners), which only intersect at their
boundary. Then we can decompose a smooth ω as a finite sum of Riemann-integrable
forms ∑i 1ϕi(Ni)ω with 1ϕi(Ni) the indicator function of ϕi(Ni), and evaluate the integral
as ∫

M
ω =

∑
i

∫
ϕi(Ni)

1ϕi(Ni)ω =
∑
i

∫
Ni

ϕ∗iω.

Example 18.2.10. This tells you that to compute the integral of a 2-form over S2, you
decompose S2 into the two hemisphere, parametrize these by a disk, and you take the
sum of the values of the integral of the pullback of the 2-form to both disks. In other
words, it’s what you have been doing in multivariable calculus all along.
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The exterior derivative and Stokes’ theorem

Stokes theorem is a generalization of the formula∫ 1

0

∂f

∂x
dx = f(1)− f(0).

To state it, we first need to generalize the derivative to a function to differential forms;
the exterior derivative. The proof of Stokes’ theorem will then follow from an easily
proven version in charts. This material can be found in Sections 4.§5 and 4.§7 of [GP10].

19.1 The exterior derivative

As for the integral, we shall first define the exterior derivative on open subsets of Rk
and then extend it to arbitrary smooth manifolds using charts.

Suppose we are given a p-form on an open subset U ⊂ Rk,

ω =
∑
I

aIdxI ,

the sum ranging over all 1 ≤ i1 < . . . < ip ≤ k and dxI := dxi1 ∧ · · · ∧ dxip . Then the
exterior derivative is given by taking the ith partial derivative of each of the coefficients
and wedging with dxi:

dω =
∑
i

∑
I

∂aI
∂xi

dxi ∧ dxI .

Some of the terms in this sum vanish, when i is among the indexing set I. More
generally, signs appears when shuffling dxi into its standard position.

Example 19.1.1. If f : R3 ⊃ U → R is a smooth function, i.e. a 0-form, then its exterior
derivative is

df = ∂f

∂x1
dx1 + ∂f

∂x2
dx2 + ∂f

∂x3
dx3.

This coincides with the definition we used before. This is related to the gradient of the
function f .

169
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Example 19.1.2. If we have a 1-form on U ⊂ R3,

α = a1dx1 + a2dx2 + a3dx3,

then its exterior derivative is

dα =
(
∂a1
∂x1

dx1 + ∂a1
∂x2

dx2 + ∂a1
∂x3

dx3

)
∧ dx1

+
(
∂a2
∂x1

dx1 + ∂a2
∂x2

dx2 + ∂a2
∂x3

dx3

)
∧ dx2

+
(
∂a3
∂x1

dx1 + ∂a3
∂x2

dx2 + ∂a3
∂x3

dx3

)
∧ dx3

=
(
∂a2
∂x1
− ∂a1
∂x2

)
dx1 ∧ dx2 +

(
∂a3
∂x1
− ∂a1
∂x3

)
dx1 ∧ dx3 +

(
∂a3
∂x2
− ∂a2
∂x3

)
dx2 ∧ dx3.

This is related to the curl of the vector field with components (a1, a2, a3).

Example 19.1.3. If we have a 2-form on U ⊂ R3,

ω = a1dx2 ∧ dx3 − a2dx1 ∧ dx3 + a3dx1 ∧ dx2,

then its exterior derivative is

dω =
(
∂a1
∂x1

+ ∂a2
∂x2

+ ∂a3
∂x3

)
dx1 ∧ dx2 ∧ dx3.

This is related to the divergence of the vector field with components (a1, a2, a3).

The exterior derivative has the following properties, and the following also serves as
a definition:

Theorem 19.1.4. The exterior derivative is the unique operation Ω∗(U) → Ω∗+1(U)
with the following properties:

(i) For smooth functions f ∈ Ω0(U), df = ∑k
i=1

∂f
∂xi
dxi.

(ii) It is linear, d(ω + ν) = dω + dν.

(iii) It is a derivation for the wedge product, for a p-form ω and a q-form ν, d(ω ∧ ν) =
d(ω) ∧ ν + (−1)pω ∧ d(ν).

(iv) It is a differential, d(dω) = 0.

Proof. We first verify that the exterior derivative satisfies the above properties. Property
(i) is true by definition, and property (ii) follows from the fact that partial derivatives are
linear. Properties (iii) and (iv) are slightly harder; the former is essentially the product
rule and the latter the fact that partial derivatives commute.

By linearity of d and the fact that ∧ distributes over finite sums, it suffices to prove
(iii) in the case that ω = aIdxI and ν = bJdxJ . Then ω ∧ ν = aIbJdxI ∧ dxJ and we
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have that

d(ω ∧ ν) =
k∑
i=1

∂aIbJ
∂dxi

dxi ∧ dxI ∧ dxJ

=
k∑
i=1

(
∂aI
∂dxi

bJdxi ∧ dxI ∧ dxJ + aI
∂bJ
∂dxi

dxi ∧ dxI ∧ dxJ
)

=
(

k∑
i=1

∂aI
∂dxi

dxi ∧ dxI

)
∧ (bJdxJ) + (−1)pqaIdxI ∧

(
k∑
i=1

∂bJ
∂dxi

dxi ∧ dxJ

)
= d(ω) ∧ ν + (−1)pω ∧ d(ν).

Similarly, it suffices to prove (iv) in the case that ω = aIdxI . Since d(dxi) = 0 (we
are only taking partial derivatives of constant functions), we can use (iii) twice to write

d(d(aIdxI)) = d(daI) ∧ dxI ,

and hence it suffices to show that d(d(aI)) = 0. But we have

d(d(aI)) =
k∑
i=1

k∑
j=1

∂2aI
∂xi∂xj

dxi ∧ dxj =
∑

1≤i<j≤k

∂2aI
∂xi∂xj

(dxi ∧ dxj + dxj ∧ dxi) = 0.

Here we have first used that partial derivatives of smooth functions commmute, and that
dxi ∧ dxi = 0 and dxi ∧ dxj + dxj ∧ dxi = dxi ∧ dxj − dxi ∧ dxj = 0.

The next goal is to prove uniqueness. Suppose that D : Ω∗(U)→ Ω∗+1(U) satisfies
the same property, then we must show that d = D. But if we try to prove d and D
coincide on a general p-form

ω =
∑
I

aIdxI ,

then by (ii) it suffices to prove they coincide on aIdxI . By (iii) it then suffices to
prove they coincide on aI and each dxi. By (i), they indeed coincide on aI . For dxi,
observe that dxi = d(xi) which equals D(xi) by (i), so that by (iv) d(dxi) = 0 and
D(dxi) = D(D(xi)) = 0.

The exterior derivative commutes with pullback:

Proposition 19.1.5. If g : U ′ → U is a smooth map between open subsets of Euclidean
spaces, then g∗d = dg∗.

When g is a diffeomorphism, there is an elegant proof by observing that (g−1)∗dg∗
has the same properties as d, so by uniqueness of the exterior derivative has to be equal
to it.

Proof. Recall that g∗ has the following properties: (i’) g∗df = d(f ◦ g), (ii’) it is linear,
(iii’) it commutes with wedge product. These formal properties imply the proposition as
follows: to prove that g∗d and dg∗ coincide on a general p-form

ω =
∑
I

aIdxI ,
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by (ii) and (ii’) it suffices to prove they coincide on each aIdxI . Then by (iii) and (iii’) it
suffices to prove they coincide on aI and each dxI . Property (i’) says they coincide on
aI . For dxi, we observe that g∗d(dxi) = g∗0 = 0 and to prove that the other side also
vanishes we write g∗dxi = g∗d(xi) = dg so dg∗dxi = d2g = 0.

Since d in particular commutes with pullback along a diffeomorphism, we can extend
to smooth manifolds of dimension k using charts. For ω ∈ Ωp(M), dω is defined near
a point in M by picking a chart φ : Rk ⊃ U → V ⊂ M and taking (φ−1)∗dφ∗ω. The
previously established properties all generalize to manifolds, as they can be verified in a
chart. This theorem serves as the definition of the exterior derivative.

Theorem 19.1.6. There is an operation d : Ω∗(−)→ Ω∗+1(−) on differential forms on
manifolds uniquely determined by the following properties:

(i) On smooth functions, i.e. 0-forms, it is the ordinary derivative.
(ii) It is linear.

(iii) It is a derivation for the wedge product.
(iv) It is a differential, d2 = 0.
(v) It commutes with pullbacks along smooth maps.

We also add one useful observation from the point of view of integration: if ω is
compactly-supported so is dω. Letting Ω∗c(−) denote the compactly-supported forms, we
can restrict d to an operation Ω∗c(−)→ Ω∗+1

c (−). Note that the pullback of a compactly-
supported form is not in general compactly-supported; this requires the map to the
proper as supp(g∗ω) ⊂ g−1(supp(ω)) and properness is exactly the condition that the
inverse image of a compact subset is compact.

19.2 Stokes’ theorem

Recall that last lecture we defined the integral of a compactly-supported top form
over an oriented manifold, using partitions of unity.

Theorem 19.2.1 (Stokes). Let ω ∈ Ωk−1
c (M) be a compactly-supported (k − 1)-form on

an oriented smooth manifold M of dimension k with boundary ∂M , then∫
M
dω =

∫
∂M

ω.

In this theorem, we need ∂M to be oriented as well and to get this equation to hold,
we use the conventions of Section 17.3.5 for the induced orientations on the boundary
(“outward-pointing first”).
Example 19.2.2. Let M = [0, 1] with its standard orientation. Then ∂[0, 1] = {0, 1},
where 1 has positive orientation and 0 has negative orientation. In this case Stokes
concerns 0-forms, i.e. functions, and says∫ 1

0

∂f

∂x
dx =

∫
[0,1]

df =
∫
∂[0,1]

f = f(1)− f(0),

a formula that should be quite familiar.
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In fact, our proof will use the above result as input, a basic result in single-variable
calculus. We also use Fubini’s theorem on successive integration, e.g. [DK04b, Theorem
6.4.5].

Proof. Pick an open cover of M by the codomains Vα of a collection charts φα : [0,∞)×
Rk−1 ⊃ Uα → Vα ⊂M . Also pick a subordinate partition of unity ηα : M → [0, 1]. Then
ω = ∑

α ηαω, and this sum is finite because supp(ω) is compact. Since both
∫
M and d

are linear, we may thus assume that ω is supported in Vα. Then so is dω and we have∫
M
dω =

∫
Uα
φ∗αdω and

∫
∂M

ω =
∫
∂Uα

φ∗αω.

Since φ∗α commutes with d, we might as well replace φ∗αω by ω to simplify notation
and extend this by 0 to a compactly-supported (k − 1)-form on [0,∞)× Rk−1. We have
thus reduced our task to proving Stokes theorem in the special case M = [0,∞)× Rk−1.

Since both
∫

[0,∞)×Rk−1 dω and
∫
{0}×Rk−1 ω are linear in ω, it suffices to prove this for

ω = adxI with I = 1 < . . . < î < . . . < k. Then dω = (−1)i−1 ∂a
∂xi
dx1 ∧ · · · ∧ dxk. There

are two cases: (i) i = 1, (ii) i > 1.
Let’s start with the latter. Then ω restricts to 0 on ∂M (as it contains a dx1) so we

should get 0. Pick N sufficiently large so that supp(aI) ⊂ [0, N ]× [−N,N ]k−1, then∫
[0,∞)×Rk−1

dω =
∫

[0,N ]×[−N,N ]k−1
(−1)i−1 ∂a

∂xi
dx1 ∧ · · · ∧ dxk

=
∫

[0,N ]×[−N,N ]k−2

(∫
[−N,N ]

∂a

∂xi
dxi

)
dxI

=
∫

[0,N ]×[−N,N ]k−2
(a(x1, . . . , N, . . . , xk)− a(x1, . . . ,−N, . . . , xk)) dxI

= 0 =
∫
{0}×Rk−1

ω.

Here we have used Fubini’s theorem, the fundamental theorem of analysis and that a is sup-
ported in [0, N ]×[−N,N ]k−1 so that both a(x1, . . . , N, . . . , xk) and a(x1, . . . ,−N, . . . , xk)
are 0.

The former case is similar, but has a different outcome. Pick N as before, then∫
[0,∞)×Rk−1

dω =
∫

[0,N ]×[−N,N ]k−1

∂a

∂x1
dx1 ∧ · · · ∧ dxk

=
∫

[−N,N ]k−1

(∫
[0,N ]

∂a

∂x1
dx1

)
dxI

=
∫

[−N,N ]k−1
(a(N, x2, . . . , xk)− a(0, x2 . . . , xk)) dxI

= −
∫

[−N,N ]k−1
a(0, x2, . . . , xk)dx2 ∧ · · · ∧ dxk

=
∫
{0}×Rk−1

ω.
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Here we have used the same tools as before, as well as a(N, x2, . . . , xk) = 0. Our
convention on the orientation of the boundary was chosen exactly so that the signs
cancel in the last step: in the “outward-pointing first convention”, a basis (v2, . . . , vk) of
Tx({0} × Rk−1) is positively oriented if (−e1, v2, . . . , vk) is, that is (−e1) ∧ v2 ∧ · · · ∧ vk
equals e1∧· · · ek up to scaling by a positive real number. Hence the induced orientation on
{0}×Rk−1 as a boundary of the upper half-plane is opposite to the usual orientation.

We now give a number of applications.

19.2.1 Integrating pullbacks

Suppose that W is a oriented smooth manifold with boundary ∂W and f : W →M
is a smooth map. Then if ω is a closed p-form, we get that∫

W
df∗ω =

∫
W
f∗(dω) = 0,

but applying Stokes’ formula we also get∫
W
df∗ω =

∫
∂W

f∗ω.

In particular, if ∂W comes divided into a disjoint union ∂inW t ∂outW we may
artificially reverse the orientation on ∂inW (so it’s “inward pointing first”) and get the
formula ∫

∂outW
f∗ω −

∫
∂inW

f∗ω = 0.

We will use the following consequence in the next lecture:

Corollary 19.2.3. If f0 and f1 are homotopic smooth maps X →M , then∫
X
f∗1ω =

∫
X
f∗0ω

for all closed p-forms ω.

Proof. Suppose W = X × [0, 1], ∂inW = X × {0}, ∂outW = X × {1}. Then we can
think of f : X × [0, 1] → M as a homotopy from f0 := f |X×{0} to f1 := f |X×{1}. The
orientation on X × {0} and X × {1} are now equal (instead of opposite, if we had taken
the usual convention) and we get the equation∫

X
f∗1ω =

∫
∂outW

f∗ω =
∫
∂inW

f∗ω =
∫
X
f∗0ω.

Thus the integral of the pullback along f of a closed form only depend on the homotopy
class of f .
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19.3 Classical integral theorems

We now explain how the multivariable calculus theorems you have learned are special
cases of Stokes’ theorem. This is significantly harder than one might expect, because the
classical version is harder to state precisely. In particular, we have to make precise the
notions of “line element,” “surface element,” and “volume element.”

That is, we need to explain how to integrate continuous functions f : X → R over a
smooth submanifold X of Euclidean space. We will do following [DK04b, Chapter 7]. As
for integrals of differential forms, we can not just integrate in charts due to the Jacobian
term in the change-of-variables formula. To correct for this, we need a density:

Definition 19.3.1. A density for a manifoldM is an assignment to each chart (Uα, Vα, φα)
of M a continuous function ρα : Uα → R such that

ρα(x) = ρβ(φαβ(x))| detDxψαβ|.

We then define an integral of a continuous function f : M → R analogously to
Theorem 18.2.5. We pick a partition of unity ηα : M → R with respect of the codomains
Vα of charts, and set∫

M
fdρ :=

∑
α

∫
Uα
ηα(φα(x))f(φα(x))ρα(x)dx1 · · · dxk.

Definition 19.3.1 gives, by the same argument as in proof of that theorem, that this is
well-defined (i.e. independent of ηα).

If X ⊂ Rk is a r-dimensional smooth submanifold, then there is a canonical choice of
density, the Euclidean density: in this case we can make sense of the total derivative of
Dxφα as a (k × r)-matrix, and set

ρeucl
α (x) :=

√
det((Dxφα)t(Dxφα)).

See [DK04b, Theorem 7.3.1] for a proof that this is a density.
The integrals of functions using “line elements,” “surface elements,” or “volume

elements” are exactly those with respect to the Euclidean density. We will now identify
integrals of differential forms as integrals of certain functions with respect to the Euclidean
density.

Lemma 19.3.2. Suppose that M is a compact codimension 0 submanifold of Rk with
boundary ∂M , and ω ∈ Ωk(M). Define a smooth function f : M → R by ν(x) =
f(x)dx1 ∧ · · · ∧ dxk. We have ∫

M
ω =

∫
M
fdρeucl.

Proof. For charts given by open subsets U of M with inclusion U ↪→ M , we have√
det((Dxφα)t(Dxφα)) = 1. When we use only these charts in the definition of

∫
M fω in

Theorem 18.2.5 we get∫
M
fdρeucl :=

∑
α

∫
Uα
ηα(x)f(x)dx1 · · · dxk.

The same formula falls out of Section 18.2, using the above charts as in Remark 18.2.8.
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Lemma 19.3.3. Suppose that M is a compact codimension 0 submanifold of Rk with
boundary ∂M , and ω ∈ Ωk−1(M). Define a smooth vector field

~V (x) =

a1(x)
...

ak(x)


ω(x) = ∑k

i=1(−1)i+1aidx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk. We have∫
∂M

ω =
∫
∂M

~V · ~ndρeucl

where ~n is the outward pointing unit normal vector field to ∂M .

Example 19.3.4 (Divergence theorem). Let ω = a(x)dx2 ∧ dx3 − bdx1 ∧ dx3 + cdx1 ∧ dx2
be a 2-form on R3 and M ⊂ R3 a codimension 0 submanifold with boundary ∂M with
induced orientation from the standard orientation on R3. Then Stokes’ theorem says that∫

M
dω =

∫
∂M

ω.

Using the above two lemma’s, we get∫
M

div(~V )dρeucl =
∫
∂M

~V · ~ndρeucl,

the classical statement of Gauss’ divergence theorem [DK04b, Theorem 7.8.5].
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De Rham cohomology

Today we introduce de Rham cohomology, a construction which we will study for
the next couple of lectures and is one of the basic constructions of algebraic topology. It
appears in Section 4.§6 of [GP10], but I also recommend you take a look at the beginning
of [BT82].

20.1 De Rham cohomology

20.1.1 Motivation from integration

Recall that Stokes’ theorem says that for oriented k-dimensional differentiable mani-
folds M and compactly-supported (k − 1)-forms ω on M , we have

∫
M
dω =

∫
∂M

ω.

Thus if M has no boundary,
∫
M dω = 0 for any ω. This means that when computing∫

M ω, its values only depend on ω up to addition by dν. That is, the possible values
that can be obtained when integrating a k-form over a k-dimensional compact oriented
manifold M depend only on Ωk(M)/dΩk−1(M).

One could ask a similar question about integrals over p-dimensional oriented manifolds
mapping to M : if X is such a manifold and f : X →M is a smooth map, we are interested
in the integral

∫
X f
∗ω. The argument above tells you that these integrals only depend

on Ωp(M)/dΩp−1(M): we take p-forms modulo those that are exterior derivatives of
(p− 1)-forms. A p-form of the latter type is said to be exact.

It seems reasonable to restrict to those p-forms ω with the property if
∫
X f
∗ω only

depends on the homotopy class of X. As discussed at the end of the previous lecture, from
Stokes’ theorem applied to

∫
X×[0,1]H

∗dω with H : X× [0, 1]→M a homotopy from f0 to
f1, it follows that

∫
X f
∗
0ω =

∫
X f
∗
1ω if dω = 0, as then 0 =

∫
W H∗dω =

∫
X f
∗
1ω −

∫
X f
∗
0ω.

If dω = 0 then ω is said to be closed. Observe that when ω is a k-form then dω = 0 for
degree reasons, so any top form is closed.

177
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20.1.2 De Rham cohomology

The previous discussion tells us that the following groups can be interpreted as
encoding “all possible values of homotopy-invariant integrals over manifolds mapping to
M .”

However, you should not take this to be the only motivation. As you will soon see,
de Rham cohomology is a very powerful invariant of differentiable manifolds and smooth
maps between them.

Definition 20.1.1. Let M be a manifold. The de Rham cohomology groups H∗(M) are
given by

Hp(M) := ker(d : Ωp(M)→ Ωp+1(M))
im(d : Ωp−1(M)→ Ωp(M)) = closed p-forms

exact p-forms .

The elements of H∗(M) are called cohomology classes and, as indicated, are repre-
sented by closed forms up to exact forms; any two forms which differ by an exact form
are said to be cohomologous.

20.1.3 First properties of de Rham cohomology

Let us study de Rham cohomology. Since Ωp(M) are R-vector spaces, so are the
cohomology groups Hp(M). We will soon see these R-vector spaces contain a lot of
interesting topological information about M . Before going into the properties that allow
us to extract this information, we do a few basic examples to get some initial intuition
for de Rham cohomology:

Example 20.1.2 (Vanishing above dimension). If M has dimension k, there are no p-forms
for p > k and hence Hp(M) vanishes for p > k.

Example 20.1.3 (H0). For p = 0, our definition gives that H0(M) = {f : M → R | df = 0}.
The condition df = 0 means that f is locally constant. Thus these functions have to be
constant on each component of M , and letting π0(M) denote the set of components of
M we get that

H0(M) = Rπ0(M),

the vector space of R-valued functions on the set π0(M).

Example 20.1.4 (Disjoint unions). Suppose that M is a disjoint union of Mi. Then a
p-form ω on M is a just a collection of p-forms ωi on each of the Mi. Then ω is closed if
and only if each ωi is, and exact if and only if each ωi is. We conclude that

H∗(M) ∼=
∏
i

H∗(Mi).

However, in practice M has finitely many components and the direct product is finite.
In this case the direct product may be replaced by the more familiar direct sum.

Recall that we have defined a wedge product on differential forms, and this has the
property that if ω ∈ Ωp(M) and ν ∈ Ωq(M) then d(ω ∧ ν) = d(ω) ∧ ν + (−1)pω ∧ d(ν).
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Lemma 20.1.5. The wedge product induces a graded-commutative product on H∗(M).
That is, H∗(M) is a graded-commutative R-algebra.

Proof. Let ω ∈ Ωp(M) and ν ∈ Ωq(M) represent cohomology classes. Then in particular
dω = 0 and dν = 0, and we see that

d(ω ∧ ν) = d(ω) ∧ ν + (−1)pω ∧ d(ν) = 0 + 0 = 0.

Thus ω ∧ ν represents a cohomology class. This is independent of the choice of represen-
tatives, because if ω − ω′ = dα, then

ω ∧ ν − ω′ ∧ ν = d(α) ∧ ν = d(α ∧ ν)

and similarly in the second entry.
The properties of this induced product—unitality, associativity, and graded-commutativity—

follow from those of the wedge product.

Example 20.1.6. The unit of the wedge product is the element of H0(M) represent by
the constant function M → R with value 1.

20.1.4 Cohomology as a functor

Recall that we can pull back differential forms along any smooth map: given g : M →
N we get g∗ : Ω∗(N)→ Ω∗(M).

Lemma 20.1.7. The homomorphism g∗ induces a homomorphism of graded-commutative
R-algebras g∗ : H∗(N)→ H∗(M) which satisfies (f ◦ g)∗ = g∗ ◦ f∗ and (id)∗ = id.

Proof. We use that d commutes with g∗, so g∗ must preserve the kernel and image of d.
Let’s check this is in detail for kernels: if ω ∈ Ωp(N) satisfies dω = 0, then g∗ω ∈ Ωp(M)
satisfies

d(g∗ω) = g∗(dω) = g∗0 = 0.

The properties of pullback on cohomology follow from the corresponding properties of
pullback on forms.

It is appropriate at this point to mention the foundational framework used in algebraic
topology: category theory [Rie16]. A category C consists of a collection of object ob(C)
and a collection of morphisms mor(C). Each of these morphisms has a source and a
target, and two morphisms f and g can be composed to g ◦ f if the target of the f is the
source of g. This composition operations is associative, and every object has an identity
morphism which serves as a two-sided unit for composition.

The standard way to picture a category is a collection of dots (objects) and arrows
between them (morphisms). One instance of such graphic representations are the
commutative diagrams we have been using (in the 40s people wrote down the formulas,
and it was difficult to parse statements).
Example 20.1.8. The category of Top of topological spaces has objects given by topological
spaces, and morphisms given by continuous maps.
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Example 20.1.9. The category Mfd of differentiable manifolds has objects given by
differentiable manifolds, and morphisms given by smooth maps.
Example 20.1.10. The category GrAlgR of graded-commutative R-algebras has objects
given by graded R-vector spaces with a graded-commutative product, and morphisms
given by grading-preserving homomorphisms.

An important application of categories is to express naturality of various constructions.
For example, that they are compatible with composition is expressed through the notion
of a functor. A functor F : C→ D is a pair of assignments ob(F ) : ob(C)→ ob(D) and
mor(F ) : mor(C) → mor(D), compatible with source, target, identity and composition.
The former two mean that if f is a morphism from C to C ′, then F (f) is a morphism from
F (C)→ F (C ′), and the latter two mean that F (id) = id and F (f ◦ g) = F (f) ◦ F (g).
Example 20.1.11. There is a forgetful functor U : Mfd→ Top sending each differentiable
manifold to its underlying topological spaces, and regarding each smooth map as a
continuous map.

It is not the case that cohomology is a functor H∗ : Mfd→ GrAlgR; it would need to
satisfy (f ◦ g)∗ = f∗ ◦ g∗ but instead we have (f ◦ g)∗ = g∗ ◦ f∗. This is no problem, as we
can formally change the direction of morphisms in Mfd by taking the opposite category:
Mfdop has the same objects and morphisms, but source and target are reversed. Then
Lemma 20.1.7 says that de Rham cohomology is a functor

H∗ : Mfdop −→ GrAlgR.

As an application of this, we make the following observation, which we will strengthen
in the next lecture:

Lemma 20.1.12. If g : M → N is a diffeomorphism then g∗ : H∗(N)→ H∗(M) is an
isomorphism.

Proof. The inverse g−1 : N → M induces a homomorphism (g−1)∗ : H∗(M) → H∗(N).
The fact that cohomology is a functor tells us that this satisfies g∗ ◦ (g−1)∗ = (g−1 ◦ g)∗ =
(id)∗ = id and similarly for the other composition.

20.2 First examples

Let us start with a first few computations in de Rham cohomology, before we
develop the techniques that allow us to systematically compute the cohomology of many
differentiable manifolds.

20.2.1 The real line

We already know that H0(R) ∼= R by Example 20.1.3 and that H∗(R) = 0 for ∗ > 1
by Example 20.1.2, so the only remaining unknown cohomology group is H1(R). Any
element in it is represented by ω ∈ Ω1(R) (satisfying dω = 0, but this is true for any such
ω for degree reasons).
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Lemma 20.2.1. H1(R) = 0.

Proof. We need to find an f such that ω = df . Let us write ω = a(x)dx with a : R→ R
a smooth function, then

f : R −→ R

x 7−→
∫ x

0
a(y)dy

satisfies df(x) = ∂f
∂xdx = a(x)dx. That is, every closed 1-form is exact.

In the next lecture we will prove the Poincaré lemma, which says that for all n ≥ 0

H∗(Rn) =
{
R if ∗ = 0,
0 otherwise.

20.2.2 The circle

For the circle S1, we are in a somewhat similar situation as for the real line: H0(S1) =
R and H∗(S1) = 0 for ∗ > 1, so only H1(S1) remains unknown.

Lemma 20.2.2. H1(S1) = R.

First proof. Let us write ω = a(θ)dθ with a : S1 → R a smooth function, then the
argument for the real line compels us to look at the function

f : [0, 2π] −→ R

θ 7−→
∫ θ

0
a(eiφ)dφ.

This gives a smooth function on S1 if and only if f(0) = f(2π).
This gives an obstruction to implementing to proving that H1(S1) vanishes along the

lines of the proof for R. But instead of giving up, we should take advantage of this and
use the obstruction to define an invariant. That is, we can attempt to construct a linear
functional on H1(R) by taking

w : H1(S1) −→ R

ω = a(θ)dθ 7−→
∫ 2π

0
a(eiφ)dφ.

To check this is well-defined, we must verify it is independent of the representative ω
of the cohomology class [ω] ∈ H1(R). As w is linear in ω, so it suffices to show that
w(ω) = 0 if ω = df for a smooth function f : S1 → R. This is true because the integral is
equal to f(2π)− f(0) = 0 by the fundamental theorem of calculus.

If w(ω) = 0 then f(0) = f(2π), and gives a smooth function S1 → R which we can
use to show that ω = df like we did for R. Hence the result follows once we show that w
is surjective. Since w is linear it suffices to prove that it takes a single non-zero value,
and when we evaluate on the 1-form ω = dθ we get w(dθ) = 2π.
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Let’s give an alternative proof, which we will later generalize to the Mayer–Vietoris
exact sequence for cohomology.

Proof. Let U, V ⊂ S1 be an open cover by two open intervals and consider the following
diagram

0 Ω0(S1) Ω0(U)⊕ Ω0(V ) Ω0(U ∩ V ) 0

0 Ω1(S1) Ω1(U)⊕ Ω1(V ) Ω1(U ∩ V ) 0

i0

d

j0

d d

i1 j1

The left horizontal maps are induced by restrictions,

i0 : Ω0(S1) −→ Ω0(U)⊕ Ω0(V )
f 7−→ (f |U , f |V ),

and similarly for i1. The right horizontal maps are the difference of the restrictions,

j0 : Ω0(U)⊕ Ω0(V ) −→ Ω0(U ∩ V )
(f, g) 7−→ f |U∩V − g|U∩V ,

and similarly for j1.
We start with a 1-form ω ∈ Ω1(S1) representing a cohomology class [ω], and consider

i(ω) = (ω|U , ω|V ) ∈ Ω1(U)⊕ Ω1(V ). Since ω was closed, so are both these restrictions.
Since H1(U) and H1(V ) vanish because both U and V are diffeomorphic to R, both are
exact. This gives us functions (λU , λV ) ∈ Ω0(U)⊕ Ω0(V ).

Let us investigate to what extent

j0(λU , λV ) = λU |U∩V − λV |U∩V ∈ Ω0(U ∩ V )

depends on the choices we made. We made two:
(a) the functions (λU , λV ),
(b) a representative ω of [ω].

For (a), the functions λU and λV are unique up to the addition of constant functions,
i.e. closed 0-forms. Adding a constant to one of these changes j0(λU , λV ) by a constant.

For (b), a different representative is given by ω + df with f ∈ Ω0(S1), and picking
this instead leads to replacing λU by ΛU + f |U and λV by λV + f|V , up to constants.
When we take j0(λU + f |U , λV + f |V ) the terms f |U∩V cancel out and we get j0(λU , λV )

The conclusion is that the smooth function j0(λU , λV ) ∈ Ω0(U ∩ V ) is independent of
the choice of representative ω, and depends on λU and λV only up to a constant. Since
both ω|U and ω|V are equal to ω|U∩V on U ∩ V and the exterior derivative is linear, we
see that

d(j(λU , λV )) = d(λU |U∩V − λV |U∩V ) = ω|U∩V − ω|U∩V = 0,
i.e. j(λU , λV ) is closed, or equivalently a locally constant function on U ∩ V . Under the
identification as Examples 20.1.4 and 20.1.3, it represents an element

(a0, a1) ∈ H0(U ∩ V ) ∼= R2.
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That is well-defined up the addition of a constant, means that we may replace (a0, a1)
by (a0 + c, a1 + c). The elements of the form (c, c) are exactly those in the image of
H0(U)⊕H0(V ) under j0.

From this description, it follows that a1 − a0 ∈ R is independent of the choice of λU
and λV ; an invariant of the original cohomology class [ω]. Thus we have constructed a
map

w : H1(S1) −→ H0(U ∩ V )
im(j : H0(U)⊕H0(V )→ H0(U ∩ V ))

∼= R.

Suppose now that w(ω) = 0. Then a0 = a1 and this means that though the functions
λU and λV needs not be equal on U ∩ V , the difference λU |U∩V − λV |U∩V is constant.
We can thus replace λU by λU − a0 to get that λU |U∩V = λV |U∩V . Hence we can glue
them to obtain a function λ on S1, which by construction satisfies dλ = ω.

This shows that H1(S1) is isomorphic to the image of w. To see that it is surjective,
as before we can evaluate on dθ.

Remark 20.2.3. The construction of w depends on a choice of isomorphism of the codomain
with R. You can pick this such that w = w.

The previous proof amounts to the following: the maps i and j induce maps on
cohomology and using partitions of unity one can produce a diagonal map to get the
following diagram:

H1(S1) H1(U)⊕H1(V ) H1(U ∩ V )

H0(S1) H0(U)⊕H0(V ) H0(U ∩ V )

This diagram has the special property that it is exact: the kernel of each map is the
image of the previous one. Filling in what we already know, we get

H1(S1) H1(U)⊕H1(V ) = 0 H1(U ∩ V ) = 0

H0(S1) = R H0(U)⊕H0(V ) = R2 H0(U ∩ V ) = R2(∗)

with starred map given by (a, b) 7−→ (a− b, a− b). This proves that H1(S1), the kernel
of the map to H1(U)⊕H1(V ) = 0, is the image of the map H0(U ∩ V ) = R2 → H1(S1)
whose kernel is exactly the 1-dimensional subspace spanned by e1+e2. Hence H1(S1) ∼= R.

What the above proof does, is construct explicitly the identification

H1(S1) = ker(H1(S1)→ H1(U)⊕H1(V ))

H0(U ∩ V )
im(j : H0(U)⊕H0(V )→ H0(U ∩ V ))

∼= R.

∼=w



184 Chapter 20 De Rham cohomology

20.3 Problems

Problem 20.3.1. Verify that ω(dθ) 6= 0.

Problem 20.3.2 (Compactly-supported cohomology). Recall that Ωp
c(M) denotes the

compactly-supported p-forms. Since the exterior derivative d preserves the condition
that forms have compact support, there is also a compactly-supported variation of de
Rham cohomology which is occasionally useful:

Definition 20.3.3. The compactly-supported de Rham cohomology groups H∗c (M) are
given by

Hp
c (M) := ker(d : Ωp

c(M)→ Ωp+1
c (M))

im(d : Ωp−1
c (M)→ Ωp

c(M))
.

(a) Compute H∗c (R).
(b) Compute H∗c (S1). (Hint: this should require no work.)

Problem 20.3.4 (Extension by zero). Prove that if i : U → M is the inclusion of an
open subset, the extension of forms by zero induces a map

H∗c (U) −→ H∗c (M)

on compactly-supported cohomology.

Problem 20.3.5 (An infinitely-punctured plane). Prove that H1(C \ Z) is not finite-
dimensional.

Problem 20.3.6 (Transfer maps). Let M be a smooth manifold with a smooth free
action of a finite group G, with ag : M →M denoting the action of the elements g ∈ G.
Recall that M/G can be given the structure of a smooth manifold such that quotient
map q : M →M/G is a local diffeomorphism.

(a) Let Ω∗(M)G ⊂ Ω∗(M) be the subspace given by those differential forms that
satisfy (ag)∗ω = ω for all g ∈ G; the invariant forms. Prove that Ω∗(M)G is a
cochain complex with differential given by exterior derivative, and prove that it
is isomorphic as a cochain complex to Ω∗(M/G).

(b) Show that the map
Ω∗(M) 3 ω 7−→ 1

|G|
∑
g∈G

(ag)∗ω

gives a map of cochain complexes Ω∗(M) → Ω∗(M)G. The induced map on
cohomology is called the transfer map.

(c) What is the composition Ω∗(M)G → Ω∗(M)→ Ω∗(M)G? Show that the pullback
map q∗ : H∗(M/G)→ H∗(M) is injective.

(d) Let S3/I∗ be the Poincare homology sphere. Prove that H∗(S3/I∗) ∼= H∗(S3).
(e) Explain how to obtain H∗(RP 3) from the above results without doing any

additional computation.
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The Poincaré lemma

Last chapter we introduced de Rham cohomology, and today we prove the Poincaré
lemma. This is proven in [GP10, Section 4.§6] and [BT82, Section 4].

21.1 The Poincaré lemma

The Poincaré lemma computes the cohomology of Rn. It is the backbone of all further
computations of cohomology groups.

21.1.1 The Poincaré lemma on Rn

In the previous chapter we defined a functor

H∗(−) : Mfdop −→ GrAlgR,

sending a manifold M to the graded-commutative R-algebra H∗(M) of de Rham coho-
mology groups

Hp(M) := ker(d : Ωp(M)→ Ωp+1(M))
im(d : Ωp−1(M)→ Ωp(M)) = closed p-forms

exact p-forms .

It sends a smooth map f : M → N to the homomorphism f∗ : H∗(N)→ H∗(M) induced
by pullback of differential forms.

We also computed H∗(S1) and H∗(R), obtaining the following computation in the
latter case

H∗(R) =
{
R if ∗ = 0,
0 otherwise.

Our immediate goal is to extend this computation to Rn, by induction over n. A
more precise statement uses the projection

π : Rn−1 × R −→ Rn−1

(x, t) 7−→ x,

185
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as well as the map st0 for t0 ∈ R,

st0 : Rn−1 −→ Rn−1 × R
x 7−→ (x, t0).

These satisfy π ◦ st0 = idRn−1 . It is of course not true that st0 ◦ π is the identity; it is
given by (x, t) 7→ (x, t0).

Theorem 21.1.1 (Poincaré lemma). For each t0 ∈ R, the map s∗t0 : H∗(Rn−1 × R) →
H∗(Rn−1) is an isomorphism with inverse π∗.

By induction over n, starting with the case n = 0 where R0 = ∗ (so in particular, we
reprove the case that n = 1), one can use this to prove:

Corollary 21.1.2. We have that

H∗(Rn) =
{
R if ∗ = 0,
0 otherwise.

Proof of Theorem 21.1.1. Let us shorten st0 to s for the sake of brevity. Above we
observed that π ◦ s = id so that we get s∗ ◦ π∗ = id∗ = id on H∗(Rn−1) It is of course
not true that s ◦ π = id. However, we will still prove that the induced maps on de Rham
cohomology satisfy π∗ ◦ s∗ = id on H∗(Rn−1 × R).

To do so, we will prove that there is a map K : Ω∗(Rn−1 × R) → Ω∗−1(Rn−1 × R)
satisfying

id− π∗ ◦ s∗ = (−1)p−1(dK −Kd). (21.1)

This tells us that on closed forms in Ω∗(Rn−1×R), id and π∗ ◦ s∗ differ by an exact form,
and hence give the same cohomology class.

To define K, we use coordinates (x1, . . . , xn−1, t) on Rn−1 × R observe that every
p-form in R× Rn−1 can be uniquely written as a linear combination of p-forms of the
following forms:

(i) aI(x, t)dxI with |I| = p,

(ii) aJ(x, t)dxJ ∧ dt and |J | = p− 1.
The map K will be linear, so it is uniquely determined by demanding it satisfies

K(aI(x, t)dxI) = 0 and K(aJ(x, t)dxJ ∧ dt)(x, t) =
(∫ t

t0
aJ(x, s)ds

)
dxJ .

We verify that (−1)p−1(dK −Kd) = id− π∗ ◦ s∗. First we do so for forms of type (i).
On such forms we have that π∗ ◦ s∗(aI(x, t)dxI) = aI(x, t0)dxI , so that

(id− π∗ ◦ s∗)(aI(x, t)dxI) = (a(x, t)− a(x, t0))dxI .
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On the other hand, we have at (x, t)

(−1)p−1(dK −Kd)(aI(x, t)dxI)

= (−1)pK
(
∂aI(x, t)

∂t
dt ∧ dxI +

n−1∑
i=1

∂aI(x, t)
∂xi

dxi ∧ dxI

)

= (−1)pK
(
∂aI(x, t)

∂t
dt ∧ dxI

)
= K

(
∂aI(x, t)

∂t
dxI ∧ dt

)
=
(∫ t

t0

∂aI(x, s)
∂t

ds

)
dxI

= (aI(x, t)− aI(x, t0))dxI .

We conclude that (21.1) holds on forms of type (i).
For forms of type (ii), we observe that π∗ ◦ s∗(aJ(x, t)dxJ ∧ dt) = 0 because s∗dt = 0,

so that
(id− π∗ ◦ s∗)(aJ(x, t)dxJ ∧ dt) = aJ(x, t)dxJ ∧ dt.

On the other hand, for (−1)p−1(dK −Kd)(aJ(x, t)dxJ ∧ dt) we do two separate compu-
tations

Kd(aJ(x, t)dxJ ∧ dt) = K

(
∂aJ(x, t)

∂t
dt ∧ dxJ ∧ dt+

n−1∑
i=1

∂aJ(x, t)
∂xi

dxi ∧ dxJ ∧ dt
)

=
n−1∑
i=1

K

(
∂aJ(x, t)
∂xi

dxi ∧ dxJ ∧ dt
)

=
n−1∑
i=1

(∫ t

t0

∂aJ(x, s)
∂xi

ds

)
dxi ∧ dxI .

dK(aJ(x, t)dxJ ∧ dt) = d

((∫ t

t0
aJ(x, )ds

)
dxJ

)

=
∂
∫ t
t0
aJ(s, x)ds
∂t

dt ∧ dxJ +
n−1∑
i=1

∂
∫ t
t0
aJ(x, s)ds
∂xi

dxi ∧ dxJ

= aJ(x, t)dt ∧ dxJ +
n−1∑
i=1

(∫ t

t0

∂aJ(x, s)
∂xi

ds

)
dxi ∧ dxJ

= (−1)p−1aJ(x, t)dxJ ∧ dt+Kd(aJ(x, t)dxJ ∧ dt).

Hence (−1)p−1(dK −Kd)(aJ(x, t)dxJ ∧ dt) = aJ(x, t)dxJ ∧ dt, so (21.1) also holds on
forms of type (ii).

Remark 21.1.3. A map such as K is called a cochain homotopy, and (21.1) says that id
and π∗ ◦ s∗ are cochain homotopic.
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21.1.2 The Poincaré lemma on manifolds

The proof of Theorem 21.1.1 goes through without any modification when we replace
Rn−1 by any open subset U ⊂ Rn−1. We can do even better:

Corollary 21.1.4. For each t0 ∈ R and smooth manifold M , the map s∗t0 : H∗(M×R)→
H∗(M) is an isomorphism with inverse π∗.

Proof. We can describe the types (i) and (ii) in a coordinate-invariant manner: (i) are
those of the form f(x, t)π∗ω, (ii) are those of the form f(x, t)π∗(ω) ∧ dt. Since the
cotangent bundle of M × R is isomorphic to π∗(T ∗M)⊕ ε, every form on M × R can be
written uniquely as a linear combination of forms of type (i) and (ii). Now the proof
given above goes through with the modification that Rn−1 is replaced by M .

Example 21.1.5. The previous corollary proves that open annulus A has the same
cohomology as S1, as it is diffeomorphic to S1 × R.

21.2 Homotopy invariance

21.2.1 Homotopy invariance for de Rham cohomology

Corollary 21.1.4 says that π∗ has as its inverse s∗t0 for any t0. Since inverses are
unique, this means that the maps s∗t0 : H∗(M × R)→ H∗(M) are all equal. Recall that
f0, f1 : M → N are homotopic if there is a map H : M ×R→ N such that H|M×{0} = f0
and H|M×{1} = f1, then this has the following important consequence.

Theorem 21.2.1 (Homotopy invariance). If f0, f1 : M → N are homotopic smooth
maps, then f∗0 = f∗1 : H∗(N)→ H∗(M).

Proof. We can find a homotopy of the form H : M × R → N . We can then factor fi,
i = 0, 1 as

M M × R N,

fi

si H

and obtain equations
f∗0 = s∗0 ◦H∗ = s∗1 ◦H∗ = f∗1 .

Recall that we proved that every diffeomorphism induces an isomorphism on coho-
mology, that is, every smooth map with an inverse does. It actually suffices that f has
an inverse up to homotopy.

Corollary 21.2.2. If f : M → N is a homotopy equivalence, then f∗ : H∗(N)→ H∗(M)
is an isomorphism.

Example 21.2.3. If M is a Moebius strip, then the inclusion S1 ↪→ M is a homotopy
equivalence (the homotopy inverse is the bundle projection). Thus H∗(M) ∼= H∗(S1).

More generally, if E is the total space of a smooth vector bundle over M , then
H∗(E) ∼= H∗(M). This is a generalization of 21.1.4; that corollary can be interpreted



21.2 Homotopy invariance 189

as saying that the total spaces of trivial bundles have the same cohomology as their
0-section.

Remark 21.2.4. At this point you can extend cohomology to a large class of spaces in
a rather artificial manner. For example, if K is built by gluing together finitely many
simplices (i.e. vertices, edges, triangles, tetrahedra, etc.), it has an embedding into a
sufficiently large Euclidean space with a small open neighborhood U that is unique up
to homotopy equivalence. Thus setting H∗(K) := H∗(U) gives a well-defined notion of
cohomology for such spaces K. However, algebraic topology provides an elegant definition
of cohomology (with real coefficients) for any topological space. It is then a theorem
that this coincides with de Rham cohomology when evaluated on a manifold; de Rham’s
theorem.

21.2.2 Applications

Contractible manifolds

Recall that there exists contractible manifolds M which are not homeomorphic to
Euclidean space, such as the Whitehead manifold of Section 8.3. Nonetheless, the
homotopy invariance of de Rham cohomology implies these have the same cohomology
as Euclidean spaces:

H∗(M) =
{
R if ∗ = 0,
0 otherwise.

The interior of a manifold with boundary

If M is a manifold with boundary ∂M , then we saw that there is an interior collar
ρ : ∂M × [0, 1] ↪→M .

Lemma 21.2.5. The inclusion int(M) ↪→M is a homotopy equivalence.

Proof. The homotopy inverse h is given in terms of the collar as

h(p) =
{
p if p /∈ im(ρ),
ρ(x, η(t)) if p = ρ(x, t),

where η : [0, 1]→ [0, 1] is an embedding that is the identity near 1 and has image given
by [1/2, 1]. Intuitively, we push the manifold into itself a bit uing the collar. We leave it
to reader to convince themselves that i ◦ g and g ◦ i are homotopic to the identity.

The homotopy invariance of cohomology then gives us:

Corollary 21.2.6. H∗(M) ∼= H∗(int(M)).
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Brouwer fixed point theorem

Observe that int(D2) is diffeomorphic to R2 by x 7→ x/(1 + ||x||2). By the previous
corollary we obtain H1(D2) ∼= H1(R2) = 0. Let us use this to give another proof of
the Brouwer fixed point theorem for D2. Recall that this follows from the following
“no-retraction” theorem:

Corollary 21.2.7. There exists no smooth retraction r : ∂D2 → D2.

Proof. If such an r did exist, we would have a commutative diagram

∂D2 ∂D2

D2

id

r

and applying the contravariant functor H1(−) turns this into a commutative diagram

H1(∂D2) = R H1(∂D2) = R

H1(D2) = 0,

id

r∗

which is obviously impossible: the identity on R doesn’t factor over 0.

21.3 Two further tricks

For later use, I will give two further tricks to compute two particular de Rham
cohomology groups. For now, the reader should take this as an opportunity to get
familiar with de Rham cohomology.

21.3.1 Top degree

Suppose that M is a compact oriented k-dimensional manifold. That M is oriented
means that the top exterior power ΛkT ∗M has an everywhere non-vanishing section ω.
Thus writing ω as adx1 ∧ · · · ∧ dxk in a chart the function a is always non-vanishing.
We intend to integrate this over M . To do so, we must use charts compatible with the
orientation; in that case a must be positive. Hence, when computing

∫
M ω, we get a

finite sum of non-negative numbers, at least one of which is positive and hence
∫
M ω > 0.

Now recall that integration of forms over M gives a linear functional Hk(M)→ R, so
that we have just shown the following:

Proposition 21.3.1. Suppose that M is a compact oriented manifold of dimension k,
then dimHk(M) ≥ 1.

We will later prove that its dimension is exactly 1 under the additional hypothesis
that M is connected.
Example 21.3.2. For any sphere Sn, we have that dimHn(Sn) ≥ 1. In Theorem 22.3.1
we will prove it is exactly 1-dimensional.
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21.3.2 Degree 1

In the homeworks, you have proven that if γ : S1 →M is a smooth map then
∫
S1 γ∗α

has the following properties: (i) if α is exact it is zero, (ii) if α is closed it only depends
on the homotopy class of γ. Furthermore, you have seen (iii) given a closed α, if M
connected and the integrals

∫
S1 γ∗α vanish for all γ, then α is exact.

If M is connected and we pick a base point p0 ∈M , we can define π1(M,p0) to be
the set of based homotopy classes of loops in M ; this is the fundamental group of M at
p0. Part (i) and (ii) say there is a map

h : π1(M,p0) −→ (H1(M))∗

γ 7−→
∫
S1
γ∗α

and part (iii) says that the span of the image of h is all of (H1(M))∗ (at least if it
is finite-dimensional, otherwise it is dense). We didn’t discuss the group structure of
π1(M,p0), but if you know this you will realize h is a homomorphism. It is called the
Hurewicz homomorphism.

Proposition 21.3.3. If M is simply-connected, then H1(M) = 0.

Example 21.3.4. We used Sard’s lemma to prove that Sn is simply-connected if n ≥ 2,
and hence H1(Sn) = 0.
Remark 21.3.5. The Hurewicz homomorphism factors over π1(M,p0)ab ⊗ R. When M is
compact and connected, the resulting homomorphism π1(M,p0)ab ⊗R→ (H1(M))∗ is in
fact an isomorphism. Thus you can compute H1(M) knowing the fundamental group.

21.4 Problems

Problem 21.4.1 (The Poincaré lemma for compactly-supported cohomology). Read
pages 37–39 of [BT82] about the Poincaré lemma for compactly-supported cohomology.
This says in particular that

H∗c (Rn) =
{
R if ∗ = n,
0 otherwise.

Explain why this shows that compactly-supported cohomology is not homotopy-invariant.
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The Mayer–Vietoris theorem

Last chapter we proved the Poincaré lemma, Theorem 21.1.1, computing the coho-
mology of Rn. To exploit that computation, we now prove a “patching theorem” for de
Rham cohomology. It is a generalization of the second proof we gave of H1(S1) = R in
Chapter 20. This is proven in Section 4.§6 of [GP10] and Section 2 of [BT82].

22.1 Some homological algebra

Recall that de Rham cohomology of M was constructed from the sequence of R-vector
spaces

· · · −→ Ωp−1(M) d−→ Ωp(M) d−→ Ωp+1(M) −→ · · · .

by taking the kernel of d modulo the image of d.
This is an example of the cohomology of a cochain complex of R-vector spaces. I

will drop the R from now on. Let me point out that the fact that we’re working with
vector spaces plays no role in the arguments that follow; we can replace vector spaces by
abelian groups, or modules over any ring.

A cochain complex C∗ is a collection of vector spaces with linear maps between them

· · · −→ Cp−1 d−→ Cp
d−→ Cp+1 −→ · · ·

satisfying d2 = 0. This equation implies im(d : Cp−1 → Cp) is a subset of ker(d : Cp →
Cp+1), and hence it makes sense to define the cohomology groups H∗(C∗) as

Hp(C∗) := ker(d : Cp → Cp+1)
im(d : Cp−1 → Cp) .

A homomorphism of cochain complexes f : B∗ → C∗ is a collection of linear maps
fp : Bp → Cp such that dfp = fp+1d. This condition implies that f induces a map on
cohomology, as we have seen in the example of g∗ : Ω∗(N)→ Ω∗(M) for a smooth map
g : M → N .

192
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22.1.1 Short exact sequences of cochain complexes

A long exact sequence is a sequence of vector spaces

· · · −→ A −→ B −→ C −→ D −→ · · ·

such that the kernel of each map is the image of the previous one. In other words, it is a
cochain complex whose cohomology vanishes at each point.

A short exact sequence is a sequence of vector spaces

0 −→ A
i−→ B

j−→ C −→ 0

such that the kernel of each map is the image of the previous one. That is, it is just a
long exact sequence in which all but three groups vanish. Conretely having a short exact
sequence means the following:

· Since the kernel of i is the image of 0→ A, i is injective.
· Since the image of j is the kernel of the C → 0, j surjective.
· The kernel of j is the image of i.

Example 22.1.1. Having a short exact sequence is quite useful. For example, suppose you
want to compute what a particular vector spaces A is isomorphic to, and you know it
fits into a short exact sequence

0 i−→ R j−→ A
k−→ R l−→ 0.

Then R is the kernel of a surjective map A→ R, and thus A must be 2-dimensional.
A short exact sequence of cochain complexes is a sequence of cochain complexes

0 −→ A∗ −→ B∗ −→ C∗ −→ 0

such that each sequence

0 −→ Ap −→ Bp −→ Cp −→ 0

is a short exact sequence. The following result relates the cohomology groups H∗(A∗),
H∗(B∗), and H∗(C∗).

Theorem 22.1.2. If 0 → A∗ → B∗ → C∗ → 0 is a short exact sequence of cochain
complexes then there exist homomorphisms δ : Hp(C∗)→ Hp+1(A∗) such that

Hp+1(A∗) Hp+1(B∗) · · ·

· · · Hp(B∗) Hp(C∗)

is a long exact sequence.

The homomorphisms δ are called boundary maps, and will be constructed explicitly.
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Proof. We start with construction of the homomorphism δ : Hp(C∗) → Hp+1(A∗). To
do so, consider the commutative diagram

0 Ap+2 Bp+2 Cp+2 0

0 Ap+1 Bp+1 Cp+1 0

0 Ap Bp Cp 0.

ip+2 jp+2

ip+1 jp+1

ip jp

Let [x] ∈ Hp(C∗) be represented by x ∈ Cp, then since jp : Bp → Cp is surjective there
exists a lift y ∈ Bp. This satisfies jp+1(dy) = djp(y) = dx = 0. Thus dy ∈ Bp+1 in the
kernel of jp+1 and hence in the image of ip+1, so there exists a lift z ∈ Ap+1.

We want to set ∂[x] = [z]. To show that this makes sense, we need to first check
that dz = 0. Since ip+2 is injective, we might as well check that ip+2(dz) = 0. But
ip+2(dz) = d(ip+1(z)) = d(dy) = 0.

Next we need to prove that [z] is independent of the three choices we made:
(a) the choice of representative x ∈ Cp of [x],
(b) the choice of lift y ∈ Bp of x, and
(c) the choice of lift z ∈ Ap+1 of d(y).

The last of these, (c), in fact involved no choice at all! The element z is unique because
ip+1 is injective. For (b), any other choice of lift y differs by an element ip(w), which
changes dy to d(y + ip(w)) = dy + iw(dw) which has lift to Ap+1 given by z + dw, and
hence gives rise to the same cohomology class [z]. Finally, for (a), any other representative
of x differs by du for u ∈ Cp−1. We may lift u to v ∈ Bp−1 and then choose to lift of
x+ du to y + dv (we have already shown that the end result is independent of the choice
of lift). Then d(y + dv) = dy, so the resulting class [z] is the same as before.

Let us only check exactness at the term Hp(C∗), leaving the other cases for the
reader. We need to prove that if δ([x]) = 0 then [x] is in the image of Hp(B∗). Indeed, if
δ([x]) = 0 then z = da for some a ∈ Ap. Then dip(a) = ip+1(z) = dy, so y − ip(a) ∈ Bp

is closed. Furthermore jp(y − ip(a)) = jp(y) = x since jp ◦ ip = 0, so [x] is the image of
[y − ip(a)].

Remark 22.1.3. A proof as above is hard to read. You should draw the diagram and pencil
in were all of the elements discussed live and are mapped. This is called diagram-chasing.

22.2 The Mayer–Vietoris theorem

Let M be a manifold, and U, V ⊂M be open subsets covering M . Then the maps
induced by restriction give rise to a pair of maps

Ωp(M) −→ Ωp(U)⊕ Ωp(V )
ω 7−→ (ω|U , ω|V ),
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Ωp(U)⊕ Ωp(V ) −→ Ωp(U ∩ V )
(ω, ν) 7−→ ω|U∩V − ν|U∩V .

The composition of these two maps is visibly 0, and in fact the following is true:

Lemma 22.2.1. The following is a short exact sequence of cochain complexes

0 −→ Ω∗(M) −→ Ω∗(U)⊕ Ω∗(V ) −→ Ω∗(U ∩ V ) −→ 0.

Proof. Exactness at Ωp(M) amounts to the observation that a form on M is uniquely
determined by its restrictions to U and V . Exactness at Ωp(U)⊕ Ωp(V ) amounts to the
observation that a pair of forms ω on U and ν on V can be glued to a form on M if and
only if ω|U∩V = ν|U∩V .

It is exactness at Ωp(U ∩ V ) that is the hardest; we must show that every form on
U ∩ V is a difference of forms on U and V . The problem is that a naive extension by 0
of ω ∈ Ωp(U ∩ V ) to U or V will not be smooth. To get around this, we will “cut off”
ω appropriately before extending by 0. Let ρU , ρV : M → [0, 1] be a partition of unity
subordinate to the open cover U, V . Then ρV ω can be extended by 0 to give a smooth
p-form ρV ω on U , and similarly ρUω can be extended by 0 to give a smooth p-form ρUω
on V . Then we can write ω as ρV ω − (−ρUω), which exhibits ω as being in the image of
the map Ωp(U)⊕ Ωp(V )→ Ωp(U ∩ V ).

Corollary 22.2.2 (Mayer–Vietoris). There is a long exact sequence

Hp+1(M) Hp+1(U)⊕Hp+1(V ) · · ·

· · · Hp(U)⊕Hp(V ) Hp(U ∩ V )

In the Mayer–Vietoris long exact sequence, the left horizontal maps

Hp(M) −→ Hp(U)⊕Hp(V )

are given by pullback along the inclusion U ↪→ M and V ↪→ M . Similarly, the right
horizontal maps

Hp(U)⊕Hp(V ) −→ Hp(U ∩ V )
are the difference of the pullback along the inclusion U ∩ V ↪→ U and the pullback along
the inclusion U ∩ V ↪→ V . Finally, the boundary maps can be described rather explicitly;
given [ω] ∈ Hp(U ∩ V ), one observes that d(ρV ω) and d(−ρUω) coincide on U ∩ V and
hence glue to a well-defined (p+ 1)-form on M . It will in fact be supported in U ∩ V .

22.3 Applications

As an application of Mayer–Vietoris, we will now compute the cohomology of three
basic examples of smooth manifolds. The guidelines for its use are as follows: you need
to know the cohomology of three out of the following four manifolds: M , U , V , and
U ∩ V . Since we don’t know many examples yet, these often tend to be contractible or
to be provided by an inductive hypothesis.
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22.3.1 The cohomology groups of spheres

We start with spheres Sn.

Theorem 22.3.1. The cohomology of Sn, n ≥ 1, is given by

H∗(Sn) =
{
R if ∗ = 0, n,
0 otherwise.

Proof. The proof will be induction over n, the initial case n = 1 having been completed
two lectures ago. We can cover Sn = {(x0, . . . , xn) |∑x2

i = 1} by two slightly enlarged
hemispheres:

U := Sn ∩ {x ∈ Rn+1 | xn > −ε},
V := Sn ∩ {x ∈ Rn+1 | xn < ε}.

Then U ∼= Rn, V ∼= Rn and U ∩ V ∼= Sn−1 × R. Thus we get that both U and V
have non-zero cohomology groups only in degree 0, while homotopy invariance says
H∗(U ∩ V ) ∼= H∗(Sn−1) which we know by the inductive hypothesis.

There are several cases for Mayer–Vietoris when we want to compute Hp(Sn). Let us
start with assume that p > 1. In this case we have

Hp(Sn) Hp(U)⊕Hp(V ) = 0 · · ·

· · · Hp−1(U)⊕Hp−1(V ) = 0 Hp−1(Sn−1)

because p− 1, p 6= 0. By exactness, we conclude that the pictured boundary map is an
isomorphism, and thus

Hp−1(Sn−1) −→ Hp(Sn)
is an isomorphism as long as p > 1.

To deal with p = 0, 1, we inspect the relevant part of the long exact sequence:

H1(Sn) H1(U)⊕H1(V ) = 0 · · ·

H0(Sn) H0(U)⊕H0(V ) ∼= R2 H0(Sn−1) = R(∗)

Recalling the construction of the Mayer–Vietoris sequence the map (∗) is given by the
difference of the restrictions, so by R2 3 (x, y) 7→ x − y ∈ R. This is surjective with
kernel R. From this we see that H0(Sn) = R and H1(Sn) = 0.

22.3.2 The cohomology groups of punctured Euclidean spaces

We have computed H∗(Rn) already—it mostly vanishes—and H∗(Rn \ {0}) follows
from the previous computation since Rn \ {0} ∼= Sn−1 × R—it has the same cohomology
as Sn−1. What happens if you remove more points? It is easy for n = 1, as then removing
points just disconnects R into some disjoint union of copies of R.
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Theorem 22.3.2. Let X be a finite subset of Rn, n ≥ 2, then

H∗(Rn \X) ∼=


R if ∗ = 0,
R|X| if ∗ = n− 1,
0 otherwise.

Proof. The proof is by induction over the cardinality r of X. The initial case r = 1
has been done above. For the induction step, we fix some x ∈ X and cover Rn by
U = Rn \ {x} and V = Rn \ (X \ {x}). Their intersection U ∩ V is Rn \X.

We will not give the full Mayer–Vietoris sequence, but skip to the interesting part
around degree p = n− 1:

Hn(Rn) = 0 · · ·

Hn−1(Rn) = 0 Hn−1(U)⊕Hn−1(V ) = R⊕ R|X|−1 Hn−1(U ∩ V ) ∼= R

· · ·

where we applied the inductive hypothesis to U and V respectively. We conclude that
Hn−1(R \X) ∼= R|X|.

22.3.3 The cohomology groups of CPn

Recall the complex projective plane CPn from Problem 2.3.6. It is given by the
quotient of the scaling action on non-zero vectors in Cn:

(Cn+1 \ {0})/C×.

That is, an element [z0 : · · · : zn] ∈ CPn is described by an (n+ 1)-tuple (z0, . . . , zn) of
complex numbers, not all zero, up to scaling.

Since CP 1 is diffeomorphic to S2, we already know its cohomology from Theorem
22.3.1. What happens for CPn, n ≥ 2?

Theorem 22.3.3. The cohomology of CPn, n ≥ 1, is given by

H∗(CPn) =
{
R if 0 ≤ ∗ ≤ 2n is even,
0 otherwise.

.

Proof. The proof is by induction over n, the initial case n = 1 having been done before.
Let U ⊂ CPn be the open subset consisting of those [z0 : . . . : zn] satisfying

|z0|2 + . . .+ |zn−1|2 > |zn|2. By scaling the last coordinate by 1− t with t ∈ [0, 1], this
deformation retracts onto CPn−1. Let V ⊂ CPn be the open subset consisting of those
[z0 : · · · : zn] with zn 6= 0. By scaling the first n coordinates by (1 − t) with t ∈ [0, 1],
this is seen to be contractible. Then U ∩ V is the open subset of those [z0 : . . . : zn]
with zn 6= 0 and |z0|2 + . . .+ |zn|2 > |zn+1|2. Such elements are uniquely represented by
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elements of the form [w0 : . . . : wn−1 : 1] with |w0|2 + . . .+ |wn−1|2 > 1. This deformation
retracts onto the subspace with |w0|2 + . . .+ |wn−1|2 = 2, which gives a sphere S2n−1.

We will not give the full Mayer–Vietoris sequence, but skip to the interesting part
around degree p = 2n− 1:

H2n(CPn) H2n(U)⊕H2n(V ) = 0 · · ·

· · · H2n−1(U)⊕H2n−1(V ) ∼= 0 H2n−1(U ∩ V ) ∼= R

In particular we get that H∗(CPn) = H∗(CPn−1) for ∗ < 2n and H2n(CPn) = R.

Multiplicative structures

Above we computed H∗(Sn), H∗(Rn \X), and H∗(CPn) as graded R-vector spaces.
However, we actually know that these cohomology groups are a graded-commutative
algebra. In the former two cases, this algebra structure is uniquely determined by the
fact that it is compatible with the grading and that H0 is generated by a unit; in both
cases all products not involving a multiple of the unit vanish:

H∗(Sn) = R[xn]/(x2
n),

the free polynomial ring on a generator xn of degree n, modulo the ideal generated by
x2
n. Similarly,

H∗(Rn \X) = R
[
y

(x)
n−1

∣∣∣x ∈ X] /(y(x)
n−1y

(x′)
n−1 | x, x

′ ∈ X),

with a collection of generators y(x)
n−1 of degree n− 1, one for each element of X.

However, the algebra structure on H∗(CPn) can not be determined this way. Once
we establish Poincaré duality, we can prove that as an algebra

H∗(CPn) = R[x2]/(xn+1
2 ),

with x2 a generator in H2(CPn).

22.3.4 More examples

If you want to practice your proficiency with the Mayer–Vietoris sequence you can
prove—at least additively— the following results (the convention is that a subscript on a
generator denotes its degree).
Example 22.3.4. Recall the quaternionic projective plane HPn from Problem 2.3.7. Its
cohomology is given by

H∗(HPn) = R[y4]/(yn+1
4 ).

Here are some computations that require more advanced techniques than we have
discussed so far:
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Example 22.3.5. Let U(2) be the Lie group of (2×2)-matrices with complex entries which
are unitary, i.e. A† = A. Its cohomology is given by

H∗(U(2)) = R[c1, c3]/(c2
1, c

2
3).

Example 22.3.6. Recall the K3-manifold from Section 8.2. Its cohomology is given by

H∗(K3) =



R if ∗ = 0,
0 if ∗ = 1,
R22 if ∗ = 2,
0 if ∗ = 3,
R if ∗ = 4,
0 otherwise.

The multiplicative structure is determined by the bilinear map H2(K3) ×H2(K3) →
H4(K3) ∼= R. In a suitable basis, it is given by the symmetric matrix[

−id19 0
0 id3

]
.

Remark 22.3.7. In fact, the Sullivan–Barge theorem tells you that the only restrictions
on realizing a given finitely-generated graded-commutative R-algebra H∗ with H1 = 0 as
the cohomology of a manifold are (i) it satisfies Poincáre duality, and (ii) if the dimension
is 4n it admits Pontryagin classes satisfying the congruences of the Hirzebruch signature
theorem [FOT08, Theorem 3.2].

22.4 Problems

Problem 22.4.1 (Long exact sequence of a pair). Suppose that M ⊂ N is a smooth
submanifold.

(a) Show that the differential of Ω∗(N) restricts to one on ker[Ω∗(N)→ Ω∗(M)],
We define the relative cohomology H∗(N,M) as that of the cochain complex ker[Ω∗(N)→
Ω∗(M)].

(b) Prove that there is a long exact sequence

Hp+1(N,M) Hp+1(N)⊕Hp+1(M) · · ·

· · · Hp(N,M)⊕Hp(N) Hp(M)

This is known as the long exact sequence of a pair.

Problem 22.4.2 (Relative and compact-supported cohomology). Suppose that M is a
compact manifold with boundary ∂M . Prove there is an isomorphism

H∗(M,∂M) ∼= H∗c (M \ ∂M).
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Problem 22.4.3 (Mayer–Vietoris for compactly-supported cohomology). Let U, V be
an open cover of M .

(a) Use extension by zero to construct a short exact sequence of cochain complexes

0 −→ Ω∗c(U ∩ V ) −→ Ω∗c(U)⊕ Ω∗c(V ) −→ Ω∗c(M) −→ 0.

(b) Conclude there is a Mayer–Vietoris long exact sequence in compactly-supported
cohomology:

Hp+1
c (U ∩ V ) Hp+1

c (U)⊕Hp+1
c (V ) · · ·

· · · Hp
c (U)⊕Hp

c (V ) Hp
c (M)

Problem 22.4.4 (The compactly-supported cohomology of the Moebius strip). Let M be
the open Moebius strip. Use Problem 21.4.1 and Mayer–Vietoris for compactly-supported
cohomology to compute H∗c (M).

Problem 22.4.5 (Cohomology of compact oriented surfaces). Recall that Σg denote a
genus g surface. Use Mayer–Vietoris to compute H∗(Σg).

Problem 22.4.6 (Mapping class group of the 2-torus). Let Γ1,0 denote the set of
orientation-preserving diffeomorphisms of T2 up to isotopy. This forms a group under
composition, called the mapping class group.

Recall that one description of the 2-torus T2 is as the quotient R2/Z2 of the translation
action of Z2 on R2. Every isomorphism of abelian groups Z2 → Z2 is given by a matrix

A =
[
a b
c d

]

with entries in Z and determinant ±1. This matrix gives us a linear map A : R2 → R2

which sends Z2 to itself and hence induces a diffeomorphism φA : T2 → T2.
(a) Show φA is orientation-preserving if and only if det(A) = 1. That is, A should lie

in the group SL2(Z) of (2× 2)-matrices with integer entries and determinant 1.
(b) Show that the function

φ : SL2(Z) −→ Γ1,0

A 7−→ φA

is a homomorphism.
(c) Use cohomology to show that φA is isotopic to φB if and only if A = B. Conclude

that φ : SL2(Z) ↪→ Γ1,0 is injective.

Problem 22.4.7 (Rotations in topological robotics). We will look at a simplified model
of a robotic arm. Ours will only have three rotational axes, given exactly by the x-, y-,
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and z-axis. Let Rxα ∈ SO(3) denote the matrix for rotation by α around the x-axis, and
similarly for Ryβ and Rzγ . Rotating an object is encoded by a map

r : S1 × S1 × S1 −→ SO(3)
(α, β, γ) 7−→ Rxα ◦R

y
β ◦R

z
γ .

(a) Prove that r is smooth.
(b) Indicate an argument that r is surjective. You do not need to give a full proof.

Part (b) means that given a desired rotation A ∈ SO(3), we can give the arm instructions
(αA, βA, γA) so that r(αA, βA, γA) = A. Can these instructions be chosen smoothly in A?
More precisely:

Is there a smooth map s : SO(3) −→ S1 × S1 × S1 so that r ◦ s = idSO(3)?
First we will prove that such an s needs to surjective.

(c) Prove that H3((S1 × S1 × S1) \ {p}) = 0 for any point p ∈ S1 × S1 × S1.
(d) Note that if s exists and is not surjective, then s factors over (S1×S1×S1) \ {p}.

Derive a contradiction from this.
So if a smooth section s of r exists it needs to be surjective.

(e) Prove that s exists and is surjective, then r is a surjective submersion.
(f) Prove that if r is a surjective submersion, then S1 × S1 × S1 is a finite cover of

SO(3) and derive a contradiction from this. You may use without proof that any
connected manifold M has a connected and simply-connected cover, which is
unique up to diffeomorphism. Conclude that no s as in the question exists.

Remark 22.4.8. In fact, using fundamental groups one can show that no section exists if
we allow four or more rotational axes. That is, for any arrangement of axes the analogous
rotation map (S1)n → SO(3) has no section.
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Qualitative applications of Mayer–Vietoris

So far we have only used Mayer–Vietoris to compute the cohomology of specific
manifolds. Today we will use it to prove finite-dimensionality of de Rham cohomology
and Poincaré duality. This is proven in of [BT82, Section 5].

23.1 De Rham cohomology is finite-dimensional

Suppose that M is a compact manifold, then we can find a finite cover by contractible
subsets: take some collection of charts φα : Rk ⊃ Uα → Vα ⊂ M which cover M , write
each Uα as a union of open balls, and apply compactness. Using a trick from Riemannian
geometry you can in fact do better and find a good cover in the following sense:

Definition 23.1.1. A finite open cover U1, · · · , Ur of a topological space is good if for
each non-empty subset I ⊂ {1, . . . , r}, the open subset UI := ⋂

i∈I Ui is either empty or
diffeomorphic to Rn.

Definition 23.1.2. A smooth manifold M is said to be of finite type if it admits a good
open cover.

In particular, you can take I = {i} to see that each Ui is contractible.
Example 23.1.3. A circle is of finite type; it has a good open cover by three intervals.
More generally, a k-sphere is a finite type; it has a good open cover by k + 2 open
subsets, by taking neighborhoods of the k-simplices in the boundary ∂∆k+1 of a standard
(k+1)-simplex ∆k (the convex hull of the basis vectors e0, . . . , ek+1 in Rk+2) For example,
∆3 is the tetrahedron and slightly expanding the four faces of a tetrahedron gives a good
open cover of S2.
Remark 23.1.4. Definition 23.1.1 is slightly non-standard, chosen to simplify the proof
of Poincaré duality. It is more common to define a good open cover to have UI which
are either empty or contractible. The minimal numbers of elements in a such good open
cover is called the covering type [KW16]. Karoubi and Weibel used Mayer–Vietoris to
prove that the k-sphere has no good open cover by < k + 2 open subsets. You can prove
this yourself, see Problem 23.4.1. Covering type has been largely unstudied and many
open questions surrounding it; apparently the covering type of the Klein bottle is not
known!

202
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The following is proven in in [BT82, Theorem 5.1]:

Proposition 23.1.5. Every compact manifold M is of finite type, i.e. admits a good
open cover. Moreover, every open cover has a refinement to a good open cover.

Theorem 23.1.6. If M is of finite type, H∗(M) is finite-dimensional.

Corollary 23.1.7. If M is compact, H∗(M) is finite-dimensional.

Proof of Theorem 23.1.6. First observe that since Hp(M) = 0 for p > k, the dimension
of M , it suffices to prove that each Hp(M) is finite-dimensional.

We prove the result by induction over the number r of open subsets in a good open
cover. In the initial case r = 1, M = U1 and U1 is contractible, so by the homotopy
invariance of de Rham cohomology H0(M) = R and all other cohomology groups vanish.

For the induction step, suppose that M has a good open cover with r open subsets
U1, . . . , Ur. Then M can be covered by two open subsets U := U1 and V := ⋃r

i=2 Ui. Then
U is contractible, V has a good open cover by r − 1 open subsets (namely U2, . . . , Ur),
and U ∩ V has a good open cover by r − 1 open subsets (namely U1 ∩ U2, . . . , U1 ∩ Ur).
Now consider the Mayer–Vietoris long exact sequence

Hp(M) Hp(U)⊕Hp(V ) · · ·

· · · Hp−1(U)⊕Hp−1(V ) Hp−1(U ∩ V ) ∼= R

We deduce from it that for each p ≥ 0, Hp(M) has a surjection onto a subspace of
Hp(U) ⊕ Hp(V ) with kernel a subspace of Hp−1(U ∩ V ). Both Hp(U) ⊕ Hp(V ) and
Hp−1(U ∩ V ) are finite-dimensional by the inductive hypothesis, and hence so are these
subspaces. This in turn implies Hp(M) is finite-dimensional.

Remark 23.1.8. In fact, you can bound the dimension of H∗(M) in terms of r as
dimH∗(M) ≤ 2r.

Some non-compact manifolds are of finite type, e.g. those which are the interior of
a compact manifold with boundary. However, H∗(M) is not finite-dimensional for a
general non-compact manifold M . Problem 20.3.5 gives a counterexample..
Remark 23.1.9. Here is an alternative method to constructing a counterexample; suppose
we have open subsets U1 ⊂ U2 ⊂ · · · of M such that ⋃i Ui = M , then it is a fact that
H∗(M) always surjects onto limi H

∗(Ui). In fact, when all H∗(Ui) are finite-dimensional
this is an isomorphism. This follows from the Milnor sequence and the observation
that inverse systems of finite-dimensional vector spaces are Mittag-Leffler. It is easy
to construct examples of Ui where all maps H∗(Ui) → H∗(Ui−1) surjective and the
dimension increases, in which case the limit will be infinite-dimensional.

23.2 Poincaré duality

The following is a whirlwind tour of Poincaré duality, both its proof and applications.
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23.2.1 Statement and proof

Recall that a bilinear form V ×W → R is non-degenerate if (i) 〈v, w〉 = 0 for all
w ∈ W if and only if v = 0, and (ii) 〈v, w〉 = 0 for all v ∈ V if and only if w = 0.
Also recall that H∗c (M) denote the compactly-supported de Rham cohomology, using
compactly-supported forms instead of arbitrary forms.

Theorem 23.2.1 (Poincaré duality). If M is oriented of dimension k and of finite type,
then the bilinear map

〈−,−〉 : Hp(M)×Hk−p
c (M) −→ R

([ω], [ν]) 7−→
∫
M
ω ∧ ν

is non-degenerate.

Since we know from Theorem 23.1.6 that each Hp(M) is finite-dimensional, this
implies Hk−p

c (M) is also finite-dimensional and the above statement is equivalent to both
maps Hp(M)→ (Hk−p

c (M))∗ and Hk−p
c (M)→ (Hp(M))∗ being linear isomorphisms.

Remark 23.2.2. The version which says that Hp(M)→ (Hk−p
c (M))∗ is an isomorphism

remains true for arbitrary oriented manifold. However, the version which says that
Hk−p
c (M) → (Hp(M))∗ is an isomorphism does not. To see this, take M = Z, then

H0(M) = ∏
ZN and H0

c (M) = ⊕
ZR. The dual of the direct sum is the product, but the

converse is not true.

Since compactly-supported cohomology of a compact manifold coincides with ordinary
cohomology, we get the following, making good on a promise from Section 21.3.1.

Corollary 23.2.3. If M is compact oriented of dimension k with empty boundary, then
Hp(M) ∼= Hk−p(M). In particular, if M is connected, Hk(M) ∼= R.

It is easy to deduce more consequences. Recalling from Section 21.3.2 that if M is
simply-connected then H1(M) = 0, we conclude that

Corollary 23.2.4. If M is a compact oriented manifold of dimension k and simply-
connected, then Hk−1(M) = 0.

Using Problem 22.4.2, one may deduce from Theorem 23.2.1 a version for manifolds
with boundary.

Corollary 23.2.5 (Poincaré–Lefschetz duality). If M is compact oriented of dimension
k with boundary ∂M , then Hp(M) ∼= Hk−p(M,∂M).

23.2.2 The proof of Poincaré duality

Before we start the proof we give a fundamental example:



23.2 Poincaré duality 205

Example 23.2.6. We know that H∗(Rk) is non-zero except for ∗ = 0, in which case
it is R generated by the class [1] represented by the constant function with value 1.
Similarly, H∗c (Rk) is non-zero except for ∗ = k, Problem 21.4.1, in which case it is R
generated by the class [λ(x)dx1∧· · · dxk] represented by any compactly-supported k-form
λ(x) · dx1 ∧ · · · ∧ dxk with λ : Rk → R a compactly-supported smooth function satisfying∫
Rk λ(x)dx1 · · · dxk = 1.

Then the computation 〈[1], [λ(x)dx1 ∧ · · · dxk]〉 =
∫
Rk λ(x)dx1 · · · dxk = 1 exhibits the

bilinear form as being non-degenerate.

Proof of Theorem 21.3.2. We will prove that the slightly-modified map (we have added
a sign)

ρM : Hp(M) −→ (Hk−p
c (M))∗

ω 7−→
(
ν 7→ ε(p)

∫
M
ω ∧ ν

)
,

is an isomorphism. Here, ε(p) = 1 if p ≡ 0, 1 (mod 4) and ε(p) = −1 if p ≡ 2, 3 (mod 4).
The proof will be by induction over the number of elements r in the finite good cover
U1, . . . , Ur. The initial case r = 1 has been done in Example 23.2.6.

For the induction step, we write M as the union of the two open subsets U := U1 and
V := U2 ∪ · · · ∪ Ur. Each of U , V and U ∩ V is oriented with a good open cover with
either 1 or r − 1 elements, and thus the inductive hypothesis applies to them.

There are Mayer-Vietoris long exact sequences in cohomology and compactly-supported
cohomology, the latter being reversed in direction with the maps not induced by pullback
but by extension by 0:

· · · −→ Hp(M) −→ Hp(U)⊕Hp(V ) −→ Hp(U ∩ V ) −→ Hp+1(M) −→ · · ·

and

· · · ←− Hp
c (M)←− Hp

c (U)⊕Hp
c (V )←− Hp

c (U ∩ V )←− Hp+1
c (M)←− · · ·

The latter may be dualized to a long exact sequence

· · · −→ Hp
c (M)∗ −→ Hp

c (U)∗ ⊕Hp
c (V )∗ −→ Hp

c (U ∩ V )∗ −→ Hp−1
c (M)∗ −→ · · ·

We can now write down integration maps from the long exact sequence for cohomology
to the dual of that for compactly-supported cohomology (Problem 22.4.3), a representative
part of which is given by

Hp(M) Hp(U)⊕Hp(V ) Hp(U ∩ V ) Hp+1(M)

Hk−p
c (M)∗ Hk−p

c (U)∗ ⊕Hk−p
c (V )∗ Hk−p

c (U ∩ V )∗ Hk−p−1
c (M)∗

j∗

ρM ρU⊕ρV

∂

ρU∩V ρM

j∗ ∂

We claim this commutes. This is easy to see in the left two squares. For example, for
the leftmost one it amounts to verifying that for each pair (νU , νV ) of compactly-supported
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k − p-forms and each p-form Ω, we have that

(ρU ⊕ ρV )(j∗ω)(νU , νV ) = ε(p)
∫
U
ω|U ∧ νU + ε(p)

∫
V
ω|V ∧ νV

= ε(p)
∫
M
ω ∧ (νU + νV )

= j∗(ρM )(νU , νV ).

It is the right square that is harder, as it involves boundary maps. For a (p+ 1)-form
ω on U ∩ V , ∂(ω) is given by picking a partition of unity ηU , ηV : M → [0, 1] subordinate
to U, V and taking the (p + 1)-form which coincides with d(ηUω|U ) on U (which has
support in U) and d(−ηV ω|V ) on V (which has support in V ). Similarly, the boundary
map on compactly-supported cohomology sends a (k− p− 1)-form ν to d(ρUν)− d(ρV ν),
which is supported in U ∩ V .

Then we compute

ρM (∂(ω))(ν) = ε(p+ 1)
∫
M
∂(ω) ∧ ν

= ε(p+ 1)
∫
U
d(ηUω|U ) ∧ ν + ε(p+ 1)

∫
V
d(ηV ω|V ) ∧ ν

= ε(p+ 1)
∫
U
d(ηU ) ∧ ω|U ∧ ν + ε(p+ 1)

∫
V
d(ηV ) ∧ ω|V ∧ ν,

where the second step uses that d is a derivation and ω is closed. We can in turn write
this as

(−1)pε(p+ 1)
∫
U
ω|U ∧ d(ηU ) ∧ ν + (−1)pε(p+ 1)

∫
V
ω|V ∧ d(ηV ) ∧ ν

= (−1)pε(p+ 1)
∫
M
ω|U ∧ (d(ηU ) ∧ ν − d(ηV ) ∧ ν)

= (−1)pε(p+ 1)
∫
M
ω ∧ (d(ηU ∧ ν)− d(ηV ∧ ν))

= (−1)pε(p+ 1)
∫
M
ω ∧ ∂(ν).

Now we observe that there are two cases: if p is even then ε(p + 1) = ε(p), and if p is
odd then ε(p+ 1) = −ε(p), so this is exactly ρM (ω)(∂(ν)).

Thus we have a commutative diagram of long exact sequences with two-thirds of the
vertical maps isomorphisms

Hp(M) Hp(U)⊕Hp(V ) Hp(U ∩ V ) Hp+1(M)

Hk−p
c (M)∗ Hk−p

c (U)∗ ⊕Hk−p
c (V )∗ Hk−p

c (U ∩ V )∗ Hk−p−1
c (M)∗

ρM ρU⊕ρV∼= ρU∩V ρM∼=

It follows from Lemma 23.2.7 that the ρM must also be an isomorphism.

The following is a standard result in homological algebra (there is a much more
general version):
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Lemma 23.2.7 (5-lemma). If in a commutative diagrams of vector spaces

A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

f1 f2 f3 f4 f5

all vertical maps except f3 are known to be isomorphisms, then f3 must also be an
isomorphism.

Proof. We shall prove that f3 is injective, leaving the proof that it is surjective to the
reader. Suppose that f3(x) = 0, then in particular its image in B4 vanishes. Since f4 is
an isomorphism, the image of x in A4 must also vanish. By exactness, this means that x
is the image of some y ∈ A2. We know that f2(y) is mapped to 0 in B3, so by exactness
f2(y) is the image of some z ∈ B1. Since f1 and f2 are isomorphisms, this means that
there is some w ∈ A1 which maps to y ∈ A2. The element x must vanish, being in the
image of a composition of two maps in an exact sequence, which is the zero map by
exactness.

23.3 Applications of Poincaré duality

23.3.1 The Poincaré dual to a submanifold

Every closed oriented submanifold X ⊂ M of dimension p gives rise to a linear
functional

iX : Hp
c (M) −→ R

ω 7−→
∫
X
ω.

By Poincaré duality (Hp
c (M))∗ ∼= Hk−p(M) there is a closed (k − p)-form ηX such that∫

M ηX ∧ ω = iX(ω). Its cohomology class [ηX ] ∈ Hk−p(M) is the Poincaré dual to X.
If X is compact, we can integrate any p-form over it and use the isomorphism

(Hp(M))∗ ∼= Hk−p
c (M) to see that we may pick a compactly-supported η′X . The

compactly-supported supported cohomology class [ηX ] ∈ Hk−p
c (M) is the compact

Poincaré dual to X.
Example 23.3.1. If we take M = Rn and X = ∗, the homomorphism iX : H0

c (M)→ R is
necessarily trivial because there are no non-zero compactly-supported functions. Hence
the Poincaré dual is 0. However, if we take instead the linear functional iX : H0(M)→ R,
we get an isomorphism and the compact Poincaré dual is represented by λ(x)dx1∧· · ·∧dxn
with λ : Rn → R a compactly-supported smooth function with integral 1.

23.3.2 Multiplicative structure of the cohomology of CPn

In Section 22.3.3 we computed H∗(CPn) additively; it is R in degrees ∗ = 2i for
0 ≤ i ≤ n and vanishes otherwise. We now explain how to obtain the algebra structure.
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Proposition 23.3.2. As a graded-commutative R-algebra, H∗(CPn) = R[x2]/(xn+1
2 ).

Proof. We prove this by induction over n, the case n = 1 being obvious as H∗(CP 1) =
R[x2]/(x2

2) for degree reasons. (Alternatively, you can use that CP 1 is diffeomorphic to
S2.)

During the Mayer–Vietoris computation of the additive structure of H∗(CPn) we
learned that the inclusion CPn−1 ↪→ CPn induces an isomorphism on de Rham coho-
mology in degrees ∗ < 2n. Thus H2i(CPn) is generated by xi2 for i < n, and it remains
to prove that xn2 is non-zero, as then it necessarily generates the 1-dimensional group
H2n(CPn).

But that xn2 is non-zero follows from Poincaré duality: there must exist a class y in
H2(CPn) such that y ·xn−1

2 ∈ H2n−2(CPn) is a non-zero element of H2n(CPn) otherwise
xn−1

2 would be the pairing as being non-degenerate. But y must be a non-zero multiple
of x2 and hence x2 · xn−1

2 6= 0.

The multiplicative structure of cohomology groups can be used to prove results
which can not be proven if you just know the additive structure. For example, the
additive structure of H∗(CPn) does not rule out that there may exist smooth maps
S2n → CPn → S2n whose composition is the identity. However, the multiplicative
structure does:

Corollary 23.3.3. If n ≥ 2, there is no smooth map S2n → CPn of non-zero degree.

Proof. Such a map would need to be non-zero on H2n, but since the map H∗(CPn) =
R[x2]/(xn+1

2 )→ H∗(S2n) = R[y2n]/(y2
2n) is a homomorphism, the value on the generator

xn2 of H2n(CPn) is the nth power of the value on the generator of x2 of H2(CPn). But
this is necessarily 0.

23.4 Problems

Problem 23.4.1 (Bounds on non-zero cohomology groups).
(a) Suppose that M has a finite good open cover with r subsets. Prove that the

largest p such that H̃p(M) 6= 0 must be ≤ r − 2. (Hint: induct over r).
(b) Prove that a finite good open cover of compact oriented k-dimensional manifold

with k ≥ 1 contains of at least r + 2 subsets. (What happens if k = 0?)

Problem 23.4.2 (Strengthening the 5-lemma). How much can you weaken the assump-
tions on f1, f2, f4, f5 in Lemma 23.2.7 such that the conclusion still holds?

Problem 23.4.3 (The Künneth map). In this problem, all cochain complexes are over
R.

(a) Prove that given two cochain complexes C∗ and D∗,

(C∗ ⊗D∗)p =
⊕
k+l=p

Ck ⊗Dl, d(x⊗ y) = d(x)⊗ y + (−1)|x|x⊗ d(y)

is again a cochain complex. (The sign is another instance of the Koszul sign rule.)
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(b) Prove that the map

H∗(C∗)⊗H∗(D∗) −→ H∗(C∗ ⊗D∗)
[x]⊗ [y] 7−→ [x⊗ y]

(23.1)

is well-defined.

Problem 23.4.4 (The Künneth theorem). In this problem you will use the techniques
of this chapter to prove the Künneth theorem. Let M,N be smooth manifolds.

(a) Let π1 : M ×N →M and π2 : M ×N → N be the projections. Show that

Ω∗(M)⊗ Ω∗(N) −→ Ω∗(M ×N)
ω ⊗ ν 7−→ π∗1(ω) ∧ π∗2(ν)

(23.2)

is a map of cochain complexes.
Combining (23.1) and (23.2) we get maps

H∗(M)⊗H∗(N) −→ H∗(M ×N). (23.3)

We will prove it is an isomorphism when N is of finite type.
(b) Prove (23.3) is an isomorphism when N = Rk.
(c) Prove that Hp(M)⊗− preserves kernel and images. Conclude it preserves long

exact sequences.
(d) Construct a map of long exact sequences

⊕
p+q=n

Hp(M)⊗Hq(U ∪ V )

⊕
p+q=n

Hp(M)⊗Hq(V )

⊕
⊕

p+q=n
Hp(M)⊗Hq(U)

⊕
p+q=n

Hp(M)⊗Hq(U ∩ V )

Hn(M × (U ∪ V )) Hn(M × U)
⊕Hn(M × U) Hn(M × (U ∩ V ))

with vertical maps given by (23.3).
(e) Prove using induction over the number of elements in a good open cover of N

and the 5-lemma, that map (23.3) induces an isomorphism

H∗(M)⊗H∗(N)
∼=−→ H∗(M ×N)

when N is of finite type.
(f) Compute H∗(Tn).

Problem 23.4.5 (The cohomology of sphere bundles). Suppose that π : E → B is a
manifold bundle whose fibers are diffeomorphic to Sk and whose base B is compact.

(a) Prove that there exists a finite good open cover {Ui}ni=1 of B such that π|Ui is a
trivial bundle.
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(b) Do an induction over the number of elements in a good open cover as in (a)
to show that the map π∗ : H∗(B) → H∗(E) is an isomorphism for ∗ < k and
injective for ∗ = k.

(c) Does it suffices that fibers M satisfy H∗(M) = 0 for 0 < ∗ < k for (b) to be true?
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Invariant forms in de Rham cohomology

In this chapter we prove that when a compact Lie group G acts on a manifold M , we
can compute the cohomology of M using only those differential forms which are invariant
under the action of G. This will be particularly useful in the case that G acts on itself
by left multiplication.

24.1 Invariant forms

Let G be a Lie group. For each g ∈ G there is a smooth map

lg : G −→ G

h 7−→ gh

given by left multiplication with g.

Definition 24.1.1. We say that a p-form ω ∈ Ωp(G) is left-invariant if for all g ∈ G,
l∗gω = ω.

As l∗g is linear, the left-invariant forms form a linear subspace of Ωp(G) which we
denote by Ωp(G)G. If G is k-dimensional, this is

(k
p

)
-dimensional:

Lemma 24.1.2. There is an isomorphism Ωp(G)G ∼= Λp(T ∗eG).

Proof. The evaluation of a left-invariant p-form ω at e ∈ G gives a linear map ev : Ωp(G)→
Λp(T ∗eG). We claim this is a linear isomorphism when restricted to Ωp(G)G. Indeed, its
inverse is given by

Λp(T ∗eG) 3 α 7−→
(
g 7→ l∗gα

)
∈ Ωp(G)G,

with l∗g : Λp(T ∗eG)→ Λp(T ∗gG) induced by lg.

Remark 24.1.3. This shows again that a Lie group admits an orientation: any non-zero
element of Λk(T ∗eG) gives an everywhere non-zero section of the orientation line bundle.

211



212 Chapter 24 Invariant forms in de Rham cohomology

Example 24.1.4. There is also a right multiplication map

rg : G −→ G

h 7−→ hg−1

and a p-form is right-invariant if for all g ∈ G, r∗gω = ω.
For top forms on a compact connected Lie group, left invariance is equivalent to

right invariance. To prove this, we start with the observation that r∗h preserves the
left-invariant forms of any degree: if ω is left-invariant then

l∗gr
∗
hω = r∗hl

∗
gω = r∗hω,

where we used that lg and rh commute because left and right multiplication do.
Suppose now G is k-dimensional and restrict your attention to top forms. Because

Ωk(G)G is one-dimensional, there is a unique smooth function f : G → R such that
ev(r∗hω) = f(h)ev(ω) for all ω ∈ Ωk(G)G. This is a homomorphism by

ev(r∗ghω) = ev(r∗hr∗gω) = f(h)ev(r∗gω) = f(h)f(g)ev(ω) = f(g)f(h)ev(ω).

Because G is compact, any homomorphism G→ R must be take values in {±1}. Because
G is connected, it must then always be 1.

More generally, suppose that a Lie group G acts smoothly on a manifold X. Then
for each g ∈ G the map

lg : X −→ X

x 7−→ gx

is smooth, where gx is shorthand for the action of g ∈ G on x ∈ X.

Definition 24.1.5. We say that a p-form ω ∈ Ωp(X) is invariant if for all g ∈ G,
l∗gω = ω.

As before, invariant forms are a linear subspace of Ωp(X), which we denote by
Ωp(X)G ⊂ Ωp(X).
Example 24.1.6. Left-invariant forms are the special case of G acting on itself by h 7→ gh,
and right-invariant that of G acting on itself by h 7→ gh−1.

Invariant forms are preserved by the exterior derivative:

Lemma 24.1.7. d(Ωp(X)G) ⊂ Ωp+1(X)G.

Proof. Pullback along a map commutes with d, so if ω ∈ Ωp(X)G then we have

l∗gdω = d(l∗gω) = dω.

Thus we can restrict the differential d to Ω∗(X)G, and get an inclusion of cochain
complexes

Ω∗(X)G −→ Ω∗(X).
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Theorem 24.1.8. If G is compact and connected, then

Ω∗(X)G −→ Ω∗(X)

induces an isomorphism on cohomology.

In particular, one can compute the cohomology of X using only invariant forms!
Remark 24.1.9. Suppose that G has dimension k. Through the isomorphism in Lemma
24.1.2, we can use the differential on the left-invariant forms on G to make

0→ Λ0(T ∗eG)→ Λ1(T ∗eG)→ · · · → Λk(T ∗eG)→ 0

into a cochain complex. This computes the cohomology of G and gives another proof
that this is finite-dimensional. However, it is not so useful for computations because we
have not given an explicit description of the differential; it is the Lie algebra cohomology
of the Lie algebra g with trivial coefficients [CE48].

To prove Theorem 24.1.8 we will construct an “averaging map”

Ω∗(G) −→ Ω∗(G)G,

which is the identity on Ω∗(G)G and whose composition with the inclusion Ω∗(G)G →
Ω∗(G) induces the identity on cohomology.

Intuitively, the averaging map is

ω 7−→
∫
G
l∗gω.

Unfortunately, this does not parse since we only defined integrals of top forms over a
manifold. To make sense of it, we generalize our notion of integration over a manifold to
integration along the fibers of certain smooth maps. Let α : G×X → X be action map
(g, x) 7→ gx, and define

α : G×X −→ G×X
(g, x) 7−→ (g, g−1x).

Then our averaging map is given by

Ωr(G×X) Ωr(G×X) Ωr+k(G×X)

Ωr(X) Ωr(X)

α∗ π∗1ρ∧−

(π2)∗π∗2(−)

for an left-invariant top form ρ on the k-dimensional oriented Lie group G such that∫
G ρ = 1. Here π∗2 is pullback, and (π2)∗ is the aforementioned “fiber integration.” The

left-invariance of ρ will guarantee that the resulting r-form is left-invariant. We will then
interpolate ρ to something akin to a δ-function at the identity.

This proof strategy is implemented in Section 24.3. First we need to develop integra-
tion of differential forms along the fibers of a manifold bundle.
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24.2 Fiber integration

24.2.1 Manifold bundles

The data of a smooth vector bundle in particular is a smooth map p : E → X whose
fibers are diffeomorphic to Rk. It must be locally trivial, in the sense that each point
x ∈ X admits an open neighborhood V and a commutative diagram

p−1(V ) V × Rk

V V

∼=

p π2

the horizontal maps are diffeomorphisms. There is nothing special about Rk here, and
we can replace it with any other smooth manifold M :

Definition 24.2.1. Suppose that either ∂M = ∅ or ∂X = ∅. A smooth manifold bundle
with fiber M is a smooth map p : E → X such that for each point x ∈ X there is an open
neighborhood V and a commutative diagram

p−1(V ) V ×M

V V

∼=

p π1

with horizontal maps diffeomorphisms.

Usually both ∂M and ∂X will be empty. We will denote the fiber p−1(x) by Ex; by
definition it is diffeomorphic to M .
Example 24.2.2. There is always a trivial manifold bundle π1 : X ×M → X. In our proof
of Theorem 24.1.8 we will only need these bundles.
Example 24.2.3. Suppose that ∂M 6= ∅ (hence we assume ∂X = ∅), then p|∂E : ∂E → X
is a smooth manifold bundle with fiber ∂M . Indeed, the local trivializations in Definition
24.2.1 restrict to local trivializations

∂p−1(V ) V × ∂M

V V.

∼=

p π2

Example 24.2.4. If a compact Lie group G acts freely and smoothly on M (see Section
7.3 for these definitions), then M → M/G is a smooth manifold bundle with fiber G,
see Corollary 25.3.3. A famous example of a manifold bundle arises this way: the Hopf
fibration

S3 −→ S2

with fibers S1 is obtained by taking the quotient of the unit quaternions (diffeomorphic
to S3) by the unit complex numbers (diffeomorphic to S1). Figure 24.1 illustrates how
the circle fibers fit together in R3; removing one point from S3 means that one of the
circles becomes a line, here the vertical axis.
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Figure 24.1 Some fibers of the Hopf fibration pictured in R3 ⊂ S3 (from [Fra07]).

The fibers of a smooth manifold bundle, being smooth manifolds, each have a tangent
bundle. These assemble to a vector bundle over E, as can be seen from the following
construction:

Definition 24.2.5. The vertical tangent bundle TvE of the manifold bundle p : E → X
is the smooth vector bundle on E given by ker(dp : TE → TX).

The inclusion Ex ↪→ E of a fiber is a smooth embedding, so its derivative is an
injective map of smooth vector bundles

TEx −→ TvE, (24.1)

This is an isomorphism onto TvE|Ex , by observing its composition with dp is zero and
doing a dimension count. That is, we identify TeEx with ker(dep).

Definition 24.2.6. A fiberwise orientation of a manifold bundle p : E → X is an
orientation of TvE.

In particular, through (24.1) this gives an orientation of each of the fibers of p.

24.2.2 Fiber integration

We start with some multilinear algebra. Linear maps ω : ΛpV → W are in natural
bijection with alternating multilinear maps w : V k →W . Given such a multilinear map
w and a vector v ∈ V , we form a new alternating multilinear map V k−1 →W as follows:

(v, . . . , vk−1) 7−→ w(v, v1, . . . , vk−1).



216 Chapter 24 Invariant forms in de Rham cohomology

The corresponding linear map Λp−1V → W is denoted ιvω, and called the interior
product.

As usual, this generalizes to a definition on manifolds. A p-form can be interpreted
as a section of the smooth vector bundle with fiber over m given by the vector space of
linear maps ΛpTmM → R. Given a section X of TM (also known as a vector field) we
can thus form an interior product

ιX : ΩpM −→ Ωp−1M.

Lemma 24.2.7. The interior product has the following properties:
· ιX+Y ω = ιXω + ιY ω and ιcXω = cιXω = ιx(cω).
· ιX(ω + ρ) = ιXω + ιXρ and ιX(cω) = cιXω/
· ιXιY ω = −ιY ιXω.
· ιX(ω ∧ ρ) = (ιXω) ∧ ρ+ (−1)|ω|ω ∧ (ιXρ).

Proof. These properties that may be verified pointwise, and then follow from the formula
given above.

Suppose p : E → X is a manifold bundle with m-dimensional fibers M with a fiberwise
orientation. Then from an (r +m)-form ω ∈ Ωr+m(E) we will produce an r-form p∗ω on
X by integrating over the fibers. We start with a lemma:

Lemma 24.2.8. For any v ∈ TxX, there is a smooth vector field Y on E such that for
all e ∈ Ex the image of dep(Y (e)) = v ∈ TxX.

Proof. It suffices to produce one locally in the base X, since we can always multiply the
vector field with η ◦ p for η : X → [0,∞) a bump function which takes the value 1 near x,
and extend by zero. Thus without loss of generality the manifold bundle is the trivial
one π2 : M ×X → X

There exists a smooth vector field Y ′ on X extending v by Problem 17.5.3, so we
need to produce the lift to E and we may take Y to be

(m,x) 7−→
(
x 7→ Y ′(x) ∈ TxX ⊂ TmM ⊕ TxX ∼= T(m,x)(M ×X)

)
.

We can only integrate with compact support, but did not assume the fibers of p are
compact. Hence we will need to impose the condition that supp(ω) ∩ Ex is a compact
subset of Ex for all x ∈ X. Such a differential form ω is said to be have vertically compact
support. This condition is preserved by d, so the vertically compact supported forms give
a sub-cochain complex Ω∗vc(E) ⊂ Ω∗(E) and associated cohomology groups H∗vc(E).

Definition 24.2.9. Given ω ∈ Ωm+r
vc (E), we define a r-form p∗ω on X by taking its

corresponding alternating multilinear form at x ∈ X to be

(TxX)r 3 (v1, . . . , vr) 7−→ p∗ω(v1, . . . , vr) :=
∫
Ex
ιYr · · · ιY1ω ∈ R

where Yi is a choice of vector field lifting vi as in Lemma 24.2.8.
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Of course, the reason we took r vectors is that ιYr · · · ιY1ω is a compactly-supported
m-form on Ex ∼= M and hence may be integrated. Note this requires an orientation,
which is why we assume p : E → X has a fiberwise orientation. Let us check this definition
makes sense:

Lemma 24.2.10. This is multilinear alternating, depends smoothly on x, and is inde-
pendent of the choice of Yi.

Proof. The first statement follows from Lemma 24.2.7 and the fact that integration is
linear. The second statement follows from the fact that if a compactly-supported smooth
function depends smoothly on some parameters, so does its integral.

For the third statement, it suffices to prove that if Z1, . . . , Zr is a collection of
alternative choices of lifts then the multilinear alternating forms

(TeEx)m 3 (w1, . . . , wm) 7−→ ω(Y1(e), . . . , Yr(e), w1, . . . , wm)
(TeEx)m 3 (w1, . . . , wm) 7−→ ω(Z1(e), . . . , Zr(e), w1, . . . , wm)

are equal. By induction and antisymmetry, it suffices to prove we may replace Y1(e) in
the first formula by Z1(e) without changing its value. By construction Y1(e) − Z1(e)
lies in ker(dep) = TeEx, so (w0, . . . , wm) = (Y1(e)− Z1(e), w1, . . . , wm) is a collection of
(m+ 1) vectors in the m-dimensional vector space TeEx. This means that the alternating
multilinear form

(w0, . . . , wm) 7−→ ω(w0, Y2(e), . . . , Yr(e), w1, . . . , wm)

must vanish on it, and hence we have

ω(Y1(e), Y2(e), . . . , Yr(e), w1, . . . , wm) = ω(Z1(e), Y2(e), . . . , Yr(e), w1, . . . , wm).

Thus, we get a well-defined r-form p∗ω ∈ Ωr(X). This is called the push-forward of
ω along p or fiber intergration of ω along p.

Lemma 24.2.11. Push-forward p∗ : Ωm+r
vc (E)→ Ωr(X) has the following properies:

· It is linear.
· It commutes with d when ∂M = ∅.

Proof. The first statement follows from Lemma 24.2.7 and the fact that integration
is linear. The second statement is proven analogously to Stokes’ theorem and left to
Problem 24.4.1.

In particular, it induces a map on cohomology

p∗ : Hm+r
vc (E) −→ Hr(X).

We need two further properties:

Lemma 24.2.12 (Push-pull formula). For ρ ∈ Ω∗vc(E) and ω ∈ Ω∗(X), p∗(ρ ∧ p∗ω) =
p∗(ρ) ∧ ω.
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Proof. Assume that ρ ∈ Ωp+r
vc (E) and ω ∈ Ωs(X). We simply compute the value of both

sides on v1, . . . , vr+s:

p∗(ρ ∧ p∗ω)(v1, . . . , vr+s) =
∫
Ex
ιYr+s · · · ιY1(ρ ∧ p∗ω)

=
∫
Ex

∑
σ∈Sr+s

(−1)ε(σ)(ιYσ(r) · · · ιYσ(1)ρ)(ιYσ(r+s) · · · ιYσ(r+1)ω)

=
∫
Ex

∑
σ∈Sr+s

(−1)ε(σ)(ιYσ(r) · · · ιYσ(1)ρ)(ω(vσ(r+1), . . . , vσ(r+s)))

=
∑

σ∈Sr+s

(−1)ε(σ)(p∗ρ)(vσ(1), . . . , vσ(r))ω(vσ(r+1), . . . , vσ(r+s))

= ((p∗ρ) ∧ ω)(v1, . . . , vr+s).

Here the second equality uses that unless we take s interior product with ω, the restriction
to Ex will vanish.

A map of manifold bundles is a commutative diagram

E E′

B B′

F

p p′

f

where F induces a diffeomorphism on fibers.

Lemma 24.2.13 (Naturality). Given an map of fiberwise oriented manifold bundles

E E′

B B′,

F

p p′

f

which preserves orientations of the fibers, we have f∗p′∗ = p∗F
∗.

24.3 Invariant forms compute de Rham cohomology

We now prove Theorem 24.1.8. Fixing a left-invariant top form ρ on G with
∫
G ρ = 1,

we can now make sense of the diagram

Ωr(G×X) Ωr(G×X) Ωr+k(G×X)

Ωr(X) Ωr(X)

α∗ π∗1ρ∧−

(π2)∗π∗2

ave

defining the bottom averaging map. As G is compact, all forms on G×X have vertically
compact support. Let us verify ave(ω) is left-invariant.
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Lemma 24.3.1. We have that l∗g ◦ ave = ave.

Proof. We start by moving l∗g past the first term (π2)∗ in

ave = (π2)∗ ◦ (π∗1ρ ∧ α∗π∗2(−)).

To do so, note there is a commutative diagram

G×X G×X

X X,

lg×lg

π2 π2

lg

so by naturality of pushforward we have l∗g(π2)∗ = (π2)∗(lg × lg)∗.
Since pullback commutes with wedge product, it suffices to prove that (lg × lg)∗ fixes

π∗1ρ and α∗π∗2ω. For the first, we have

(lg × lg)∗π∗1ρ = π∗1l
∗
gρ = π∗1ρ

because the following diagram commutes

G×X G×X

G G

lg×lg

π1 π1

lg

and ρ is left-invariant.
For the second, we have

(lg × lg)∗α∗π∗2ω = α∗(lg × id)∗π∗2ω = π∗2ω,

because the following diagrams commute

G×X G×X

G×X G×X

lg×lg

α α

lg×id

G×X G×X

X X.

lg×id

π2 π2

id

In particular, the right diagram says that (h, x) 7→ (gh, gx) 7→ (gh, h−1g−1gx) =
(gh, h−1(x)) is the same as (h, x) 7→ (h, h−1x) 7→ (gh, h−1x).

We claim that the inclusion map and averaging map

i : Ω∗(X)G −→ Ω∗(X) ave: Ω∗(X) −→ Ω∗(X)G

induce mutually inverse map on cohomology. In fact, in one direction this is already true
on the level of differential forms.

Lemma 24.3.2. ave ◦ i = id.
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Proof. If ω is G-invariant, then α∗π∗2ω = π∗2ω as the value at (g, x) of the left hand side
is the value at (g, x) of π∗2l∗g−1ω. Thus on the image of i, ave is given by

ω 7−→ (π2)∗(π∗1ρ ∧ π∗2ω) = (π2)∗(π∗1ρ) ∧ ω = ω,

by the push-pull formula and the assumption that
∫
G ρ = 1.

Lemma 24.3.3. On cohomology, i ◦ ave = id.

Proof. Fix a contractible open neighborhood U around e ∈ G. Using bump functions,
we may construct a k-form ρ in G with compact support in U and integral equal
to 1. As

∫
G− : Hk(G) → R is a isomorphism because G is compact and connected,

[ρ] = [ρ] ∈ Hk(G). The induced map on cohomology by ave is equal to

ω 7−→ (π2)∗(π∗1ρ ∧ α∗π∗2ω).

Since ρ is supported in U , this is equal to the map induced on cohomology by

Ωr(U ×X) Ωr(U ×X) Ωr+k
vc (U ×X)

Ωr(X) Ωr(X).

α|∗U×X π∗1ρ∧−

(π2)∗π∗2

Note the map ie : X → U ×X given by x 7→ (e, x) is a homotopy equivalence. Thus we
can verify α|∗U×X ◦ π∗2 = π∗2 by composing with i∗e:

i∗e ◦ α|∗U×X ◦ π∗2 = i∗e ◦ π∗2

because the diagram
U ×X U ×X

X X

α|U×X

ie

id

ie

commutes.
Thus map is given by

ω 7−→ (π2)∗(π∗1ρ ∧ π∗2ω) = (π2)∗(π∗1ρ) ∧ ω = ω,

by the same argument as in Lemma 24.3.2.

This completes the proof of Theorem 24.1.8.

24.4 Problems

Problem 24.4.1 (Stokes’ theorem for fiber integration). Adapt the proof of Stokes’
theorem in local coordinates to prove that

dp∗ω = p∗dω ± (∂p∗)ω|∂E .
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Problem 24.4.2 (Compact Lie groups acting on manifolds). Suppose that G is finite
group acting on a cochain complex C∗ of R-vector spaces (so it acts on each Ci by linear
maps and the differential Ci → Ci+1 is equivariant).

(a) Prove that G acts on H∗(C∗).
(b) Prove that the invariants (Ci)G assemble to a cochain complex (C∗)G.
(c) Prove that H∗(C∗)G ∼= H∗((C∗)G).

Now suppose that H is a compact Lie group acting smoothly on X, with identity
component H0. We saw that the inclusion Ω∗(X)H0 → Ω∗(X) induces an isomorphism
on cohomology.

(d) Prove that the action of H on Ω∗(X)H0 and H∗(X) factors over the group of
path-components π0(H).

(e) Prove that H∗(Ω∗(X)H) ∼= H∗(X)π0(H).

Problem 24.4.3 (Manifolds with transitive actions). Suppose that a compact connected
Lie group G acts smoothly and transitively on a manifold X of dimension k. Prove that
dimHp(X) ≤

(k
p

)
.
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Flows along vector fields

Even though we are now familiar with de Rham cohomology, a nagging question
remains: what is its geometric significance? For the remainder of these notes, our goal
is to connect Morse theory to de Rham cohomology. Today we start the technical
preparations. This material can be found in Section 1.4 of [Wal16].

25.1 Flows along vector fields

When we do Morse theory on a manifold M in the next chapter, we will deform subsets
of M by flowing them along the gradient vector field of a Morse function f : M → R (to
define the gradient we will need to pick a Riemannian metric). Thus, we have to define
flows along vector fields on manifolds. As usual, we take a known result on open subsets
of Rk and extend it to k-dimensional manifolds using charts.

25.1.1 Flows on Rk

The result we use is the existence and uniqueness theorem for solutions to ordinary
differential equations, cf. [Wal16, Theorem 1.4.1]:

Theorem 25.1.1. Let U ⊂ Rk be open, K ⊂ U be compact, and X a smooth vector field
on U . Then there exists an ε > 0, an open neighborhood U ′ ⊂ U of K, and a unique
smooth map g : U ′ × (−ε, ε)→ U such that

d

dt
g(x, t) = X (g(x, t)) and g(x, 0) = x.

Let us restate this using the following notion:

Definition 25.1.2. An integral curve for X through x, is a smooth map γ : (−ε, ε)→ U
such that γ(0) = x and d

dtγ(t) = X (γ(t)).

Theorem 25.1.1 says that integral curves exist, are unique, and depend smoothly on
the initial condition. For t ∈ (−ε, ε), let us denote by ψt the map x 7→ g(x, t). This is
called a flow, because it has the following properties:

Proposition 25.1.3. ψ0 = id and ψt(ψs(x)) = ψs+t(x) whenever both are defined.

222
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Proof. The first property is clear. The second property uses that g is unique. The map
t 7→ g(x, s+ t) at t = 0 is equal to g(x, s) and has derivative d

dtg(x, s+ t) = X (g(x, s+ t)).
That is, it has the properties uniquely defining g(x′, t) with x′ = g(x, s). Thus we see
that

ψs+t(x) = g(x, s+ t) = g(g(x, s), t) = ψt(ψs(x)).

You can recover X from the flow as the derivative of ψt with respect to t at t = 0.

25.1.2 Flows on manifolds

To extend these results to manifolds, we study the behavior of solutions to ordinary
differential equations under diffeomorphisms. Given a diffeomorphism φ : Rk ⊃ U →
V ⊂ Rk, we can push forward X along φ to get a vector field φ∗X on V . In fact, the
pushforward of vector fields is defined on arbitrary manifolds, and is given by using the
applying total derivative of the diffeomorphism to the vector field:

Definition 25.1.4. If ϕ : M → N is a diffeomorphism and X is a vector field on M ,
then the pushforward of X along ϕ is given by

ϕ∗X (p) := dϕ−1(p)ϕ
[
X (ϕ−1(p))

]
.

For open subsets of Rk the derivative is given by total derivative and we write

φ∗X = Dφ−1(x)φ
[
X (φ−1(x))

]
.

On the one hand we can apply Theorem 25.1.1 to φ∗X on V using the compact subset
K ′ := φ(K). The result is a solution g′ : U ′ × (−ε′, ε′)→ V to the differential equation

d

dt
g′(x′, t) = φ∗X (g′(x′, t)) and g′(x′, 0) = x′. (25.1)

On the other hand we can transport the solution g to V using φ:

g′′ : φ(U ′)× (−ε, ε) −→ V

(x′, t) 7−→ φ(g(φ−1(x′), t)).

I claim that this is a solution to (25.1). To prove this, observe it satisfies

g′′(x′, 0) = φ(g(φ−1(x′), 0)) = φ(φ−1(x′)) = x′,

and that we can use the chain rule to deduce that
d

dt
g′′(x′, t) = Dg(φ−1(x′),t)φ

[
d

dt
g(φ−1(x′), t)

]
= Dφ−1(g′′(x′,t))φ

[
X (g(φ−1(x′), t))

]
= (φ∗X )(g′′(x′, t)).

By uniqueness, any other solution of (25.1) has to coincide on g′′(x, t) on the intersection
of their domain of definition: hence g′′ = g′ on U ′ × (−min(ε, ε′),min(ε, ε′)).

We will use this result to extend the technique of flowing along vector fields to
manifolds.
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Theorem 25.1.5. Let M be a manifold and X be a vector field on M . Then there exists a
smooth map η : M → R>0 and a unique smooth map g : {(p, t) ∈M×R | |t| < η(p)} →M
such that

d

dt
g(p, t) = X (g(p, t)) and g(p, 0) = p. (25.2)

Proof. We can find a collection of charts φα : Rk ⊃ Uα → Vα ⊂M and compact subsets
Kα ⊂ Vα such that the Kα cover M .

Every point p ∈ M lies in some compact subset Kα of M . We can push forward
the restriction X|Vα to Uα along φ−1

α and apply Theorem 25.1.1 to the resulting vector
field (φ−1

α )∗X . This gives us a smooth map g̃α : U ′α × (−εα, εα) → Uα with U ′α an
open neighborhood of φ−1

α (Kα). As above, we get a solution g to (25.2) on an open
neighborhood of Kα × (−εα, εα), by setting its value on (p, t) ∈ Kα × (−εα, εα) to be

g(p, t) := φα(g̃α(φ−1
α (p), t)).

We must check that combining these local solutions to (25.2) give rise to a well-defined
smooth map. That is, if p ∈ Kα ∩Kβ, then we should have

φα(g̃α(φ−1
α (p), t)) = φ′β(g̃β((φ′β)−1(p), t))

as long as t is small enough so that both are defined. This is guaranteed by the previous
discussion applied to the diffeomorphism (φβ)−1 ◦ φα : φ−1

α (Vα ∩ Vβ)→ (φβ)−1(Vα ∩ Vβ);
pushing forward the vector field (φ−1

α )∗X along this diffeomorphism gives (φ−1
β )∗X .

The result is a solution to (25.2) defined on an open neighborhood V of M × {0} in
M ×R given by ⋃αKα× (−εα, εα). Such an open subset always contains one of the type
mentioned in the theorem.

Remark 25.1.6. This proof is one of the places where it is important that manifolds are
Hausdorff: on the line with doubled origin the flow along ∂

∂x exists but is not unique
(you have to decide which of the origins to go into). This Hausdorffness assumption is
hidden in the proof: it is used to see that Kα ∩Kβ is compact.

As in the local case, we can extract a flow out of g by setting ψt(p) = g(p, t) for
(p, t) ∈ V . This satisfies ψ0(p) = p and ψt(ψs(p)) = ψs+t(p) as long as both are defined,
and one can recover X from the flow by taking the derivative of ψt with respect to t at
t = 0.

What can we say about the domain of definition? By uniqueness any two solutions to
(25.2) agree on the overlap of their domains of definition, so by combining these we can
extend the domain. In particular, there is a solution with maximal domain of definition.
However, even when domain of definition is maximal, t 7→ g(p, t) might still only be
defined on some proper open interval (ap, bp) ⊂ R with ap < 0 and bp > 0:
Example 25.1.7. Let M = R \ 0 and X = ∂

∂x . Then the maximal domain of definition of
g is given by those (x, t) ∈ R× R such that t > x if x < 0, and t < x if x > 0.

However, this can only occur if the integral curve through p leaves all compact subsets
of M eventually. Lemma 1.4.3 of [Wal16] says:



25.2 Isotopy extension 225

Lemma 25.1.8. Suppose g has maximal domain and fix p ∈ M . Either bp = ∞
or the map g(p,−) : [0, bp) → M is proper. Similarly, either ap = −∞ or the map
g(p,−) : (ap, 0]→M is proper.

Corollary 25.1.9. Suppose M is compact. If a solution to (25.2) has maximal domain
then its domain is M × R.

Proof. As M is compact, no map [0, bp)→M or (ap, 0]→M is proper.

Remark 25.1.10. When M is compact, this corollary implies there is a one-to-one corre-
spondence between 1-parameter groups of diffeomorphisms and smooth vector fields.

Remark 25.1.11. There are of course other conditions under which the maximal domain
is all of M ×R, e.g. if X is compactly-supported or more generally, if X coincides outside
of a compact subset with a vector field Y whose maximal domain is M × R.

25.2 Isotopy extension

We will now give the first of several important applications of flows along vector
fields, a very important geometric tool called isotopy extension.

25.2.1 The isotopy extension theorem

It is based on the following idea: if you imagine your manifold M as being made from
a stretchy fabric, then you can use your finger to move one point p ∈M to some other
point p′ ∈ M and deform the rest of the manifold along to produce a diffeomorphism
M →M which moves p to p′.

In other words, imagining M as being made out of a stretchy fabric suggests that any
isotopy of embeddings ∗ →M (starting at the map with value p and ending at the map
with value p′) can be extended to an isotopy of diffeomorphisms M →M . An isotopy of
diffeomorphisms is also called an ambient isotopy, suggesting the following interpretation:
you do not just move the objects in question but also their surrounding environment.

The isotopy extension theorem says that an isotopy extends to an ambient isotopy
under mild assumptions.

Theorem 25.2.1 (Isotopy extension). Suppose that M and X smooth manifolds without
boundary, and that X is compact. Then any isotopy of embeddings et : X × [0, 1]→M
can be extended to an isotopy of diffeomorphisms, in the following sense: there exists
a family of diffeomorphisms φt : M × [0, 1] → M satisfying φ0 = id and φt(e0) = et.
Furthermore, each φt will be compactly-supported (that is, equal to the identity outside a
compact subset).

Proof. Here M is k-dimensional and X is `-dimensional. Let us define e : X × [0, 1]→
M ×R by e(p, t) = et(p). The smooth vector field on X× [0, 1] given by ∂

∂t can be pushed
forward along the embedding e to obtain a vector field X on e(X × [0, 1]) ⊂M × [0, 1].
Suppose we could extend this to a vector field X ′ on all of M × R. Then I claim that if
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R2

•

Figure 25.1 The end result of pushing the origin to the red point, depicted by its effect on
vertical lines in R2. The dashed line gives the boundary of the support.

we flow along X ′ for time t with initial condition (e0(p), 0), we end up at (et(p), t). To
see this, we must prove that

t 7−→ (et(p), t)

is an integral curve for X ′. To see this, takes its derivative with respect to t and apply
the chain rule

d

dt
(et(p), t) = d(p,t)e

[
d

dt
(t 7→ (p, t))

]
= e∗

[
∂

∂t
(p, t)

]
= X ′(e(p, t)).

In other words, flowing e0 with image in M × {0} along X ′ for time t produces et
wth image in M ×{t}. We can try to produce φt by flowing the identity map of M ×{0}
along X for time t. There are two problems:

(i) the flow may not exist,
(ii) it is not necessarily the case that the flow sends M × {0} to M × {t}.

Problem (ii) is solved by extending X not just to any smooth vector field X ′ on
M × R, but one that projects to ∂

∂t under dπ for π : M × R → R. If so, we get the
differential equation

d

dt
(π ◦ ψt(p, s)) = dπ ◦ X ′(ψt(p, s)) = ∂

∂t
,

and the initial condition π ◦ ψ0(p, s) = s guarantees that π ◦ ψt(p, s) = s+ t.
If we make sure that X ′ is equal to ∂

∂t outside of a compact set, this will solve problem
(i). It guarantees that the flow exists, because X ′ coincides outside of a compact set with
a vector field whose maximal domain of solution is all of M × R× R.
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Having imposed theses conditions, we can thus prove the theorem by taking

φ : M × [0, 1] −→M × [0, 1]
(p, t) 7−→ ψt(p, 0),

or in other words, φt = ψt(p, 0).
So it remains to construct an extension X ′ with the desired properties. Firstly, it

suffices to construct a smooth vector field X ′ which
(a) coincides with X on e(X × [0, 1]),
(b) coincides with ∂

∂t outside a compact subset of M × R,

(c) satisfies the property dπ ◦ X ′ is a positive multiple of ∂
∂t everywhere.

We may then afterwards modify X ′ by scaling it with smooth function that is 1 on X×R,
to get that dπ ◦ X ′ = ∂

∂t on all of M × R.
Since X is compact, we may find a finite collection of charts φi : Rk+1 ⊃ Ui → Vi ⊂

M×R covering the image of e, satisfying φ−1
i (Vi∩e(X×[0, 1])) = Ui∩(R`−1×[0,∞)×{0})

and πk+1 ◦ φi = πk+1. Let X ′i be the vector field on Vi given as follows:
Step (i): first extend (φi)∗( ∂∂t) on Ui ∩ (R`−1 × [0,∞)× {0}) to Ui ∩ (R` × {0}),

Step (ii): then extend it in constant manner to the remaining (k − m) coordinate
directions of Ui,

Step (iii): apply (φ−1
i )∗.

This extends X|Vi , so in particular has the property that dπ ◦ X ′i ∂∂t on Vi ∩ e(X × [0, 1]).
Hence by possibly shrinking Vi to a smaller open neighborhood of Vi ∩ e(X × [0, 1]), we
may assume that π∗(X ′i ) is a positive multiple of ∂

∂t .
Let V0 be an open subset of M×R satisfying V0∩e(X× [0, 1]) = ∅ and V0∪

⋃k
i=1 Vi =

M × R, and let ηi be smooth partition of unity subordinate to this open cover. The
desired vector field is

X ′ := η0 ·
∂

∂t
+

k∑
i=1

ηi · X ′i .

By construction this extends X and the condition that dπ ◦ X ′ is a multiple of ∂
∂t by a

positive smooth function is preserved by taking convex linear combinations such as those
that appear when using partitions of unity.

25.2.2 Transitivity of diffeomorphisms

We have previously asserted that there exists a diffeomorphism of Rk mapping the
origin to any specified point x ∈ Rk. Let us use isotopy extension to generalize this to all
connected manifolds:

Corollary 25.2.2. Suppose that M is a k-dimensional connected manifold and p, p′ ∈M ,
then there exists a compactly-supported diffeomorphism ϕ : M →M which is isotopic to
the identity such that ϕ(p) = ϕ(p′).
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An embedding of R into R3 given by knot X cen-
tered at the origin for t = 0 moving rightwards to
∞ as t increases.

Figure 25.2 A family of embeddings to which isotopy extension does not apply, because at t = 0
and t =∞ the complements are not diffeomorphic. It does not satisfy the assumption that X is
compact.

Proof. Since M is connected, there exists a path γ from p to p′. Defining

e : ∗ ×[0, 1] −→M

(∗, t) 7−→ γ(t),

this can be interpreted as an isotopy of embeddings from e0 to e1. Applying the isotopy
extension theorem to e, we find an isotopy φt : M × [0, 1] → M such that φ0 = id and
φt ◦ e0 = et. Then φ1 is the desired diffeomorphism.

Example 25.2.3. Engulfing theorems give an answer to the following question:
If X ⊂ M is a submanifold and U ⊂ M is an open subset, under which
conditions does there exist a diffeomorphism h : M →M so that X ⊂ h(U)?

We will answer this question when M is path-connected of dimension k ≥ 2, X is a finite
set of points, and U is an open ball (i.e. diffeomorphic to Rk).

Recall that the configuration space of r ordered points in M is given by

Confr(M) := {(m1, . . . ,mr) | mi 6= mj if i 6= j} ⊂M r.

In other words, it is the complement in M r of the thick diagonal ∆ = {(m1, . . . ,mr) |
mi = mj for some i 6= j}. In Problem 13.4.6 we proved that if M is path-connected of
dimension ≥ 2 then so is Confr(M).

Now suppose we are given a collection of distinct points p1, . . . , pr in M . This gives
a configuration p ∈ Confr(M). We can connect this by a smooth path γ from p to
q ∈ Confr(U). Consider γ as an isotopy of embeddings {1, . . . , r} ↪→ M , we can apply
isotopy extension to find a compactly-supported diffeomorphism h isotopic to the identity
such that {p1, . . . , pr} ⊂ h(U). In particular, this implies that the diffeomorphisms of M
act r-transitively for all r ≥ 2.

25.2.3 Knot complements

It follows from Corollary 25.2.2 that M \p and M \p′ are diffeomorphic; the restriction
of ϕ gives this diffeomorphism. This can be generalized as follows.

Recall that a knot is an embedding e : S1 → R3 up to isotopy. One might think of
trying to distinguish a knot by its complement R3 \ e(S1). However, it is not obviously
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clear this is well-defined, because its diffeomorphism type may depend on the choice of e
within the isotopy class. However, the isotopy extension theorem tells us that for any
two representatives e, e′ : S1 → R3 of a knot, there exists a diffeomorphism ϕ : R3 → R3

such that ϕ ◦ e = e′. This restrict to a diffeomorphism

ϕ|R3\e(S1) : R3 \ e(S1) −→ R3 \ e′(S1).

Thus we conclude that the complements are diffeomorphic.

25.3 The Ehresmann fibration theorem

In Section 24.2.1 we discussed manifold bundles.

Theorem 25.3.1 (Ehresmann fibration theorem). Suppose that X is connected, then a
surjective proper submersion p : E → X is a manifold bundle.

Proof. It remains to check that p : E → X is locally trivial. That is, we need to find for
each point x ∈ X a local trivialization: an open neighborhood U of x and a commutative
diagram

p−1(U) U ×M

U U

∼=

p π1

with horizontal maps diffeomorphisms. By restricting to a chart in X, we thus may
assume without loss of generality that X = Rk and x is the origin.

By induction over k, it suffices to prove that a proper submersion p : E → Rk whose
restriction to Rk−1×{0} has a local trivialization near the origin, has a local trivialization
near the origin. To do so, it suffices to find an open neighborhood U ⊂ Rk−1 of the
origin, an ε > 0, and a commutative diagram

p−1(U)× (−ε, ε) p−1(U × (−ε, ε))

U × (−ε, ε) U × (−ε, ε)

∼=
G

p×id p

with horizontal maps diffeomorphisms.
To do so, we use a vector field X on E such that dp◦X = ∂

∂xk
. Such a vector field can

be constructed locally in E using charts provided by the submersion theorem, Lemma
6.3.3, and these can be combined using a partition of unity as in the proof of Theorem
25.2.1. Now we apply Theorem 25.1.5 to X ; the open subset {(p, t) ∈M ×R | |t| < η(p)}
contains an open subset of the form U × (−ε, ε) and the map G is given by

p−1(U)× (−ε, ε) −→ p−1(U × (−ε, ε))
(p, t) 7−→ g(p, t).

As before, the uniqueness clause for solutions of ODE’s guarantees that this is a dif-
feomorphism and the fact that dp ◦ X = ∂

∂xk
guarantees that its composition with p is

(p× id).
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Remark 25.3.2. The assumption that X is connected is only used to guarantee that the
fibers of p are all diffeomorphic.

Using Theorem 7.3.1, this implies the following:

Corollary 25.3.3. If a compact Lie group G acts freely and smoothly on M , then the
quotient map M →M/G is a manifold bundle with fibers diffeomorphic to G.

25.4 Problems

Problem 25.4.1. Let G be a compact connected Lie group.
(a) Show that there is an isomorphism between the tangent space TeG and the vector

space left-invariant vector fields on G.
(b) For X ∈ TeG, let ϕXt be the flow generated by the left-invariant vector field

corresponding to X. Prove that its maximal domain is R.

Problem 25.4.2 (Diffeomorphisms of the 2-disk). In this problem we give the argument
that every diffeomorphism f on R2 that is the identity outside a compact subset of
int([0, 1]2) is isotopic to the identity. This is a famous result of Smale [Sma59].

(a) Prove that every diffeomorphism g of R that is the identity outside a compact
subset of int([0, 1]) is isotopic to the identity. (Hint: it is just a strictly increasing
function.)

Consider the vector field ∂
∂x on R2. We can push it forward along f to get a vector field

X = f∗
∂
∂x .

(b) Prove that X is ∂
∂x outside a compact subset of int([0, 1]). Conclude that it has a

flow φXt with maximal domain R2 × R.
(c) Show we can recover f within the square [0, 1]2 from this as follows: for (x, t) ∈

[0, 1]2 we have
f(t, y) = φXt (0, y).

We say a smooth vector field Y on R2 is nice if
· it is equal to ∂

∂x outside a compact subset of int([0, 1]2), and
· it is everywhere non-zero.

The Poincaré–Bendixson theorem in dynamics implies that a nice vector field Y has a
flow with the following property: there exists a smooth function τ : [0, 1]2 → R≥0 such
that φYτ(x,y)(x, y) ∈ {1} × [0, 1] for any (x, y) ∈ int([0, 1]2). You may use this without
proof.

(d) Use uniqueness of flows to prove that for nice Y, the map

[0, 1]2 −→ [0, 1]2

(t, y) 7−→ φYt·τ(0,y)(0, y)

is a bijection which is the identity on {0} × [0, 1] ∪ [0, 1]× {0, 1}.
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This map is however not the identity on the side {1} × [0, 1] of the square. This can
be fixed by invoking part (a). If we do so, we obtain that every smooth path of nice
vector fields Y gives an isotopy of diffeomorphisms of R2 that are the identity outside a
compact subset of int([0, 1]2). You may use this without proof.

(e) Any nice vector field Y can be considered as a smooth map Y : R2 → C \ {0} that
takes the value 1 outside a compact subset of int([0, 1]). You may use without
proof that any such Y is of the form exp(Y ) with Y : R2 → {z | Re(z) > 0} ⊂ C
smooth and taking the 0 outside a compact subset of int([0, 1]2). Prove that X is
homotopic to ∂

∂x through nice vector fields Y.

(f) Conclude that f is isotopic to the identity through diffeomorphisms that are the
identity outside a compact subset of int([0, 1]2).

[0, 1]2

y

τ(0, y)
•

t

Figure 25.3 The red line is the flow-line along Y starting at (0, y), and the τ(y) is the first and
only time where this flowline hits the side {1} × [0, 1] of [0, 1]2.

Remark 25.4.3. The result proved here is equivalent to the statement that the topological
group Diff∂(D2) is path-connected. Smale proved it is in fact contractible in [Sma59].
For other dimensions, Diff∂(Dd) path-connected when d ≤ 3 and not path-connected in
general for d ≥ 5. The case d = 4 is an open problem.

Problem 25.4.4 (On Ehresmann’s fibration theorem). Give a counterexample to the
statement that any surjective submersion p : E → X with connected X is a manifold
bundle. (That is, we drop the assumption that p is proper from Ehresmann’s fibration
theorem.)

Problem 25.4.5 (Examples of manifold bundles).
(a) Suppose that G is a compact Lie group which acts smoothly and freely on a

smooth manifold M and H ⊂ G is a closed Lie subgroup. Prove that there is a
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unique smooth map p which fits in a commutative diagram

M M/G

M/H

qG

qH p

with qG and qH the quotient maps.
(b) Prove that p is a surjective submersion. Use Ehresmann’s fibration theorem to

conclude it is a manifold bundle with fibers G/H.

Problem 25.4.6 (Cohomology of certain sphere bundles).
(a) Prove that if O(n) acts acts smoothly and freely on a smooth manifold M , then

M/O(n− 1)→M/O(n) is a smooth manifold bundle with fiber Sn−1.
(b) Use Problem 23.4.5 to prove that ifM is also assumed compact, thenH∗(M/O(n))→

H∗(M/O(n− 1)) is an isomorphism for ∗ < n− 1 and injective for ∗ = n− 1.
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First fundamental theorem of Morse theory

In this chapter, we discuss that part of Morse theory which does not involve critical
points. We define Morse functions, prove they exist, and show that if [a, b] ⊂ R contains
no critical values of f , then f−1([a, b]) is diffeomorphic to f−1(a)× [a, b]. This can be
found in Section 1.7 of [GP10], Section 5.1 of [Wal16], and Section 3 of [Mil63].

26.1 Morse functions

Recall that for a smooth function f : M → R, a point p ∈ M so that dpf is not
surjective is called a critical point. Given a critical point and local coordinates (x1, . . . , xk),
one can define the Hessian. For simplicity, suppose that p is the origin in these local
coordinates, then we have a (k × k)-matrix with (i, j)th entry given by

Hess0(f)ij := ∂2f

∂xi∂xj
(0).

Remark 26.1.1. By Taylor’s theorem, in these local coordinates f is near the origin given
by

f(x) = f(0) + 1
2

k∑
i,j=1

∂2f

∂xi∂xj
(0)xixj +O(x3).

We say that p is a non-degenerate critical point if the Hessian matrix as described
above is invertible. Though the Hessian itself depends on a choice of coordinates, that it
is invertible does not, by the following lemma which is an easy consequence of the chain
rule:

Lemma 26.1.2. Suppose φ : Rk ⊃ U → U ′ ⊂ Rk is a diffeomorphism such that φ(0) = 0.
Then the origin is a non-degenerate critical point f : U ′ → R if and only if it is a
non-degenerate critical point of f ◦ φ.

Definition 26.1.3. A smooth function f : M → R is a Morse function if all its critical
points are non-degenerate.

Example 26.1.4. It follows from the expression in Remark 26.1.1 that non-degenerate
critical points are isolated. In particular, a Morse function on a compact manifold only
has finitely many critical points.

233
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26.1.1 Existence of Morse functions

Morse functions are generic among smooth maps f : M → R, in the sense of Definition
11.3.1. This follows from the following theorem, which depends on a choice of embedding
e : M ↪→ RN (this exists by Theorem 12.1.6). Let e1, . . . , eN : M → R denote the
coordinates of e.

Theorem 26.1.5. For a dense set of (a1, . . . , aN ) ∈ RN , the smooth map

fa : M −→ R
p 7−→ f(p) + a1e1(p) + · · ·+ aNeN (p)

is a Morse function.

Proof. We shall denote the map in the statement of the theorem as fa.
We first consider the local situation; suppose U ⊂ Rk is an open subset and g : U → R

is a smooth function. Then we claim that for outside of a set of b ∈ Rk of measure zero,
the map

gb : U −→ R
(x1, . . . , xk) 7−→ g(x1, . . . , xk) + b1x1 + · · ·+ bkxk

is a Morse function.
To do so, we start with the observation that p is a critical point of gb if and only if

Dpg = −b. Since we working on Rk, the Hessian is also well-defined at points which are
not critical point. Thus it makes sense to say that g and gb have the same Hessians; this
is true because ga is obtained by adding a linear perturbation to g. We next consider the
function

G : U −→ Rk

(x1, . . . , xk) 7−→
(
∂g

∂x1
(x1, . . . , xk), . . . ,

∂g

∂xk
(x1, . . . , xk)

)
because −b is a critical value of G if and only if the Hessian of g (or equivalently gb) at p
is non-degenerate. Thus gb is Morse if and only if −b is a regular value of G. By Sard’s
theorem, Theorem 11.3.4, these critical values have measure zero.

Having established this local statement, we use a prove the global one. To do so, we use
Problem 9.3.3 to find a countable open cover {Uα} of M such that for each Uα there exist
k integers i1, . . . , ik in {1, . . . , N} such that coordinate functions ei1 , . . . , eik : Uα → R
give local coordinates on Uα. We can use ei1 , . . . , eik as local coordinates xi1 , . . . , xik on
Uα. Then for values cjk+1 , . . . , cjN ∈ R corresponding to the complementary coordinates
we consider the smooth function

f c : Uα −→ R
(xi1 , . . . , xi1) 7−→ f(xi1 , . . . , xik) + cjk+1 ejk+1(xi1 , . . . , xik) + · · ·+ cjN ejN (xi1 , . . . , xik).
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By the above local argument, the set of b ∈ Rk such that (f c)b is not Morse, has measure
zero. By Lemma 11.4.1 the set of (b1, . . . , bk, ck+1, . . . , cN ) ∈ RN such that (f c)b is not
Morse, also has measure zero.

Thus, for each each α there is a measure zero set of a = (b, c) ∈ RN so that fa is
not Morse on Uα. Since a countable union of measure zero subset still has measure zero,
there is a dense set of a ∈ RN so that fa is Morse on all of M .

26.2 The first fundamental theorem of Morse theory

Let M be a manifold without boundary and f : M → R be a Morse function. We
shall study M by studying the (sub)level sets

M≤a := f−1((−∞, a]) and Ma := f−1({a}).

By the submersion theorem, if a is a regular value, M≤a ⊂ M is a codimension zero
submanifold with boundary ∂M≤a = Ma given by a level set.

26.2.1 Gradients

Given a smooth function f : Rk → R, its gradient is the vector field

∇f =


∂f
∂x1...
∂f
∂xk

 .
That is, the component in the direction of the standard basis vector ei is given by ∂f

∂xi
.

Using the standard Riemannian metric, we can identify each basis vector of Rk with a
basis vector of its dual (Rk)∗: ei corresponds to the linear functional 〈ei,−〉. In other
words, the Riemannian metric provides an isomorphism of the tangent spaces to points in
Rk with the corresponding cotangent spaces. From a vector field, a section of the tangent
bundle, we thus get a 1-form, a section of the cotangent bundle. In this particular case,
the Riemannian metric sends ei to dxi, and we see that ∇f gets sent to

df =
k∑
i=1

∂f

∂xi
dxi.

This discussion extends to manifolds with a Riemannian metric g. This Riemannian
metric is given by a smoothly varying non-degenerate bilinear form on the tangent space
Tp(M),

Tp(M)× Tp(M) 3 (v, w) 7−→ g(v, w) ∈ R

and thus provides an isomorphism of vector bundles TM → T ∗M

Tp(M) ∈ v 7−→ g(v,−) ∈ T ∗p (M).

In particular, it sends sections of TM to sections of T ∗M and vice versa: every vector
field corresponds to a unique 1-form.
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Given a smooth function f : M → R, its derivative is a 1-form df ∈ Ω1(M). The
Riemannian metric sends this to a vector field, which we call the gradient of f and denote
by ∇f . This notation and terminology is not ideal, as the gradient depends on the choice
of Riemannian metric.

26.2.2 Gradient flow without critical points

Suppose that M is compact, then using the techniques of Chapter 25 we can flow
along ∇f . The result is a smooth family of diffeomorphisms φt : M → M for t ∈ R,
satisfying φ0 = id, φs ◦ φt = φs+t and d

dtφt|t=0 = ∇f .
To understand this flow, let us see how f varies over an integral curve φt(p). Let

|| − ||2 denote the norm on T ∗M coming from the Riemannian metric, then we compute
that

d

dt
f(φt(p))|t=0 = dpf(∂φt(p)∂t |t=0)

= dpf(∇f(p))
= ||dpf ||2.

Since φt is a flow, this implies that d
dtf(φt(p))|t=s = ||dφs(p)f ||2. We conclude that:

Lemma 26.2.1. f(φt(p)) is non-decreasing with t and strictly increasing with t when
φt(p) is not a critical point.

We shall use this to study the subset

M[a,b] := f−1([a, b]),

for a < b regular values. This is a codimension zero submanifold of M with boundary
Ma tMb. Let us take p ∈M[a,b] and consider the integral curve φt(p). When does this
leave M[a,b]?

Lemma 26.2.2. Fix p ∈ Ma. Let (0, c) for c > 0 be the maximal interval such that
φt(p) ∈ int(M[a,b]) for t ∈ (0, c). Then if c is finite, φc(p) ∈Mb, and if c =∞ then there
are ti →∞ such that φti(p) converges to a critical point.

Proof. Suppose that c is finite. Then we know that φc(p) is defined but not in int(M[a,b])
(or we could extend the interval (0, c)). Thus it is either in Ma or Mb, and since a is
not a critical value, f(φt(p)) is strictly increasing with t at t = 0. It is non-decreasing
afterwards, so we must have that φc(p) ∈Mb.

If c =∞, then since f(φt(p)) increases at t→∞ but remains strictly smaller than b,∫ N

0
||dφt(p)f ||

2dt =
∫ N

0

d

dt
f(φt(p))dt = f(φN (p))− f(φ0(p))

converges as N → ∞. Thus ||dφt(p)f || must decrease to 0 as t increases. This means
that φt(p) will eventually be contained in any open neighborhood of the critical points
in M[a,b]. Since the M[a,b] is compact, this means that we can find a subsequence which
converges to a critical point.
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We are interested in the case that there is no critical point in M[a,b], and thus the
second case in the above lemma can’t occur. The same argument then tells us that when
we start any p ∈M[a,b], there is some maximal finite interval (c′, c) with c′ < c such that
φt(p) ∈ int(M[a,b]) for t ∈ (c′, c) and φc′(p) ∈Ma and φc(p) ∈Mb.

Ma
Mb

M

f

R •
a

•
b

M[a,b]

Figure 26.1 An example of a proper map f : M → R such that M[a,b] contains no critical point.
note that M(−∞,a] contains 7 critical points.

Theorem 26.2.3 (First fundamental theorem of Morse theory). If the interval [a, b]
contains no critical values, then there is a diffeomorphism M[a,b] → Ma × [0, 1] which
restricts to the map Ma →Ma × {0} given by p 7→ (p, 0).

Proof. By the previous lemma, for each p ∈Ma there is a c(p) > 0 such that φc(p)(p) ∈Mb.
This is unique because f(φt(p)) is non-decreasing and strictly increases at t = c(p). By
smooth dependence of solutions of ordinary differential equations on initial conditions,
c : Ma → (0,∞) is smooth. Now consider the map

Ψ: Ma × [0, 1] −→M[a,b]

(p, t) 7−→ φtc(p)(p).

In other words, it is the composition of the diffeomorphism (p, t) 7→ (p, tc(p)) between
Ma×[0, 1] and N := {(p, t) ∈Ma×R | 0 ≤ t ≤ c(p)} and the smooth map φ : Ma×R→M .

It has an inverse given as follows: given by p ∈M[a,b] take (c′, c) as above and define
Φ(p) := (φc′(p),−c′). This is smooth using the smooth dependence of solutions of ODE’s
on initial conditions and smoothness of φ. It is an inverse by uniqueness of solutions to
ODE’s.

Corollary 26.2.4. If the interval [a, b] contains no critical values, then M≤a is diffeo-
morphic to M≤b.

Proof. M≤b is obtained from M≤a by gluing on M[a,b]. Recall that the existence of
collars tells us that M≤a contains a neighborhood C of Ma with a diffeomorphism
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Ma × [−1, 0]→ C. Since M[a,b] ∼= Ma × [0, 1] by the previous theorem, we see that M≤b
is diffeomorphic to M≤a via

M≤b −→M≤a

p 7−→


c(q, η(t)) if p = c(q, t) ∈ C,
c(q, η(t)) if p = Ψ(q, t) ∈M[a,b],
p if p ∈M≤a \ C.

with η : [−1, 1]→ [−1, 0] a diffeomorphism which is the identity near −1.

26.3 Reeb’s theorem

If M is compact, then any smooth f : M → R has to have a minimum and a maximum.
Thus any Morse function on M has at least two critical points. What happens if it has
exactly two critical points?

Theorem 26.3.1 (Reeb). If a compact k-dimensional manifold M admits a Morse
function with exactly two critical points, then M is homeomorphic to Sk.

The proof uses the Morse lemma, Lemma 27.1.1, which we will prove in the next
chapter. In particular, this says that if p is a minimum there are coordinates x1, . . . , xk
around p in which p is the origin and f is given by f(x) = f(p) +∑k

i=1 x
2
i . Similarly, if p

is a maximum there are such coordinates in which f is given by f(x) = f(p)−∑k
i=1 x

2
i .

Proof. Let p be such that f(p) = a is the minimum and q be such that f(q) = b is
the maximum. By the Morse lemma, we can find an ε > 0 small enough so that the
following is true: M≤a+ε is diffeomorphic (using the coordinates x1, . . . , xk) to a little disk
Dk
ε (a) = {(x1, . . . , xk) |

∑k
i=1 x

2
i ≤ ε}, and similarly M≥b−ε is diffeomorphic to a little

disk Dk
ε . Hence their boundaries Ma+ε and Mb+ε are diffeomorphic to (k − 1)-spheres.

The region M[a+ε,b−ε] contains no critical points, so is diffeomorphic to Ma+ε × [0, 1].
Thus M is obtained by gluing a cylinder M[a+ε,b−ε] = Sk−1 × [0, 1] to two disks Dk

given by M≤a+ε and M≥b−ε (using the technique of Problem 13.4.5). The diffeomorphism
produced by Theorem 26.2.3 is such that

Sk−1 × {0} = Ma+ε × {0} −→Ma+ε = ∂M≤a+ε = Sk−1

is the identity, so doing this first gluing we see that there are diffeomorphisms

σ : M≤b−ε ∼= Dk ∪ (Sk−1 × [0, 1]) ∼= Dk.

This is a particular instance of Corollary 26.2.4.
However, we have no control over the diffeomorphism

g : Sk−1 × {1} = Ma+ε × {1} −→Mb−ε = ∂M≥b−ε = Sk−1.

The best we can do is the following: by Proposition 26.3.2 there exists a homeomorphism
G : Dk → Dk extending this diffeomorphism. That is, we can find a homeomorphism

ρ : M≥b−ε −→ Dk,
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which is compatible with σ.
Then we can write a homeomorphism M → Sk as follows:

M = M≤b−ε ∪M≥b−ε −→ Sk = Dk ∪Dk

p 7−→
{
σ(p) if p ∈M≤b−ε,
ρ(p) if p ∈M≥b−ε.

(26.1)

Proposition 26.3.2 (Alexander trick). Every homeomorphism (so in particular diffeo-
morphism) g : Sk−1 → Sk−1 extends to a homeomorphism G : Dk → Dk.

Proof. In radial coordinates, it is given by G(r, θ) := (r, g(θ)).

Remark 26.3.3. For later use, we point out that if g : Sk−1 → Sk−1 extended to Dk as a
diffeomorphism, then the formula (26.1) shows that M is diffeomorphic to Sk.

26.4 Problems

Problem 26.4.1 (Morse functions are stable).
(a) Suppose that f : Rk ⊃ U → R is a smooth function. Prove that f is Morse if and

only if

det(Hessxf)2 +
k∑
i=1

(
∂f

∂xi
(x)
)2

> 0

for all x ∈ U .
(b) Prove that if M is compact, the class of Morse functions on M is stable, in the

sense of Definition 11.2.1.



Chapter 27

Second fundamental theorem of Morse theory

In this chapter we discuss the part of Morse theory which does involve critical points
and show if f−1([a, b]) contains a single critical point, then f−1((−∞, b]) is obtained by
attaching a single handle to f−1((−∞, a]). This can be found in Section 5.1 of [Wal16]
and Chapter I.§3 of [Mil63].
Remark 27.0.1. Throughout this chapter we shall ignore the issue of “smoothing corners.”
If you want to understand these technical details, see Section 2.6 of [Wal16].

27.1 The second fundamental theorem of Morse theory

Let M be a compact manifold and f : M → R be a Morse function. We recall some
notation from the previous chapter:

Ma := f−1({a}), M≤a := f−1((−∞, a]) and M[a,b] := f−1([a, b]).

In the previous chapter we saw that if there is no critical value in [a, b]—or equivalently
no critical point in M[a,b]—then there is a diffeomorphism M[a,b] → Ma × [a, b] that is
the identity on Ma.

27.1.1 The Morse lemma

What happens when there is a unique non-degenerate critical point p in M[a,b]?
Pick a chart φ : Rk ⊃ U → V ⊂ M such that φ(0) = p, and in terms of coordinates
(x1, . . . , xk) ∈ U , f is given by

f(x1, . . . , xk) = c−
λ∑
i=1

x2
i +

k∑
i=λ+1

x2
i .

This is possible by the Morse lemma, and we provide a proof below that is different from
the one in [GP10]:

Lemma 27.1.1. If a critical point p ∈ M of f : M → R is non-degenerate then there
exists a chart as above.

240
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Proof. Without loss of generality we may assume that f(p) = 0, and fix a chart φ : Rk ⊃
U → V ⊂ M such that φ(0) = p. Let x = (x1, . . . , xk) denote the coordinates near p
coming from this chart, defined on U ⊂ Rk.

Let Sym(Rk) denote the space of symmetric (k × k)-matrices over R; we give this
a smooth structure by using the entries to identify it with a Euclidean space. The
multi-variable version of Taylor approximation says that there is a smooth map Q : W →
Sym(Rk) such that f(x) = 〈Q(x)x, x〉, which satisfies Q(0) = Hess0(f). We first want
to change coordinates from x to y so that Q is independent of y. To do this, make the
ansatz that y = A(x)x for a smooth map A : U → GLk(R). In that case we need to solve
the equation

〈Q(0)A(x)x,A(x)x〉 = 〈Q(x)x, x〉,
or equivalently At(x)Q(0)A(x) = Q(x). We then consider the smooth map G : Sym(Rk)×
U → Sym(Rk) given by

(B, x) 7→
(

id + 1
2Q(0)−1B

)t
Q(0)

(
id + 1

2Q(0)−1B

)
−Q(x).

This is equal to 0 at (B, x) = (0, 0) and its derivative with respect to B at B = 0 is
the identity:

∂

∂B
G(B, 0) =

(1
2Q(0)−1

)t
Q(0) +Q(0)

(1
2Q(0)−1

)
= 1

2id + 1
2id = id.

By the implicit function theorem, there exists a neighborhood U ′ of 0 in U and a
smooth map β : U → Sym(Rk) such that G(β(x), x) = 0. Taking

A(x) := id + 1
2Q(0)−1β(x)

we obtain that 〈Q(0)A(x)x,A(x)x〉 = 〈Q(x)x, x〉. So we shall use coordinates y = A(x)x.
Since x 7→ A(x)x has derivative id at 0, by the inverse function theorem there exists
some smaller neighborhood U ′′ on which this map is a diffeomorphism.

Now that in y-coordinates we have that f(y) = 〈Q(0)y, y〉, it is a matter finding a
matrix A such that AtQ(0)A diagonal with entries ±1 and using the coordinates z = Ay
instead. This is possible by Gram-Schmidt.

27.1.2 A single critical point

Let f and p be as before, and pick coordinates as in the Morse lemma (Lemma 27.1.1)
around it.

Let ε > 0 be small enough such that U contains the ball B√2ε(0) and a < c− 2ε <
c+2ε < b. Then we shall describe the difference between f−1([a, c−ε]) and f−1([a, c+ε]),
at first up to homotopy and then as a manifold. To do so, define the subset C ⊂ B√2ε(0)
by {(x1, . . . , xλ, 0, . . . , 0) | ∑λ

i=1 x
2
i ≤ ε}, where C stands for core. This is of course a

λ-dimensional disk, whose boundary (λ− 1)-sphere lies in f−1(c− ε).
The description of M[a,c+ε] up to homotopy equivalence is as follows, and along the

way we will in fact obtain a description up to diffeomorphism.
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Proposition 27.1.2. M[a,c+ε] is homotopy equivalent, as a topological space, to the union
M[a,c−ε] ∪ C.

We shall use the notion of a deformation retraction: for A ⊂ X closed, a deformation
retraction of X onto A is a homotopy H : X × [0, 1]→ X such that H(x, 1) ∈ A for all
x ∈ X and H(a, t) = a for all a ∈ A and t ∈ [0, 1]. If there is a deformation retraction of
X onto A, then i : A ↪→ X is a homotopy equivalence; its homotopy inverse is H(−, 1).

To prove the proposition, we shall find a neighborhood V of M[a,c−ε] ∪ C which is a
deformation retract of M[a,c+ε] and itself deformation retracts onto M[a,c−ε] ∪ C:

M[a,c−ε] ∪ C
'
↪→ V

'
↪→M[a,c+ε].

The idea is that V is obtained by adding a little tube around C to M[a,c−ε] into U , and
then use a flow argument to deform M[a,c+ε] onto V .

To produce V , we modify f to another function F with some special properties. We
will only change f on the subset M[c−ε,c+ε], using a smooth function φ : [0,∞)→ [0,∞)
satisfying

(i) φ(0) ∈ (ε, 2ε),
(ii) φ(t) = φ(0) for t near 0,
(iii) φ(t) = 0 for t ∈ [2ε,∞), and
(iv) φ′(t) ∈ (−1, 0] for all t ∈ [0,∞).

x

y

2ε

ε

2ε

Figure 27.1 The function φ.

Then the function F shall be given by

F : M → R

x 7→

f(x)− φ
(∑λ

i=1 x
2
i + 2∑k

i=λ+1 x
2
i

)
if x ∈ V ,

f(x) otherwise.

This is a smooth function because φ
(∑λ

i=1 x
2
i + 2∑k

i=λ+1 x
2
i

)
has compact support in V .
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Lemma 27.1.3. F has the following properties:
(1) M[a,c+ε] = F−1([a, c+ ε]).
(2) F has the same critical points as f .
(3) In B√2ε(0) ⊂ U , F−1([a, c− ε]) is described by Figure 27.2. More precisely, V is

diffeomorphic to M[a,c−ε]∪(Dλ×Dk−λ) attached along an embedding ∂Dλ×Dk−λ

(up to smoothing corners), with C corresponding to Dλ × {0}.

V

M[a,c+ε]

M[a,c−ε]

C Rλ

Rk−λ

Figure 27.2 The set U is the union of the red and purple parts. The set is f−1([a, c+ ε]) is the
union of the red, purple and dashed parts.

Proof. Let us write x = (y, z) when x ∈ U , with y = (y1, . . . , yλ) denoting the first λ
coordinates and z = (z1, . . . , zk−λ) denoting the remaining k − λ.

Part (1) follows by noting that since F ≤ f (since φ is non-negative), we have
that f−1([a, c + ε]) ⊂ F−1([a, c + ε]). For the converse, if x ∈ F−1([a, c + ε]) and
φ(||y||2 + 2||z||2) > 0, then ||y||2 + 2||z||2 < 2ε (since φ(t) = 0 when t ≥ 2ε), so that

f(x)− f(c) = −||y||2 + ||z||2 ≤ 1
2 ||y||

2 + ||z||2 < ε

and thus x ∈ f−1([a, c+ ε]) as well.
For part (2) there is only something to check when p ∈ V . Working in local coordinates,

we have that 1
2∇F (x) = (−y − φ′(x)y, z − φ′(x)2z). This certainly vanishes at 0, so p

is a critical point. To see this is the only critical point, note that since φ′(x) > −1, we
must have y = 0 and since φ′(x) ≤ 0, we must have z = 0.
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M[a,c+ε

M[a,c−ε]

√
T0y•Dy Rλ

Rk−λ

Figure 27.3 The gray part consists of those disks Dy in the proof of Lemma 27.1.3 that do not
coincide with those for the original function f .

The precise proof of part (3) is a rather long computation, as we need to produce an
explicit diffeomorphism; details can be found in Chapter 3 of [Mil63] or Section VII.2.2
of [Kos93]. The main observation is that upon fixing the first λ-coordinates to be equal
to y = (y1, . . . , yλ) with ||y||2 ≤ ε, the intersection of F−1([a, c − ε]) with the (k − λ)-
dimensional plane {y}×Rk−λ is given by a disk whose radius depends smoothly on y. Of
course, as soon as ||y||2 + 2||z||2 reaches T0 := inf{t | φ(t) = 0}, then this disk coincides
with the intersection of the original set f−1([a, c− ε]) with the (k− λ)-dimensional plane
{y} × Rk−λ.

To check this, note that this intersection is given by the set (y, z) ∈ Rλ × Rk−λ with
z satisfying

c− ||y||2 + ||z||2 − φ(||y||2 + 2||z||2) ≤ c− ε.
The condition may be rewritten in terms of α(y, z) := ||y||2 + 2||z||2 as

φ(α(y, z))− α(y, z)/2 ≥ ε− 3
2 ||y||

2. (27.1)

Since φ(t) − t/2 is decreasing on the interval [0, 2ε] from φ(0) > ε to −ε, there is a
unique t0 > 0 such that φ(t0)− t0/2 = ε− 3

2 ||y||
2. In terms of t0, the inequality (27.1) is

equivalent to
||z||2 ≤ 1

2(t0 − ||y||2). (27.2)

Since φ(0) > ε and φ′(t) > −1, we have that φ(t0) > ε − t0, so that we have
φ(t0)− t0/2 > ε− 3

2 t0 and thus that t0 > ||y||2, so the right hand side of (27.2) is strictly
positive. The set Dy := {(y, z) | ||z||2 ≤ 1

2(t0 − ||y||2)} is the desired disk.
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We shall then define V = F−1([a, c− ε]), which is diffeomorphic to M[a,c+ε]. To see
this, apply the first fundamental theorem of Morse theorem using the observation that
there is no critical point in M[a,c+ε] \V . From this observation and part (3) of the Lemma,
we not only obtain the homotopy-theoretic description also the stronger statement that
M[a,c+ε] is diffeomorphic to (Ma × [a, c− ε]) ∪ (Dλ ×Dk−λ). Thus we have proven:

Theorem 27.1.4 (Second fundamental theorem of Morse theory). If M[a,b] contains a
unique non-degenerate critical point in its interior, which has index λ, then there is a
diffeomorphism (up to smoothing corners)

M(−∞,b]
∼=−→M(−∞,a] ∪∂Dλ×Dk−λ (Dλ ×Dk−λ).

27.1.3 Handle decompositions

The construction which takes a manifold W with boundary ∂W and an embedding
e : ∂Dλ ×Dk−λ ↪→ ∂W to the manifold obtained by smoothing the corners in

W ∪∂Dλ×Dk−λ Dλ ×Dk−λ,

is called a handle attachment of index λ.
The second fundamental theorem of Morse theory says that each critical point of

index λ corresponds to a handle attachment of index λ, as long as all critical points have
distinct critical values. This is a minor restriction, as by a small perturbation we may
assume this is the case, cf. Exercise 1.§7.19 of [GP10].

Since every manifold admits a Morse function and Morse singularities are isolated, we
conclude that every compact manifold M can be obtained by a finite number of handle
attachments. We say it admits a handle decomposition.

Example 27.1.5. The height function

Sk −→ R
(x0, . . . , xk) 7−→ x0

is a Morse function with a minimum at (−1, 0, . . . , 0) (so index 0) and a maximum at
(1, 0, . . . , 0) (so index k). Thus we see that Sk has a handle decomposition with a single
0- and k-handle. This is just the decomposition

Sk = (D0 ×Dk) ∪∂Dk×D0 (Dk ×D0)

into two hemispheres.

27.2 Morse functions and de Rham cohomology

The relationship between de Rham cohomology and Morse functions will be the
following:
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Figure 27.4 A 3-dimensional 1-handle D1×D2 attached to R2 = ∂(R2× (−∞, 0]). The red line
is D1 × {0}, the orange disk is {0} ×D2.

Proposition 27.2.1 (Morse inequalities). Let f : M → R be a Morse function on a
k-dimensional compact manifold M , then for each 0 ≤ λ ≤ k there is an inequality

#{critical points of f of index λ} ≥ dimHλ(M).

Proof. We may assume without loss of generality that f has critical points with distinct
critical values, and shall ignore the smoothing of corners in this proof. Pick a0 < · · · < an
such that f(M) ⊂ [a0, an] and each subset M[ai−1,ai] contains a unique critical point.

We shall prove by induction over i that there is an inequality

#{critical points of f |M(−∞,ai]
of index λ} ≥ dimHλ(M(−∞,ai]).

The initial case is i = 0, and then M(−∞,a0] = ∅ and the statement is clearly true.
For the induction step, we use the second fundamental theorem of Morse theory:

M(−∞,ai]
∼= M(−∞,ai−1] ∪∂Dλ×Dk−λ Dλ ×Dk−λ.

Let us apply Mayer–Vietoris to the open cover

U = int(Dλ)×Dk−λ,

V = M(−∞,ai−1] ∪∂Dλ×Dk−λ (Dλ \Dλ
1/2)×Dk−λ.

Then U is contractible, V is homotopy equivalent to M(−∞,ai−1] and U ∩ V is homotopy
equivalent to Sλ−1.

From the Mayer–Vietoris long exact sequence we conclude that

H i(M(−∞,ai]) −→ H i(M(−∞,ai−1])
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is an isomorphism unless i = λ, λ − 1. In those cases, we get an exact sequence (for
convenience we assume λ ≥ 3, dealing with H0’s requires a bit of additional care)

Hλ(M(−∞,ai]) Hλ(M(−∞,ai−1]) 0

Hλ−1(M(−∞,ai]) Hλ−1(M(−∞,ai−1]) R

0

Two things can happen to the R in Hλ−1(U ∩ V ): either it adds to Hλ

dimHλ(M(−∞,ai]) = dimHλ(M(−∞,ai−1]) + 1,
and dimHλ−1(M(−∞,ai]) = dimHλ−1(M(−∞,ai−1]),

or it subtracts from Hλ−1,

dimHλ(M(−∞,ai]) = dimHλ(M(−∞,ai−1]),
and dimHλ−1(M(−∞,ai]) = dimHλ−1(M(−∞,ai−1])− 1.

In both cases the inequalities to be proven are satisfied. (Indeed, it may be helpful to
observe that equality occurs only if all critical points add cohomology and never subtract
cohomology).

Example 27.2.2. We know the cohomology of the 2-torus: H0(T2) = R, H1(T2) = R2,
H2(T2) = R. Thus every Morse function on T2 has at least one minimum, one maximum,
and two saddle points. We leave it to you to find an example of such a Morse function.
Example 27.2.3. It is not true that you can always find a Morse function with exactly
dimHλ critical points of index λ. For example, only H0(RP 2) = R is non-zero, but since
RP 2 is compact every Morse function on it has a maximum.
Remark 27.2.4. Given a Morse function f : M → R, there is a chain complex Cf∗ with
Cfp given by the free R-vector space on the critical points of f of index p, and differential
given by counting flowlines. Its homology is the Morse homology H∗(M ; f). It turns out
to be independent of f and for compact M there is an isomorphism Hp(M ; f)∗ ∼= Hp(M).

27.3 Problems

Problem 27.3.1 (Morse inequalities for surface). Draw an embedded Σg in R3 such
that the projection on the z-axis gives through Proposition 27.2.1 the bounds

dimH0(Σg) ≤ 1 dimH1(Σg) ≤ 2g dimH2(Σg) ≤ 1.
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Exotic 7-spheres

In this chapter we will construct a smooth manifold which is homeomorphic to S7

but not diffeomorphic to it, an exotic sphere. We can prove the first statement, but the
latter we can only outline. It is based on the signature theorem, which in turn relies on a
computation of the rational oriented cobordism ring.

28.1 The signature theorem

28.1.1 Unoriented cobordism

Instead of trying to classify smooth manifolds up to diffeomorphism, one may first
try to classify them up to the following weaker equivalence relation:

Definition 28.1.1. Two compact k-dimensional smooth manifolds M0 and M1 with
empty boundary are said to be cobordant if there is a compact (k+1)-dimensional smooth
manifold W such that ∂W = M1 tM0.

We call W a cobordism from M0 to M1. Here the “equation” ∂W = M1 tM0 means
that the boundary of W comes with a diffeomorphism to the disjoint union of M0 and
M1. In particular, if M1 is diffeomorphic to M0 we can interpret the cylinder M0 × [0, 1]
as a cobordism from M0 to M1. Note that we can equally well interpret the cylinder as a
cobordism from M1 to M1, from M0 tM1 to ∅. or from ∅ to M0 tM1.
Example 28.1.2. If W → R is a proper smooth map without critical values then the
Ehresmann fibration theorem, Theorem 25.3.1 says W |[a,b] is a cylinder between the
fibers W |a and W |b. When W → R is just a proper smooth map with regular values
a, b ∈ R, then W |[a,b] is a cobordism between W |a and W |b.

Lemma 28.1.3. Cobordism is an equivalence relation.

Proof. To see it is reflexive, note that the cylinder M0× [0, 1] exhibits M0 as cobordant to
M0. For symmetry, note that W as a cobordism from M0 to M1 can also be interpreted
as a cobordism from M1 to M0. Finally, for associativity, note that if W0 is a cobordism
from M0 to M1 and W1 is a cobordism from M1 to M2, then W0 ∪M1 W1 (obtained by
the technique of Problem 13.4.5) is a cobordism from M0 to M2.

248
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Definition 28.1.4. We let the kth unoriented cobordism group ΩO
k denote the set of

k-dimensional compact manifolds up to cobordism. We denote the cobordism class of M
by [M ].

Lemma 28.1.5. Disjoint union makes ΩO
k into an abelian group:

[M ] + [N ] := [M tN ].

Proof. It is straightforward to show that t is compatible with the equivalence relation
of cobordism, and gives an associative and commutative binary operation on ΩO

k with
identity given by ∅. It remains to see why there are inverses. To do so, we interpret
M × [0, 1] not as a cobordism from M to M but as a cobordism from M tM to ∅, so

[M ] + [M ] = [M tM ] = [∅] = 0

and thus [M ] is its own inverse.

It is a consequence of the proof of this lemma that ΩO
k is a 2-torsion abelian group.

Example 28.1.6 (ΩO
0 ). A compact d-dimensional manifold M represents the identity in ΩO

k

if and only if it bounds a compact manifold. By the classification of 0-dimensional compact
manifolds, these are given by a finite disjoint union of points. By the classification of
1-dimensional compact manifolds, a finite disjoint union of points is a boundary if and
only if it consists of an even number of points. We conclude that the homomorphism

ΩO
0 −→ Z/2

{r points} 7−→ r mod 2

is an isomorphism.
Example 28.1.7 (ΩO

1 ). Similarly, the classification of 1-dimensional compact manifolds
says that every such manifold without boundary is a finite disjoint union of circles. This
is the boundary of a finite disjoint union of 2-dimensional disks, so ΩO

1 = 0.
Let us assemble all ΩO

k into a single graded abelian group ΩO
∗ . In addition to disjoint

unions, we can take cartesian products. We will leave the proof of the following lemma
to the reader:

Lemma 28.1.8. Cartesian product makes ΩO
∗ into a graded-commutative algebra:

[M ] · [N ] := [M ×N ].

The following is a deep result of Thom [Tho54], with addendum by Dold [Dol56]; its
proof uses a lot of algebraic topology.

Theorem 28.1.9 (Thom, Dold). There is an isomorphism of graded-commutative alge-
bras

ΩO
∗
∼= F2[xi | i > 0 and i 6= 2k − 1],

where xi in degree i is represented the following manifolds: for i even RP i and for
i = 2r(2s+ 1)− 1 the Dold manifold D(2r − 1, s2r) of Problem 7.4.2.
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This should be surprising, as it is a complete classification of smooth manifolds up to
an equivalence relation that does not seem very weak. It is also quite useful, as invariants
obtained by taking inverse images of regular values are often only well-defined up to
cobordism and hence take values in ΩO

∗ .

28.1.2 Oriented cobordism

As the terminology suggests, we want to modify unoriented cobordism to take into
account orientations.

Definition 28.1.10. Two compact oriented k-dimensional smooth manifolds M0,M1
with empty boundary are said to be oriented cobordant if there is a compact oriented
(k + 1)-dimensional smooth manifold W such that ∂W = M1 t −M0 (recall that −M0
denotes M0 with opposite orientation).

The following is proven for oriented cobordism by taking into account orientations in
the proofs for unoriented cobordism:

Lemma 28.1.11. Oriented cobordism is an equivalence relation.

Definition 28.1.12. We let the kth oriented cobordism group ΩSO
k be the set of k-

dimensional compact oriented manifolds up to oriented cobordism. We denote the
cobordism class of M by [M ].

Lemma 28.1.13. Disjoint union makes ΩO
k into an abelian group, and cartesian product

makes the graded abelian group ΩSO
∗ into a graded-commutative algebra.

If you go through the proof of this lemma, you’ll learn that the inverse of [M ] is
[−M ], i.e. M with the opposite orientation. In particular, it is not the case that ΩSO

∗
consists of 2-torsion groups. The graded-commutativity comes from the fact that M ×N
is oriented by appending to the orientation of TmM that of TnN , so if one reverses the
order the orientation changes if and only if both M and N are odd-dimensional.
Example 28.1.14 (ΩSO

0 and ΩSO
1 ). The classification of compact oriented 0- and 1-

dimensional manifolds says that these are a finite disjoint union of oriented points
or a finite disjoint union of circles. This can be used to prove that

ΩSO
0 −→ Z{

r positively oriented points
and s negatively oriented points

}
7−→ r − s

is an isomorphism, and that ΩSO
1 = 0.

Example 28.1.15 (ΩSO
2 ). The classification of compact oriented surfaces says that each of

these is a disjoint union of Σg for some g ≥ 0. Each of these bounds a solid handlebody,
so ΩSO

2 = 0.
The oriented cobordism ring is harder to describe, so we settle for its rationalization

ΩSO
∗ ⊗Q. The following is again a deep result of Thom [Tho54]:
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Theorem 28.1.16 (Thom). There is an isomorphism of graded-commutative algebras

ΩSO
∗ ⊗Q ∼= Q[z4i | i > 0]

where z4i in degree 4i is represented by CP 2i.

Example 28.1.17. That this is not the full story can be seen by the computation that
ΩSO

5 = Z/2, generated by [SU(3)/SO(3)]. All torsion is 2-torsion, and ΩSO
∗ /tors is a free

polynomial ring generated by the Milnor manifolds as in Problem 8.4.2 [Mil60].
It is outside the scope of this course, but for each oriented manifold there are invariants

pi(TM) ∈ H4i(M) for i ≥ 0,

called Pontryagin classes. As the notation suggests, these make sense for any oriented
vector bundle and here we just apply them to TM . They record to what extent a vector
bundle is a non-trivial vector bundle. For example, if TM is trivial (e.g. if M is a Lie
group) they all vanish.

For a compact oriented 4k-dimensional manifold with empty boundary, one can
extract from these cohomology classes a number as follows: if 1 ≤ i1 ≤ i2 ≤ · · · ≤ is ≤ k
is a consequence of integers (possibly repeated) such that i1 + · · ·+ is = k, we take∫

M
pi1(TM) · · · pis(TM) ∈ R.

It is a non-trivial fact that these numbers are in fact integers, and give homomorphisms∫
M
pI : ΩSO

4k −→ Z

called Pontryagin numbers.
Tensoring with the rationals, we get linear maps ΩSO

4k ⊗Q→ Q. Thom proved that
these are linearly independent. As the number of sequences I is the same as dimension
of Q[z4i | i > 0] in degree 4k, equal to the number of partitions p(r) or r, we get:

Proposition 28.1.18 (Thom). The linear map ⊕I
∫
M pI : ΩSO

4k ⊗ Q → Qp(r) is an
isomorphism.

Example 28.1.19. If
∫
M pI(M) = 0 for all sequences I, then there exists some N ≥ 1 such

that ⊔N M bounds a compact oriented manifold. This for example holds whenever G is
a compact Lie group.

28.1.3 The signature

Suppose that M is a compact oriented even-dimensional manifold, say of dimension
k = 2r. Then there is a bilinear form

〈−,−〉 : Hr(M)⊗Hr(M) −→ R

[ω]⊗ [ν] 7−→
∫
M
ω ∧ ν.
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By graded-commutativity of the wedge product, this is anti-symmetric if r is odd and
symmetric if r is even. By Poincaré duality, Theorem 23.2.1, it is non-degenerate.

For r odd, by Problem 28.3.2 there exists a sympletic basis e1, . . . , es, f1, . . . , fs of
Hr(M). This means that it satisfies

〈ei, ej〉 = 0 = 〈fi, fj〉, 〈ei, fj〉 =
{

1 if i = j,
0 otherwise.

That is, in this basis it is given by the skew-symmetric matrix[
0 ids
−ids 0

]
.

In particular, we can’t obtain any information from it that Betti numbers don’t already
tell us.

For r even, we can use Sylvester’s theorem—a direct consequence of the spectral
theorem for symmetric matrices—which says that there exists a basis e1, . . . , es, f1, . . . , ft
of Hr(M) such that

〈ei, fj〉 = 0, 〈ei, ej〉 =
{

1 if i = j,
0 otherwise,

〈fi, fj〉 =
{
−1 if i = j,
0 otherwise.

That is, in this basis it is given by the symmetric matrix[
ids 0
0 −idt

]
.

The numbers s and t are unique, and from them we extract the following invariant:

Definition 28.1.20. If M is a compact oriented 4r-dimensional manifold, then its
signature σ(M) is given by s− t.

Example 28.1.21. By Example 22.3.6, the signature of the K3-manifold is −16.
By construction, the signature is additive in disjoint unions and reserving the orienta-

tion multiplies it by −1. Using the following example, any integer can be realized as the
signature of a 4r-dimensional manifold.
Example 28.1.22. The signature of CP 2i is 1.

The signature is a cobordism-invariant

We will now prove that the signature only depends on the oriented cobordism class
of M . To do so, it suffices to prove that if a 4r-dimensional compact oriented manifold
M bounds a (4r + 1)-dimensional compact oriented manifold W then σ(M) = 0. Indeed,
if M0 is oriented cobordant to M1, then this implies σ(M0 t −M1) = 0 or equivalently
σ(M0)− σ(M1) = 0.
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Lemma 28.1.23. Let i : M ↪→ W denote the inclusion and take [ω] ∈ H4r(N). Then∫
M i∗ω = 0.

Proof. By Stokes’ theorem, Theorem 19.2.1, we have
∫
M i∗ω =

∫
N dω = 0 because ω is

closed.

We will use the following algebraic observation.

Lemma 28.1.24. Suppose we have a R-vector space V of dimension 2n with non-
degenerate symmetric bilinear form 〈−,−〉 : V ⊗ V → R which has an n-dimensional
subspace W ⊂ V such that the restriction 〈−,−〉|W : W ⊗W → R is identically zero.
Then we have σ(V ) = 0.

Proof. The proof is by induction over n. Fix e ∈W , then by non-degeneracy there is an
f ∈ V such that 〈e, f〉 = 1. By replacing f by f − 1

2〈f, f〉e we may assume 〈f, f〉 = 0.
Then on the linear subspace U = span(e, f), the bilinear form 〈−,−〉 has signature 0,
and V = U ⊕ U⊥. As U⊥ is 2(n− 1)-dimensional, W ∩ U⊥ is (n− 1)-dimensional, and
〈−,−〉 vanishes identically on it, we may invoke the induction hypothesis.

Proposition 28.1.25. If a 4r-dimensional compact oriented manifold M bounds a
(4r + 1)-dimensional compact oriented manifold W then σ(M) = 0.

Proof. It suffices to prove that H2k(M) is of dimension 2n and contains an n-dimensional
subspace on which 〈−,−〉 vanishes identically. We claim that the image of i∗ : H2k(W )→
H2k(M) has the desired property. By Lemma 28.1.23 the bilinear form 〈−,−〉 vanishes
on it, so it suffices to prove that its dimension is half of that H2k(M).

The long exact sequence of a pair and Poincaré–Lefschetz duality assemble to a
commutative diagram

H2k(N) H2k(M) H2k+1(N,M)

H2k+1(N,M)∗ H2k(M)∗ H2k(N)∗

i∗

∼= ∼= ∼=
(i∗)∗

Our starting point is the tautological equation:

dimH2k(M) = dim im(i∗) + dim im(i∗)⊥.

On the one hand, the isomorphism of the top row to the bottom row and exactness gives

dim im(i∗) = dim ker((i∗)∗).

On the other hand, we have

dim im(i∗)⊥ = dim ker((i∗)∗).

because λ : H2k(M)→ R is in the kernel of (i∗)∗ if and only if it annihilates the image of
i∗. We thus get dimH2k(M) = 2 dim im(i∗) and the result follows.
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The signature theorem

What we have just proved implies that the signature gives a surjective homomorphism

σ : ΩSO
4k −→ Z,

which upon rationalization gives a linear functional σ : ΩSO
4k ⊗Q→ Q.

By Proposition 28.1.18 this is a linear combination with rational coefficients of
Pontryagin numbers. Hirzebruch determined what these coefficients are in terms of the
coefficients of the Taylor series expansion of

√
z

tanh(
√
z) around z. We shall not describe

this procedure, but will remark that is easily implemented on a computer.

Theorem 28.1.26 (Hirzebruch). The signature of a 4k-dimensional compact oriented
manifold is given by

σ(M) =
∫
M
Lk(p1(TM), . . . , pk(TM))

where

L0 = 1
L1 = 1

3p1

L2 = 1
45(7p2 − p2

1)
L3 = 1

945(62p3 − 13p1p2 + 2p3
1)

L4 = 1
14175(381p4 − 71p1p3 − 19p2

2 + 22p2
1p2 − 3p4

1)
etc.

This is a quite remarkable theorem. A priori, all we know about the Pontryagin
numbers is that they are integers. However, as the signature is by definition an integer,
the signature theorem imposes intricate arithmetic conditions on these numbers.

28.2 Milnor’s construction

We will now describe some 7-dimensional manifolds and prove that they are homeo-
morphic to S7. We will then give a brief explanation why these are not diffeomorphic to
S7, a result due to Milnor [Mil56a]. The uses the aforementioned arithmetic conditions
imposed on Pontryagin numbers.

The unit norm quaternions S(H) on S(H) by multiplication on the left and the right.
Thus we can write down for each pair of integers (i, j) a diffeomorphism

S(H)× S(H) −→ S(H)× S(H)
(x, y) 7−→ (x, xiyxj).

We can use this to construct 7-dimensional manifolds Xi,j as follows: we start with
two copies D4 × S(H). Now we recall that S(H) ∼= S3, so each of these has boundary
S3 × S(H) ∼= S(H)× S(H). We identify these using the above diffeomorphism. Each of
these is a 3-sphere bundle over S4.
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To endow this topological space with a smooth structure, we use the existence of
collars. We can avoid the use of these technical tools by gluing along open subsets in
the base instead, thinking of the base as a one-point compactified H. To do so, take two
copies of H×S(H) and identify the open subsets (H\0)×S(H) using the diffeomorphism

(H \ 0)× S(H) −→ (H \ 0)× S(H)

(x, y) 7−→
(

x

||x||2
,
xiyxj

||x||i+j

)
.

Here ||x||2 = ||a+ bi+ cj + dk||2 = a2 + b2 + c2 + d2 is the (squared) quaternion norm.
Example 28.2.1. X0,0 ∼= S4 × S3 and X1,0 ∼= S7.

Proposition 28.2.2. If i+ j = 1, Xi,j admits a Morse function with two critical points.

Proof. We start in the first chart H× S(H), extending to the remaining 3-sphere {∞} ×
S(H) later. The idea is to take the real part <(x) = <(a+ bi+ cj+ dk) = a on the fibers,
scaled by a suitable function of norm of the base H∪∞ to localize all critical points over
0:

f(x, y) = <(y)√
1 + ||x||2

.

For its derivative to vanish, certainly the partial derivatives of <(y) with respect to the
coordinates of y have to vanish. The function < on S(H) is just the height function on
S3, so this occurs only if y = ±1. A further condition is then that the partial derivatives
of 1/

√
1 + ||x||2 with respect to the coordinates of x has to vanish, and this only happens

when x = 0. We leave to the reader to check that the maximum at (x, y) = (0, 1) and
the minimum at (x, y) = (0,−1) are non-degenerate.

We claim that in the other chart, the Morse function is given by

f(x′, y′) := <(x′(y′)−1)√
1 + ||x′||2

.

Indeed, when substituting the coordinate change

(x′, y′) =
(

x

||x||2
,
xiyxj

||x||

)
,

we get, using cyclic invariance of < and the fact that <(y−1) = <(y),

f(x′, y′) = <(x′(y′)−1)√
1 + ||x′||2

= ||x||
||x||2

<(xx−jy−1x−i)√
1 + ||x||2/||x||4

= 1
||x||

<(y−1)√
1 + 1/||x||2

= <(y)√
1 + ||x||2

.
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We know already know that f(x′, y′) has no critical points unless possibly when
x′ = 0. But fixing y′ = 1 and restricting to real x′ = a, we get f ′(a, 0) = a√

1+a2 which
has no critical point at a = 0. Hence f(x′, y′) has no critical points.

Thus Theorem 26.3.1 gives:

Corollary 28.2.3. If i+ j = 1, Xi,j is homeomorphic to S7.

We will combine this with the following fact:

Theorem 28.2.4 (Milnor). Xi,j can not be diffeomorphic to S7 unless (i − j)2 ≡ 1
(mod 7).

We do not have the tools to fill in the details of the following proof. That would
require at least a course in algebraic topology. The idea is straightforward though: Xi,j

bounds a 4-disk bundle Wi,j over S4 and if it were diffeomorphic to S7 then we can glue a
D8 along it to get a compact oriented manifold which contradicts the signature theorem
unless the condition in the theorem is satisfied.

Proof sketch. The Xi,j , given by 3-sphere bundles over S4, naturally bound an 8-
dimensional manifold Wi,j ; the corresponding 4-disk bundle over S4.

Associated to any oriented compact 7-dimensional M which bounds a compact
oriented 8-dimensional manifold W , there are three invariants σ(W,∂W ),

∫
W,∂W p2

1, and∫
W,∂W p2. We will not define these, but they are relative versions of the signature and

Pontryagin numbers which we discussed before, and in particular are all integers.
If we have two such W ’s, say W1 and W2, we can form the closed oriented manifold

V := W1 ∪M W2. Its invariants are related to the relative ones by the equations

σ(V ) = σ(W1, ∂W1)− σ(W2, ∂W2),∫
V
p2

1(TV ) =
∫
W1,∂W1

p2
1(TW1)−

∫
W2,∂W2

p2
1(TW2),∫

V
p2(TV ) =

∫
W1,∂W1

p2(TW1)−
∫
W1,∂W1

p2(TW2).

The Hirzebruch signature theorem tells for closed V

45σ(V ) = 7
∫
V
p2(TV )−

∫
V
p2

1(TV ).

Thus we see that

λ(M) := 45σ(W,∂W )−
∫
W,∂W

p2
1(TW ) (mod 7) ∈ Z/7

is independent of W . It is an invariant of M .
Let us return to the task at hand. On the one hand, one may use the construction of

Wi,j to compute

σ(Wi,j , ∂Wi,j) = 1 and
∫
Wi,j ,∂Wi,j

p2
1(TWi,j) = 4(i− j)2.
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Since 45 ≡ 3 (mod 7) and 4−1 = 2 (mod 7), we get λ(Wi,j) = (i− j)2 − 1.
On the other hand, if Wi,j is diffeomorphic to S7 it bounds D8 and one may use this

to compute

σ(D8, ∂D8) = 0 and
∫
D8,∂D8

p2
1(TD8) = 0.

Since λ(Xi,j) is independent of the bounding manifold, this implies that λ(Wi,j) = 0.
Comparing these values we see that a necessary condition for Wi,j to be diffeomorphic to
S7 is that (i− j)2 ≡ 1 (mod 7).

Taking i = 2 and j = −1, we get (i− j)2 = 32 ≡ 2 (mod 7) and we have found an
exotic sphere! In fact, Kervaire and Milnor proved that there 28 oriented exotic 7-spheres
up to orientation-preserving diffeomorphism [KM63].

Let us now return our attention to Reeb’s theorem. Observe that the diffeomorphism
g we obtained in its proof is orientation preserving, as it is the restriction of an obviously
orientation-preserving diffeomorphism Ma × [0, 1]→M[a,b].

Corollary 28.2.5. There exist orientation-preserving diffeomorphisms of S6 which are
not isotopic to the identity.

Proof. Suppose that in the case of X2,−1, the orientation-preserving diffeomorphism
g of S6 obtained in Theorem 26.3.1 is isotopic to the identity, say by a family of
diffeomorphisms gt starting at the identity and ending at g. Think of S6 as sitting inside
of R7 via the standard embedding ι and apply the isotopy extension theorem, Theorem
25.2.1, to the family of embeddings

ι ◦ gt : S6 −→ R7.

We then obtain a family of compactly-supported diffeomorphisms ϕt of R7 such that
gt = ϕt ◦ ι. Since gt maps S6 to S6, ϕt maps D7 to D7. Then ρ := ϕ1|D7 is a
diffeomorphism of D7 extending g. As suggested in Remark 26.3.3, using it in the last
part of the proof of Theorem 26.3.1 would prove that X2,−1 is diffeomorphic to S7, and
we get a contradiction. Thus g was not isotopic to the identity.

Remark 28.2.6 (The Gromoll–Meyer sphere). One of Milnor’s exotic spheres—in fact,
X2,−1—can be obtained explicitly up to diffeomorphism as a quotient of a Lie group
[GM74]. Let Sp(n) denote the group of (n×n)-matrices with quaternion entries satisying
Q†Q = id = QQ† where Q† denotes the transpose conjugate of Q. There is an action of
Sp(1) on Sp(2), where q ∈ Sp(1) acts on Q ∈ Sp(2) by[

q 0
0 q

]
Q

[
q 0
0 1

]
.

Then there is a diffeomorphism X2,−1 ∼= Sp(2)/Sp(1).
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28.3 Problems

Problem 28.3.1 (Cobordism is an algebra). Prove Lemma 28.1.8.

Problem 28.3.2 (Symplectic bases). Prove that V is a finite-dimensional R-vector space
with non-degenerate anti-symmetric bilinear form 〈−,−〉 : V ⊗ V → R, then it admits a
symplectic basis.

Problem 28.3.3 (Signature is multiplicative). Use the Künneth theorem of Problem
23.4.4 to prove that

σ(M ×N) = σ(M)σ(N).
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Outlook

Let me end with an overview of the progress made in differential topology after the
material covered at the end of these notes. Along the way I will point out some references
you might want to look at in the future. We will stop at the end of the 2000’s, as it is
hard to tell at this point what the themes of differential topology in the 2010’s were,
being so close to it still.

29.1 50’s

Most of the results that we covered in these notes had been proven by the middle
of the 50’s. Two important topics we only briefly touched on are cobordism theory and
characteristic classes, which we did in Section 28.1.

Cobordism theory concerns the classification of manifolds up to cobordism, often
taking into account additional structure such as an orientation or a map to a fixed
topological space X (see e.g. Chapter 8 of [Wal16]). It was developed by Thom [Tho54],
whose main achievement was the reduction of the determination of these cobordism rings
to a problem in algebraic topology. He then solved this algebro-topological problem
completely for unoriented cobordism and rationally for oriented cobordism; this is
Theorem 28.1.9 and 28.1.16. You can find an account in a number of textbooks on
advanced algebraic topology, such as [Swi02].

One way to state the conclusion of these computations is a manifold is up to (oriented)
cobordism determined by certain characteristic numbers. These assign to the tangent
bundle of M some elements of Z/2 for unoriented cobordism, or Z and Z/2 for oriented
cobordism. We saw the Z-valued ones in Section 28.1.2, the Pontryagin numbers. The
Z/2-valued ones are the Stiefel–Whitney numbers. Two manifolds are (oriented) cobordant
if and only if their characteristic numbers are equal.

The characteristic numbers are obtained from characteristic classes of the tangent
bundle, by integration over the manifold. These characteristic classes more generally
serve to distinguish finite-dimensional vector bundles over topological spaces, and play
an important role in a lot of early algebraic topology [MS74].

259
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29.2 60’s

The techniques developed in the 50’s were refined to the following meta-theorem:
manifolds of dimension ≥ 5 are controlled by homotopy theory and algebraic K-theory.

Let me outline this by stating a result that gives a condition for two manifolds
to be diffeomorphic. By Morse theory, all compact manifolds have a finite handle
decomposition: they are built by gluing pieces Dλ ×Dk−λ along ∂Dλ ×Dk−λ. Smale
made the striking observation that a geometric trick of Whitney allowed you to simplify
handle decompositions, as soon as certain invariants in topology and algebra vanish. To
make this more concrete, let me state the s-cobordism theorem [Mil65] (or Section 5.5 of
[Wal16]):

Definition 29.2.1. A compact manifold W with boundary ∂W = M0 tM1 is an h-
cobordism from M0 to M1 if both inclusions M0 ↪→ W and M1 ↪→ W are homotopy
equivalences.

Theorem 29.2.2 (s-cobordism theorem). Let k ≥ 5, and W be a (k + 1)-dimensional
h-cobordism from M0 to M1. Then W is diffeomorphic to M0 × [0, 1] rel M0 if and only
if an invariant τ(W ) ∈Wh1(π1(M)) vanishes.

Here we see a homotopy-theoretic conditions—the inclusions M0 ↪→W and M1 ↪→W
are homotopy equivalences– and an algebraic condition—the group Whitehead group
Wh1(π1(M)) is obtained by imposing an equivalence relation on the invertible matrices
with entries in the group ring Z[π1(M)] (e.g. Example III.1.8 of [Wei13] and its references).
Example 29.2.3. Row reduction and the Euclidean algorithm imply that Wh1(π1(M)) =
0. So every h-cobordism between simply-connected manifolds of dimension ≥ 6 is
diffeomorphic to a cylinder.

29.3 70’s

Throughout the 60’s and 70’s the above theory was refined to a classification of all
manifolds of dimension≥ 5, up to occasionally very hard computations in homotopy theory
and algebraic K-theory. The resulting theory is known as surgery theory [L0̈2, CLM].

This name may become clearer when I outline how it proves existence: you start with
a space X satisfying some kind of Poincaré duality; a Poincaré complex of dimension
k. Let us pick a map into X from any manifold M , subject to the condition that it has
degree 1 (and some minor tangential condition); a degree one normal map. Then we add
and remove handles to M with the goal of making the map f : M → X more and more
like a homotopy equivalence (this is the “surgery step”). Some obstructions will occur,
valued in a group similar to the Whitehead group mentioned above.

To prove uniqueness, you use a relative version: you start with M0 and M1 with
homotopy equivalences to X, connect them by a cobordism W with a map to X and try
to make the map W → X into a homotopy equivalence without modifying its boundary
∂W = M0 tM1. If you succeed to do so (e.g. when X is simply-connected) W will
be an h-cobordism and we exactly know when it is cylinder. Now we see the intended
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application of the s-cobordism theorem: once we know W ∼= M0 × [0, 1] we can restrict
to M1 to get a diffeomorphism M1 ∼= M0.

Let me give a precise statement when X is simply-connected. Let Sk(X) denote the
set of k-dimensional compact oriented manifolds with a homotopy equivalence to X, up
to orientation-preserving diffeomorphism.

Theorem 29.3.1 (Surgery exact sequence). Suppose X is simply-connected Poincaré
complex of dimension k ≥ 5. Then there is an exact sequence

Nn+1(X × [0, 1];X × {0, 1}) −→ Lk+1(Z) −→ Sk(X) −→ Nn(X) −→ Lk(Z).

Here Nk(X) is the set of k-dimensional compact oriented manifolds with a degree one
normal map to X up to cobordism. This can be computed by the cobordism-theoretic
techniques of Thom. Finally, Lk(Z) is a symmetric L-theory group explicitly given by

Lk(Z) =


Z if k = 4i,
Z/2 if k = 4i+ 2
0 otherwise.

Example 29.3.2. You can use surgery theory to classify exotic spheres, cf. Chapter 11
off [CLM]. In fact, the classification was done first in [KM63] and then developed into
surgery theory as above.

I do not mean to give the impression that is the end of the story. The computation
of the relevant invariants is a hard and interesting problem, drawing surprisingly much
on geometric group theory.

29.4 80’s

So far we have not commented on low dimensions, i.e. k ≤ 4. The classification of the
manifolds of dimension k = 0, 1, 2 was completed in the 19th century, though they lacked
the definitions and tools to give rigorous proofs. Steady progress was made throughout
the 20th century on 3-dimensional manifolds (more on that later), but the 1980’s were
the decade of 4-dimensional manifolds.

Around the same time two results appeared. Individually they were not so surprising,
but combined they showed that the world of 4-manifolds was wildly different from
anything encountered before. On the one hand, Freedman used some ingenious infinite
iterations of the high-dimensional techniques to prove that the classification outlined
above goes through in dimension 4 if you are only interested in studying manifolds up to
homeomorphism [Sco05].

On the other hand, Donaldson exhibited new invariants of 4-dimensional manifolds
through gauge theory. Let me explain this by analogy with the 2-dimensional case.
Here is a method to distinguish surfaces of different genus: you can study the space of
complex structures on Σ, as the dimension of this space can be expressed in terms of
the genus of Σ. Putting a complex structure on a surface amounts to solving a partial
differential equation. The idea behind gauge theory is that there exist some partial
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differential equations on geometric objects on 4-manifolds—inspired by physics, such as
Yang–Mills equations—whose spaces of solutions can serve as very strong invariants of
these manifolds [DK90].

Using these invariants and Freedman’s results, it was found that there are examples of
4-manifolds that are homeomorphic but not diffeomorphic. This is not so surprising—the
same thing happens in higher dimensions—but the surprise was that are not just some
examples but extremely many examples. As an extreme example, consider the following
theorem:

Theorem 29.4.1. There is a unique smooth structure on Rn up to diffeomorphism when
n 6= 4, but infinitely many when n = 4.

Research into the subtlety of dimension 4 continues to this day, using an interesting mix
of hard analysis to define invariants and abstract technology to organize the computation
of these invariants.

29.5 90’s

As the term “gauge theory” suggests, the partial differential equations used to study
4-manifolds were inspired by theoretical physics. The 90’s saw a great flourishing of the
interaction between differential topology and theoretical physics, due to the discovery of
a new knot invariant by Jones and its subsequent reinterpretation in terms of quantum
field theory by Witten [Wit89].

As a demonstration of the relationship between differential topology and physics,
let me discuss the most elementary definition of a topological quantum field theory
(e.g. [Koc04] in dimension 2).

Definition 29.5.1. A k-dimensional topological quantum field theory assigns to each
k-dimensional compact oriented manifold M a vector space V (M), taking disjoint union
to tensor product: Z(M1 tM2) ∼= Z(M1) ⊗ Z(M2). It assigns to each cobordism W
from M1 to M2 a linear map Z(W ) : Z(M1)→ Z(M2), compatible with composition of
cobordisms: Z(W ∪M1 W

′) = Z(W ′) ◦ Z(W ).

Remark 29.5.2. A better but more abstract definition is that Z is a symmetric monoidal
functor (Cobk,t) → (Vect,⊗). This makes clear we can replace the target by any
symmetric monoidal category.
Remark 29.5.3. The above definition fails to capture that quantum field theories are
supposed to be local. This is added in the notion of an extended topological quantum
field theory, which were classified by Lurie [Lur09].

29.6 00’s

The main applications of topological field theories are in dimension k ≤ 3. As
mentioned before, dimensions ≤ 2 have long been well-understood. However, it was only
in the 00’s that the classification of 3-manifolds was completed, with Perelman’s proof of
the Poincaré conjecture [MT07]:
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Theorem 29.6.1 (Perelman). If a 3-manifold M is homotopy equivalent to S3, it is
diffeomorphic to S3.

More accurately, his techniques not only resolved the Poincaré conjecture, but
completed the Hamilton–Thurston geometrization program. Like surfaces, you can
cut 3-manifolds into simpler pieces. In the case of surfaces these simple pieces are just
sphere with disks removed, but in the 3-dimensional case they remain complicated. The
geometrization program asserted that each of these simple pieces admitted one of 7
particular geometric structures. When a piece has such a structure, we can use geometric
methods tailored to the particular geometric structure to classify it [Thu02].

As in the high-dimensional case, this classification is not a classification in the sense
of “a complete list of all manifolds.” It just reduces the geometry question to algebraic
questions, still difficult to solve but hopefully easier. In particular, hyperbolic structures
are one of afore-mentioned geometric structures and it is a difficult problem to classify
hyperbolic manifolds.
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3-sphere, Geometric topology (Proc. Georgia Topology Conf., Athens, Ga.,
1977), Academic Press, New York-London, 1979, pp. 113–146. 80, 98

[KW16] M. Karoubi and C. Weibel, On the covering type of a space, Enseign. Math.
62 (2016), no. 3-4, 457–474. 202

[L0̈2] W. Lück, A basic introduction to surgery theory, Topology of high-dimensional
manifolds, No. 1, 2 (Trieste, 2001), ICTP Lect. Notes, vol. 9, Abdus Salam
Int. Cent. Theoret. Phys., Trieste, 2002, pp. 1–224. 260

[Lee13] J. M. Lee, Introduction to smooth manifolds, second ed., Graduate Texts in
Mathematics, vol. 218, Springer, New York, 2013. 77

[Loo00] E. Looijenga, A minicourse on moduli of curves, School on Algebraic Ge-
ometry (Trieste, 1999), ICTP Lect. Notes, vol. 1, Abdus Salam Int. Cent.
Theoret. Phys., Trieste, 2000, pp. 267–291. 17

[Lur09] J. Lurie, On the classification of topological field theories, Current develop-
ments in mathematics, 2008, Int. Press, Somerville, MA, 2009, pp. 129–280.
262
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decomposition, 245

Hausdorff, 9
Hessian, 233
homogeneous coordinates, 18
homotopy, 5, 100
Hopf fibration, 214
hypersurface, 84

immersion, 4
is stable, 101

immersion theorem, 24, 62
intersection theory

integral, 160
mod 2, 127

invariance of domain, 13, 35, 49
inverse function theorem, 21, 60
isotopy, 3, 118

Jordan–Brouwer separation theorem, 136

K3-manifold, 83
cohomology of, 199

Künneth theorem, 209

Klein bottle, 27
knot, 5, 141

codimension 1, 139
diagram, 142
high codimension, 148
tricoloring, 144

lens space, 76, 78
Lie group, 39, 50, 81

tangent bundle of, 58
link, 144
linking number

mod 2, 145
locally Euclidean, 9
Lusternik–Schnirelmann theorem, 134

manifold bundle, 214
map of vector bundles, 52
mapping class group, 200
Mayer–Vietoris theorem, 195

for compactly-supported cohomology,
200

measure zero, 104
Milnor manifold, 86
moduli space, 17, 29
Morse

first fundamental theorem, 237
function, 233
functions are generic, 234
functions are stable, 239
homology, 247
lemma, 240
second fundamental theorem, 245

Morse inequalities, 246

normal bundle, 118

orientation
induced on boundary, 158
of a manifold, 157
of a vector bundle, 156
of a vector space, 154

orthogonal Grassmannian, 78
orthogonal Stiefel manifold, 69, 78

partition of unity, 87
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existence of, 91
planar polygons, 107
Poincaré duality, 204
Poincaré homology sphere, 80, 98
Poincaré lemma, 186

for compactly-supported cohomology,
191

Pontryagin
class, 251
number, 251

pre-vector bundle, 54
preimage theorem, 67, 93

improved, 95
product, 15, 37, 49
projective space, 69

cohomology of complex, 197, 208
cohomology of quaternionic, 198
complex, 18, 34, 77
octonionic, 18
quaternionic, 18
real, 14, 18, 27, 34, 99

quaternion, 18, 80, 254
quotient by group, 28, 31, 74
quotient by Lie group, 77

Reeb’s theorem, 256
regular homotopy, 4
regular neighborhood theorem, 117, 119
regular value, 67
Reidemeister moves, 143
Riemannian metric, 155

Sard’s theorem, 104
Schoenflies theorem, 138
second-countable, 9
section, 156
signature, 252
signature theorem, 254
smooth manifold, 4
smooth map, 4, 12

family of, 115
smooth structure, 13

exotic, 13
smooth vector bundle, 53
special orthogonal group, 68, 73, 99

sphere, 7, 14
cohomology of, 196

sphere eversion, 8
stable class of maps, 101
Stokes’ theorem, 172
subbundle, 56
submanifold, 21, 37
submersion

is stable, 101
submersion theorem, 22, 66
surface, 15

cohomology of, 200

tangent bundle, 55
tangent space, 39

algebraicists’ definition, 42
geometers’ definition, 48
of submanifold, 46
physicists’ definition, 47

tensor product, 151
topological manifold, 9
torus, 24, 35, 76
transfer map, 184
transition function, 11
transversality, 5, 95, 96

is generic, 117
is stable, 101
strongly relative, 124

tubular neighborhood theorem, 120

vector bundle, 51
vector field, 216

wedge product, 164
Whitehead manifold, 86
Whitney embedding theorem

for non-compact manifolds, 110
strong, 108
weak, 88

winding number, 5
mod 2, 129, 132
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