Alumni & Friends - Ways to get involved and give back
Tod Thiele

Assistant Professor

Phone: 416-287-7035
Website: Thiele Lab
Location: SW 534A

Teaching Interests

NROC34: Neuroethology

Research Interests

The focus of our laboratory is to understand the structure and function of vertebrate neural circuits using the larval zebrafish as a model system. The zebrafish is a powerful model to study neural circuits due to its unparalleled combination of experimental approaches, notably the ability to optically monitor and manipulate activity throughout the brain. Given the strong conservation of brain organization across vertebrates, discoveries made in zebrafish can provide core insights into the function of similar circuits in mammals. We utilize two-photon calcium imaging, optogenetic manipulation of neural activity, neuroanatomical tracing, quantitative behavioural analyses and genome editing to determine how circuits in the fish produce behavioural outputs. We are currently interested in examining circuits within zebrafish that are homologous to the mammalian striatum. In addition, we are investigating neural mechanisms underlying the forgetting of memories and the expression of fear.  We are also investigating how circuits in visual centers of zebrafish and African cichlids encode natural underwater scenes. Our medical research is centered around determining how genetic mutations lead to neural circuit dysfunctions that underlie childhood dystonia.


  • Neural circuit basis of behaviour
  • Striatum
  • Neural mechanisms underlying fear
  • Learning & memory
  • Neural circuit evolution
  • Dystonia
  • Behavioural analysis
  • Two-photon calcium imaging
  • Optogenetics
  • CRISPR/Cas9 genome editing

Research Area

Sensorimotor integration, Motor control, Systems Neuroscience

Current Research

  • Investigation of circuits in fish that are homologous to the mammalian striatum
  • Analysis of circuits in fish that are homologous to mammalian circuits for fear and pain
  • The role of neurogenesis in the forgetting of memories
  • Investigation of neural circuit dysfunction underlying dystonic movements
  • Examination of natural scene encoding in zebrafish and cichlids


We are currently recruiting graduate students and postdoctoral fellows. Please inquire via email.






Wang K, Hinz J, Zhang Y, Thiele TR, Arrenberg AB. Parallel channels for motion feature extraction in the pretectum and tectum of larval zebrafish. Cell Rep. 2020 Jan 14;30(2):442-453

Förster D, Arnold-Ammer I, Laurell E, Barker AJ, Fernandes AM, Finger-Baier K, Filosa A, Helmbrecht TO, Kölsch Y, Kühn E, Robles E, Slanchev K, Thiele TR, Baier H, Kubo F. Genetic targeting and anatomical registration of neuronal populations in the zebrafish brain with a new set of BAC transgenic tools. Sci Rep. 2017 Jul 12;7(1):5230

Roberts WM, Augustine SB, Lawton KJ, Lindsay TH, Thiele TR, Izquierdo EJ, Faumont S, Lindsay RA, Britton MC, Pokala N, Bargmann CI, Lockery SR. A stochastic neuronal model predicts random search behaviors at multiple spatial scales in C. elegans. Elife. 2016 Jan 29;5. pii: e12572. doi: 10.7554/eLife.12572.

Semmelhack JL, Donovan JC, Thiele TR, Kuehn E, Laurell E, Baier H. A dedicated visual pathway for prey detection in larval zebrafish. Elife. 2014 Dec 9;3. doi: 10.7554/eLife.04878. PubMed PMID: 25490154; PubMed Central PMCID: PMC4281881.

Thiele TR, Donovan JC, Baier H. Descending control of swim posture by a midbrain nucleus in zebrafish. Neuron. 2014 Aug 6;83(3):679-91. doi: 10.1016/j.neuron.2014.04.018. Epub 2014 Jul 24. PubMed PMID: 25066082; PubMed Central PMCID: PMC4157661.

Faumont S, Rondeau G, Thiele TR, Lawton KJ, McCormick KE, Sottile M, Griesbeck O, Heckscher ES, Roberts WM, Doe CQ, Lockery SR. An image-free opto-mechanical system for creating virtual environments and imaging neuronal activity in freely moving Caenorhabditis elegans. PLoS One. 2011;6(9):e24666. doi: 10.1371/journal.pone.0024666. Epub 2011 Sep 28. PubMed PMID: 21969859; PubMed Central PMCID: PMC3182168.

Lindsay TH, Thiele TR, Lockery SR. Optogenetic analysis of synaptic transmission in the central nervous system of the nematode Caenorhabditis elegans. Nat Commun. 2011;2:306. doi: 10.1038/ncomms1304. PubMed PMID: 21556060; PubMed Central PMCID: PMC3935721.

Thiele TR, Faumont S, Lockery SR. The neural network for chemotaxis to tastants in Caenorhabditis elegans is specialized for temporal differentiation. J Neurosci. 2009 Sep 23;29(38):11904-11. doi: 10.1523/JNEUROSCI.0594-09.2009. PubMed PMID: 19776276; PubMed Central PMCID: PMC3376908.

Suzuki H, Thiele TR, Faumont S, Ezcurra M, Lockery SR, Schafer WR. Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis. Nature. 2008 Jul 3;454(7200):114-7. doi: 10.1038/nature06927. PubMed PMID: 18596810; PubMed Central PMCID: PMC2984562.

Lockery SR, Lawton KJ, Doll JC, Faumont S, Coulthard SM, Thiele TR, Chronis N, McCormick KE, Goodman MB, Pruitt BL. Artificial dirt: microfluidic substrates for nematode neurobiology and behavior. J Neurophysiol. 2008 Jun;99(6):3136-43. doi: 10.1152/jn.91327.2007. Epub 2008 Mar 12. PubMed PMID: 18337372;  PubMed Central PMCID: PMC2693186.

Miller AC, Thiele TR, Faumont S, Moravec ML, Lockery SR. Step-response analysis of chemotaxis in Caenorhabditis elegans. J Neurosci. 2005 Mar 30;25(13):3369-78. PubMed PMID: 15800192.

Davies AG, Bettinger JC, Thiele TR, Judy ME, McIntire SL. Natural variation in the npr-1 gene modifies ethanol responses of wild strains of C. elegans. Neuron. 2004 Jun 10;42(5):731-43. PubMed PMID: 15182714.

Davies AG, Pierce-Shimomura JT, Kim H, VanHoven MK, Thiele TR, Bonci A, Bargmann CI, McIntire SL. A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell. 2003 Dec 12;115(6):655-66. PubMed PMID: 14675531.