
QM NOTES (SUPPLEMENT TO GILLESPIE) BY JIM
& BILL (FEBRUARY 2015)

Review — using Dirac’s notation

The standard QM was created in the mid-1920s by a handful of
people whose names are now household words: Heisenberg, Born, Pauli,
Schrödinger, and Dirac. Around 1929-30, the theory was put into its
current systematic form by John von Neumann.

In Dirac’s notation the state ψ is represented by a “ket” vector |ψ〉.
The inner product of “bra” and ket vectors, a bracket, is 〈φ|ψ〉. This
corresponds to (φ, ψ) of the standard theory, used by Gillespie. If
α1, α2, α3, ... are eigenvectors, they are denoted |α1〉, |α2〉, and so on in
Dirac’s notation. The corresponding eigenvalues are a1, a2, a3,... Some-
time, instead of Greek letters, Roman letters are used for both eigen-
states |a1〉, |a2〉, ... and eigenvalues, a1, a2, ....

We will repeat some of the postulates and theorems using Dirac’s
notation. We won’t stick to the same numbering, but will (when we
can) use the common name for a principle (e.g. the Born Rule). Since
much QM literature (both physics and philosophy) is in the notation,
it’s important to be familiar with it. You can master it quickly.

Representation of States: A physical system is represented by a
vector |ψ〉 in a Hilbert space. All possible information is contained in
|ψ〉.

Hilbert Space: H, is a vector (or linear) space, possibly infinite
dimensional. Like any vector space over the field of complex num-
bers, it satisfies the following rules (where |ψ〉, |ψ1〉, |ψ2〉, ... ∈ H and
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c, c1, c2, ... ∈ C, the set of complex numbers).

|ψ1〉+ |ψ2〉 = |ψ2〉+ |ψ1〉

(|ψ1〉+ |ψ2〉) + |ψ3〉 = |ψ1〉+ (|ψ2〉+ |ψ3〉)

c(|ψ1〉+ |ψ2〉) = c|ψ2〉+ c|ψ1〉

(c1 + c2)|ψ〉 = c1|ψ〉+ c2|ψ〉

(c1c2)|ψ〉 = c1(c2|ψ〉)

H is also an inner product space. The operation 〈 | 〉 on pairs of vectors
defines a complex number. Thinking of this geometrically, the inner
product is a measure of the “overlap” of different vectors; in the case
of a single vector, the inner product gives the square of the norm or
length of the vector. Here are the standard rules for inner products:

〈ψ1|ψ2〉 = 〈ψ2|ψ1〉∗ (called the complex conjugate)

〈ψ1|ψ2 + ψ3〉 = 〈ψ1|ψ2〉+ 〈ψ1|ψ3〉

〈ψ1|cψ2〉 = c〈ψ1|ψ2〉

||ψ||2 = 〈ψ|ψ〉

A Hilbert space has two more important properties which we shall
only mention. It is separable (meaning it has a countable basis) and it
is complete (meaning if any sequence of vectors in the space converges
to a vector ψ, then ψ is also in the space).

A quick review of complex numbers, here are the relevant facts.

c = a+ ib (where i =
√
−1 and a, b ∈ R)

c∗ = a− ib (the complex conjugate of c)

|c|2 = cc∗ = a2 + b2 (always a real number)

eix = cos x+ i sinx

A basis for a vector space is a set of vectors that are sufficient to ex-
press every vector in the space as a linear combination of basis vectors.
We’re particularly interested in a basis consisting of unit vectors that
are orthogonal (i.e., at right angles) to one another.
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{|φi〉} is an orthonormal set if and only if

〈φi|φj〉 = δij =

{
1, if i = j

0, if i 6= j

Any vector |ψ〉 can be expressed as a linear combination of basis vec-
tors, that is, |ψ〉 =

∑
i ci|φi〉. When the basis is an orthonormal set,

we have the following important result.

〈φi|ψ〉 = 〈φi|
∑

j
cj|φj〉

=
∑

i
cj〈φi|φj〉

=
∑

j
cjδij

= ci

Theorem: 〈ψ|ψ〉 =
∑

i|ci|2

We’ve been talking rather abstractly about the vectors in Hilbert
space. A simple example (in one dimension) might be useful here. Let
|ψ〉 = cos kx+ i sin kx = eikx. The inner product is defined

〈ψ1|ψ2〉 =

ˆ ∞
−∞

ψ∗2ψ1 dx

Representation of properties (observables): Observables, A,B,C,...
(e.g., position, momentum, energy, or more precisely position in the x-
direction, momentum in the y-direction, spin in the z-direction, etc.)
are represented by Hermitian operators, A,B,C, ... each with a com-
plete set of eigenvectors, |a1〉, |a2〉, ..., |b1〉, |b2〉, ..., and corresponding
eigenvalues, a1, a2, ..., b1, b2, ...

Like the first principle, this one also tells us how to represent the
physical world mathematically. The term “observable” is, unfortu-
nately, standard in QM. All it means is “property,” but Heisenberg,
who introduced the term, was perhaps unduly influenced by a kind of
positivism.

The state of a quantum system such as an electron is represented
by a vector in a Hilbert space. The electron has properties such as:
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position in the z-direction, momentum in the y-direction, and so on.
And a particular property will have a specific magnitude. That is,
the property of position in the x-direction will have the magnitude
q1, or q2, or q3, ...; and the property spin in the z-direction will have
the magnitude 1

2
~ or −1

2
~, often called + or −, or simply up or down.

Once again, it’s important to distinguish properties, A,B,C, which are
part of the physical world, from their mathematical representation by
operators, A, B, C, and their magnitudes by eigenvalues. The term
“Hermitian” means that the eigenvalues are real numbers. We’ll now
explain these notions.

A linear operator, O, is a function on a Hilbert space, O :H →
H,which satisfies the following conditions.

(cO)|ψ〉 = c(O|ψ〉)

O(|ψ1〉+ |ψ2〉) = O|ψ1〉+ O|ψ2〉

(O1 + O2)|ψ〉 = O1|ψ〉+ O2|ψ〉

(O1O2)|ψ〉 = O1(O2)|ψ〉)

Measurement: The measurement of a physical system results in
eigenvalues only; i.e., a1, a2, a3, ... will be the measurement outcomes;
they correspond to the eigenvectors |a1〉, |a2〉, |a3〉, ....

Expectation Value: The expectation value for some observable is
〈A〉 = 〈ψ|A|ψ〉.

Born Rule: If a system is in state |ψ〉 and A is measured, then the
probability of getting the result ai = |〈ai|ψ〉|2 = |ai|2.

Heisenberg’s Uncertainty/Indeterminacy Principle: When
A and B do not commute (i.e., AB − BA = c 6= 0), then ∆A∆B

≥ c/2. (∆A is the root-mean-square deviation, roughly the spread of
eigenvalues of measurements on identically prepared systems.) A useful
piece of notation is the commutator [A,B], defined to equal AB −
BA.
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Temporal evolution : The state of a system evolves in time accord-
ing to the Schrödinger equation: H|ψ〉 = i~ d |ψ〉/dt. H is the Hamil-
tonian (or energy) operator (in one dimension): H = − ~

2m
d2

dx2
+V (x).

Projection Postulate: If a measurement of observable A results in
eigenvalue ai then immediately after the measurement, the system is in
the eigenstate |ai〉.

Spin

An electron (and other particles) can have a position, momentum,
energy, angular momentum, and so on. These properties or observables
have corresponding operators with eigenvectors and eigenvalues. One
of the most important properties of an electron is called spin. It is
tempting to think of electron spin as like the rotation of the earth
around its axis. This is a mistake. For instance, it does not depend
on any coordinate system in which it rotates. There is no way to
conceptualize spin that makes it analogous to anything we comprehend.
All we can do is specify an operator, eigenvectors and eigenvalues.

For a moment, set aside what we just said about imagining spin
and pretend that you can. An electron would then be a spinning
charged particle. This gives rise to a magnetic moment, which could
be detected. A so-called Stern-Gerlach apparatus produces an irregu-
lar magnetic field. If an electron passes through, it will deviate from a
straight path either upward or downward, depending on the direction
of its spin. Since this is a quantum phenomenon, it will be no sur-
prise that the result is not spread over a large range of outcomes, but
is rather confined to two quite specific results. They are called “up”
and “down” for short; they are the measured eigenvalues. We will now
briefly explain the spin states, and the eigenvectors and eigenvalues of
the spin operator.

We begin with what are known as the Pauli spin matrices.

σx =

(
0 1

1 0

)
, σy =

(
0 −i
−i 0

)
, σz =

(
1 0

0 −1

)
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The linear operators that represent spin (in the x-direction, the y-
direction, and the z-direction, respectively), are defined as follows:

Sx =
1

2
~σx, Sy =

1

2
~σy, Sz =

1

2
~σz,

The eigenvalue equation allows us to find the eigenvectors and eigen-
values. There are two eigenvectors for each operator, an α and a β.

αx = 1√
2

(
1

1

)
βx = 1√

2

(
−1

1

)

αy = 1√
2

(
1

i

)
βy = 1√

2

(
1

−i

)

αz =

(
1

0

)
βz =

(
0

1

)
The corresponding eigenvalues are, 1

2
and –1

2
, associated with each

pair of eigenvectors. The 1
2
term is why it is called spin-half. In any

given direction, the spin can have the value 1
2
or –1

2
. No other value

is possible. (For convenience, the two eigenvalues are sometimes called
1 and 0, or + and –, or ↑ and ↓, or simply up and down.) Using this
formalism, we can make predictions about how electrons behave in a
Stern-Gerlach apparatus. If a beam of electrons passes through this
device, then, generally, two beams will come out, corresponding to the
two eigenvalues, 1

2
and –1

2
. We can call the two beams the upper and

the lower, respectively (spin up and spin down). A single electron will
have a one half chance of coming out in either beam. When we know
the initial state, we can make specific predictions. For instance, if the
electrons in the beam are all in state |ψ〉 = |αz〉, and we decide to
measure the spin in the z-direction, then we will certainly find each
electron to have eigenvalue 1

2
, i.e., each will be in the upper beam.

How do we know this? We apply the operator Sz = 1
2
~σz to the state

|ψ〉 = |αz〉. The calculation is:

Szαz =
1

2
~

(
1 0

0 −1

)(
1

0

)
=

1

2
~

(
1

0

)
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The result of the operator acting on the vector is multiplying that
vector by a number, namely, 1

2
~, so that number is the eigenvalue. If we

wanted to measure the spin component in, say, the x− or y−direction,
or more generally, along any angle θ, then we would use the Sθ operator.
If the Stern-Gerlach apparatus is oriented at angle θ in the z−x plane,
then the operator Sθ is defined:

Sθ = Szcosθ + sinθ =
1

2
~

(
cosθ sinθ

sinθ −cosθ

)
The eigenvalues of this operator are exactly the same as the others,

1
2
~ and –1

2
~ . This matrix will also allow us to calculate the probabilities

of getting one or the other of these eigenvalues.
Fermions (electrons, protons, quarks) have spin 1

2
; more generally,

fermions have half-integer spin: 1
2
, 3
2
, 5
2
, ... Bosons (photons, mesons,

gravitons, the Higgs particle) have whole number spins: 0, 1, 2, 3, ...;
thus, the Higgs particle has spin 0, photons have spin 1, and gravitons
are spin 2. The thing that makes either electrons and photons ideal
in foundational discussions is that they are two-state systems: they
have two eigenstates, up and down, so their Hilbert spaces are only
two-dimensional, making them relatively easy to use.

Exercise 1: Show that αx = 1√
2
αz + 1√

2
βz.

Tensor Products

Suppose H1 is Hilbert space with dimension n and H2, is another
space of dimensionm. Then we can form a vector spaceH1�H2, called
the tensor product, which is also a Hilbert space. It has dimension
n×m.

If |α〉 ∈ H1 and |β〉 ∈ H2 then |α〉� |β〉 ∈ H1 �H2, that is, it is also
a vector in a Hilbert space. Sometimes this notation is abbreviated to
|α〉 |β〉 or, more simply, to |αβ〉.

Similarly, if A and B are operators, then we can form their tensor
product, A � B. Such an operator works on vectors as follows:
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(A � B) |α〉� |β〉 = A |α〉� B |β〉

Composite Systems: After an interaction, two systems, 1 and 2,
with their respective states in Hilbert spaces H1 and H2, are represented
by the state |ψ12〉 = |ψ1〉 ⊗ |ψ2〉 which is in the tensor product space
H1 ⊗H2.

The Inner Product. The definition of the inner product in the
tensor product space is pretty much what you would expect:

〈|ψ1〉 ⊗ |φ1〉 | |ψ2〉 ⊗ |φ2〉〉 = 〈ψ1|ψ2〉 × 〈φ1|φ2〉

Exercise 2: (a) The two slit experiment. Let the state of a parti-
cle be the superposition of passing through the Left slit and passing
through the Right slit:

ψ =
1√
2

(|ψL〉+ |ψR〉)

IfQ is an operator of position observable with eigenvalue qk show that
the probability of finding the particle at position qk contains cross (or
interference) terms in addition to terms corresponding to the particle
travelling through each slit.

(b) Now consider a detector able to tell which slit the particle passed
through. The detector has two states, R and L. The detector states
are exclusive (it is a good detector) which we represent by requiring
that R and L be orthogonal. And the detector is accurate, so that if
the particle is in ψL then the detector is in L, and similarly for ψR.
The state of the joint system can then be represented as

ψD =
1√
2

(|ψL〉 ⊗ |L〉+ |ψR〉 ⊗ |R〉)

The position operator, Q, must now act on the joint system but of
course we are not interested in measuring the detectors. We thus rep-
resent the operator as Q ⊗ I where I is the identity operator (i.e. for
any ψ, Iψ = ψ). The joint operator works on joint states as defined
above. Given this setup, show that the cross terms vanish or, in other
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words, that if we put a which-path detector into the experimental ar-
rangement, the interference effects disappear.

Illustrations

The tensor product space way of representing joint systems allows
us to illustrate some important properties of quantum systems.

(a) Entanglement. The singlet state will be discussed below. It is
a joint state of two systems (e.g. electrons) which cannot be understood
as composed of two independent systems (it cannot be ‘factored’). It
can be written in general as

ψs =
1√
2

(|ψ1〉 ⊗ |φ2〉 − |ψ2〉 ⊗ |φ1〉)

In this state the components have lost their independence. For exam-
ple, if we find the system’s first component is in the state ψ1 then we
must find the second component to be in φ2. This property of the
system is independent of the size of the joint system. The correlations
evidently exist no matter how far apart the components might be. By
contrast, the joint state

ψu = (α |ψ1〉+ β |ψ2〉)⊗ (γ |φ1〉+ δ |φ2〉)

is not entangled. The φ states are not ‘determined’ by the ψ states.

(b) No-Cloning. It would be extremely useful if we could clone
quantum states, that is, if we had a way to reproduce an arbitrary
quantum state without destroying the original. It turns out that this
is unfortunately impossible. A sketch of a proof is possible here. Recall
that quantum states evolve according to the Schrödinger equation in
a deterministic manner which can be expressed in terms of the time
evolution operator Ut, where Ut |ψ〉 = e−iHt/~ |ψ〉 (H being the Hamil-
tonian operator for the system in question). The crucial property of
the time evolution operator is that is a unitary operator, which is de-
fined to be an operator which preserves inner products (plus meeting
the condition that for every vector of the Hilbert Space, φ there is an
vector, ψ, such that U(ψ) = φ).
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Exercise 3: Show that Ut preserves the inner product. That is, for
any two vectors, ψ and φ, show that 〈ψ|φ〉 = 〈Utψ|Utφ〉 (hint: you
could try to use Gillespie’s Eqs 4-42 and 4-43).

What would cloning look like. We would begin with our source state
and some system, call it the target, which we will transform into a
copy of the source using some time evolution operator (a measurement
operator obviously won’t work in general because of the uncontrollable
change it might induce in the source and/or the target). We have no
idea what the special operator might look like, but it must meet these
conditions

ψ ⊗ τ =⇒ ψ ⊗ ψ

where τ is the target and =⇒ represents our unitary cloning device.
Our cloning machine is supposed to work on any source vector. So
consider that this pair will be true

ψ ⊗ τ =⇒ ψ ⊗ ψ

φ⊗ τ =⇒ φ⊗ φ

Now think about this inner product equation (being loose with the
notation for simplicity):

〈ψ|φ〉 = 〈ψ ⊗ τ |φ⊗ τ〉

It is true because of the rule for inner products of tensor product states
along with the fact that our states are normalized (〈ψ|ψ〉 = 1 for all
states). But then

〈ψ ⊗ τ |φ⊗ τ〉 = 〈ψ ⊗ ψ|φ⊗ φ〉

This is true because of the action of the cloning machine along with
the fact that unitary time evolution preserves the inner product. But
then

〈ψ ⊗ ψ|φ⊗ φ〉 = 〈ψ|φ〉 〈ψ|φ〉 = (〈ψ|φ〉)2

So we have
〈ψ|φ〉 = (〈ψ|φ〉)2
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This is possible only if 〈ψ|φ〉 = 1 or 〈ψ|φ〉 = 0. That is, it is only pos-
sible in two special cases, the one where ψ = cφ (so they are essentially
the same state) or the two states are orthogonal. So it is impossible in
general to clone a quantum state. If one could clone states in general,
then it would be possible to use entanglement to send signals faster
than the speed of light.

Exercise 4: show how to use a cloning machine and entanglement
to send superluminal signals (hint: use Exercise 1 above).

Interpretations

The phrase “interpretation of the QM formalism” is somewhat vague.
Logicians have a precise notion of “interpretation” or “model of a for-
mal system,” but that won’t do here. To start with, the formalism is
already partially interpreted; it is hooked to observational input and
output in a fairly clear and unambiguous way. Some philosophers and
physicists insist that this is enough and that we should not seek more.
Feynman, for example, held that no one understands QM or possibly
could understand it.1 Instead of getting ourselves in a hopeless knot
trying to do so, we should just learn the quantum rules and apply
them in various situations — don’t look for anything deeper. This par-
tial interpretation is often called the minimal statistical interpretation.
What it can do is handle everything observable. It is often favoured by
those who advocate an instrumentalist outlook for scientific theories in
general. But our interest is with how the world really works, not just
with making successful observable predictions. Only those lacking a
soul are content with the minimal statistical interpretation.2 What’s
needed is something over and above this instrumentally adequate, but
otherwise incomplete account.

1Feynman, Lectures, vol III
2Of course this is quite unfair. Consider the remark merely a bit of gentle polemics.
Many who hold the minimal view feel forced into it by the repeated failures of
realistic approaches to QM. This is not an unreasonable view, though I do think it
mistaken.
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The spectrum of possible interpretations is exceedingly broad. On
the one side it may be as trivial as so-called hidden variables. (That is,
trivial in a philosophical or conceptual sense, since a hidden variable
interpretation tries to make the quantum world out to be as much like
the classical world as possible. Such interpretations are not trivial in
the technical sense — indeed, they might even be impossible.) On
the other hand, the range of possible interpretations may be limited
only by our imaginations. The empirical consequences of rival views
are largely unknown. It was long thought that the realism involved in
the EPR thought experiment made no observable difference — hence
it was often branded “idle metaphysics.” But J.S. Bell, to the surprise
of everyone, derived an empirically testable consequence. One could
even imagine consequences of the right interpretation of QM being as
significant as special relativity, for it is quite plausible to see Einstein’s
theory as an interpretation of Maxwell’s electrodynamics.

We’ll broadly consider two types. Realist interpretations of QM typ-
ically hold that

• The quantum world exists independently of us; we do not create
it in any way.
• Quantum systems have all their properties all the time.
• Measurements discover those properties, they do not create
them.

On the other hand, anti-realist views, such as the Copenhagen inter-
pretation, hold that

• The quantum world is not independent of us.
• In some important sense observers make reality.
• Measurements create their results.

The minimal statistical interpretation is a kind of anti-realism, too,
but it’s important to note the difference. Scientific realism typically
involves at least two ingredients — epistemic and ontological. The
first says that we can have rational beliefs about a realm of unobserv-
able entities. Opposition to this aspect of realism is a form of scep-
ticism. Duhem and van Fraassen, for example, both share this form
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of anti-realism with the minimal statistical interpretation of QM. On
the other hand, neither Kant nor Bohr are sceptics about unobservable
entities, but, with Kuhn, pragmatists, and verificationists, they reject
the second aspect of realism which holds that the world we are trying
to learn about exists independently of us. These are sometimes subtle
distinctions; we’ll have to develop them carefully.

EPR

The anti-realism of the Copenhagen interpretation was met head-on
by the beautiful EPR thought experiment. The argument proceeds by
first characterizing some key notions.

Completeness: A theory is complete if and only if every
element of reality has a counterpart in the theory. Thus,
if an electron, for example, has both a position and a
momentum, but the theory only assigns a value to one
and not the other, then that theory is incomplete.

Criterion of Reality: If, without disturbing the sys-
tem, we can predict with probability one the value of
a physical magnitude, then there is an element of re-
ality corresponding to the magnitude. The qualifica-
tion – without disturbing the system – is central. The
Copenhagen interpretation holds that measurements do
disturb the system (they collapse the wave function),
so ascribing an independent reality to any magnitude
cannot be naively based on the outcome of a (direct)
measurement.

Locality: Two events that are space-like separated
(i.e., outside each other’s light cones) have no causal
influence on one another. They are independent events.
This follows from special relativity which holds that
nothing, including causal connections, travels faster than
light.
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The EPR argument (we will follow the more perspicuous version of
David Bohm, which is now standard) starts with a system such as an
energetic particle which decays into a pair of photons; these travel in
opposite directions along the z-axis. Each photon, call them L and
R (for left and right), is associated with its own Hilbert space. The
polarization or spin eigenstates will be along any pair of orthogonal
axes, say, x and y, or x′ and y′. In any given direction a measurement
(which, recall, only yields eigenvalues) will result in either a +1 for the
spin-up state or a −1 for the spin-down state. We can represent these
as |+〉L and |−〉L, respectively, for the L photon, and |+〉R and |−〉R
for R.

The spin of the system is zero to start with and this must be con-
served in the process. Thus, if L has spin magnitude +1 in the x-
direction then R must have −1 in the same direction to keep the total
equal to zero. A composite system such as this (in the so-called singlet
state), is represented by

|ψLR〉 =
1√
2

(|+〉L ⊗ |−〉R − |−〉L ⊗ |+〉R)

If we measure the spin of the L photon we then know the state of
R, since the measurement of |ψLR〉 immediately puts the whole system
into one or other of the two eigenstates. Suppose our measurement
resulted in L being polarized in the x-direction (i.e., has spin up in the
x-direction). This means the state of the whole system is |+〉L⊗ |−〉R,
from which it follows that the remote photon is in state |−〉R, i.e., it
has spin down in the x-direction. (Choosing the x-direction is wholly
arbitrary; any other direction could have been tested for.) While it
might be conceded that the measurement on L may have disturbed it
or created rather than discovered the measurement result, the same
cannot be said of R. We are able to predict with complete certainty
the outcome of the distant measurement on the R photon, and since
(by the locality principle) we could not have influenced it in any way
with a measurement of L, it follows (by the criterion of reality) that the
R magnitude exists independently of measurement. Since this is not
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reflected in |ψ〉, it follows (by the criterion of completeness) that QM
does not completely describe the whole of reality. EPR then concludes
(though this is a bit vague) that the theory must be supplemented with
hidden variables in order to give a full description.

The Bell Results

Compelling though EPR is, it can’t be right. This is the upshot of
several related findings known collectively as the Bell results. John
Stuart Bell’s original argument was rather complicated, but versions
are now so simple that those with only elementary algebra can easily
comprehend the argument. We’ll begin with a simple derivation of a
Bell-type inequality (due to Eberhard 1977), then briefly describe its
experimental refutation.

Let us begin by considering an EPR-type set-up. Unlike EPR, how-
ever, we will consider measurements of spin in different directions, say
along a and a′ for the L photon and b and b′ for R. (See Fig. 4) There
are four possible measurements that could be made:

(a, b), (a′, b), (a, b′), (a′, b′)

(where (a, b) means the L photon is measured for spin along the a-
direction and R along the b-direction). A spin up result of a mea-
surement has value +1, and spin down −1. Now define a correlation
function, c(x, y) as follows:

If a = 1 and b = 1, then c(a, b) = 1× 1 = 1

If a = 1 and b = −1, then c(a, b) = 1×−1 = −1

and so on for a′, b′,etc.

(where a = 1 means that the result of measuring the L photon in the
a direction is +1, etc.)

We imagine running the experiment many times. After N tests, with
ai being the ith result, we have

c(a, b) =
1

N

∑
i
aibi.
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We will make two key assumptions.

Realism: Each photon has all of its properties all of the
time; in particular, each has a spin up or spin down
magnitude in every direction whether there is a spin
measurement made in that direction or not.

This assumption is embedded in the mathematics as follows. Let ai
(or a′i, bi, b′i, respectively) be the result of the ith measurement, if made
in the a (or a′, b, b′, respectively) direction. The value is either +1 or
−1 and this value exists whether a measurement is made or not. In
particular, if photon L is measured in the a direction then it cannot
be measured in the a′ direction. Nevertheless, even thought we can’t
know what the value is, we still assume that it has one value or the
other. This is the core of realism — measurements do not create, they
discover what is independently there.

Locality: The results of measurement on one side of the
apparatus do not depend on what is happening at the
other side. The outcome of a spin measurement on pho-
ton L is independent of the direction in which R is mea-
sured (i.e., the orientation of the apparatus); it is inde-
pendent of the outcome of that measurement; and it is
independent of whether R is measured at all.

Formally, the locality assumption is captured by having the value of
ai be independent of the values of bi and b′i. So if a measurement of
L in the a direction would result in +1 if R were measured in the b-
direction, it would still be +1 if R were measured in the b′-direction
instead. Recall that Bohr holds that a micro-entity has its properties
only in relation to a macro-measuring device — different settings may
create different micro-properties. Locality does not completely deny
this, but it does deny that the settings of a remote macro-device have
any influence that could be transmitted faster than the speed of light.

Now define the following formula which I’ll call F for convenience:

F = aibi + aib
′
i + a′ibi − a′ib′i
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Rearranging terms we have

F = ai(bi + b′i) + a′i(bi − b′i)

Since the a terms equal +1 or −1, and since one of the terms in paren-
theses equals 0 while the other equals either +2 or −2, we have

F = +2 or − 2

Thus, taking the absolute value, we have

|aibi + aib
′
i + a′ibi − a′ib′i| = 2

This holds for the ith measurement result. The generalization for N
measurements is therefore

| 1
N

∑
iaibi + aib

′
i + a′ibi − a′ib′i| ≤ 2

In terms of the correlation function we have

|c(a, b) + c(a, b′) + c(a′, b)− c(a′, b′)| ≤ 2

This is one form of Bell’s inequality. It means that when spin mea-
surements are done for arbitrary directions a and a′ on the L photons
and b and b′ on the R photons, we can expect this degree of correlation.
After many tests the correlations between the L and R photons, taken
a pair at a time, must satisfy this inequality — if the assumptions of
realism and locality both hold.

It is important to stress that the inequality is derived by a simple
combinatorial argument based on two common sense assumptions, re-
alism and locality. QM, however, makes a different prediction. An
experimental test of QM and Local Realism (as it is often called) is
thus possible.

To get specific QM predictions we need to specify directions for the
spin measurements to be made. Let a = b, otherwise the orientations
of a and b can be arbitrary; furthermore, let a′ be −45 degrees and b′

be +45 degrees from the common a/b direction.
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According to QM the correlation functions for the case of particles
in the singlet state have the following values:

c(a, b) = − cos 0 = −1

c(a, b′) = − cos 45 = − 1√
2

c(a′, b) = − cos 45 = − 1√
2

c(a′, b′) = − cos 90 = 0

What this means is that if L is measured in the a direction and has,
say spin up, then R measured in the b (= a) direction will not have
spin up. They are perfectly negatively correlated. In the fourth case
immediately above when L and R are measured at right angles to each
other, the results of measurement are completely uncorrelated. The
other two cases yield results in between.

We now put these values derived from QM into the same form as the
Bell inequality:

| − 1− 1√
2
− 1√

2
− 0| = 1 +

2√
2
> 2

Thus, at these angles, QM and Local Realism diverge in their predic-
tions, making an empirical test possible3. Just how remarkable this sit-
uation is cannot be stressed too much. For years EPR was attacked by
the empiricist-minded for being “idle metaphysics,” since it was thought
that it made no detectable difference. Even defenders of EPR were will-
ing to concede that the realism/anti-realism debate has no empirical
import. Now it turns out that all were wrong. Abner Shimony calls it
“experimental metaphysics”, and the phrase is exactly right. From the
original EPR argument to Bell’s derivation of his inequality, to the ex-
perimental tests, to the reaction to those tests, there is an inextricable

3It can be shown that the quantum correlations are bounded at the value 2 ×
√
2

which is not the theoretical maximum imaginable which could be 4 if the terms of
F = aibi + aib

′
i + a′ibi − a′ib

′
i have maximum values (look up Tsirelson bound ...).

It has been conjectured that this limitation has something to do with information
being the basis of reality!?
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mix of physics and metaphysics. The whole situation is highly reminis-
cent of the 17th century when philosophy and physics were intertwined
and at their best.

If the possibility of performing an empirical test on realism was sur-
prising, the outcome was even more surprising — common sense has
taken a beating. There have been several tests of the inequality. In al-
most every one, QM has made the right predictions and Local Realism
the wrong ones. Of all these tests, the ones carried out by Aspect et.
al. (1981, 1982a, 1982b) have been the most sophisticated.

Fig. Schematic version of the Aspect experiment.

The crucial feature of the Aspect experiment is the presence of a
very fast optical switch which directs L photons to either a or a′ and R
photons to either b or b′ measurements. It picks a direction randomly,
while the photon is in flight. The reason this is considered important is
that in earlier experiments the setting of the distant measuring device
was fixed long before the measurement, thus allowing the possibility
of a subluminal signal between the distant wings of the apparatus and
hence the possibility that they could “communicate” with one another.
Of course, that may seem bizarre, but the QM world is so weird that
it is always nice to have one more possibility ruled out, however far-
fetched it may seem to common sense.
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