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It was in 1935 that Albert Einstein, with his collaborators Boris Podolsky
and Nathan Rosen, exploiting the bizarre property of quantum entanglement
(not yet known under that name which was coined in Schrödinger (1935)),
noted that QM demands that systems maintain a variety of ‘correlational
properties’ amongst their parts no matter how far the parts might be sepa-
rated from each other (see 1935, the source of what has become known as the
EPR paradox). In itself there appears to be nothing strange in this; such cor-
relational properties are common in classical physics no less than in ordinary
experience. Consider two qualitatively identical billiard balls approaching
each other with equal but opposite velocities. The total momentum is zero.
After they collide and rebound, measurement of the velocity of one ball will
naturally reveal the velocity of the other.

But the EPR argument coupled this observation with the orthodox Copen-
hagen interpretation of QM, which states that until a measurement of a par-
ticular property is made on a system, that system cannot, in general, be said
to possess any definite value of that property. It is easy to see that if dis-
tant correlations are preserved through measurement processes that ‘bring
into being’ the measured values there is a prima facie conflict between the
Copenhagen interpretation and the relativistic stricture that no information
can be transmitted faster than the speed of light. Suppose, for example, we
have a system with some property which is anti-correlated (in real cases, this
property could be spin). If we measure one part of the system, and find that
the correlated property of that part is say, +1, then we know that if we were
to measure the distant part of the system it would reveal that property to
have value -1 (to preserve the negative correlation). It is rather as if, in our
billiard ball example, we knew that the total momentum was zero but that
we believed that neither ball had a particular velocity until we measured it.
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Then there is an evident problem of how the other ball ‘knows’ what value
we got for its partner’s velocity. If the system’s components are separated
to a sufficient distance there can be no possibility of any ordinary sort of
‘communication’ between the parts (i.e. any communication process which
operates at light speed or below).

The obvious answer, championed in Einstein et al. (1935) (as well as the
classical, commonsense picture of the world), was that there are some hidden
elements of reality that both parts of the system carry with them as they are
separated; these hidden elements are initially correlated and maintain that
correlation until they are measured, at which point they merely reveal a value
that they had possessed all along. Einstein, Podolsky and Rosen argued that
QM must therefore be incomplete. This natural solution was spectacularly
criticized by the work of John Bell who showed that if QM was correct in
its predictions then any version of the EPR model of ‘carried correlations’
must be incorrect (see Bell (1964); see also Bell (1987) which contains both
the original paper as well as additional papers bearing on EPR). What Bell
showed was that the measurement statistics of a wide range of reasonable
hidden variable theories must obey some form of a relatively simple algebraic
relation now called the ‘Bell inequality’.

More precisely, Bell showed that no local carried correlation theory can
be correct. If we allow that the parts of the system can ‘communicate’
instantaneously across any distance then we can maintain a hidden variable
theory, since the separated parts could through their intercommunication
so to speak manipulate the measurement statistics to bring them in line
with those of ordinary QM. And in fact there is such a non-local hidden
variable theory, developed by David Bohm (see 1952; see also Bohm (1980),
Bohm and Hiley (1993)). In Bohm’s theory all the positions and trajectories
of the particles in a system are always determinate but there is non-local
‘communication’ via the so-called quantum potential. This is a new kind of
field, mathematically derived from and implicit in the Schrödinger equation,
that, in essence, carries information rather than energy and which is able to
‘guide’ the particles. The nature of this communication is mysterious however
and it remains somewhat unclear whether Bohm’s theory can be satisfactorily
extended to the relativistic context of quantum field theory, although recent
work is encouraging. In any case, Bohm’s theory certainly does not vindicate
the EPR intuition and in fact champions the ‘spooky action at a distance’
that Einstein deplored.

A number of loopholes are possible to contemplate which could make
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the world safe for locality. For example, one could imagine that the mea-
surements somehow depend on pre-established experimental protocols. This
loophole could be closed by having the protocols chosen randomly and rapidly
enough before the measurement that communication between the parts of
the system is impossible. A number of other loopholes have been noticed
and in a number of cases experiments mounted that try to close them have
been attempted. In recent years, from 1972 to 2013, a series of experiments
directly aimed at testing the Bell inequality under ever more stringent condi-
tions which eliminate more or less improbable possible loopholes that might
save locality have been performed (for a general discussion of the nature of
these tests and their significance see Shimony (2013); Wikipedia has a nice
compilation). The experiments have all thus far vindicated QM.

QM demands that the distant parts of systems remain ‘aware’ of what
is happening to the other parts. This is an information link but a most
peculiar one: no information, in the sense of bit capacity, can be transmitted
over the link. The resolution of this ‘paradox’ requires us to distinguish
causal chains from information links. Ordinary information theory reduces
information transmission to causal connection, but it seems there is a more
fundamental sort of information laden connection in the world. It is possible
to view information as the basic element at work here, so that causal processes
come to be seen as just one, albeit particularly visible and salient, form of
information link. The paradox of correlated systems is resolved if we note
that if it were possible to transmit information by manipulation of the distant
parts of some QM correlational system one could set up a causal process from
one to the other. This is ruled out by relativity theory. But if other sorts
of information links are envisaged, then of course an information link can
remain in despite of the absence of any causal link.

It is also interesting that since the source and, in some sense, maintenance,
of the correlations between the distant parts of some system are dependent
on fundamental physical conservation laws, such as the conservation of mo-
mentum, the constraints imposed on the world by these laws are not always
enforced by causal processes. It has always seemed remarkable to me that
laws can constrain the world in ‘abstract’ ways so that the mechanisms of
their observance vary from system to system (each candidate perpetual mo-
tion machine can be seen to fail, but the failure in each case depends upon
the details of the machine at issue). It is surely significant that the ‘mecha-
nisms of law observance’ transcend the realm of causal process and seem to
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enter a more general sphere of pure informational commerce1.
But the notion of ‘pure information’ I want to develop can be better

illustrated in a less exotic setting, through a simple discussion of the famous
two-slit experiment. A beam of photons, electrons, atoms or whatever is
directed towards an appropriately separated pair of slits in an otherwise
opaque surface. A detector screen is set up behind the slits. QM predicts,
and less ideal but more practical experiments amply verify, that the ‘hits’ on
the screen will form an interference pattern, which results in some way from
the interaction of the two possible paths an element of the test beam can
take to the screen.

More particularly, the QM formalism demands that the atoms, say, in
the beam be represented as a superposition of the states associated with
each spatial path, for example:

ψ =
1√
2
(ψ1 + ψ2) (1)

where the coefficient, 1/
√
2, is a normalization factor required to insure that

the output probabilities upon measurement remain between 0 and 1, the root
because probabilities are given by the square of the system’s state function,
ψ. Here, ψ represents the ‘total state’ of the particle which passes through
the apparatus, ψ1 represents the particle taking the top slit, call this path 1,
and ψ2 represents the particle taking the bottom slit, call this path 2. The
probability that the screen will be hit in a certain region, r, is given by a
variety of formal mechanisms.

In general, probabilities are given by what is called the inner product,
which can be thought of as the overlap of the two states involved, thus:

〈ψ|Prψ〉 (2)

Here, Pr is an operator which transforms a state into a state in the space
of states representing the system (a particle for example) being found at
position r. If we imagine that the system is already in a state corresponding

1There are other instances of laws which do not operate via imposing causal mechanisms
on the world, such as Pauli’s exclusion principle and, from a certain point of view, laws like
the perfect gas law and Newton’s law of gravitation. Although we now know that the two
latter laws are based on underlying causal mechanisms, they had their legal status prior
to our discovering this and could be laws even if we never had discovered their underlying
explanation (see van Fraassen (1980), especially ch. 5)
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Figure 1: 2 Slit Experiment

to being at position r, the overlap between this state and the projection will
be a total or perfect overlap, and the probability will come out to be 1. The
details of how this works mathematically don’t matter to us. We can simply
regard Pr as a ‘machine’ which transforms states appropriately and take the
mathematics as just a device which delivers probabilities. If we write out the
inner product in full, we get〈

1√
2
(ψ1 + ψ2)|Pr

[
1√
2
(ψ1 + ψ2)

]〉
(3)

In QM, operators which correspond to observable quantities such as Pr (posi-
tion) are linear2; so given the properties of the inner product we can expand
(3) into:

1

2
[〈ψ1|Prψ1〉+ 〈ψ2|Prψ2〉+ 〈ψ1|Prψ2〉+ 〈ψ2|Prψ1〉] (4)

The first two terms respectively represent the probability of the particle being
in region r if it takes path 1 or if it takes path 2. The final two terms are
the unavoidable ‘cross terms’ which, at least mathematically, account for
the interference between the two paths. Schematically, the situation can be
pictured as in Figure 1. The darker regions of the interference pattern on the

2We also appeal to this feature of the inner product: 〈cψ|dφ〉 = c∗d 〈ψ|φ〉 where c∗ is
the complex conjugate of c. This complication is forced on us because scalars in QM can
be either real or imaginary numbers. In this particular case, the coefficient of 1/

√
2 is ‘pure

real’ and hence is equal to its own conjugate.
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right of the figure correspond to a greater number of detected particles. Right
behind the slits we find a very low number of particles, contrary to classical
expectations for particles (though perfectly in line with the expectations for
wave phenomena).

As everyone knows but which is still amazing, the interference pattern
disappears if we have some way of determining through which slit a given
atom has passed on its way to the screen. This is sometimes explained in
terms of the causal disturbance of the atom’s state which such a measurement
will involve, and sometimes it is said that such a disturbance is unavoidable
and is the proper account of this aspect of the two-slit phenomena (and, in
general, of the uncertainty relations in QM).

But there is no need to posit disturbance in order to explain the loss
of the interference pattern; mere information about which path the atoms
take will suffice. For suppose that there was a perfect detector that could
determine which path an atom has taken without altering the atom’s state.
Such a detector would be capable of only two detection states, let’s say T, B
(for top and bottom slit respectively), and the output of the detector would
be perfectly correlated with the components of the atomic state, ψ1 and ψ2.
The joint system of atom plus detector state, after detection, which I’ll label
ψd, would be written as a superposition of tensor products (again, the details
of the tensor product machine don’t matter to us, though I provide some of
the manipulation rules, which in this case are not particularly complicated,
as needed below, as follows:

ψd =
1√
2
[(ψ1 ⊗ T ) + (ψ2 ⊗B)] (5)

Now if we wish to compute the probability of finding an atom in region r, we
require an operator that works on the so-called tensor product space of the
atom plus detector. Since we are only interested in measuring the position
of the atom and have no wish to do anything at all to the detector, this
operator is Pr⊗ I, where I is the identity operator (i.e. for any ψ, Iψ = ψ)3.
The basic form of our probability equation is just as above, but taking into
account the existence of the detector; the probability of finding the particle
in region r is now:

ψd|(Pr ⊗ I)ψd (6)
3And, in general, if O and P are operators we have (O ⊗ P )(ψ ⊗ φ) = Oψ ⊗ Pφ.
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Writen out in full this gets rather messy:〈
1√
2
[(ψ1 ⊗ T ) + (ψ2 ⊗B)] |(Pr ⊗ I)

1√
2
[(ψ1 ⊗ T ) + (ψ2 ⊗B)]

〉
(7)

but if we abbreviate (ψ1 ⊗ T ) simply to X, (ψ2 ⊗ B) to Y and the operator
(Pr ⊗ I) to O, the fundamental form will become easier to discern:〈

1√
2
(X + Y )|O

[
1√
2
(X + Y )

]〉
(8)

This is entirely analogous to (3) above. However, when (8) is expanded the
cross terms take on a distinct form. The first step gives us:

1

2
[〈X|OX〉+ 〈Y |OY 〉+ 〈X|OY 〉+ 〈Y |OX〉] (9)

The expansion of just the first and last term (which is a cross term) of (9)
should be enough to reveal what will happen to the probabilities in this case.

〈X|OX〉 = 〈(ψ1 ⊗ T )|(Pr ⊗ I)ψ1 ⊗ T 〉
= 〈(ψ1 ⊗ T )|Prψ1 ⊗ T 〉
= 〈ψ1|Prψ1〉 × 〈T |T 〉 (10)

This follows from the definition of the inner product in the tensor product
space, which is: 〈(ψ1 ⊗ φ1) | (ψ2 ⊗ φ2)〉 = 〈ψ1|ψ2〉 × 〈φ1|φ2〉. Since all our
state vectors are normalised, 〈T |T 〉 = 1 and (10) is simply the probability of
the particle being in region r if it took the first path. As we would expect,
the detector state has no effect on this probability.

The situation is quite different with the cross terms. Consider

〈X|OY 〉 = 〈(ψ2 ⊗B)|(Pr ⊗ I)(ψ1 ⊗ T )〉
= 〈(ψ2 ⊗B)|(Prψ1 ⊗ T )〉
= 〈ψ2|Prψ1〉 × 〈B|T 〉 (11)

Note that this cross term is accompanied by the factor 〈B|T 〉 (the other
cross term of (9) will be accompanied by 〈T |B〉). But in a perfect detector,
distinct indicator states are orthogonal (there is zero overlap between the
detector states), which is to say that these inner products have the value 0
and the interference terms thus disappear. The probability that the atom
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will be found in region r is now just the sum of the probability of its being
in r if it takes the first path and the probability of its being in r if it takes
the second path.

This is of some interest to those who need to be reminded that comple-
mentarity is not the result of the clumsiness of measurement, but is rather
an intrinsic and ineradicable feature of QM. The mere fact that our detec-
tors carry the relevant information is sufficient to destroy the interference
effects, whether or not the detector in some way ‘disturbs’ the system under
measurement. The kind of information at issue here is not bit capacity but
the semantically significant correlation of ‘distinct’ physical systems, where
there is no requirement that the correlation be maintained by some causal
process connecting the two systems (which is not to say that there is no in-
fluence of one part of the system on another but there is no transfer of energy
characteristic of causal processes). The properties of the QM system are of
course fully explicated by the structure of the wave function describing the
whole system, but what we seek to understand is the connection between the
purely mathematical, abstract space in which the wave function evolves and
the solidly real, ‘spread-out’ physical space in which the properties of the
system are actually discovered by us.

This remarkable feature of QM is made more apparent by my final ex-
cursion into the formalism, only slightly more complex. The notion of a
perfect detector suggests the possibility of retrieving the original interfer-
ence patterns simply by erasing the information within the detector. Since
the atomic states have not been altered by the initial operation of the ideal
detectors, this would appear to be at least theoretically feasible. To speak
figuratively: the atoms, now far along on their way towards the screen upon
which their position will eventually be recorded, have no idea whether their
paths have been registered or not. Such an interference retrieval device is
called a quantum eraser (see Scully and Drühl (1982); Scully et al. (1991); for
an interesting discussion of the nature and significance of quantum erasers
see Davies (1996), ch. 7).

The simplest imaginable or naive quantum eraser would be modelled by
some operator that transformed either of the detector states,T or B, to the
same neutral third state, say a ground state, G. Call this hypothetical oper-
ator, R, the reset operator. Then we could represent the eraser as R acting
on the detector states thus: R(T ) = R(B) = G. Since R acts only on the
detector it would be represented in the tensor product space as (I ⊗R). We
could choose to turn on the eraser or not. If we did, its action on ψd would
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evidently be this:

(I ⊗R)ψd =
1√
2
[(ψ1 ⊗R(T )) + (ψ2 ⊗R(B))]

=
1√
2
[(ψ1 ⊗G) + (ψ2 ⊗G)] (12)

Now, upon expansion, the terms 〈B|T 〉 and 〈T |B〉, which previously elimi-
nated the interference, become 〈G|G〉, which we may suppose has unit norm
and so the interference terms are back!

The quantum eraser just outlined might be called a perfect eraser, and
I hope it does illustrate the idea behind the eraser, but unfortunately it
is entirely impossible as it is presented here. No such operator as R is
allowable in QM since it violates the laws governing the time-evolution of
quantum mechanical states. The temporal evolution of a quantum system
is governed by the system’s time-dependent Schrödinger equation, but this
evolution can also be given by a set of operators, Ut, such that ψt (i.e. the
state at time t) is Utψ0 (where ψ0 is the initial state of the system at time
zero). These operators are unitary, and this entails (among other things)
that they preserve orthogonality (in fact, 〈X|Y 〉 = 〈UtX|UtY 〉). Thus, there
is no way that our two orthogonal detector states, T and B, could both be
reset to the same state, G4.

We should have had our doubts about this version of the quantum eraser
anyway. If there was a perfect quantum eraser it would be a truly magical
machine. For consider. We can choose to activate (or not) the eraser at
any time before the relevant atom reaches the screen (probably even after it
reaches the screen) and, in principle, the screen could be a goodly distance
away. But so long as we do activate the eraser the atom will be ‘directed’ to
a region of the screen compatible with interference; if we do not activate the

4One might, perhaps, entertain some doubts about this argument since, notoriously,
the normal time evolution of a quantum state seems to fail in the case of measurement
where the so-called collapse of the wave function occurs. There is no question that two
orthogonal states can both ‘collapse’ to the same state. E.g. the result of a measurement
of spin in the z-direction of an electron already prepared to be spin-up in the x-direction
could be spin-down in the z-direction; the very same result could, of course, be obtained
from a measurement of a spin-down in the x-direction electron. But in the case above, we
maintain the superposition of states which is characteristic of the normal time-evolution
of quantum states; we did not invoke any collapse of the wave function in the operation
of the eraser and, it seems, any such collapse would necessarily eliminate one of the terms
of the superposition and thus would also eliminate any possibility of interference.
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eraser the atom goes to a non-interference part of the screen. Of course, such
regions overlap so those limited to observing the screen might only receive
statistical evidence about whether the eraser is on or off but after a time it
would become clear, and sometimes the atom would hit the screen in a place
that would make it very unlikely that the eraser had been turned on. Now
suppose that whether or not the eraser is activated will be determined by a
randomizing device which renders its decision just prior to eraser activation
or non-activation. To make things vivid, if rather impractical, let’s say the
randomizer is a certain roulette wheel in Monte Carlo (‘red’ means turn the
eraser on, ‘non-red’ means leave it off).

Let us also suppose that the distance between screen and slits plus de-
tector plus eraser apparatus and the delay between the atom’s passing the
slits and activation (or not) of the eraser are considerable enough to ensure
that the two events of eraser activation and atom detection on the distant
screen are space-like separated. In that case, there is a moving observer for
whom the atom will hit the screen before the quantum eraser is activated.
Such an observer will then know (at least to a degree better than chance) the
outcome of the spin of the roulette wheel before the wheel has been spun.
More particularly, there are certain regions of the screen such that if an atom
is registered in them then it is very likely that the roulette wheel will come
up non-red. But I take it as given that no one, especially someone with no
particular knowledge about the roulette wheel in question, can have this sort
of knowledge.

Worse still, the perfect quantum eraser would permit superluminal sig-
nalling. For suppose that instead of randomly engaging the eraser we try to
use it as a kind of Morse code transmitter. Again, because of the overlap
between interference and non-interference regions, we might have to send the
same signal repeatedly to ensure a reasonable likelihood of proper reception,
but that is no difficulty of principle. By waiting until the last second, as it
were, to activate (or not) the eraser, we can direct a distant atom to various
regions of the screen with some level of control. It is this possibility, perhaps,
which appalled the physicist E. T. Jaynes. He wrote about a related quantum
device but I adjust the quote here to accord with the eraser example: ‘by
applying [the eraser] or not . . . we can, at will, force [the atoms] into either
(1) a state with . . . no possibility of interference effects . . . (2) a state [in
which] interference effects are then not only observable, but predictable. And
we can decide which to do after the [atoms have passed the slit/detector] so
there can be no thought of any physical influence on the [atoms]’ (1980, p.
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41; this quote appears, and is discussed, in Scully et al. (1991)). Jaynes goes
on to insult QM as having ‘more the character of medieval necromancy than
of science’ (p. 42).

Such remarks might seem to presuppose that a perfect quantum eraser is
possible, but as we have seen this is in fact not the case. That is to say, we
have discovered that what I called the perfect eraser is impossible. However,
despite the considerations given above, quantum erasers are possible. Their
construction is just a little more complicated than appeared at first sight.

Consider again the state of our atoms as they proceed through the quan-
tum eraser apparatus. After passage the state of the system is that given in
(5) above. We cannot reset the detector in the way required for the perfect
eraser, but it will suffice if we can discover appropriate, possible states that
the detector can achieve which will still allow the eraser to function. Such
states are possible. What is needed is a mathematical trick, which is the
heart of the Scully et al. scheme for eraser construction. Define four new
states as follows:

ψ+ ≡ 1√
2
(ψ1 + ψ2) (13)

ψ− ≡
1√
2
(ψ1 − ψ2) (14)

G+ ≡ 1√
2
(T +B) (15)

G− ≡
1√
2
(T −B) (16)

Since any linear combination of quantum states is a quantum state, these
are all perfectly legitimate states of our hypothetical system. They are all
observable states5. The states G+ and G− are to be thought of as states the
detector can enter through the operation of the eraser. Furthermore, and
crucially, the original state, ψd, can be written in terms of our new states, as
follows:

ψd =
1√
2
[(ψ+ ⊗G+) + (ψ− ⊗G−)] (17)

This can be verified algebraically, from the properties of the tensor product.
The crucial properties are that cψ ⊗ dφ = cd(ψ ⊗ φ) for scalars c, d (in QM

5In the quantum terminology, there are Hermitian operators of which they are eigen-
states.
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scalars can be either real or imaginary numbers) and that (ψ1 ⊗ φ1) + (ψ2 ⊗
φ2) = (ψ1 + ψ2)⊗ (φ1 + φ2). The proof of (17) then follows by expansion of
its right term, thus:

1√
2

[
1√
2
(ψ1 + ψ2)⊗

1√
2
(T +B)

]
+

[
1√
2
(ψ1 − ψ2)⊗

1√
2
(T −B)

]
Gathering terms as per the above properties this becomes

1√
2

[1
2
[(ψ1 ⊗ T ) + (ψ1 ⊗B) + (ψ2 ⊗ T ) + (ψ2 ⊗B))] +

1

2
[(ψ1 ⊗ T )− (ψ1 ⊗B)− (ψ2 ⊗ T ) + (ψ2 ⊗B)]

]
We notice that several terms here cancel out by subtraction to leave us with

1√
2

[
1

2
[(ψ1 ⊗ T ) + (ψ1 ⊗ T ) + (ψ2 ⊗B) + (ψ2 ⊗B)]

]
Now combining the double terms and diving by the factor of one-half yields

1√
2
[(ψ1 ⊗ T ) + (ψ2 ⊗B)] = ψd.

So, as it must, this state exhibits no interference since the cross terms contain
the vanishing 〈G+|G−〉 and 〈G−|G+〉.

But suppose we ask, what is the probability of the particle being in region
r given that the detector is in the state G+? On the assumption that the
detector is in G+ the second term on the right side of (17) side must vanish
and the probability will be calculated from the state ψ+ ⊗ G+. This calcu-
lation proceeds normally; so the probability of the particle being in region r
given that the detector is in state G+ is:

〈ψ+ ⊗G+|(Pr ⊗ I)(ψ+ ⊗G+)〉 (18)

which quickly reduces to

〈ψ+|Prψ+〉 × 〈G+|G+〉 (19)

It is easy to see that 〈G+|G+〉 is equal to 1, so the probability we seek is
simply 〈ψ+|Prψ+〉. The expansion of this inner product is however very
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interesting. Given the definition of ψ+, this probability expression is just (3)
above. That is, we have recovered the original two-slit configuration with its
interference effects despite the operation of the detector and we have done
so via the operation of the eraser!

What happens to the probability on the assumption that after the oper-
ation of the eraser the detector goes into its other possible state G−? This
probability will be equal to 〈ψ−|Prψ−〉, which is:〈

1√
2
(ψ1 − ψ2)|Pr

1√
2
(ψ1 − ψ2)

〉
(20)

and this expands by the following steps:

=
1

2
〈(ψ1 − ψ2)|Pr(ψ1 − ψ2)〉

=
1

2
[〈ψ1|Prψ1〉 − 〈ψ2|Prψ2〉 − 〈ψ1|Prψ2〉+ 〈ψ2|Prψ1〉] (21)

Here too we have interference effects, but they are the opposite of those
attendant upon (19). The sum of these two interference effects produces a
pattern at the screen identical to the no-interference pattern produced by
the operation of the detector without the eraser.

So, have we produced a quantum eraser with the magical properties dis-
cussed above? The best answer seems to be ‘yes and no’. We have a quantum
eraser all right, but it cannot be used in any of the ways imagined above.
This is because the peculiar effects of the eraser are evident only if we know
which state the detector is in after the passage of each atom and there is no
way to get this information to someone in the vicinity of the screen except
by ordinary means, which precludes such things as superluminal signalling
or ‘predicting’ the outcomes of roulette wheels. In order to use the eraser to
achieve such ends, the eraser would have to send the detector into a deter-
minate state or our wishing, and this, we have seen, it simply cannot do. On
the other hand, from the point of view of the universe, as it were, something
quite mysterious is going on. For the atoms are ‘responding’ to the operation
of the eraser and they are doing so instantaneously across (in principle) any
distance.

The story is not quite over. It might be objected that the idea of the
eraser can’t even get off the ground since it presupposes the existence of
‘perfect detectors’ which are in reality entirely impossible. However, per-
haps surprisingly, it is not the impossibility of perfect detectors which do not
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disturb the state of their target atom which destroys the idea of the quan-
tum eraser. As outlined in Scully et al. (1991), it is possible to construct a
‘micromaser cavity’ that will guarantee that an excited atom will de-excite
(via emission of a photon of characteristic wavelength) while passing through
the cavity. The emission of the photon will have no significant effect on the
‘centre-of-mass’ wave function of the atom, but the photon left behind in the
cavity is a marker indicating that the atom passed through it. The version
of the quantum eraser in Scully et al. (1991) involves two such micromaser
cavities which serve as the detectors yielding information about which slit
an atom has traversed. By activating a photo-detector placed between the
cavities, it is possible to erase this information, via the absorption of the
information carrying photon.

Significantly however, detailed analysis reveals that such a device can de-
tect the photon only half the time, at random, and it is only if the eraser
actually detects the photon that the normal interference effects are to be
expected. In fact, the situation is such that when the eraser works one gets
the normal interference pattern, when it fails one gets an anti-interference
pattern. These two patterns sum to the normal no-interference pattern as in
our idealized example. Thus only if one already knows the state of the eraser
can one detect the interference pattern, as a distinct pattern, on the dis-
tant screen. Perhaps one could say that such a device permits superluminal
signalling in some very attenuated sense, but the receivers would not know
what message had been sent until they got detailed records of the action of
the eraser. Then they could correlate atom hits with eraser records and see
which hits were parts of dots and which of dashes, but, of course, in such a
case no usable information has been sent faster than light. In fact, it is this
record of eraser operation which is the real message6.

6Most quantum eraser experiments are performed with photons, exploiting our very
advanced technological abilities in quantum optics. An interesting recent effort of this
sort (Ma et al. (2013)) leads the authors to deny that quantum systems possess individual
reality apart from their place within the totality of reality (at least that of system plus
measuring device and the environment but in principle this could encompass the entire uni-
verse). If that is too grandiose a conclusion, the experiment amply verifies the mysterious
universal non-local information level but non-causal connection between things.
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