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for Clupeiformes (herring and allies)
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One of the most remarkable types of migration found in animals is dia-

dromy, a life-history behaviour in which individuals move between

oceans and freshwater habitats for feeding and reproduction. Diadromous

fishes include iconic species such as salmon, eels and shad, and have long

fascinated biologists because they undergo extraordinary physiological

and behavioural modifications to survive in very different habitats. How-

ever, the evolutionary origins of diadromy remain poorly understood.

Here, we examine the widely accepted productivity hypothesis, which

states that differences in productivity between marine and freshwater

biomes determine the origins of the different modes of diadromy. Specifi-

cally, the productivity hypothesis predicts that anadromous lineages should

evolve in temperate areas from freshwater ancestors and catadromous

lineages should evolve in tropical areas from marine ancestors. To test

this, we generated a time-calibrated phylogeny for Clupeiformes (herrings,

anchovies, sardines and allies), an ecologically and economically important

group that includes high diversity of diadromous species. Our results do not

support the productivity hypothesis. Instead we find that the different

modes of diadromy do not have predictable ancestry based on latitude,

and that predation, competition and geological history may be at least as

important as productivity in determining the origins of diadromy.
1. Introduction
Diadromy is a remarkable life-history behaviour in which individuals migrate

between oceans and freshwater rivers during a predictable phase of their life

cycle, typically for feeding and reproduction [1]. Diadromous fishes have

been a long-standing fascination of biologists [1–4], both because of the

impressive physiological and behavioural adaptations necessary for survival

in different habitats, and because diadromy has significant implications for

the ecology, evolution and biogeography of fishes [5–8]. For instance, diadromy

can impact genetic diversity and amounts of gene flow [9], alter life-history traits

[10,11], and have cascading effects between marine, freshwater and terrestrial

food webs [12]. Moreover, many of the approximately 250 diadromous fish

species found nearly worldwide [7,13,14] are heavily studied iconic food and

sport fishes (e.g. salmon, sturgeon, shad, eel).

There are several outstanding questions concerning diadromy: (1) What fac-

tors promote these remarkable migrations that require energetically costly

physiological and osmoregulatory changes to deal with salinity differences

between environments? (2) Under what conditions do the different types of dia-

dromy (see below) evolve? Why would some species migrate to oceans while

other species migrate to freshwater habitats to reproduce or feed? (3) Does dia-

dromy facilitate the evolution of long-term lineage transitions between marine

and freshwater habitats? (4) Lastly, what are the macroevolutionary and biogeo-

graphic implications of diadromy? Here, we test hypotheses regarding the

evolutionary origins of diadromous lineages (questions 1 and 2), and address

the macroevolutionary patterns and implications of this life-history behaviour

(questions 3 and 4).
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Figure 1. Evidence for the productivity hypothesis for the evolution of dia-
dromy, adapted from Gross et al. [23]. (a) The number of all known
anadromous (open circles) and catadromous (filled circles) fish species
found across 58 latitudinal increments averaged from both Northern and
Southern hemispheres, based on McDowall [18]. Diadromy occurs across
the major craniate groups, from lampreys to percomorphs. (b) Annual primary
productivity (measured in grams of carbon fixed per square metre per year)
of aquatic biomes across different latitudes. Freshwater data (filled squares)
averaged from 135 different water bodies; marine data (open squares) from
Bunt [24]. See [23] for details on how species numbers and primary
productivity were calculated.
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Three types of diadromy have been described: catadromy,

anadromy and amphidromy [1]. Catadromous fishes are born

in marine biomes and migrate to freshwater, where they

spend most of their lives feeding and growing before return-

ing to the ocean to reproduce. Anadromous fishes do the

opposite—they are born in freshwater and migrate to the

ocean, where they feed and grow, before migrating to fresh-

water to reproduce. Amphidromous species migrate between

marine and freshwaters at a particular life-cycle stage (often

as juveniles), but not for the purpose of spawning. More

detailed descriptions and definitions of diadromy have been

reviewed elsewhere [1,14–17].

The evolutionary origins of diadromy are the subject of

considerable theoretical discussion [1,14,18–23]. In an impor-

tant contribution, Gross [22] and Gross et al. [23] proposed

that differences in ecological productivity between marine

and freshwater biomes determine the origins of the different

modes of diadromy (herein referred to as the ‘productivity

hypothesis’). Assuming the accuracy of Gross’s analyses of

productivity data, oceans have higher productivity than

freshwaters in temperate regions, and freshwaters have

higher productivity than oceans in tropical regions. In turn,

higher latitudes have more anadromous species and lower

latitudes have more catadromous species (figure 1). This

apparent geographical relationship between productivity

and mode of diadromy provides some evidence that temper-

ate anadromous fishes are derived from freshwater ancestors

that began migrating to oceans to exploit the higher pro-

ductivity, while tropical catadromous fishes are derived

from marine ancestors that began migrating to rivers to

exploit these higher productivity habitats [22,23]. Gross [22]

further proposed that diadromy represents an intermediate

condition between the evolution of fully freshwater to fully

marine species (or vice versa). Gross’s productivity model

therefore makes the phylogenetic prediction (figure 2) that

anadromous species have evolved from a freshwater ancestor,

while catadromous species evolved from a marine ancestor.

An alternative hypothesis for the origin of diadromy is

the ‘safe-site hypothesis’, specifically proposed to explain

the evolution of anadromy [25]. The safe-site hypothesis

posits that freshwater habitats offer the eggs and larvae of

marine fishes a sanctuary from marine predators. Thus, ana-

dromy would be driven by the adaptive advantage offered

by migration to freshwater habitats for reproduction. The

safe-site hypothesis predicts that anadromous species

evolved from a marine ancestor, and that freshwater species

eventually evolve from anadromous lineages (figure 2).

Few studies have attempted to test hypotheses for the

evolutionary origins of diadromy using a phylogenetic frame-

work (but see [25,26]), and Gross’s productivity hypothesis is

based on species data that have not been examined in a

phylogenetic framework. Here, we conduct a phylogenetic

investigation of the evolution of diadromy in Clupeiformes,

which includes some of the most important food fishes of

all time (herring, sardines, anchovies and their allies). While

most major fish clades are restricted to either marine or fresh-

water habitats [13,27], clupeiforms include marine, freshwater

and diadromous species. In fact, Clupeidae alone has more

diadromous species (approx. 30) than any other family of

fishes except Gobiidae and Salmonidae, and the proportion

of diadromous clupeids is about 10 times higher than in all

other fishes [28]. Moreover, clupeiforms include both anadro-

mous and catadromous species, making this group a superb
model system for testing hypotheses on the evolution of dia-

dromy and evolutionary transitions between aquatic biomes.

Using a time-calibrated phylogeny of clupeiforms, we

reconstruct the evolution of marine, freshwater and diadromous

lineages to explicitly test the productivity and the safe-site

hypotheses for the origins of diadromous fishes. We also

consider the role of diadromy in transitions between marine

and continental freshwater biomes, and test whether diadromy

facilitates evolutionary transitions between habitat types.
2. Material and methods
(a) Taxon sampling and molecular data
We assembled a data matrix consisting of four genes (rag1, rag2,

cytb, 16 s) that included the broadest taxon sampling possible for

clupeiforms by combining data from previously published

studies [29–35] and newly generated sequence data for available

taxa (see electronic supplementary material, table S1). The data-

set includes 153 species from 64 of the 84 currently recognized

genera and all major lineages of Clupeifomes.

http://rspb.royalsocietypublishing.org/
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Figure 2. Hypotheses and phylogenetic predictions for the origins of diadromy based on (a) the productivity hypothesis [23] and (b) the safe-site hypothesis [25].
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Molecular laboratory protocols and primer information for

newly generated sequences have previously been published

[29,33]. Whenever possible, two or more specimens per species

were sequenced for each gene and preliminary analyses were

conducted as a measure of quality control. Duplicate species

representatives were removed for all subsequent analyses.

Sequences were edited using the computer software GENEIOUS

v. 5.4 [36] and aligned using the MUSCLE plugin [37]

implemented in GENEIOUS. For alignment of the 16 s data, we

also used the CLUSTAL X [38] plugin in GENEIOUS to employ a

range of gap opening and extension parameters to test the robust-

ness of the MUSCLE alignment. Protein-coding genes were

translated to amino acids to confirm open reading frames. Follow-

ing alignment, we concatenated all four genes into a single matrix

consisting of 5211 bp. The final matrix includes data for more

than 70% of all possible cells, and comprises data from 152

species for 16 s (1352 bp), 155 species for cytb (1131 bp), 98

species for rag1 (1491 bp) and 102 species for rag2 (1237 bp).

(b) Data partitioning and model selection
We used the program PARTITIONFINDER [39] to objectively deter-

mine the best-fit model of evolution and partitioning scheme

simultaneously. Best-fit models were selected using Bayesian

information criteria, selecting among the best models available

under a ‘greedy’ search scheme using ‘models¼mrbayes’ (see

electronic supplementary material, table S2).

(c) Phylogeny and time-calibration
We conducted phylogenetic inference using maximum-

likelihood (ML) and Bayesian methods. Our ML phylogenetic

reconstructions were conducted using the program RAxML v.

7.3 [40]. For ML estimates, we used the best partitioning strat-

egy chosen by PARTITIONFINDER and a GTRGAMMA model for

each partition (electronic supplementary material, table S2). We
estimated support for nodes using the rapid-bootstrapping

algorithm for 1000 non-parametric bootstrap replicates. We

performed three separate ML searches to ensure that we

searched tree space thoroughly and were not trapped on

local optima.

We jointly estimated phylogeny and diversification times

using a Bayesian relaxed clock method [41] in the program

BEAST v. 1.7.2 [42]. We used an uncorrelated lognormal tree

prior and a birth–death prior for rates of cladogenesis. Several

initial BEAST runs showed that the partitioning strategy

chosen by PARTITIONFINDER resulted in over-parametrization, so

the dataset was partitioned by gene with partitions unlinked

and a GTR model with gamma-distributed rate heterogeneity

used for each partition. We ran four independent analyses for

300 million generations, sampling every 1000th generation. We

used TRACER v. 1.5 [43] to evaluate convergence of runs and to

verify that effective sample sizes were more than 200 for all

parameters. We determined that the first 50 million generations

from the MCMC sample were a conservative burn-in. We com-

bined runs using LOGCOMBINER v. 1.6.1 [43] and the maximum

credibility tree was generated in TREEANNOTATOR v. 1.6.1 [43].

To determine absolute divergence times, we used eight fossil

and biogeographic age calibrations (see electronic supplementary

material, text S3) with exponential priors to set a hard minimum

and soft maximum bound [44]. Several of the fossil calibrations

have been used in recent studies [34,45,46]; however, we

included additional clupeiform fossils that have not yet been

incorporated in diversification time analysis of this group.

(d) Ancestral character reconstruction
We used ancestral character reconstruction to determine the

evolutionary history of diadromous, marine and freshwater

lineages. Each species was coded for a discrete, unordered character

(biome requirement) with four states: marine (0), freshwater (1), ana-

dromous (3) or catadromous (4). Some species are thought to be

http://rspb.royalsocietypublishing.org/
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facultatively diadromous, where not all individuals migrate (e.g.

alewife) [28]. We coded facultative diadromous species as having

the respective diadromous state (anadromous or catadromous).

We used the program MESQUITE v. 2.73 [47] to conduct

a maximum-parsimony (MP) and ML character reconstructions.

For ML reconstructions, we used the Mk model [48]. By conduct-

ing these reconstructions on our time-calibrated phylogeny, we

are able to determine the number, order and timing of transitions

between marine, freshwater and diadromous life histories in

clupeiforms.
.org
Proc.R.Soc.B

281:20132081
3. Results
(a) Phylogeny
We recovered a well-resolved molecular phylogeny that is

largely consistent with previous studies (figure 3; see also

electronic supplementary material, figures S4 and S5). Our

phylogenetic hypothesis includes several clupeiform lineages

that have not previously been included in a molecular study.

These results are presented and discussed in detail in electronic

supplementary material, text S3.

(b) Ancestral character reconstructions: evolution of
diadromy

Our ancestral character reconstructions indicate that cata-

dromy evolved twice and anadromy evolved five times in

Clupeiformes (figure 3). Amphidromy may have evolved

once (see Discussion). In general, diadromous clupeiform

lineages are monotypic and often placed in their own genus

(Alosa is a notable exception).

The catadromous herring species Potamalosa richmondia
was derived from a marine ancestor and occurs in the tem-

perate regions of southeastern Australia. Ethmalosa fimbriata
is a tropical catadromous herring species from the eastern

Atlantic and western African rivers. This species was derived

from a marine ancestor and is sister to a clade of freshwater

herring from Africa.

The earliest instance of anadromy is Clupeonella cultriven-
tris, which is a temperate anadromous lineage derived from a

marine ancestor, although this is a tentative assessment

because the phylogenetic placement of this species is not

well supported. Our analyses indicate that seven anadro-

mous species in the genus Alosa from temperate eastern

North America and Eurasia were derived from a marine

ancestor. Nested within the anadromous Alosa clade is a

purely freshwater species (Alosa chrysochloris). Of the five ana-

dromous lineages, there were three separate instances of an

anadromous lineage evolving from a freshwater ancestor

(Tenualosa ilisha, Anchoviella lepidentostole and Lycengraulis
grossidens), all of which occurred in tropical regions.

(c) Ancestral character reconstructions: marine/
freshwater transitions

Our analyses show that Clupeiformes is an ancestrally

marine group that invaded continental freshwaters 12 times

(excluding diadromous lineages; figure 3). There were only

three reversals (freshwater to marine), all of which occurred

in New World anchovy lineages distributed along the north-

eastern coast of South America. Lineages rarely invaded

freshwaters in the same geographical area more than once.
Freshwater lineages are generally much more diverse than

diadromous lineages. In fact, Alosa is the only diadromous

lineage that is not monotypic (see above). Freshwater clupei-

form lineages are particularly diverse in South America

(mostly anchovies), southeastern Asia and western Africa.
4. Discussion
(a) Evolution of catadromy: testing the productivity

hypothesis
As a scenario for the origin of catadromy, Gross’s pro-

ductivity hypothesis predicts that in the tropics, marine

(euryhaline) ancestors would undergo excursions to fresh-

waters to feed in these high-productivity environments

(figures 1 and 2). The fitness gain from these freshwater

excursions would lead to annual migration to freshwaters

for an extended period of growth, yielding catadromous

lineages. Over time, migration back to the natal marine habi-

tat could cease, severing the link to the marine environment,

and yielding an endemic, entirely freshwater lineage [22,23].

Our results show that of the two origins of catadromy we

inferred one is consistent with the productivity hypothesis,

while the other is not. The catadromous African bonga

shad, E. fimbriata, was derived from a marine ancestor, a pat-

tern consistent with Gross’s model. Furthermore, E. fimbriata
is sister to a clade of freshwater herring (Pellonulini) that has

diversified in African rivers and lakes [34]. The pattern of a

freshwater clade closely related to a tropical catadromous

lineage is also consistent with Gross’s model. However, the

close affinity of Ethmalosa and Pellonulini needs to be further

investigated because our results did not provide strong

statistical support for this relationship (see the electronic

supplementary material, text S3).

The second catadromous lineage shows a pattern that is

inconsistent with the Gross hypothesis. The Australian cata-

dromous herring P. richmondia was derived from a marine

ancestor and is sister to Hyperlophus, a marine lineage that

occurs along the southern and eastern coasts of Australia.

However, P. richmondia occurs in temperate rather than tropi-

cal regions. Furthermore, P. richmondia does not have close

phylogenetic affinity to freshwater lineages, despite having

more than 30 million years to produce a freshwater descendant

(figure 3; electronic supplementary material, figure S5). The

only non-diadromous freshwater clupeid in Australia

is Nematalosa erebi, which is phylogenetically distant from

P. richmondia, and is related to a different set of marine

species (figure 3).

Although the phylogenetics of other non-clupeiform cata-

dromous lineages has not been studied in much detail, the

pattern of marine ancestry for catadromous fishes may be

fairly general [1]. Anguillid eels are the best-known and

most species-rich catadromous group. These widespread

fishes were probably derived from a deep-sea ancestor, and

while they may have originated in the tropics [49], many cat-

adromous eels migrate to feed and grow in temperate

freshwaters, not tropical freshwaters. These migrations to

temperate freshwater habitats contradict Gross’s predictions

because temperate freshwaters have relatively low pro-

ductivity. Furthermore, catadromous eels have never

yielded fully freshwater lineages, nor even produced land-

locked forms [6], even though as a group they have a broad

http://rspb.royalsocietypublishing.org/
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distribution, suggesting ample opportunity for landlocking.

More recently, Feutry et al. [26] found that catadromous

species in the tropical fish genus Kuhlia were derived

from a marine ancestor, and that a catadromous lineage

also gave rise to a marine lineage, a pattern that is also

inconsistent with the productivity hypothesis.
(b) Evolution of anadromy: testing the productivity
hypothesis

The productivity hypothesis posits a mirror opposite pattern for

the origins of anadromous fishes (figures 1 and 2). In this scen-

ario, a freshwater ancestor in temperate regions would start by

http://rspb.royalsocietypublishing.org/
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making excursions into more productive temperate marine habi-

tats for feeding and growth. Initially, this would involve a

euryhaline wanderer, which eventually would give rise to an

anadromous lineage. Over time, the annual migrations from

freshwater to marine habitats would cease, resulting in an

entirely marine descendant. We find no evidence in clupeiform

lineages to support Gross’s predictions for the origins of

anadromy (figure 3). Three of the five anadromous lineages—

T. ilisha, L. grossidens and An. lepidentostole—were each

independently derived from a freshwater ancestor. However,

these lineages all occur in tropical rather than temperate regions.

The well-known anadromous Alosa spp. and the lesser-known

Clupeonella occur in temperate regions, but these taxa were inde-

pendently derived from marine ancestors. Thus, none of the

anadromous clupeiform lineages fit the Gross model.

Other anadromous fish groups also fail to show evidence

for the Gross hypothesis [1]. Some anadromous groups such

as sticklebacks [50] and smelts [25] occur in temperate areas,

but are derived from marine ancestors. Anadromous ariid

catfishes [51,52] are derived from marine ancestors and

occur in tropical regions. None of these lineages fit Gross’s

model. Salmonids have a complicated history, but anadro-

mous lineages probably evolved from freshwater ancestors

and occur in temperate regions [25,53]; thus, Salmonidae

may be the only group that is consistent with Gross’s model.

It is not immediately evident why phylogenetic analyses

of diadromy paint a different picture for the evolution of ana-

dromy and catadromy than the species count approach of

Gross (figure 1). However, it is clear that any future tests

for latitudinal gradients of both catadromy and anadromy

should explicitly incorporate phylogenetic approaches that

consider lineage evolution, rather than using phylogenetically

uncorrected species counts. Current phylogenetic evidence

indicates that other factors (see below) might be as important

as productivity for the origins of diadromy.

(c) Evolution of diadromy: the roles of predation,
competition and abiotic factors

The evolution of diadromy is probably affected by species

interactions. Dodson et al.’s safe-site hypothesis proposes a

marine ancestor migrating to freshwater to reproduce in habi-

tats that have lower predation pressure (figure 2) [25]. Over

time, such populations would stop returning to the sea, leav-

ing entirely freshwater descendants [25]. Alosa shows a

pattern that fits the safe-site hypothesis; an anadromous

clade was derived from a marine ancestor and gave rise to

a fully freshwater lineage (Al. chrysochloris). Clupeonella cultri-
ventris was also derived from a marine ancestor, but is sister

to a clade that includes both marine and freshwater members.

This pattern does not fit the safe-site hypothesis because once

a lineage has successfully established itself in freshwater,

there is no predicted advantage to returning to the marine

environment. The remaining anadromous lineages (T. ilisha,

An. lepidentostole and L. grossidens) were derived from fresh-

water ancestors and thus do not support the safe-site

hypothesis. Dodson et al. [25] found that phylogenetic ana-

lyses of smelts (Osmeroidei) supported the safe-site

hypothesis, but that analyses of salmonids did not. More

work is needed to determine whether clades with phyloge-

netic patterns consistent with the safe-site hypothesis show

evidence for reduction in predation in freshwater habitats

compared with marine habitats.
Competition is an important factor affecting macroevolu-

tionary transitions between marine and freshwater lineages

[29,52,54], and is also likely to play a role in determining

which geographical regions diadromous species are able to

invade [55]. This hypothesis is based on the concept that

competition is strongest among closely related taxa [56–58].

In clupeiforms, we find that diadromy generally has not

evolved multiple times in the same geographical area

(figure 3), suggesting that once a diadromous lineage invades

a region, it may prevent ecologically similar species from

evolving the same migratory behaviour. Furthermore, dia-

dromous species often occur in regions with low species

diversity, which McDowall [55] argued was in part due to

reduced competition from incumbent species. We suggest

there is growing phylogenetic evidence that competition

does play a role in the origins of diadromy.

One of the primary determinants of reduced competition

in certain geographical areas is the palaeogeographical his-

tory of those areas. For example, northern latitudes have

been subjected to repeated bouts of glacial advances and

retreats, the most recent occurring only 10 000 years ago.

These areas often have a high proportion of diadromous

lineages (along with lineages of recent marine ancestry)

[1,55]. Oceanic islands also have a high proportion of diadro-

mous lineages in freshwater habitats [18,19]. McDowell [1,55]

suggested that the high dispersal ability of diadromous

lineages facilitates re-colonization of newly available, reduced

competition habitats. While it is less clear what palaeogeo-

graphic events might favour the evolution of diadromy in

continental rivers at lower latitudes, it is possible that

marine incursions have played a role in reducing competition

in some areas, thereby facilitating transitions between habitats

[59,60]. Thus, the palaeogeography and geological history

of certain areas may have played an important role in

determining the evolutionary patterns of diadromy.
(d) Is diadromy a pathway for marine/freshwater
evolutionary transitions?

An expected outcome in both the productivity and safe-site

hypotheses is that diadromy is a precursor to permanent

transitions between marine and freshwater biomes in fish

lineages (although see [20,21,61,62]). This concept is intui-

tively appealing: a species that migrates between marine

and freshwater environments could become isolated in one

habitat and successfully establish a permanent population.

Over time, this could result in speciation and subsequent

diversification in the new habitat. The expected phylogenetic

patterns from this process, assuming extinction has not

erased ancestral species, are illustrated in figure 2. Clupei-

formes was a likely candidate group for fulfilling these

scenarios because the group includes many diadromous,

marine and freshwater species. However, we find that dia-

dromy has played a minimal role in transitions between

marine and freshwater biomes (figure 3). Diadromy is only

rarely an intermediate condition between freshwater and

marine lineages. Furthermore, only one of the 12 marine-to-

freshwater transitions we determined were associated with

any diadromous species. To date, we lack an empirical

example of a freshwater lineage evolving via catadromous

ancestry (the Ethmalosa/Pellonulini clade is a possible excep-

tion), or an exclusively marine lineage evolving from an
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anadromous ancestor [6], which are the expected end points

of the productivity and safe-site hypotheses [22].

The decoupled relationship between diadromy and biome

transitions is a pattern that is repeated in other lineages

[51,52]. There are instances of landlocked freshwater popu-

lations of anadromous marine lineages such as shads, salmon

and sticklebacks, which in some cases have undergone morpho-

logical divergence [11,63]. Interestingly, these cases are all very

recent (Pleistocene or younger), and generally neither diverse

nor spread across large geographical areas, suggesting that

there are constraints on diversification of freshwater populations

derived from diadromous ancestors. It seems that diadromy is

not a pathway for large-scale transitions between marine and

freshwater habitats. It may instead be a macroevolutionary

dead end, since most diadromous lineages are species-poor

compared with their strictly marine or freshwater relatives.
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