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Evolutionary studies of communication can benefit from classification procedures that allow individual
animals to be assigned to groups (e.g. species) on the basis of high-dimension data representing their sig-
nals. Prior to classification, signals are usually transformed by a signal processing procedure into structural
features. Applications of these signal processing procedures to animal communication have been largely
restricted to the manual or semi-automated identification of landmark features from graphical represen-
tations of signals. Nonetheless, theory predicts that automated time-frequency-based digital signal pro-
cessing (DSP) procedures can represent signals more efficiently (using fewer features) than can landmark
procedures or frequency-based DSP – allowing more accurate classification. Moreover, DSP procedures
are objective in that they require little previous knowledge of signal diversity, and are relatively free from
potentially ungrounded assumptions of cross-taxon homology. Using a model data set of electric organ
discharge waveforms from five sympatric species of the electric fish Gymnotus, we adopted an exhaustive
simulation approach to investigate the classificatory performance of different signal processing proce-
dures. We considered a landmark procedure, a frequency-based DSP procedure (the fast Fourier trans-
form), and two kinds of time-frequency-based DSP procedures (a short-time Fourier transform, and
several implementations of the discrete wavelet transform -DWT). The features derived from each of
these signal processing procedures were then subjected to dimension reduction procedures to separate
those features which permit the most effective discrimination among groups of signalers. We considered
four alternative dimension reduction methods. Finally, each combination of reduced data was submitted
to classification by linear discriminant analysis. Our results support theoretical predictions that time-fre-
quency DSP procedures (especially DWT) permit more efficient discrimination of groups. The perfor-
mance of signal processing was found to depend largely upon the dimension reduction procedure
employed, and upon the number of resulting features. Because the best combinations of procedures
are dataset-dependent and difficult to predict, we conclude that simulations of the kind described here,
or at least simplified versions of them, should be routinely executed before classification of animal signals
- especially unfamiliar ones.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Animal communication signals exhibit variation among and be-
tween individuals, sexes, populations, and species. This variation
underlies many evolutionary and ecological processes, including
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sexual selection, reproductive isolation, and speciation (e.g. Henry
et al., 1999; Shaw, 2000; Panhuis et al., 2001; Coyne and Orr, 2004).
Biologists therefore need dependable methods for assessing the
probability of a given signal belonging to one or more categories
of signalers (e.g. population, species etc.), and for quantifying the
extent to which categories of signals are divergent.

Multivariate classification procedures, such as linear discrimi-
nant analysis (LDA), are designed to meet these needs (Huberty,
1994). For example, an evolutionary biologist might employ LDA
to investigate the extent to which geographically isolated popula-
tions of a given species exhibit divergent signals. Likewise, an ecol-
ogist studying a small group of animals might utilize LDA to ask
whether individuals can be reliably recognized, and hence
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monitored, on the basis of subtle but consistent differences among
their signals.

Acoustic, seismic, and also electrical signals are especially ame-
nable to multivariate classification. Unlike visual or chemical sig-
nals, they comprise oscillations that can be readily converted to
electrical voltages in a recording device, and stored digitally as
an amplitude-time waveform. Typically, such a waveform com-
prises a few hundred to thousands of digital samples, recorded at
a sampling rate high enough to adequately represent the shortest
(highest frequency) events (Smith, 1999). Digitized signals are sub-
jected to classification in three separate procedures. First, in signal
processing, the raw amplitude-time waveform is converted to rep-
resentative structural features in the time, frequency, or time-fre-
quency domain. In the second procedure, these features are
subjected to dimension reduction, in which features not conducive
to discrimination are eliminated from consideration. Finally, the
remaining features are subjected to a multivariate classification pro-
cedure, e.g. LDA. At this stage, posterior probabilities of group
membership are computed for each case, and misclassified cases
are identified. In this paper we use a model dataset of electric fish
signals to explore the extent to which different signal processing
and dimension reduction procedures influence the performance
of subsequent multivariate classification using LDA. We quantify
the performance of LDA as the total proportion of correctly classi-
fied cases.

The freshwater electric fishes of Africa (Mormyriformes) and
the Neotropics (Gymnotiformes) generate a continuous train of
weak, stereotyped, electric organ discharges (EODs). In combina-
tion with an associated array of electroreceptors, these EODs facil-
itate both electrolocation and communication, including mate
attraction (Bullock et al., 2005). The EOD comprises a pulsed or
continuous quasi-sinusoidal three-dimensional electrostatic field,
with considerable near-field complexity (e.g. Assad et al., 1999;
Rodriguez-Cattaneo et al., 2008). However, for comparative studies
of signal evolution, the EOD is usually characterized as a two-
dimensional voltage-time waveform recorded from electrodes
placed in the far field, anterior to a fish’s head, and posterior to
its tail. Having served for several decades as a model group for
many key areas of neurobiology (Bullock et al., 2005), electric fish
are now demonstrating great promise in evolutionary studies,
including those of speciation (e.g. Arnegard et al., 2005), and sexual
selection (e.g. Curtis and Stoddard, 2003). There is therefore a spe-
cific and growing demand for signal processing and dimension
reduction procedures that permit accurate multivariate classifica-
tion of electric fish signals.

We begin with a review of the principles of signal processing,
dimension reduction, and classification – discussing procedures
suitable for animal signal analysis, with examples where relevant
(Section 2). We then conduct a large-scale computer simulation
to test the performance of alternative procedures, using a model
dataset of EODs (Sections 3–4). The dataset was gathered from an
assemblage of five sympatric and syntopic species of the pulse-
generating gymnotiform genus Gymnotus, from floodplain habi-
tats of the Central Amazon basin. In the discussion (Section 5)
we explore reasons why some procedures may perform better
than others, and discuss the practical implications for animal sig-
nal analysis. We also explore the extent to which different signal
processing tools offer advantages – not just in their discrimina-
tory performance but also in the extent to which they are depen-
dent upon assumptions of homology among signal features, and
the extent to which they may approximate the neurological
mechanisms employed by electric fish (or other animals) to dis-
criminate groups of individuals. The biological significance of sig-
nal divergence in the model data set is not discussed here beyond
general considerations relevant to the performance and suitabil-
ity of different analytical approaches; an evolutionary investiga-
tion of signal divergence in Central Amazonian Gymnotus is
forthcoming in a separate paper. Also, the ability of Gymnotus
to discriminate signals based on other aspects aside from wave-
form, such as pulse repetition rates and amplitude, will be dis-
cussed elsewhere.
2. Background

2.1. Signal processing

Digitized animal signal waveforms can be converted into fea-
tures amenable to multivariate classification through landmark-
based models or digital signal processing (DSP) techniques based
on Fourier or wavelet analysis. DSP procedures transform a signal
from the time domain (the signal itself) to the frequency domain
(by the discrete Fourier transform) or the time-frequency domain
(by the short-time Fourier or wavelet transform) (Smith, 1999).
These procedures yield a complex coefficient (representing the
magnitude and phase) for each frequency, which permits recon-
struction of the signal by inverse transform. Often only the magni-
tudes of these coefficients are retained, effectively ignoring the
phase component, which can be understood as relative timing
information – indicating when a particular frequency occurs. DSP
techniques can provide efficient representations of the signal in
that only few of the components may be essential for the recovery
of the signal.

Landmark approaches select features using a priori biological
information about how signals vary within and among groups of
signalers. They may also incorporate hypotheses of evolutionary
homology based on an understanding that specific signal features
have common inherited developmental and physiological or
mechanical substrates in the animal taxa under consideration. In
contrast, DSP procedures make no assumptions about signal
homology (Section 5.2.2). The only imposed assumption for the
Fourier or wavelet procedures is that all signals are aligned to a
single time reference point, which itself may be selected on the ba-
sis of assumptions of homology (Section 5.3).

2.1.1. Digital signal processing (DSP)
2.1.1.1. Fast Fourier transform (FFT) and power spectral density
(PSD). The fast Fourier transform (FFT), by which we mean any
efficient implementation of the discrete Fourier transform, ex-
presses a time-varying signal waveform in the frequency domain
as a combination of its component frequencies; e.g. the Fourier
transform may report that a given frequency has a certain energy
somewhere in the signal. Associated with this energy or magnitude
is a phase component, giving very rough timing information, which
together permit the waveform to be reconstructed by an inverse
transform (Bracewell, 2000). The magnitudes alone of the FFT coef-
ficients, commonly called the power spectral density (PSD), consti-
tute the data traditionally discussed in electric fish research. The
PSD allows a rapid assessment of the peak power frequency
(PPF), or harmonics of this. This is biologically relevant because
the frequency responses of some classes of tuberous electrorecep-
tors are closely tuned to the PPF (or higher harmonics in some
wave-EOD species) in both gymnotiform and mormyriform fishes
(Bastian, 1976; Hopkins, 1976; Watson, 1979).

The PSD is non-invertible, i.e. once the phase information has
been removed, the original signal waveform cannot be recovered
by inverse transform. Hence the PSD effectively contains no infor-
mation about the timing of events in the signal. For example, the
PSD alone is unable to discriminate the reversed versus original
versions of an asymmetrical waveform because the Fourier phase
components are absent. Many species of electric fishes with wave
type discharges have more or less symmetrical waveforms
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repeated as stationary waves (including many species of Sterno-
pygidae and Apteronotidae, and also Gymnarchus niloticus). Here,
the PSD alone should represent signals with great efficiency. How-
ever, most EOD waveforms are highly asymmetrical, especially
those produced by the pulse-EOD generating electric fishes (Mor-
myridae, Gymnotidae, Rhamphichthyidae, Hypopomidae), and also
by many representatives of the wave-EOD generating fishes
(Sternopygidae and Apteronotidae). In these cases, multivariate
classification of signals based on DSP is expected to benefit from
the inclusion of the phase components in the FFT, or from one of
the time-frequency approaches (Sections 2.1.1.2, 2.1.1.3 and 5.3).

2.1.1.2. Short-time Fourier transform (STFT) and spectrogram. If a fre-
quency in a signal is present only over a short period, the FFT will
report this transient frequency, but in addition will suggest the
existence of many other frequencies, all of which are physically
meaningless and serve only to restrict the transient frequency,
mathematically, to a specific area of the entire signal. Hence, the
FFT will have actually multiplied, rather than reduced, the dimen-
sionality of the data. Consequently, the FFT tends to become less
efficient as a signal becomes increasingly spatially heterogeneous
(Gabor, 1946; Smith, 1999). The short-time Fourier transform
(STFT) corrects this deficiency by analyzing only a small portion
of the signal at a time – a procedure called windowing. Utilizing
a window function, which slides through the signal, STFT maps
separate portions of the signal into the frequency domain, ulti-
mately mapping the entire signal into the time-frequency domain
(Smith, 1999). An analog to the PSD, the similarly non-invertible
spectrogram is defined as the magnitudes of the STFT. The spectro-
gram is a plot of frequency components against time, with the
magnitude of the frequency components usually expressed as
gray-tone intensity. The fixed window length means that the STFT
is limited to a specific frequency and time resolution. Short win-
dow lengths provide poor resolution of low frequencies while long-
er windows allow short events to be only approximately localized
in time. Hence STFTs are predicted to be inefficient in comparing
groups in which the differentiating characteristics are of different
lengths (Mallat, 1999; Smith, 1999).

Despite these drawbacks, the spectrogram is the dominant tool
for interpreting acoustic or seismic animal signals. Spectrograms
provide a convenient graphical representation of longer signals
from which features can be identified and quantified. The spectro-
gram is occasionally used in electric fish research to interpret field
recordings (e.g. Schwassmann, 1978; Tan et al., 2005), but has not
been employed to generate features for multivariate classification.

2.1.1.3. Discrete wavelet transform (DWT). Wavelet transforms ad-
dress the limitation of the fixed window length in STFT by utilizing
variable-sized windows: i.e. long windows where information
about low-frequency events is required, and shorter windows
where more precise high-frequency information is required. Unlike
the FFT, a wavelet transform reflects variations specific to particu-
lar regions of a signal, while, unlike the STFT, it simultaneously
represents variations on small and large scales. Instead of breaking
up a signal into sine waves, a wavelet transformation breaks up a
signal into a shifted and scaled version of a brief and irregular
waveform called the wavelet base. There are many such bases, dif-
ferentiated primarily by their shape and smoothness, and their effi-
ciency will depend on the type of signal to be analysed. The
mathematical bases of wavelet analysis are reviewed by Mallat
(1999).

The discrete wavelet transform (DWT), any digital implementa-
tion of the analytic wavelet transform, is applied to a signal with a
length equal to a power of two. As does the STFT, the DWT consid-
ers portions of the signal and maps each of these into the frequency
domain, so that the DWT maps the entire signal into the time-fre-
quency domain. However, unlike the STFT, the DWT’s window size
is variable; if the signal contains 2J sampling points, then there are J
such window lengths or ‘‘scales”, and the DWT will contain 2J coef-
ficients. An increase in scale corresponds to a halving in window
length, and as the scale increases, wavelet coefficients begin to un-
cover features in the signal that were of too short a length to ap-
pear in broader windows. In this manner DWT usually provides
very efficient representations of a wide variety of signals, and is of-
ten the tool of choice in signal processing.

Because DWTs can successfully reveal otherwise hidden low
and high-frequency features of signals, they are popular in a broad
range of disciplines – including digital image analysis, speech rec-
ognition, and the analysis of geophysical data (Graps, 1995). Sur-
prisingly, applications of wavelet tools to the analysis of animal
communication signals have been limited. Some authors have uti-
lized wavelets to de-noise recordings of marine mammal calls (e.g.
Weiss and Dixon, 1997). Saldamando et al. (2005) used wavelets to
facilitate the automated recognition of boundaries between the
short syllables of grasshopper calls. Likewise, Alt et al. (1998) used
wavelets to identify the boundaries of pulse components in the
courtship songs of Drosophila melanogaster. However, wavelets
have not hitherto been used as a basis for multivariate classifica-
tion of non-human animal signals.

2.1.2. Landmark-based signal processing
Landmark-based models involve manual or automatic selec-

tion of salient signal features that, based on a priori biological
knowledge, are suspected to discriminate groups of signalers.
Landmark procedures are routinely used to analyze the spectro-
grams of acoustic signals (e.g. Beecher, 1988; Hopp et al., 1998;
Gerhardt and Huber, 2002). Features identified from spectrograms
typically include the beginnings and ends of events, e.g. pulses or
syllables, and detailed aspects of them such as their length and
frequency limits, or the slope of frequency modulations (Azevedo
and Van Sluys, 2004; Runciman et al., 2005; Siemers and Schnit-
zler, 2004).

Landmark models have also been used in electric fish research.
Crawford (1992) demonstrated that individual members of a cap-
tive reproductive colony of the mormyrid Pollimyrus isidori could
be classified correctly by means of discriminant function analysis
of landmark features of the EOD waveform and its PSD. From this
he inferred that the EOD waveform may serve as a reliable ‘‘signa-
ture” in the context of an information system. The model com-
prised six landmark features from the EOD waveform, including
the duration and amplitude of phases, and three additional fea-
tures of the PSD. McGregor and Westby (1992) published a similar
landmark model of EOD waveform shape to demonstrate that in-
ter-individual variation greatly exceeds intra-individual variation
in a small captive population of Gymnotus carapo. Their model in-
cluded features that were predicted to be discriminatory based on
‘‘extensive experience of EODs of many species”, including the tim-
ing of zero-crossings between phases of alternating polarity, the
amplitude and timing of the peaks, and the area of phases.

Arnegard and Hopkins (2003) used a landmark procedure to log
the timing and amplitude of prominent features in the EOD wave-
form of the mormyriform genus Paramormyrops from Gabon (previ-
ously assigned to Brienomyrus – see Hopkins et al., 2007). These
features were then subjected to multivariate classification (by
LDA) to investigate the extent to which signals were divergent
among species. Arnegard and Hopkins’ model was based on the
assumption that the sequence of EOD phases is homologous among
Paramormyrops species. The zero-crossing between phases contain-
ing the maximum and minimum voltages was chosen as a reference
event for comparing temporal EOD parameters. This event is known
to be generated in all species of Paramormyrops by inward current
flowing through the posterior faces of the electrocytes when
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they are depolarized by anterior face firing (Bass, 1986; Bennett,
1971).

Turner et al. (2007) employed a novel landmark procedure to
describe and classify the diversity of EOD waveforms and EOD
modulations in Apteronotidae. They documented features from
the PSD of the wave-type EOD waveform (including the fundamen-
tal frequency, and ratios of the amplitudes of higher harmonics),
and from two types of EOD modulations usually associated with
social interactions: chirps and gradual frequency rises. These mod-
ulations involve brief or protracted frequency and amplitude mod-
ulations from which several landmark measurements were taken
using a semi-automated procedure. Landmark measurements from
all these sources were then subjected to a principal component
analysis (PCA) and the resulting PCA factors used in a discriminant
function-based classification model. This model investigated the
extent to which individual fishes could be accurately assigned to
species on the basis of multiple components of their electric
signals.

Landmark-based multivariate classification models are ex-
pected to be effective in discriminating groups of signals, because
a priori assumptions about signal structure and variation can be
used to define the features used to discriminate the groups. How-
ever, landmark-based models are also extremely dependent upon
the validity of the built in assumptions. In cases where these
assumptions are incorrect, the comparison of groups of signals
may be rendered meaningless (see Section 5.2.2).

2.2. Dimension reduction

DSP procedures typically generate large numbers of compo-
nents, only a few of which are essential for the discrimination of
groups of signals with divergent structural properties. A dimension
(data)-reduction procedure is required before any attempt at clas-
sification for two reasons. First, most multivariate classification
procedures become unstable or non-functional if the number of
features greatly exceeds the number of cases; for instance, LDA
stipulates that the number of features may not exceed the number
of cases minus the number of groups. Second, meaningful informa-
tion in high-dimensional DSP data is typically well-approximated
by only a few features. The removal of the superfluous (non-infor-
mative) ones will therefore usually result in greatly increased clas-
sificatory power. In other words, data-reduction retains features
that are highly discriminatory and eliminates those that are not.
In general, dimension reduction must be automatic or ‘‘blind” since
the computations involved are prohibitively complex, and even
educated guesses at what features should remain do little to en-
hance them. Dimension reduction techniques are numerous, and
in this study we focus on two broad categories: measures of vari-
ability, such as simple variance; and approximations of discrimina-
tory power, such as ANOVA.

2.3. Classification by linear discriminant analysis

Linear discriminant analysis (LDA), an implementation of the
more general discriminant function analysis, is a popular and pow-
erful technique for classification. In LDA, cases are divided a priori
into groups (Huberty, 1994), and linear predictors are created to al-
low for classification of new observations. LDA offers two impor-
tant tools. First, LDA generates linear discriminant functions that
separate each pair of groups; these may be visualized simply as
lines drawn between the groups. These functions may be useful
outside the training set; i.e. they may be used to classify individu-
als whose group identity is not yet known. In this study, for in-
stance, we randomly pretend ignorance of a fish’s species
identity and attempt to ascertain it from the signal alone. The util-
ity of this kind of classification for field-work is clear. Second, given
reasonable statistical assumptions, the classification procedure
provides Bayesian posterior probabilities of group membership
for each case, and allows a quantification of the extent to which
two groups ‘overlap’ in signal space. This notion of overlap is par-
ticularly useful when considering, for example, the extent to which
species or populations partition signal space.
3. Materials and methods

3.1. Overview

We begin with a description of the model data set of electric fish
EOD waveforms, and data conditioning procedures. We then de-
scribe the three steps involved in the classification of waveforms:
(1) Signal processing, which transforms the raw waveforms into
sets of features. (2) Dimension reduction, which removes the fea-
tures that do not carry information useful for subsequent classifi-
cation. (3) Classification of waveforms by LDA on the basis of the
remaining features. All data manipulation, analysis, and simula-
tions were performed with custom written programs in MATLAB
7.0 (The Mathworks, Natick, MA). Relevant source code is available
on request from the first author.

3.2. Model data set

263 specimens of five syntopic species of Gymnotus (Gymnoti-
formes, Gymnotidae) were captured from floating macrophytes
in floodplain lakes of the Central Amazon of Brazil, near the conflu-
ence of the Rio Solimões (Amazon) and Rio Japurá (within 15 km of
03�0702700S, 64�4702900W) during the period 1992–2001 (Gymnotus
arapaima, n = 53; Gymnotus jonasi, n = 80; Gymnotus mamiraua,
n = 87; Gymnotus obscurus, n = 18; Gymnotus varzea, n = 25). All five
species were recently described (Albert and Crampton, 2001,
Crampton et al., 2005). Juvenile specimens and those with damage
to the caudal appendage exceeding an estimated 20% total length
were excluded from analysis. Specimens were placed in a nylon-
mesh sock suspended in the middle of a 80 � 40 � 30 cm cooler
and recorded in water from the capture locality (conductivity
90–110 lS cm�1) at a standardized temperature of 27.0 +/�
0.1 �C. The EODs were detected from silver/silver-chloride elec-
trodes and amplified with a custom built AC-coupled differential
amplifier (Wells and Crampton, 2006) or a CWE-Instruments
BMA-200 amplifier, in AC-coupled mode. EODs were digitized with
a Sony TCD D7 or D8 Digital Audio Tape recorder at a sample rate of
48 kHz (and later transferred to a computer), or directly to a com-
puter with an Edirol UA-5 analog–digital converter at 96 kHz and
with 24-bit resolution. EODs were all saved as ASCII files.

3.3. Data conditioning

Any DC offset in the signal was eliminated by subtracting the
mean amplitude of the first ten samples of the waveform from
each sample in the waveform. All signals were then converted to
a common length (2048 samples), sample rate (96 kHz), and
root-mean-square normalized amplitude. For the DSP procedures
we aligned all signals to the dominant positive peak, P1, (see
Fig. 1). This was based on the assumption that P1 is evolutionarily
homologous among all species under comparison (see Section
5.2.2). We considered the P1–P2 zero-crossing as an alternative
alignment position, but prefer the P1 peak for its wider applicabil-
ity in Gymnotidae; adults of some species of this family, e.g. Gym-
notus cylindricus and Electrophorus electricus, and post-larval
specimens of all species (for which data are available) have mono-
phasic signals, comprising only the P1 phase (Crampton and Albert,
2006).



Fig. 1. Procedure for the discrete wavelet transform (DTW): (a) electric organ
discharge waveform of Gymnotus arapaima with 182 digital samples and 5 phases of
alternating polarity P-1 through P3. Asterisk marks the P1–P2 zero-crossing. A–C
refer to ranges of samples centered on the middle of a range of repeated DWT
coefficients in c (and also d–f), with coefficients from higher scales (e.g. A) referring
to a narrower range of samples. In this manner the unique DWT coefficients used as
features in classification correspond not to individual samples in the original
waveform/s but to ranges of samples (regions of signal), which are narrower
(provide better resolution of high-frequency events) at high wavelet scales, (b)
continuous wavelet transform (CWT) with 182 samples on abscissa and 182 scales
on ordinate. While the CWT is a useful graphical representation of the signal, it is
also an over-complete representation of any discrete signal, and therefore not
appropriate for statistical analyses in which dimensionality is already problematic,
(c) DWT generated with the Symmlet-4 wavelet base, with waveform resampled to
256 digital samples on abscissa, and represented by 7 dyadic (series of powers of
two) wavelet scales on ordinate (e.g. scale 1 = 1 unique coefficient repeated 256
times, scale 7 = 128 unique coefficients each repeated twice). The DWT summarizes
the CWT with little loss of descriptive accuracy by employing scales and temporal
positions based on this dyadic relationship. Absolute (abs.) coefficient magnitudes
are represented in grey-tone for CWT and DWT, (d) all 7 � 256 = 1792 DWT
coefficients were concatenated in order scale 7 through 1 (dotted arrows in c), with
magnitudes represented on ordinate, and (e) 255 unique DWT coefficients. (f): DWT
coefficients remaining after dimension reduction (in this case 14 features for
subsequent classification).

Fig. 2. Four wavelet bases used in this study. 4 and 10 refer to the number of
vanishing moments (not applicable to the Haar wavelet). Note the Symmlet-4 and
Daubechies-10 wavelets represent smoother functions than Daubechies-4.
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We defined the beginning (and end) of a waveform as the point
at which it first rose (and last fell) to 1% of the P1 amplitude. We
truncated all signals at the earliest beginning (B) and the latest
end (E). Each waveform was then forced to a new baseline by sub-
tracting the line segment connecting B and E, then by converting
flanking samplings to zero. All resulting waveforms contained
182 samples.

3.4. Digital signal processing

3.4.1. Fast Fourier transform (FFT) and power spectral density (PSD)
We generated the FFT and PSD of the conditioned waveforms,

yielding 182 and 91 features, respectively. For each of the 263
specimens, we also computed the peak power frequency (PPF) of
the PSD, to assess the extent to which the five species of Gymnotus
may be partitioned on the basis of dominant frequency compo-
nents of the EOD.

3.4.2. Short-time Fourier transform (STFT) and spectrogram
We generated the STFT and spectrograms of the conditioned

waveforms, yielding 728 and 364 features, respectively. We uti-
lized a Gaussian window function (a well-understood and common
choice), with a width defined as one quarter of the signal length.
The window width choice was largely arbitrary, though informed
by the average length of a waveform phase. There are arguments
to be made for other lengths, but this debate recalls the primary
limitation of the STFT, i.e. the necessity of a fixed window length.

3.4.3. Discrete wavelet transform
Because the DWT requires the length of the signal to be a power

of two, we first resampled the waveforms from 182 to 256 (the next
largest power of two). Using commands from WaveLab, a free library
of MATLAB routines for wavelet analysis developed by the Depart-
ment of Statistics, Stanford University (http://www-stat.stan-
ford.edu/~wavelab/), we executed the DWT, generating 256 DWT
coefficients, with one scaling coefficient. The schematic in Fig. 1
visualizes the output of an example DWT. To explore the effect of
wavelet-base on classification performance, we chose four wavelet
bases with distinct geometric characteristics: the Haar wavelet,
the Symmlet wavelet with four vanishing moments (Symmlet-4),
and the Daubechies wavelets with four and ten vanishing moments,
respectively (Daubechies-4 and Daubechies-10) (Fig. 2).

3.5. Landmark-based signal processing

We designed a program to automate the measurement of land-
mark features from EODs (Fig. 3). For each signal, we designated
the peak of the dominant positive phase (P1) by finding the maxi-
mum of the signal’s amplitude. We then defined a total of four
additional phases of alternating polarity on either side of this

http://www-stat.stanford.edu/~wavelab/
http://www-stat.stanford.edu/~wavelab/


Fig. 3. Procedure for landmark signal processing. Electric organ discharge wave-
form of Gymnotus obscurus, with two phases: P1 and P2. Thin gray line denotes zero
volts. Nine landmark positions on the waveform are defined for each phase, each
represented by its amplitude and timing: (1) beginning and end (two black crosses)
at a 1% threshold of the P1 peak amplitude; (2) peak (one black cross); (3)
maximum first derivatives to left and right of peak (two red crosses); (4) maximum
second derivatives to left and right of (3) (four blue crosses). Red and blue crosses
and are labeled with the landmark number both on the waveform and also at the
corresponding timings on the first and derivative plots. Labels in P2 phase are
underlined to distinguish them from positions in P1. Note that two or more
landmarks are coincidental at positions marked with asterisks. Where two or more
landmarks are coincidental for all individual fishes in the analysis, only one is
retained for classification – the others being redundant.
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dominant phase (Fig. 1). Within each phase, we identified nine
landmarks as the local extrema of the signal, and of its first and
second derivatives (see Fig. 3 for explanation). The timing (relative
to preceding landmark) and amplitude of each landmark were tab-
ulated in a matrix comprising five phases ordered P-1 through P3
(see Fig. 1). Each phase comprised 18 amplitude/timing measures,
yielding a total of 90 features. However, some features were statis-
tically redundant (i.e. no variability among all cases, and/or all
cases identical to those in another feature, see Fig. 3); these were
discarded, reducing the number to 86. Some individual fishes did
not present all phases, in which case all measurements for missing
phases were set to zero.

3.6. Dimension reduction

Each of the signal processing procedures discussed above gener-
ates a certain number of features, which we denote by m. Note that
m is equal to the length of the original signal n for FFT, less than n
for PSD and landmark analysis, and greater than n for STFT, spec-
trogram, and DWT.

The objective of dimension-reduction techniques was to choose
M < m features for classification. Statistical considerations may
motivate the choice of M, though where clear indications are lack-
ing (as is usually the case) it will be necessary to vary M until an
optimum is found. Here we let M vary exhaustively, not because
we recommend this in practice, but to illustrate the full range of
classification performances.

3.6.1. Dimension reduction based on variance or coefficient of variance
To reduce dimension by variance, we simply retained the M fea-

tures with the highest variances. When the features are all pulled
from the same sort of data, this may suffice to select the most
meaningful features. We defined the coefficient of variance as the
variance divided by the mean of the absolute value of the feature,
and reduced dimension by the coefficient of variance by retaining
the M features with the highest such values.

3.6.2. Dimension reduction based on ANOVA and pairwise ANOVA
For each feature we computed a standard one-way ANOVA (see

e.g. Casella and Berger, 2002), which yielded a p-value estimating
the likelihood that the feature contains no group-specific informa-
tion. We reduced dimension by retaining those M features which
have the smallest p-values; i.e. those features which mostly likely
contain group-specific information. Note that some features may
be clearly useful for distinguishing between, for instance, groups
1 and 2, but useless for separating between any other group. Such
a feature would have a very small p-value because it contains
group-specific information and it may therefore be retained. If
there are M such features, the LDA over these features might
clearly discriminate between groups 1 and 2, but not others.

As a possible compensation, we generated pairwise ANOVAs –
i.e. we calculated the probability pij that a feature does not discrim-
inate between groups i and groups j, for all combinations i – j. We
then calculated the sum of these values for each feature and re-
tained the features with the smallest values, which can be concep-
tualized as the average probability that the feature does not
discriminate among two given groups.

3.7. Multivariate classification

3.7.1. Linear discriminant analysis
We performed LDA on the M features derived from signal pro-

cessing, and retained by dimension reduction. Individual fishes,
represented as rows of features, were organized into five groups
by species and a priori probabilities of group membership were as-
sumed to be equal for all of the groups. To ensure that the group
membership rules were meaningful outside of the training sets,
we implemented a cross-validation procedure in which we parti-
tioned individuals into a training set and a testing set. The rules
generated by the LDA on the training set were examined for accu-
racy on the testing set. We designated two-thirds of the cases to
the training set for the simulations, but also investigated other pro-
portions. For this data set there was a large range of proportions
that gave a clear view of the differences among the procedures
themselves, and we chose the smallest representative of these.

3.7.2. Monte Carlo simulations
To assess the performance of each combination of parameters,

we conducted 100 Monte Carlo simulations, in which members
of the training sets were randomly chosen prior to LDA (i.e. 100
separate classifications by LDA). This approach ensured that the
classification rules were not skewed by outlying individuals, but
generalized to all members of the group. For each case (fish),
LDA assigned a posterior probability of group (species) member-
ship – allowing a simple calculation of the total number of cor-
rectly classified individuals among all 263 fishes. For instance, if
one fish were misclassified during one simulation, the total propor-
tion of correctly classified cases would be 1 � (1/263) = 0.996198.
We averaged this proportion over 100 simulations. Hence, if 98
simulations exhibited perfect classification (all 263 fish correctly
classified) and two simulations each exhibited one misclassified
case (0.996198), the overall proportion of correctly classified cases
would be 1 � (2/(263 * 100)) = 0.999924 (i.e. 0.76 errors in 10,000
cases simulations). Using the same model data set, we ran simula-
tions to test LDA’s classificatory performance in all permutations of
the following procedures and variables:

(i) Signal processing procedure:

1. landmark model,
2. fast Fourier transform (FFT),

3. power spectral density (PSD),
4. short-time Fourier transform (STFT),
5. spectrogram,
6. discrete wavelet transform (DWT) with Haar-4 wavelet

base,
7. DWT with Symmlet-4 wavelet base,
8. DWT with Daubechies-4 wavelet base,
9. DWT with Daubechies-10 wavelet base.
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(ii) Dimension reduction procedure:
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1. variance,
2. coefficient of variance,

3. one-way analysis of variance (ANOVA),
4. pairwise analysis of variance (pairwise ANOVA).
reduction:

(iii) Number of features (M) remaining after dimension

For each dimension reduction procedure, we attempted to gen-
erate data for M = 1–15 features in increments of 1, then M = 20–60
features in increments of 5. We could not exceed M = 35 in the var-
iance-based procedures, however, because these procedures often
selected sets of coefficients that were linearly dependent within
the tolerances of the LDA. In practice it would be reasonable to pre-
condition the coefficients so as to prevent selecting dependent sets.
However, this is a dimension reduction procedure in itself. To fully
explore these procedures per se, here we allowed them to fail in
this manner.

The combinations above yielded 774 permutations of parame-
ters for classification by LDA, each repeated 100 times to yield mea-
Fig. 4. (a) Electric organ discharge (EOD) waveform for five syntopic species of Gymnotu
the species average, EODs were aligned to the P1 peak following conditioning, and a me
peak power frequency (PPF) normalized to 0 dB in the form usually used to represent EOD
PSDs in non-normalized format used for analysis in this paper (black = species average), (d
of the species average EOD using the Symmlet-4 wavelet base. Axis legends in square b
sures of central tendency and dispersion to allow for comparisons
among the permutations. Thus we performed 774 � 100 = 77,400
separate LDA classifications in this study. For the single best-per-
forming combination, we also explored the effect of the relative size
of the training versus test sets in a separate simulation, with the
proportion of the entire sample assigned to the training set varied
from 0.05, to 0.95 at increments of 0.05.

4. Results

4.1. Graphical representations of DSP procedures

EOD waveforms for each of the five species of Gymnotus are
illustrated in Fig. 4, along with representative plots of the PSD,
spectrogram, and DWT.

4.2. Univariate analysis of peak power frequency

The peak power frequencies of the EODs of all five species are
plotted in Fig. 5. Two-tailed Student’s T-tests reveal that the
s (grey = EODs from individual recorded fishes, black = species average). To generate
an amplitude was computed at each sample, (b) power spectral density (PSD) with
s (but not used for analyses in this paper). Arrows indicate species-range of PPFs, (c)
) spectrogram of the species average EOD, and (e) discrete wavelet transform (DTW)
rackets refer to those with arbitrary values.



Fig. 5. Peak power frequency (PPF) ranges for the EODs of five syntopic species of
Gymnotus. The min-max values correspond to the arrows in Fig. 4b. Note
overlapping ranges between several species.
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mean PPF of all five species are significantly different (p < 0.05).
However, there is considerable overlap among several species,
with G. mamiraua and G. varzea exhibiting almost complete
overlap.
4.3. Multivariate classification simulations

The performances of 774 permutations of procedures are plot-
ted in Figs. 6 and 7. Here performance is represented as the
mean percentage of correctly classified cases in 100 simulations.
The plots are divided, for the sake of clarity, into the results of
landmark and non-wavelet based DSP procedures (Fig. 6) and
wavelet DSP procedures (Fig. 7). The top fifty permutations are
listed in Table 1. The performances of each of the nine signal
processing procedures and four dimension reduction procedures
are compared in Table 2 for different ranges of M features. The
performance of 36 permutations of signal processing and dimen-
sion reduction processes are averaged for features 10 through 15
(inclusive) in Table 3 (see also Table 2.b). In Table 3, combina-
tions that are significantly better-performing than lower-per-
forming combinations are indicated. We emphasize 10–15
features because this is the range over which the single best-
performing combination (Symmlet-4 wavelet; pairwise ANOVA)
performs optimally (Table 2.b; Fig. 7d (i)). The rankings reported
in Tables 1–3 were consistent when the entire simulation was
repeated.

The data in Figs. 6 and 7 and in Tables 1–3 are based on using
two-thirds of each group to train the LDA. In Fig. 8 we vary this
proportion from 0.05 to 0.95 for the best-performing combinations
among all 774 permutations (Symmlet-4 wavelet; pairwise ANO-
VA; M = 14). For this best combination, one pair of discriminant
functions separates all five species into distinct clusters, in just a
two-dimensional representation of signal space (Fig. 9); i.e.
M = 2. The data presented in Figs. 6–8 and Tables 1–3 indicate
the following salient patterns:

(1) The precision of a given combination of signal processing
and dimension reduction procedure increases with M fea-
tures, but usually reaches a peak, beyond which additional
components provide no extra discriminatory information
and instead serve to reduce classificatory power
(‘overtraining’).

(2) Each signal processing procedure varies considerably in its
performance according to the dimension reduction proce-
dure (and vice versa). As such, some permutations of proce-
dures reach considerably better classification precision than
others. Below we highlight some of these patterns:

(i) Landmark-based signal processing yields consistently

inferior performance to most DSP procedures under a
wide range of conditions, especially under variance-
based dimension reduction. For instance, the land-
mark procedure is represented only twice in the high-
est ranked 50 of all 774 permutations, in both cases
involving relatively high numbers of features (30–
35) (Table 1). Also, it is ranked towards the bottom
of Table 2 when averaged over both wide and narrow
ranges of M. Likewise, in the 10–15 feature range, the
landmark procedure only appears in the seven worst-
performing combinations (Table 3). For higher num-
ber of features, similar patterns are evident (Figs. 6
and 7). Landmark-based SP tools outperform only
the worst-performing DSP combinations (see below).

(ii) Among DSP procedures, the time-frequency-based
procedures (STFT and DWT) exhibit superior perfor-
mance. The Symmlet-4 wavelet and STFT account for
38 of the top 50 procedures in Table 1 (and all of the
top 12), and most of the top-performing combinations
in Tables 2 and 3. Symmlet-4 with pairwise ANOVA
performed significantly better than the 35 other com-
binations in Table 3 (p < 0.001), while STFT with coef-
ficient of variance performed significantly better than
the remaining 34 combinations (p < 0.01). FFT exhibits
an intermediate level of performance, occurring in the
middle-ranked positions of Tables 1–3. Performance of
FFT is especially low under ANOVA (Fig. 6c (ii)). Fourier
procedures with the phase components removed (PSD
and spectrogram) generally achieved the worst perfor-
mances, and over a broad range of conditions.

(iii) The performance of wavelet transforms depends lar-
gely on the choice of base wavelet. The Symmlet-4
wavelet achieves the highest discriminatory perfor-
mance in the entire simulation, reaching a mean
100% classification (i.e. 100% classification in all 100
Monte Carlo runs) with pairwise ANOVA at 14 compo-
nents, and exhibiting close to 100% classification
(>99.90%) over the range 10–15 features (Fig. 7d,
Table 3). The top six of all 774 permutations are all
combinations of the Symmlet-4 wavelet and pairwise
ANOVA with 9–15 features (Table 1). With just six fea-
tures, this combination is capable of reaching 99.954%
classification, representing the 11th highest rank. For
the dataset explored in this study, no other combina-
tion came close to matching this performance.
There are no obviously consistent differences among the
remaining wavelet bases (Haar, Daubechies-4, and Daubechies-
10), with performance varying considerably according to the
dimension reduction procedure. In combination with pairwise AN-
OVA, the Haar and Daubechies-4 wavelets perform significantly
worse than all other wavelet combinations (Table 3).

(3) Of the four dimension reduction procedures, none show con-
sistently superior performance, ceteris paribus. ANOVA
often performs worse than other procedures under similar
conditions (Table 2). This pattern may be largely because
Fourier procedures with the phase components removed
(PSD and spectrogram) perform exceptionally badly under
ANOVA over a wide range of M (Fig. 6c). Variance typically
performs better than other procedures when averaged over
many signal processing procedures and ranges of M (Table



Fig. 6. Classificatory performance (in linear discriminant analysis of the model data set of Gymnotus) for: five combinations of non-wavelet signal processing (SP) procedure,
four types of dimension reduction (DR) procedure, and up to M = 60 features (remaining after DR). Data points refer to the mean classificatory performance of each
combination of SP, DR, and M as the percentage of correctly classified cases among all 263 cases (individual fishes) � 100 Monte Carlo simulations (e.g. 99.9% = 13
misclassifications out of 26,300 [263 � 100] permutations). For comparison to Fig. 7, classificatory performance is also reported for the Symmlet-4 wavelet transform (the
best-performing signal processing tool under Pairwise ANOVA). For reference, arrows point to 100% classification, which is achieved only with Symmlet-4 wavelet transform
and Pairwise ANOVA at 14 features. Classificatory performance refers to the top 5% of correctly classified cases for each combination, except in c (ii), which refers to the top
60%. Lower performing combinations in a, b and d do not show relevant variation (see Fig. 7, dii), and are therefore not represented.
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2). However, most of the top ranking combinations in Table
3 involve pairwise ANOVA.

(4) Performance increases as the ratio of the training set to the
total population increases (Fig. 8). We first observed consis-
tent 100% classification at the 0.66 training ratio, and 100%
for all higher ratios. Training ratios below 0.4 resulted in sig-
nificantly inferior performance.

In summary, and with many exceptions, the wavelet DSP
procedures and STFT generally outperform the landmark proce-
dure, and remaining DSP procedures. FFT exhibits intermediate
performance, and the lowest performances of all are with the Fou-
rier procedures in which phase components are removed (PSD and
spectrogram).

5. Discussion

5.1. Performance differentials among signal processing procedures

The performances of the DSP procedures we compare in this
paper are entirely concordant with theoretical predictions. The
DWT and the STFT, both time-frequency procedures, are superior
under a wide range of conditions. The lower performance of FFT
was anticipated because transient frequencies (signal components



Fig. 7. Classificatory performance (in linear discriminant analysis of the model data set of Gymnotus) for: four combinations of wavelet transform signal processing (SP)
procedure, four types of dimension reduction (DR) procedure, and up to M = 60 features (remaining after DR). Data points refer to the mean classificatory performance of each
combination of SP, DR, and M as the percentage of correctly classified cases among all 263 cases (individual fishes) � 100 Monte Carlo simulations (e.g. 99.9% = 13
misclassifications out of 26,300 [263 � 100] permutations). For comparison to Fig. 6, we also report the classificatory performance of landmark analysis. For reference, arrows
point to 100% classification, which is achieved only with Symmlet-4 wavelet transform and pairwise ANOVA at 14 features. Classificatory performance refers to the top 5% of
correctly classified cases for each combination except in d (ii), which refers to the top 40%. Lower performing combinations in a-c show similar patterns to d (no relevant
variation) and are therefore not represented.
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present in only short sections of a signal) require that FFT report
physically meaningless frequencies, hence failing to reduce the
dimensionality of the data, and therefore reducing classificatory
performance in subsequent classification.

For the data set of Gymnotus considered here, each phase of
alternating polarity approximates part of a sine wave. For this rea-
son FFT alone can, with relatively low numbers of features, achieve
reasonably high classificatory power. Nonetheless, while FFT can
easily discriminate species with different numbers of phases (e.g.
G. obscurus and G. mamiraua, see Fig. 4), subtle differences in the
amplitude and duration of species with similar EOD waveforms
(e.g. G. mamiraua and G. varzea) are not adequately represented
by FFT. STFT corrects for the deficiencies of the FFT by windowing,
and for this data set provides extremely high performance. None-
theless, as expected, the highest classification is achieved with
DWT, which corrects for the disadvantages of a fixed window
length in STFT by the use of a windowing technique with vari-
able-sized regions.

The choice of a wavelet-base is critical in the DWT, with wavelet
bases chosen to emulate the smoothness and shape of the signals
under comparison. Symmlet-4, with smoothed functions and only
four vanishing moments, most closely resembles EOD waveforms
(Fig. 2), and, as predicted, performs best. The Haar wavelet, which
is discontinuous, generally yields poor performance.

The removal of the phase components from STFT, to yield the
spectrogram, results in a distinct decline in classificatory power.



Table 1
Fifty highest-performing of 774 combinations of signal processing procedure, dimension reduction procedure, and M features in linear discriminant analysis of the model
Gymnotus data set. The mean and standard deviations (SD) represent the percentage of correctly classified cases among all 263 cases (individual fishes) � 100 Monte Carlo
simulations (e.g. two misclassifications in 263,000 = 99.992%). Tied ranks are marked with an equal symbol.

Rank Signal processing procedure Dimension reduction procedure M Features % Classification

Mean SD

1 Wavelet: Symmlet-4 Pairwise ANOVA 14 100.000 0.000
2 Wavelet: Symmlet-4 Pairwise ANOVA 12 99.992 0.054
5= Wavelet: Symmlet-4 Pairwise ANOVA 9 99.985 0.075
5= Wavelet: Symmlet-4 Pairwise ANOVA 10 99.985 0.075
5= Wavelet: Symmlet-4 Pairwise ANOVA 15 99.985 0.075
6 Wavelet: Symmlet-4 Pairwise ANOVA 13 99.970 0.104
8= STFT ANOVA 20 99.962 0.120
8= Wavelet: Symmlet-4 Pairwise ANOVA 8 99.962 0.115
9 STFT Coefficient of variance 25 99.956 0.127
11= Wavelet: Symmlet-4 Pairwise ANOVA 6 99.954 0.125
11= Wavelet: Symmlet-4 Pairwise ANOVA 11 99.954 0.125
12 STFT ANOVA 25 99.951 0.134
13 Landmark Pairwise ANOVA 25 99.941 0.158
15= Wavelet: Daubechies-4 Coefficient of variance 15 99.939 0.141
15= Spectrogram Pairwise ANOVA 35 99.939 0.159
17= FFT Coefficient of variance 35 99.935 0.153
17= Spectrogram Pairwise ANOVA 30 99.935 0.153
20= Wavelet: Daubechies-10 Variance 20 99.932 0.166
20= Wavelet: Symmlet-4 Pairwise ANOVA 7 99.932 0.166
20= Wavelet: Symmlet-4 Coefficient of variance 13 99.932 0.166
21 FFT Coefficient of variance 25 99.926 0.160
23= STFT Variance 25 99.924 0.162
23= Wavelet: Symmlet-4 Variance 15 99.924 0.154
24 FFT ANOVA 20 99.920 0.185
26= FFT Variance 20 99.918 0.161
26= Spectrogram Variance 30 99.918 0.174
28= FFT Variance 25 99.916 0.171
28= Wavelet: Symmlet-4 Pairwise ANOVA 25 99.916 0.159
31= FFT Variance 35 99.913 0.169
31= STFT Pairwise ANOVA 15 99.913 0.186
31= STFT Coefficient of variance 30 99.913 0.165
35= Wavelet: Haar Variance 14 99.909 0.181
35= STFT Coefficient of variance 15 99.909 0.176
35= Wavelet: Symmlet-4 Pairwise ANOVA 20 99.909 0.164
35= Wavelet: Symmlet-4 Variance 14 99.909 0.164
36 STFT Variance 15 99.903 0.175
41= Wavelet: Daubechies-4 Coefficient of variance 20 99.901 0.185
41= Landmark Pairwise ANOVA 30 99.901 0.202
41= STFT ANOVA 55 99.901 0.195
41= STFT Variance 14 99.901 0.180
41= Wavelet: Symmlet-4 Coefficient of variance 14 99.901 0.185
42 STFT Variance 30 99.899 0.192
43 FFT Coefficient of variance 30 99.897 0.178
44 Wavelet: Daubechies-4 Coefficient of variance 25 99.894 0.172
45 STFT Variance 20 99.892 0.192
47= STFT ANOVA 40 99.888 0.197
47= STFT Coefficient of variance 13 99.888 0.193
53= Wavelet: Daubechies-10 Coefficient of variance 20 99.886 0.176
53= Wavelet: Daubechies-4 Variance 20 99.886 0.176
53= Wavelet: Daubechies-4 Variance 25 99.886 0.207

314 W.G.R. Crampton et al. / Journal of Physiology - Paris 102 (2008) 304–321
This suggests that classification is highly sensitive to the timing of
events within each window. Likewise, the PSD yields extremely
poor classificatory power because information about the timing
of events throughout the entire signal is eliminated. These obser-
vations indicate that the five species of Gymnotus can be com-
pletely discriminated on the basis of waveform shape, but not by
the distribution of frequencies in the EOD alone. The similarity of
the frequency distributions among several of these species is
exemplified by a wide overlap in the PPF of the PSD (Fig. 5).

Landmark-based processing of animal signals is predicted to
yield highly discriminatory features. This is because the selection
of these features is based on a priori information collected by biol-
ogists about how signals vary among the taxa under comparison,
and about which signal features are likely to discriminate them.
The landmark procedure we designed resembles those previously
used in multivariate comparisons of electric fish EODs (e.g. Craw-
ford, 1992; McGregor and Westby, 1992; Arnegard and Hopkins,
2003). However, it compared unfavorably to all automated DSP
procedures, with the exception of the PSD and spectrogram.

5.2. Advantages of automated DSP versus landmark-based signal
processing

5.2.1. Performance
Although landmark models incorporate biological knowledge

about which features are suspected to be discriminatory, informa-
tive but subtle differences in signals may not be discernable in
graphical representations. In contrast, DSP procedures, especially
time-frequency procedures, are predicted to detect such hidden
features. These considerations are presumably responsible for the
poor discriminatory performance of the landmark-based model
evaluated here. Even the inclusion of localizable positions in the



Table 2
Comparison of the performance of nine signal processing (SP) procedures, and four dimension reduction (DR) procedures in linear discriminant analysis of the model Gymnotus
data set. Mean rank = mean of n ranks of given SP or DR procedure among all 774 combinations of SP procedures, DR procedures and M features. Top rank = highest rank achieved
among all 774 combinations. In top 50 = number of times the procedure appears in 50 highest ranked of all 774 combinations (i.e. Table 1). Mean, Max (maximum), Min
(minimum) and SD (standard deviation)% refer to percentage classification among n combinations per procedure. For example, in Wavelet Symmlet-4 for 6–60 features (a) the
mean% of 99.413 refers to 10,189 misclassifications in 1,735,800 permutations (263 cases [individual fishes] � 100 Monte Carlo simulations � n = 66).

Procedure Mean rank Top rank In top 50 % Classification n

Mean Max Min SD

(a) Features 6-60 inclusive (594 combinations)
Signal processing:
Wavelet Symmlet-4 176 1 16 99.413 100.000 94.958 0.86 66
STFT 179 8 14 99.304 99.962 93.416 1.19 66
Wavelet Daubechies-10 249 20 1 99.210 99.932 92.738 0.96 66
Wavelet Daubechies-4 257 15= 3 98.921 99.939 94.418 1.27 66
FFT 277 17 7 98.998 99.935 94.188 0.95 66
Wavelet Haar 304 35 1 98.204 99.909 85.993 2.68 66
Landmark 422 13 2 95.273 99.941 66.707 6.23 66
Spectrogram 423 15= 3 88.751 99.939 52.293 15.90 66
PSD 527 322 0 87.967 99.110 57.015 15.28 66

Dimension reduction
Variance 280 20 13 98.602 99.932 87.473 2.07 126
Pairwise ANOVA 298 1 17 98.245 100.000 88.941 2.18 171
Coefficient of variance 299 9 12 97.540 99.956 66.707 4.82 126
ANOVA 362 8 5 91.490 99.962 52.293 14.68 171

(b) Features 10–15 inclusive (216 combinations)
Signal processing
STFT 130 31 5 99.695 99.913 99.110 0.23 24
Wavelet Symmlet-4 135 1 10 99.685 100.000 99.240 0.26 24
Wavelet Daubechies-4 255 15 1 99.237 99.939 97.597 0.58 24
Wavelet Daubechies-10 263 73 0 99.309 99.840 98.578 0.30 24
Wavelet Haar 277 35 1 99.044 99.909 97.916 0.70 24
FFT 315 148 0 98.888 99.622 97.656 0.74 24
Spectrogram 450 159 0 89.687 99.645 62.901 15.38 24
Landmark 495 288 0 95.439 99.278 87.114 3.86 24
PSD 516 322 0 88.111 99.110 59.819 15.23 24

Dimension reduction
Variance 266 23 5 99.048 99.924 93.542 0.978 54
Coefficient of variance 278 15 5 98.305 99.939 87.114 3.121 54
Pairwise ANOVA 342 1 7 98.020 100.000 93.949 1.882 54
ANOVA 374 75 0 90.891 99.835 59.819 15.515 54
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first and second derivatives of Gymnotus waveforms failed to allow
adequate representation of the features associated with inter-spe-
cific variability in signal structure.

5.2.2. Assumptions of homology
Implicit in the use of a landmark procedure for evolutionary

comparisons of animal signals is that some of the compared fea-
tures in signals are evolutionary homologies, common to the taxa
under consideration. This may be advantageous in studies of ani-
mal groups where the evolutionary bases of signal patterns are
well understood. For instance, the phases of mormyrid EODs corre-
spond to well-documented and homologous anatomical structures
and physiological events (Sullivan et al., 2000; Arnegard et al.,
2005). Here, cross-taxon comparisons of signal features based on
landmark analysis are expected to reveal divergences or similari-
ties of evolutionary significance (e.g. Arnegard et al., 2005).

However, assumptions of landmark homology may be problem-
atic, because if wrong, the resulting analyses may be difficult to
interpret, or meaningless. Specifically, if an apparently similar sig-
nal feature is actually homoplastic, an erroneous assumption of
homology could result in inflated significance for cross-taxon var-
iation in this feature. For example, several pulse-generating hypo-
pomid taxa have accessory electric organs that generate extra EOD
phases flanking P1 and P2 (Crampton and Albert, 2006). These
accessory organs occur in different parts of the body in different
species (e.g. in the mental region, humeral region, or over the oper-
culum) and the EOD phases generated by them are likely non-
homologous. Because these EOD phases could be homoplastic
across multiple taxa, landmark-based studies of EOD waveform
divergence would require cautious interpretation.

Whether all EOD phases in Gymnotus represent homologous
events in the discharge cycle is uncertain. The zero-crossings be-
tween each phase, the phase peaks, and the inflection points in
pulse-generating gymnotiforms are physiologically significant
events insomuch as they correspond to changes in the rate and
direction of electrical current flowing through the electric organ
(Caputi et al., 2005). At least some of these events may also be evo-
lutionarily homologous. Phylogenetic reconstructions indicate that
the P1 and P2 phases (see Figs. 1 and 3) are homologous among all
pulse-type taxa (review in Crampton and Albert, 2006), with the
larval EOD comprising only P1, and with P2 appearing early in
development. P1 and P2 also show similar underlying patterns of
electromotor neuron innervations and membrane receptor activa-
tion patterns among pulse-type gymnotiforms (Caputi et al., 2005),
and (as in mormyrids) the P1–P2 boundary corresponds to the
reversal of current through the posterior faces of the electrocytes
when they become depolarized by the firing of the anterior face
(Bass, 1986; Bennett, 1971). A more thorough understanding of
the comparative anatomy and physiology of the EOD of Gymnotus
is now emerging. Rodriguez-Cattaneo et al. (2008) demonstrated
that similar events in the electric organ underlie the generation
of phases P-2 through P3 in two widespread tropical species: Gym-
notus carapo and Gymnotus coropinae. A southern temperate spe-
cies G. n. sp. ‘‘omarorum” generates four phases P0, P1 and P2; of
which the latter two are generated by similar mechanisms to the
equivalent phases in the tropical species. However, the P0 of G.



Table 3
Ranked classificatory performance of signal processing and dimension reduction (DR) procedures in linear discriminant analysis of the model Gymnotus data set. Results are
pooled for 10–15 features M remaining after DR, and presented as mean and standard deviation (SD). Measures represent the percentage of correctly classified cases among all
263 cases (individual fishes) � 100 Monte Carlo [MC] simulations). For example 99.981% = 15 misclassifications in 157,800 permutations (263 cases � 6 features � 100 MC
iterations). A comprehensive test in which all combinations were compared pairwise would collapse under the problem of multiplicity; therefore, p-values from one-sided
Student’s t-tests here reflect the less strict null hypothesis that the given combination outperforms only the combination ranked immediately below it. We then use this as a
proxy for the probability of outperforming all lower-performing combinations. Because 35 independent t-tests are conducted here, we consider the 1% level to be strongly
significant (double underline), the 5% level weakly significant (single underline), and the 10% level (dotted underline) doubtfully significant. Assumptions of normality for t-tests
were confirmed using the Kolmogorov-Smirnov test.

Fig. 8. Effect of the proportion of cases in each group assigned to the testing set on
the classificatory performance of linear discriminant analysis (of the model data set
of Gymnotus). Here data are taken from the single best of all 774 combinations of
signal processing procedure, dimension reduction procedure, and M resulting
features (Symmlet-4 wavelet, Pairwise ANOVA, M = 14). Note the narrowing of
dispersion around the mean as it approaches 100%, marked by arrow, at a ratio of
0.66 (at which point standard deviation = zero).
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n. sp. ‘‘omarorum” comprises two distinct sub-components: V1
(which corresponds to P-2 and P1 in the tropical species), and V2
(which corresponds to P0 in the tropical species). Rodríguez-Catta-
neo et al.’s findings suggest wider patterns of homology, but pat-
terns that require a revision of the classic P-2 through P3 model.
An additional complication is that phases P-2 and P-1 (and the
V1 component of P0 in G. n. sp. ‘‘omarorum”) are weak and difficult
to represent consistently in the head-to-tail waveform recording
procedures typically used in field studies.

In the landmark procedure adopted here, the construction of
the matrix forces a direct comparison of events from each succes-
sive phase, P-1 through P3, and assumes homology of each one.
However, it is not clear whether the phases flanking P1 and P2
(i.e. P-2, P-1, P0, and P3), where present, correspond to homologous
events in the electric organ from one species to another. Without
such homology the landmark procedure will force inappropriate
comparisons of specific regions of the signals at the expense of a
more general comparison of the entire waveform, leading to
untrustworthy conclusions.

In addition to the limitations exhibited by landmark-based pro-
cedures under conditions of homoplasy, landmarks can also be
highly context-dependent. For example, a suite of landmark fea-
tures that discriminate one set of taxa may not discriminate an-
other, unless additional features are considered. Even the
addition of one new taxon with an unusual signal may require a



Fig. 9. Ordination of the electric organ discharge (EOD) waveforms of five species of
Gymnotus in a two-dimensional representation of signal space generated by two of
several discriminant functions (from linear discriminant analysis). Each symbol
represents the EOD of a single recorded specimen. Here, data are presented for the
best of all 774 combinations of procedures (Symmlet-4 wavelet, Pairwise ANOVA,
with M = 14). Note the complete absence of overlapping EOD parameters among the
five species. Inset photographs are of live specimens presented at a common scale.
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landmark-based model to be revised. This context-dependence
may lead to a lack of standardization in ongoing studies involving
multiple taxa and widening horizons of geographical interest. At
the very least this context-dependence makes the automation of
landmark procedures difficult. For example, the discovery of a spe-
cies of Gymnotus with an additional phase following P3 would re-
quire additional programming, because our model assumes that
gymnotiforms have no more than six phases (P-2 through P3).

The issues discussed above are largely irrelevant to automated
DSP procedures. Since signal features are selected automatically
in DSP, subjective choices, or choices that make assumptions of
structural homology are limited only to the selection of a single
temporal alignment position for all groups of signals. Because all
DSP techniques require this reference position, and because this
is the only opportunity to allow notions of homology to enter a
classification model, its selection should be carefully considered.
We chose the P1 peak as a reference position for Gymnotus because
there are strong grounds for homology of this event across all spe-
cies in the genus. Having established an alignment point, DSP pro-
cedures are thereafter entirely objective. Moreover, they require no
special programming. We experimented with using the P1–P2
zero-crossings as an alignment point for the DSP procedures. The
overall results appeared very similar, with the Symmlet-4 DWT
yielding the highest discriminatory performances, and wavelet
procedures or STFT generally outperforming other DSP procedures
and landmark analysis. Overall classificatory performance was
slightly lower with alignment to the P1–P2 zero-crossing than with
alignment to the P1 peak. For comparisons among mormyrids, and
among Sternopygidae, the P1–P2 zero-crossing is a robust align-
ment position because it corresponds to a change in direction of
current through the electric organ. Further studies of other gym-
notiforms are required to evaluate the extent to which alignment
positions such as the P1 peak and P1–P2 crossover are homologous
within and between families.

5.2.3. Interpretation of wavelet and landmark analysis
In this section we describe what may be perceived as a draw-

back of wavelet transforms. Dimension reduction does not always
yield intuitively meaningful coefficients, since its goal is finding
the maximum amount of information in a given number of coeffi-
cients, rather than providing convenient interpretation. As the
dimension of the underlying data increases, we may increasingly
find that apparently only marginally important coefficients are in
fact powerful proxies for multiple numbers of the most obvious
discriminating features. Hence, the landmark transformation, in
which all coefficients are easily recognizable, very likely yields eas-
ily interpreted discrimination rules (e.g. the slope at zero-crossing
discriminates between groups 2 and 3), while the DWT may be dif-
ficult to interpret (e.g. the 243rd coefficient discriminates between
groups 2 and 3). In practice, however, a careful, though separate,
analysis can connect these obscure rules with more easily recog-
nized features. Such an analysis would draw from the fact that
each wavelet coefficient derived from DWT refers not to a specific
position in the waveform (as do landmark features), but instead to
a range of positions around a localizable center, which can be
graphically represented (see Fig. 1A–C).

5.2.4. Similarity to sensory processing in animal brains
The best system for exploring and understanding cross-taxon

differences in animal signal structure should emulate, as far as pos-
sible, the sensory and neural mechanisms used by those animals to
recognize and discriminate signals. Several early studies reported
close matches between the PPF of electric fish EODs and tuberous
electroreceptor tuning (Bastian, 1976; Hopkins, 1976; Watson,
1979). This implies that the dominant spectral features of the
EOD might encode species identity or allow private interference-
free communication channels among ecologically co-occurring
species. Consequently, studies of electric signal diversity have his-
torically emphasized univariate divergence of the PPF in ecological
assemblages. Several studies of low diversity communities of gym-
notiforms noted the complete divergence of PPF and/or EOD repe-
tition rate among co-occurring species (Hopkins and Heiligenberg,
1978; Heiligenberg and Bastian, 1980; Hopkins, 1981; Kramer
et al., 1981). However, as first observed by Heiligenberg and Altes
(1978), pulse-type gymnotiforms are also sensitive to phase
changes in the EOD (where EOD shape is modified while maintain-
ing constancy of the spectral properties). This raised the possibility
that electric fish can discriminate species on the basis of temporal
(shape) properties of waveforms instead of, or in addition to, spec-
tral (frequency) properties. Hopkins and Bass (1981) demonstrated
empirically that temporal characteristics of the EOD mediate con-
specific recognition during courtship in a species of the mormyrid
genus Paramormyrops (previously assigned to Brienomyrus). Xu-
Friedman and Hopkins (1999) subsequently elucidated a neural
pathway for temporal EOD coding in a true species of Brienomyrus
(B. brachyistius).

All 263 individuals of the five ecologically co-occurring species
of Gymnotus studied in this paper can be classified with no error,
on the basis of features derived from DWT, which we recall gives
a mixture of time and frequency information simultaneously.
However, Fourier transforms with the phase components removed,
i.e. stripped of much of their timing information, result in very
poor discrimination of the species. Moreover, there is considerable
overlap of the PPFs among several species (Fig. 5). These observa-
tions imply that the EOD waveforms of these five species exhibit
non-overlapping time-frequency components but overlapping fre-
quency components. To recognize and discriminate among conspe-
cifics on the basis of the EOD waveform, these five species must
therefore use some combination of temporal and frequency cues.

Hopkins and Westby (1986) hypothesized two alternative
mechanisms for the detection of temporal properties in gymnoti-
form EODs. The first, ‘‘temporal coding”, hypothesized that short
EODs might be encoded as a burst of nerve spikes with a recogniz-
able pattern (as in mormyrid temporal coding). In the second,
‘‘scan sampling”, the receiver detects a signaler’s EOD as an ampli-
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tude modulation or ‘beat’ set up by the combination of its own
discharge with that of the signaler. The receiver uses the modula-
tion envelope to assess the signaler’s waveform. However, the neu-
ral mechanisms for EOD analysis are still relatively poorly known
for gymnotiform fishes.

Regardless of the precise mechanism of signal decoding in-
volved in the discrimination of conspecifics from non-conspecifics,
gymnotiforms acquire information from neighboring fishes via
tuberous electroreceptors, which are tuned to specific frequencies,
or ranges of frequencies, and then process the information in the
brain, presumably in real time, as they are acquired (Caputi et al.,
2002). In this sense, signal processing by electric fish brains and
afferent nervous systems may resemble, in broad terms, time-fre-
quency-based DSP procedures such as the STFT and wavelet trans-
forms. The multi-scale approach of wavelet analysis exhibits an
additional analogy to the mode of electroreception of pulse-type
gymnotiforms (and also mormyriforms). These fishes have several
types of phase-coding tuberous electroreceptors with different
tuning curves; some representing low frequencies, and others high
frequencies (Bastian, 1976, 1977; Heiligenberg and Altes, 1978).

Electric fish may be sensitive to specific events in the waveform
of a neighboring fish, such as peaks, zero-crossings, and inflection
points, but it is unlikely that sensory processing of electric fish (or
other animals) resembles the landmark-analysis employed here to
detect these events. This would require post-acquisition processing
of the entire signal, held in memory. Detection of relatively low fre-
quencies, for example, requires that proportionally long signal
samples be retained. Moreover, all of these specific events, such
as peaks and inflection points are also equally represented in
time-frequency processing.

In sum, landmark-based analyses do not resemble the general
sensory processes used by animals to acquire and discriminate sig-
nals, whereas time-frequency-based DSP procedures, and in partic-
ular wavelet transformations do.

5.3. Other animal signals

Generally speaking, animal communication signals contain a
mixture of low and high-frequency signals, with different groups
(e.g. species) exhibiting subtle or profound variation in the pres-
ence or timing of a mixture of frequency components. Under these
conditions, time-frequency analyses, especially the DWT, are pre-
dicted to most efficiently represent a signal with a small number
of features. Electric fish signals are somewhat unusual in that the
repeated elements (pulses or wave cycles) are short (0.4–6 ms),
highly structured, and exhibit almost negligible variation between
repetitions. Pulse-type electric fish signals comprise discrete
pulses, made up of one to several phases of alternating polarity.
These phases constitute transient frequencies (events occupying
only part of a signal), which are predicted to be represented more
efficiently with the time-frequency-based procedures STFT or
DWT. Despite these theoretical predictions, this paper is the first
to explore non-landmark-based procedures for the multivariate
classification of electric signals.

The head-to-tail EOD waveform of wave-type electric fish
resembles a sinusoid, although the deviation from a true sine wave
introduces harmonics to the PSD. The FFT is predicted to represent
wave-type signals with extreme efficiency. However, because they
are rarely symmetrical, the Fourier phase components should be
included. The EOD waveforms of some wave-type species exhibit
extreme deviations from a sinusoid-like wave in the form of bumps
or additional ‘phases’ which may or may not involve additional
zero-crossings in a single EOD cycle. More ‘‘complex” EOD wave-
forms typically have peak power frequencies at higher harmonics
of the fundamental frequency (Crampton and Albert, 2006; Cramp-
ton, 2007; Turner et al., 2007). For the reasons outlined in Section
2.1.1., time-frequency analyses, and especially wavelet analysis are
predicted to more accurately represent signals containing these
kinds of transients than can the FFT, regardless of the cyclical nat-
ure of the waveform. The implementation of the DWT (in the form
described here) for wave-type signals requires first that an align-
ment position is chosen (e.g. the zero-crossing between successive
EOD cycles). A cross-species comparison would involve beginning
all waveforms at the alignment point, and ending all waveforms
at the end of one complete EOD cycle for the individual fish with
the longest waveform. For instance, in a comparison of several spe-
cies in which the highest fundamental frequency was 1000 Hz, and
the lowest 10 Hz, the individual with the lowest frequency would
be represented by one EOD cycle, and the individual with the high-
est frequency by 10 cycles. A theoretical prediction is that time-fre-
quency-based analyses would increasingly outperform FFT as the
signals become increasingly complex. Nonetheless, for practical
purposes, multivariate classification based on FFT might still re-
solve all but the most subtle variation.

Several authors have noted that the baseline EODs of many spe-
cies within sympatric + syntopic communities of wave-type gym-
notiforms exhibit overlapping properties (Kramer et al., 1981;
Crampton, 1998, 2006, 2007; Crampton and Albert, 2006; Turner
et al., 2007). As predicted by Crampton (1998), Turner et al.
(2007) found substantial species-specific structuring of EOD mod-
ulations in apteronotid fishes. In this family, EOD modulations
comprise short (10 ms–1 s) ‘chirps’ or longer (10 ms–60 s) ‘gradual
rises’ that involve frequency and amplitude modulations of the
baseline EOD. Incorporation of landmark-features from the time-
voltage waveform of these modulations substantially improved
discriminant function-based classifications of apteronotid species
based otherwise on the EOD alone (Turner et al., 2007).

From the signal analysis perspective, the EOD modulations of
apteronotids resemble short acoustic signals, such as insect chirps
or anuran vocalization. Like EOD modulations, acoustic or seismic
signals are generally longer, more complex, and more variable be-
tween repetitions than are single electric fish EODs. These kinds of
signals should submit well to multivariate classification based on
features derived from automated time-frequency DSP procedures.
DWT is predicted to be the most efficient procedure, especially
where some groups can be discriminated primarily on the basis
of low-frequency components, and others primarily on the basis
of high-frequency components. However, the classification of ex-
tremely long signals may not perform well with features derived
from automated DSP procedures because the number of features
that are derived may exceed the number of cases, thus violating
statistical assumptions (see Section 2.2). Under these conditions,
landmark features identified from the raw signal or spectrogram
may be more efficient.

Our expectation is that automated time-based frequency analy-
sis would be optimal for the extraction of a small number of infor-
mative features from electric fish chirps or short acoustic signals.
In contrast, longer-term patterns such as the repetition rate of a
volley of electric fish chirps, the gradual rises of wave-type electric
fishes, or the longer acoustic signals of birds may be characterized
more profitably from landmark features of the time-voltage wave-
form or spectrogram. An additional challenge with chirp-like sig-
nals is the selection of an alignment position, which as stressed
earlier (Section 5.2.2), is a requirement of all DSP procedures. In
the case of EOD modulations, valid alignment positions might in-
clude the beginning of a modulation (defined at a threshold devia-
tion from baseline EOD frequency or amplitude), or the position of
the maximum absolute deviation of frequency or amplitude.
Where possible, the choice of the alignment position should be
influenced by concepts of the underlying physiological and ana-
tomical mechanisms of the modulations, although these are still
relatively poorly known in apteronotids. Automated DSP-based
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classification of EOD modulations in pulse-type electric fish species
and also short acoustic signals would require similar alignment
considerations. In the case of acoustic signals generated by simple
mechanical processes, such as stridulation (e.g. in grasshoppers),
alignment positions may be linkable to discrete and potentially
homologous mechanical events. We anticipate greater difficulties
in aligning the vocalized signals used by many vertebrates, or the
seismic signals used by some insects and spiders; although
alignment to the beginning of each vocalization may prove to be
robust.

Long acoustic signals such as bird calls are usually compared
with landmark procedures, and to great success; but it would ap-
pear that nobody has attempted to apply automated DSP proce-
dures to acoustic or seismic (non-human) animal signals for the
purpose of classification. We predict that the objective nature of
automated time-frequency DSP procedures will provide alternative
or complementary approaches to traditional landmark procedures
for the analysis of non-electric signals. DSP procedures may also
permit automated assumption-free ‘first passes’ for the classifica-
tion of unfamiliar animal signals.

5.4. The need for accurate classification

Where there is variation in classificatory performance due to
the choice of procedures, it is important to choose the best-per-
forming combination. Failure to do so will introduce classificatory
error as an artifact of the statistical procedure, and hence inflate
the true extent to which groups approximate each other in multi-
dimensional ‘signal space’. This is especially important in studies
where the extent of overlap in signal space may be representative
of an evolutionary process, for instance reproductive character dis-
placement. Theory predicts that closely related, ecologically co-
occurring, species will exhibit non-overlapping mate attraction
signals (e.g. Shaw, 2000). For the five species of Gymnotus dis-
cussed here it is possible to use the proportion of misclassified sig-
nals between species as a proxy for the degree of signal overlap.

For the single best-performing combination of procedures we
observed no misclassified EOD waveforms between any of the five
species, conforming to the theoretical prediction of complete signal
partitioning. However, with only a small increase in the overall
percentage of misclassifications we begin to see overlap between
species. For instance, with a 0.01% error we observe misclassifica-
tions between one specimen of G. varzea and G. mamiraua. With a
0.03% error we observe additional reciprocal misclassifications be-
tween these two species. At 0.1% error G. jonasi and G. arapaima be-
gin to overlap. Therefore, for this data set, our simulations clearly
indicate that the performances of the classification models vary
sufficiently to influence an evolutionary interpretation of the data.
Other data sets may be more or less sensitive to the choice of signal
processing and dimension reduction procedures, and to the num-
ber of features retained. Of course, not all overlap is an artifact of
analysis; comparisons of closely related individuals should reflect
that commonality. In sum, the choice of the best-performing signal
processing and data-reduction tools should minimize any ‘false’ in-
stances of signal overlap (due to statistical error alone) which
could distort evolutionary interpretations. These considerations
also apply to classification for the purpose of identification alone;
e.g. in ecological field studies where newly encountered signals
are assigned to species on the basis of previously defined training
sets, or in behavioral studies where signals can be classified to indi-
vidual animals. Multivariate measures of distance between groups
in signal space are also sensitive to ‘false’ instances of misclassifi-
cation. For example, the Mahalanobis distances between the cen-
troids of species clusters may be useful in phylogenetic studies of
signal divergence, but depend on the accuracy of the inferred dis-
tances. Poorly performing models may underestimate the distance
between subtly different signals relative to the distance between
very distinct signals.

5.5. The need for simulations

The differential performance of alternative signal processing
procedures largely fits theoretical predictions for the data set un-
der consideration in this paper. However, as stressed in the preced-
ing Section 5.4, the classificatory power of even the best-
performing procedures depends largely, and in a generally unpre-
dictable manner, on both the dimension reduction procedure,
and on the number of resulting features. Moreover, different data
sets may be expected to exhibit optimal classifications under dif-
ferent models, and again in an unpredictable manner. For these
reasons, a ‘brute force’ simulation approach, similar to the one
we employ in this paper, might be profitably applied to any dataset
of animal signals as a precursor to multivariate classification. Un-
less statistical considerations are clear, simulations are likely to
provide meaningful approximations to whatever the theoretical
best-performing classification scheme is; in this data set and sim-
ilar sets, there will be no such overwhelming indications. The ap-
proach we utilized here was easily programmed and relatively
unrestricted by available computing power. For instance, all 774
combinations took approximately 60 h to run. However, many
combinations were of course included here only for heuristic pur-
poses and for practical purposes it would be reasonable to drasti-
cally simplify the number of combinations explored. For instance,
high and low ranges of M features (e.g. below five and above 25)
might be eliminated. Likewise it is not necessary to explore every
increment of M within the desired range (e.g. increments of five
could be considered). Informed decisions or trial and error can also
rapidly exclude some signal processing procedures from consider-
ation. For instance, based on our experience of pulse-type EODs we
would recommend excluding the non-time-frequency-based DSP
procedures, and limit wavelet analyses to bases that resemble
the time-voltage waveform of the signal under analysis (e.g.
Symmlet 4). From the optimal solution, performance could then
be fine tuned by varying M in increments of one (for instance from
�4 to + 4 if increments of five had already been explored). By sim-
plifying the simulation in this manner, a ‘best solution’ could be
approximated within an hour or two of computer time (substan-
tially less with streamlined programming and increased computer
power). Classificatory studies of other kinds of animal signals,
including wave-type EODs or acoustic signals, would probably
benefit from more exhaustive initial simulations (resembling the
ones we present here) to explore performance trends. Likewise,
additional wavelet bases might be considered.

5.6. Mixed-source classification models of signals

Communication ‘signatures’ such as species identity may be en-
coded by multiple components of a signaling system. For instance,
the stereotyped EOD of Gymnotus may be complemented by EOD
pulse-rate modulations; although the data we present here suggest
that EOD waveform may be in itself sufficient to encode species
identity. Multivariate classifications of animal signals can combine
features from such mixed sources. For example, Turner et al. (2007)
combined landmarks from the EOD waveform and from EOD mod-
ulations in order to classify apteronotid signals. By selectively add-
ing or removing different signal elements they then explored the
extent to which EOD waveform versus EOD modulations contrib-
uted to inter-specific variation. For apteronotids, an alternative
and probably better-performing approach would be to combine
features derived from time-frequency DSP (e.g. wavelet analysis)
of the EOD waveform with DSP or landmark-based analysis of
the EOD modulations. Likewise, univariate measurements such as
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the rate of chirps in volleys of modulations could be added to the
classification model as additional columns. In this manner, the
choice of signal processing tool and dimension reduction proce-
dure can be tailor-made to the structure and duration of each sig-
nal component. The resultant features are then combined into a
single matrix for multivariate classification.

5.7. Conclusions

We used a large-scale simulation test to explore the extent to
which landmark analysis and alternative DSP procedures can dis-
criminate among groups of signalers in a model dataset comprising
five species of pulse-type gymnotiform electric fish. We demon-
strated that, as predicted by theory, time-frequency DSP proce-
dures outperform landmark analyses, and also outperform
frequency-based DSP procedures (i.e. the FFT). We also demon-
strated that the classificatory performance of a given signal pro-
cessing procedure is highly dependent on the dimension
reduction procedure involved, and the number of features used
in the LDA. Because it is difficult to predict the precise conditions
under which the very highest accuracy will be reached, and be-
cause it is important to eliminate errors that are due to statistical
artifact, we argue that a combination of signal processing tools, un-
der a range of reduced dimension, should be compared in prelimin-
ary simulations. We anticipate that the multivariate classification
of animal communication signals on the basis of features derived
from automated DSP, in particular wavelet tools, will complement
and strengthen traditional procedures such as landmark analysis,
not only for electric fish signals, but also for short acoustic or seis-
mic signals. We do not advocate the replacement of these tradi-
tional procedures but instead maintain that wavelet tools and
other automated DSP procedures should have a place in the tool
box of those seeking to classify animal signals, quantify signal
divergence, or explore evolutionary concepts of signal space.
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