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Abstract
Through ensemble encoding, the visual system compresses redundant statistical properties from multiple items into a single
summary metric (e.g., average size). Numerous studies have shown that global summary information is extracted quickly, does
not require access to single-item representations, and often interferes with reports of single items from the set. Yet a thorough
understanding of ensemble processing would benefit from a more extensive investigation at the local level. Thus, the purpose of
this study was to provide a more critical inspection of global-local processing in ensemble perception. Taking inspiration from
Navon (Cognitive Psychology, 9(3), 353-383, 1977), we employed a novel paradigm that independently manipulates the degree
of interference at the global (mean) or local (single item) level of the ensemble. Initial results were consistent with reciprocal
interference between global and local ensemble processing. However, further testing revealed that local interference effects were
better explained by interference from another summary statistic, the range of the set. Furthermore, participants were unable to
disambiguate single items from the ensemble display from other items that were within the ensemble range but, critically, were
not actually present in the ensemble. Thus, it appears that local item values are likely inferred based on their relationship to
higher-order summary statistics such as the range and the mean. These results conflict with claims that local information is
captured alongside global information in summary representations. In such studies, successful identification of set members was
not compared with misidentification of items within the range, but which were nevertheless not presented within the set.
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Introduction

Ensemble encoding is a well-established phenomenon where
the visual system compresses redundant statistical properties
from a given set of stimuli into a summarymetric at the expense
of detailed representations of single items. Ariely’s (2001) clas-
sic study demonstrated this, revealing that participants could
accurately report the mean size of a set of circles, but were poor
at identifying the size of any one individual circle from the set.

Despite these findings, people typically have a subjective im-
pression of seeing the entire stimulus set in good detail (Cohen,
Dennett, & Kanwisher, 2016; Yamanashi Leib, Kosovicheva,
& Whitney, 2016). In reality, the limited capacity of our visual
working memory (VWM) places restrictions on the level of
detail that we can extract from individual items within an en-
semble. This disconnect between our subjective impression and
veridical perceptual processing has been an enduring interest of
cognitive scientists for decades.

Typical statistical representations include the mean
(Corbett & Melcher, 2014; de Fockert & Wolfenstein, 2009;
Haberman & Whitney, 2009; Utochkin, 2015) and variance
(Haberman, Lee, & Whitney, 2015; Suárez-Pinilla, Seth, &
Roseboom, 2018) of an ensemble. This parallels gist-based
processing found in scenes (Brady, Shafer-Skelton, &
Alvarez, 2017; Campana, Rebollo, Urai, Wyart, & Tallon-
Baudry, 2016; De Cesarei & Loftus, 2011; Greene & Oliva,
2009; Hedgé, 2008), which are represented by a number of
features that capture the statistical regularities of the visual
world. This includes, but is not limited to, open versus closed
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spatial boundaries and mean depth (Greene & Oliva, 2009;
Park, Brady, Greene, & Oliva, 2011). Scene categorization
occurs quite quickly, within 150 ms or faster (Fabre-Thorpe,
2011; Li, VanRullen, Koch, & Perona, 2002; Peelen, Fei-Fei,
& Kastner, 2009; Thorpe, Gegenfurtner, Fabre-Thorpe, &
Bülthoff, 2001). In addition to basic categorization, these fast
scene-processing mechanisms also include the processing of
global spatial properties, such as recognizing a scene as natu-
ral or urban. Interestingly, there are common neuroanatomical
substrates mediating both scene and object ensemble process-
ing (Cant & Xu, 2012, 2015, 2017, 2020).

Numerous studies have revealed that summary statistical
extraction takes place at various levels of stimulus complexity,
from simple shapes to facial identity (for reviews see Alvarez,
2011; Srinivasan, 2017; Whitney & Yamanashi Leib, 2018).
Elucidating the underlying cognitive mechanisms of this pro-
cess has received increased attention in recent years, shifting
the focus from “what” is extracted to “how” it is extracted.
This research has revealed that ensemble processing mecha-
nisms operate independently from traditional single-item pro-
cessing (Cant, Sun, & Xu, 2015; Im & Halberda, 2013) as
well as across higher- and lower-level stimulus domains
(Haberman, Brady, & Alvarez, 2015; Sama, Nestor, & Cant,
2019). Furthermore, ensemble perception appears to require
minimal levels of attention (Chong & Treisman, 2005; Ji,
Rossi, & Pourtois, 2018; Khayat & Hochstein, 2018; Peng,
Kuang, & Hu, 2019; Utochkin & Tiurina, 2014; but see
Jackson-Nielsen, Cohen, & Pitts, 2017). Like gist information
from scenes, ensemble information is extracted quickly, as
fast as 50 ms, with little change for exposure times up to
1,000 ms (Chong & Treisman, 2003; but see Whiting &
Oriet, 2011, for a more conservative estimate).

Many previous studies of ensemble processing have fo-
cused disproportionately on extraction of visual information
at the global level. This necessitates a more robust understand-
ing of the mechanisms that operate at the local level of ensem-
ble representation. Here, we highlight two important and re-
lated questions. First, what is the nature of single-item repre-
sentations in the context of ensembles? Some studies suggest
individual item values are captured (Li et al., 2016; Neumann,
Ng, Rhodes, & Palermo, 2018), while others disagree (Chong
& Treisman, 2003; Corbett & Oriet, 2011; Ward, Bear, &
Scholl, 2016). Importantly, many of these ensemble studies
use stimuli that are quite homogenous, which makes it diffi-
cult to disambiguate values of individual items. For example,
when using circular stimuli, Corbett and Oriet (2011) varied
individual exemplars by 4 pixels, and Chong and Treisman
(2003) varied them by less than 1° of visual angle. A more
comprehensive investigation is required using items with
wider variability to enhance discriminability.

Second, what is the relationship between the processing of
global summary statistics and the details of local items?
Studies show that single-item reports tend to be biased to the

ensemble mean (Brady & Alvarez, 2011; de Fockert &
Wolfenstein, 2009; Maule, Witzel, & Franklin, 2014; Sama
et al., 2019). The reverse may also occur, wherein focused
attention on single items biases reports of the ensemble mean
(de Fockert & Marchant, 2008), either through primacy and
recency effects during serial presentation (Hubert-Wallander
& Boynton, 2015), or if certain single items are intrinsically
valuable (Dodgson & Raymond, 2019). In these situations,
select single items become more salient (Kanaya, Hayashi,
& Whitney, 2018), and are thus more likely to be captured
and remembered. This type of pop-out is dissimilar from an
outlier effect (Cant & Xu, 2020; Hochstein, Pavlovskaya,
Bonneh, & Soroker, 2018). For example, the influence of
outliers can be discounted from the overall summary represen-
tation (Haberman & Whitney, 2010), whereas enhanced sa-
lience of single items, which are not considered outliers, are
included in summary representations and can bias the percep-
tion of the mean more than the other items.

Whether single-item interference on global summary pro-
cessing can occur in the absence of salience at the local level
awaits clarification. Until then, this remains an important ave-
nue of investigation as a clearer understanding of the global-
local relationship will inform models of ensemble processing.
For example, the presence of local interference would suggest
that prototypical exemplars may bias representations of global
averages. Additionally, the existence of a mechanism mediat-
ing local interference would provide a new opportunity to in-
vestigate the current subsampling debate that concerns the
number of items sampled when calculating a summary statistic
(Bauer, 2015; Chong, Joo, Emmanouil, & Treisman, 2008; Lau
& Brady, 2018; Maule & Franklin, 2016; Myczek & Simons,
2008). With this in mind, in the present study we generated an
ensemble paradigm that could evaluate bidirectional interfer-
ence across global and local levels of ensemble processing.

The most influential study of global-local processing argu-
ably comes from Navon’s (1977) seminal work. Here, com-
pound letter stimuli consisting of a larger letter made up of
smaller letters were presented to participants. Global-local
properties could be consistent (e.g., a large letter H made up
of smaller Hs) or inconsistent (e.g., a large letter Smade up of
smaller letter Hs). Participants were tasked with reporting ei-
ther the global or local letter across varying consistency.
Participants tended to be slower and less accurate when
reporting the local compared with the global properties of
the compound stimuli. This was further reduced when the
global configuration was inconsistent with the local letters.
These now classic results were termed the global precedence
and global interference effects, respectively. Taken together,
compound stimuli, along with scenes and ensembles, are all
composed of global and local structures. They each benefit
from global statistical processing, which in turn influences
local processing. Interestingly, research has also shown local
interference for compound stimuli (Rijpkema, van Aalderen,
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Schwarzbach, & Verstraten, 2007) and scenes (Lowe, Ferber,
& Cant, 2015). Given the functional relationship between
scenes and ensembles (Cant & Xu, 2012), it is reasonable to
predict that some local interference may occur in ensemble
processing, even in the absence of salience at the local level.

With inspiration from Navon (1977), we designed a novel
ensemble paradigm that could independently manipulate
levels of interference at either the global or the local level.
Our stimuli were not designed to look like classic Navon
stimuli, but instead the paradigm we designed was inspired
by Navon’s work. That is, participants make discriminations
of global and local features of an ensemble stimulus in the
presence of independent manipulations to the level of interfer-
ence (with low interference loosely relating to consistent trials
in Navon’s terminology, and high interference loosely relating
to inconsistent trials). Participants were shown ensembles
consisting of eight isosceles triangles, each with a clearly de-
fined orientation direction. This allowed ensembles to have a
mean angle spanning all 360°. Following the ensemble dis-
play, participants were asked to report either the set’s average
orientation, or the orientation of a randomly selected single
triangle. We used a two-alternative forced choice (2AFC)
task, consisting of the correct target, which could be either
the mean of the set or the true orientation value of the single
triangle depending on the task, and an incorrect distractor. The
degree of interference from the distractor was manipulated,
allowing us to measure the influence of high versus low inter-
ference on reporting the target. In Experiment 1, when
reporting average orientation, the high interference distractor
was a single triangle from the set, and the low interference
distractor was a single triangle not presented within the set.
When reporting the orientation of a single triangle, the high
interference distractor was the average orientation of the set,
and the low interference distractor was a single item not from
the set. Thus, high interference distractors were always a prop-
erty of the ensemble set, coming from the opposing hierarchi-
cal level based on the participant’s task. Low interference
distractors were values not contained within the ensemble
set. Importantly, the average orientation was never explicitly
presented within any ensemble display in any Experiment.

Given the parallel to Navon’s (1977) study when designing
our novel ensemble paradigm, we expect to see analogous
findings. Specifically, the global precedence effect would
manifest as faster reaction time (RT) and improved accuracy
when reporting the average orientation compared with a single
orientation. When reporting single-item orientation, global in-
terference would occur if participants were more likely to
select the high-interference distractor, misidentifying the
mean of the set for the correct single orientation. We also
predict that local interference will be observed, which would
occur if participants selected a high-interference distractor
when reporting average orientation, mistakenly identifying a
single item value for the mean orientation.

To our knowledge, this study is the first to reveal the par-
allels between ensemble processing and Navon-style global
precedence and global interference1 effects. Importantly, the
results from our first exploratory experiment informed the
design of five subsequent experiments concerning the nature
of single-item representation and the potentially reciprocal
influence of global and local processing in ensemble
encoding. Over six experiments, we show that what may ini-
tially appear as reciprocal interference is actually the result of
a relationship between two summary attributes of the ensem-
ble – the mean and the range.

General methods

Participants

Recruitment took place at the University of Toronto
Scarborough. The university ethics board approved the study.
Compensation was monetary or with course credit.
Participants all provided informed consent prior starting the
experiment, had normal or corrected-to-normal vision, and
had no history of neurological impairment. We also restricted
eligibility to right-handed participants. In total, we conducted
six experiments. The final sample sizes of each experiment
were as follows: Experiment 1 had 25 participants (ten males,
age range: 18–29 years), Experiment 2 had 24 participants
(ten males, age range: 18–23 years), Experiment 3 had 29
participants (six males, age range: 18–21 years), Experiment
4 had 24 participants (nine males, age range: 18–21 years),
Experiment 5 had 26 participants (six males, age range: 18–26
years), and Experiment 6 had 24 participants (ten males, age
range: 18–29 years).

Stimuli and apparatus

Experiments were programmed with MATLAB version 2016
(https://www.mathworks.com) using the psychophysics
toolbox (Brainard, 1997). The experiment took place in a
darkened room using a desktop computer running Windows
10. Stimuli were displayed on a 60-Hz 24-in. LCD monitor
with a 1,920 × 1,080 pixel resolution.

Participants sat with their eyes positioned 60 cm from the
screen, held in place with the aid of a chinrest. Ensemble
stimuli consisted of eight blue isosceles triangles presented
on a black background. The base and height of each stimulus

1 We use the term “interference” in our study because of how we manipulated
the different levels of the distractors in the 2AFC task used throughout the
experiments, and to be consistent with the language that Navon (1977) used in
his study, which inspired the design of our own. We could also characterize
this as an “influence” of global over local processing, or a “bias” from global
statistics on blurred representations of single items, but instead use “interfer-
ence” throughout for the reasons outlined above.
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was 25 and 100 pixels, respectively. To ensure good contrast
from the black background, we added a white border around
each stimulus. Triangle stimuli subtended a visual angle of
0.6° for the base and 2.4° for the height. An entire ensemble
display subtended a visual angle of 14°.

The mean ensemble orientation on each trial was randomly
selected from a set of predetermined mean values, which var-
ied across experiments (see Methods of each experiment for
specific details). The orientation values of the eight individual
triangles were then generated around this mean. To reduce
homogeneity and ensure each item could be individuated from
its neighbor, we used wide incremental steps between adjacent
triangles on the stimulus continuum. Specifically, for all
Experiments (except Experiment 6, which modified
distribution skew), the orientations of the individual triangles
were -70°, -50°, -30°, -10°, +10°, +30°, +50°, and +70° from
the mean value of a given ensemble (Fig. 1A displays this
uniform distribution).

Triangle stimuli were displayed surrounding a central fix-
ation cross in a clocklike arrangement, angled 45° relative to
the center fixation cross to spread them evenly. Half the items
had a radius of 200 pixels from the center, and the other half

had a radius of 300 pixels, and these selections were chosen
randomly.We did this to prevent any illusory holistic structure
that may emerge if the items were displayed along a perfect
ring. Figure 1B (upper left pane) illustrates a sample ensemble
display. Note the stimulus scale has been enlarged to aid
visibility.

Procedure

The general procedures for all experiments are as follows:
participants first provided informed consent, completed a ba-
sic demographic questionnaire, were given instructions on the
experimental task, and finally completed practice and experi-
mental trials. Feedback was given after each practice trial,
ensuring participants understood the task, but was omitted
during the experimental trials.

Figure 1B illustrates the general phases of a trial. Note the
general layout was different for Experiment 3, which used a
different experimental task altogether. Each trial began with a
white fixation cross, displayed at the center of the screen for a
variable 400- to 1,000-ms duration. Participants were
instructed to maintain fixation. Next, an ensemble was

Fig. 1 Trial and stimuli design. (A) Visualization of the uniform
ensemble distribution used in most experiments. Each triangle
orientation varies in 20° increments, with a range of 140°. (B) A
sample ensemble display (top left) with a mean of 180°. The
interstimulus interval (ISI; top right) followed the display, where the
fixation cross cued participants to the task (green = report average; red
= report single). After the ISI, participants responded via the use of a
2AFC task, which presented a correct target (left item in lower four
panes) and an incorrect distractor (right item in lower four panes). Note,
the spatial presentation of target and distractor items was randomized on
each trial in each experiment. Unknown to participants, the extent of

interference carried by the distractor was manipulated in each
experiment (except for Experiment 3, which did not use a 2AFC
design). During report single (lower two panes), a white circle was pre-
sented to indicate the location of the target single item. Note that these
displays are not visually to scale and did not contain the descriptive white
text. (C) Positively skewed ensemble distribution used in Experiment 6,
showing relative placement of the mean and centroid values. Grayed
items (A and C) were omitted as potential targets or distractors, as they
are too close on the orientation continuum to their respective mean. They
were still displayed (in blue) in the ensemble display

Atten Percept Psychophys



displayed for 400 ms (Fig. 1B, upper left pane). The ensemble
display was then removed from the screen and was followed
by a 300-ms interstimulus interval (ISI; Fig. 1B, upper right
pane). The fixation cross remained onscreen during this phase,
with an altered color to reflect the participants’ task (this did
not occur in Experiment 3). The presence of a green cross
cued participants to report the average orientation value (Fig.
1B, center two panes), whereas a red cross cued participants to
report a randomly selected single item value, indicated by the
presence of a white circle where that single item was previ-
ously displayed (Fig. 1B, lowest two panes).

Finally, after the ISI, two probes were presented to the left
and right of the central fixation cross during the 2AFC task
(Fig. 1B, lower four panes). The placement of the distractor
and target probe were randomized in each trial, and the probes
remained onscreen until a response was made. Using the num-
ber bar, participants pressed “1” on the keyboard to select the
left probe, or “2” to select the right probe. This phase differed
in Experiment 3, where only one probe was presented and
participants were tasked with judging its set membership
using “1” to identify the probe as a member of the preceding
set and “2” as not a member of the set. In all experiments,
participants were told to make their responses as quickly and
accurately as possible.

The level of interference from the distractor probe was
manipulated differently in each Experiment (see specific ex-
periment Methods sections), which was unknown to partici-
pants. Typically, a high interfering distractor during report
average would be set to the value of one of the single items
from the set. Likewise, a high interfering distractor during
report single would be set to the mean value. Conversely,
low interfering distractors typically contained values outside
the range of the ensemble (but refer toMethods sections from
specific experiments to see exceptions to these rules).

Data analysis

The combination of task and level of interference gives four
unique conditions: report average high interference, report
average low interference, report single high interference, and
report single low interference. For each participant separately,
outlier analyses removed trials where RT surpassed ± 2.5 SD
from themean of each unique condition.We judged trials with
an RT faster than 150 ms to be an anticipatory response and
removed them. For every condition, mean RT was calculated
from the remaining trials (both correct and incorrect trials
were used, based on the expectation that there would be sig-
nificantly different numbers of trials across the report average
and report single tasks, owing to the predicted accuracy dif-
ferences across tasks), and accuracy was calculated as a per-
centage of correct responses. During group analysis, an addi-
tional outlier analysis removed participants whose data fell
outside the 2.5 SD range for either RT or accuracy.

Participants were also excluded for poor performance if more
than ten trials for any given condition were removed. This was
an appropriate criterion as most participants had less than six
trials removed per condition.

Most experiments utilized a 2 (Task: report average or re-
port single) × 2 (Interference: high or low) repeated-measures
ANOVA, analyzing RT and accuracy separately. We report
Greenhouse-Geisser corrected p values and modified dfwhen-
ever sphericity was violated. Post hoc pairwise t-tests to in-
vestigate significant main effects or interactions were all two-
tailed, whereas one-tailed t-tests were used to compare the
accuracy of a given condition to chance levels of performance
(i.e., 50%). Effect sizes for statistically significant findings are
reported with partial η2 or Cohen’s d where applicable.
Multiple comparisons were corrected for using the
Bonferroni procedure.

Experiment 1

To evaluate single-item representation in ensemble percep-
tion, and their possible relationship with global summary sta-
tistics, we investigated whether processing single items can
interfere with reports of average orientation. If local interfer-
ence occurs, we expect this to manifest as decreased accuracy
and possibly increased RT when reporting average orientation
under high local interference. Moreover, our ensemble inter-
ference paradigm allows us to investigate parallels between
ensemble perception and the classic global precedence and
interference effects (Navon, 1977). Global precedence would
manifest as faster RT and increased accuracy for the global
conditions compared with the local conditions. For global
interference, we expect to see performance detriments on ac-
curacy and RT when reporting local orientation under high
global interference.

Stimuli and procedures

The ensemble stimuli and general trial sequence was de-
scribed in the General methods (Fig. 1). In brief, a trial began
with a variable 400- to 1,000-ms fixation period, followed by
the presentation of the ensemble consisting of eight blue tri-
angles for 400 ms, then a 300-ms ISI where the fixation cross
changed color to cue the participant to the task (green = report
average orientation; red = report single orientation) in the en-
suing 2AFC phase (which remained onscreen until the partic-
ipant’s response). There were 15 possible ensemble means,
evenly spaced from 0°, giving one possible mean angle every
24°.

Unknown to participants, the level of interference was ma-
nipulated for reports of average and single orientation. In
high-interference trials, the distractor was a property of the
ensemble: the orientation of a randomly selected single item
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from the set when participants reported the average, or the
average orientation when participants reported the orientation
of a single triangle from the set. In low-interference trials, the
distractor was an orientation value that was not included in the
preceding ensemble, and instead was 160–180° from the en-
semble mean (90–110° outside the range). The interference
manipulation coupled with the two tasks yielded four unique
conditions: average high-interference, average low-interfer-
ence, single high-interference, and single low-interference
(Fig. 1B, lower four panes). This design is analogous to tradi-
tional global-local processing paradigms where both hierar-
chical levels could be either consistent or inconsistent with
one another. Each of the 15 predetermined means was repeat-
ed six times across the four conditions, giving 360 total trials.

Results

Accuracy and RT for Experiment 1 were analyzed separately,
each with a 2 (Task: report average or report single) × 2
(Interference: high or low) within-subjects ANOVA (the same
results were found when restricting the RT analysis to correct
trials only, so here, and moving forward, all RT analyses focus
on both correct and incorrect trials). For accuracy (Fig. 2A), we
report significance of Task (F1,24 = 92.06, p < .001, η2 = .793)
and Interference (F1,24 = 93.56, p < .001, η2 = .796), but a non-
significant Task-Interference interaction (F1,24 = 1.77, p =
.195). Post hoc pairwise testing revealed accuracy was lower
under high interference compared with low interference during
reports of both average orientation (mean difference = 17.4%,
t24 = 10.95, p < .001, d = 2.24) and single orientation (mean
difference = 20.6%, t24= 7.25, p < .001, d = 1.48). Performance
for all four conditions was significantly different from chance
(all ts > 2.53, all ps < .037 after Bonferroni correction, all ds
between 0.51 and 3.06). Interestingly, report single high inter-
ference was the only condition where performance was

significantly below chance, indicating that participants were
more likely to select the mean orientation, which was not pres-
ent in single items making up the ensemble, over the correct
single item. These results are consistent with previous ensemble
research (Khayat & Hochstein, 2018, 2019).

For RT (Fig. 2B), Task (F1,24 = 67.68, p < .001, η2 = .738)
and Interference (F1,24 = 11.98, p = .002, η2 = .333) were
significant, as was the Task-Interference interaction (F1,24 =
20.87, p < .001, η2 = .465). For pairwise comparisons, we
found no significant difference between high and low inter-
ference in the report average task (mean difference = 7 ms, t24
= 0.27, p = .790), but there was a significant difference in the
report single task (mean difference = 205 ms, t24 = 4.46, p <
.001, d = 0.89).

Discussion

Our novel ensemble interference paradigm was able to repli-
cate the well-established global precedence effect (Navon,
1977). Specifically, participants were faster and more accurate
when reporting the global average orientation compared with
reporting the local orientation of a single item from the set.
This demonstrates the validity of our stimuli and experimental
design for the investigation of global and local processing in
ensemble encoding. Importantly, a novel result of Experiment
1 is the existence of an implicit local interference effect when
extracting a global summary statistic from an ensemble, evi-
dent by reduced accuracy when reporting average orientation
under high interference where the distractor was a single item
from the set, compared with low interference where the
distractor value was outside the set. This was not coupled with
RT differences across the interference conditions, indicating
this effect was not the result of a tradeoff between speed and
accuracy.

Fig. 2 Results of Experiment 1. (A) Accuracy displayed patterns
consistent with global precedence and global interference. Participants
were more accurate during report average and during low interference.
When reporting single under high interference, they typically mistook the
mean as the correct single item. (B) Reaction time (RT) results were

similar to accuracy, in that participants were faster for report average.
One difference from accuracy was the lack of significance between the
two levels of interference during report average. Error bars represent ± 1
standard error. *** p < .001, ns = not significant (p > .05)
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Similarly, we observed a global interference effect for ac-
curacy, where participants performed worse when reporting
single orientation under high interference, compared with low
interference. Reports of single orientation under high interfer-
ence were significantly below chance, indicating that partici-
pants were more likely to select the mean value as the target,
compared with the correct single item value. This is strong
evidence of global interference, and is consistent with previ-
ous results showing the influence of the ensemble mean on
single-item processing (Brady & Alvarez, 2011; Sama et al.,
2019). Together, these results appear to demonstrate recipro-
cal interference between global and local processing in ensem-
ble perception. The magnitude of interference at the global
and local levels appears to be equal, since the relative decrease
in accuracy from low to high interference was similar for
reports of both average and single orientation, as evidenced
by the non-significant Task-by-Interference interaction for ac-
curacy. To our knowledge, this is the first demonstration of
implicit local interference on global statistical processing in
ensemble perception (but see Experiments 3 and 4, which
question this conclusion).

The global interference effect predicts a slower RT when
reporting single-item values during high interference.
Surprisingly, we observed the opposite effect, where RT was
faster when reporting single orientation under high interfer-
ence compared with low interference. One possible explana-
tion for this finding is that during low interference, partici-
pants may have adopted a decision strategy to reject the obvi-
ous distractor. This would create an additional processing step
where participants would first identify the nonmember, and
then choose the other item as the correct target. We test this
hypothesis in the next experiment.

Experiment 2

Experiment 1 demonstrated that participants were slower at
reporting the orientation of a single item under low compared
with high interference, which was opposite to the expected
result predicted by the global interference effect. Here we test
whether this finding can be explained by the presence of an
additional cognitive strategy taking place only during low
interference report single trials. Specifically, we hypothesize
that participants were slower in low-interference report single
trials because they first identified the outlier (i.e., the
distractor) that was not a member of the set, and then selected
the other probe item as the correct target, instead of simply
recognizing the correct target in the first step.

Stimuli and procedures

The stimuli and procedures were identical to those reported in
Experiment 1 and the General methods with the exception of

one important change to report single low-interference trials.
Namely, we set the distractor probe to be a non-target single
item from the ensemble, instead of an item outside of the set as
in Experiment 1. In other words, both the target and the
distractor were single items from the ensemble, but only one
was cued with a circle placed onscreen during the 2AFC task.
This modification tests whether participants’ slower responses
in the report single low-interference condition in Experiment 1
were due to first rejecting the outlier and then selecting the
correct single item, instead of appropriately recognizing the
target single item in the first place. If participants were indeed
using the former strategy, then responses in the modified re-
port single low-interference condition here should not differ
from those in the report single high-interference condition.

Results

For accuracy (Fig. 3A), there was significance for Task (F1,23
= 91.24, p < .001, η2 = .799), Interference (F1,23 = 64.18, p <
.001, η2 = .736), and the Task-Interference interaction (F1,23 =
31.29, p < .001, η2 = .576). Similar to Experiment 1, the
difference between high and low interference was significant
for reports of average (mean difference = 14.5%, t23 = 10.09, p
< .001, d = 2.06) and single orientation (mean difference =
3.6%, t23 = 2.34, p = .028), and the performance in both
interference conditions for reports of average orientation were
significantly above chance (difference from chance > 11.8%
for both report average conditions, both ts > 7.50, both ps <
.001, both ds > 1.53). Unlike the previous experiment, perfor-
mance in the report single interference conditions was not
significantly different from chance (both differences from
chance < 2.8%, both ts < 1.85, both ps > .155). Results for
RT (Fig. 3B) revealed a significant main effect of Task (F1,23
= 42.63, p < .001, η2 = .650), but not Interference (F1,23 =
2.68, p = .115), and a non-significant Task-Interference inter-
action (F1,23 = 0.65, p = .428).

Discussion

The present experiment successfully replicated the results of
Experiment 1. Specifically, we observed the global prece-
dence effect in both accuracy and RT and reciprocal interfer-
ence effects were observed for accuracy. Regarding global
interference, although performance in the report single high
interference condition did not differ from chance, the signifi-
cantly worse performance when reporting single orientation
under high compared with low interference nevertheless rein-
forces the biasing influence of the mean on single-item pro-
cessing that we have seen in the previous experiment.

Moreover, having the target and distractor both as items
from the set when reporting single orientation under low inter-
ference eliminated the difference in RT between high- and low-
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interference conditions. Thus, consistent with our prediction,
slower RT in the report single low-interference condition in
Experiment 1 was likely due to participants first identifying
and then rejecting the outlier, rather than correctly recognizing
the target single item in the first place. Interestingly, this ma-
nipulation also had a pronounced effect on accuracy where
performance did not differ from chance in the report single
low-interference condition. This demonstrates that individual
items from the set are not discriminable, and raises an interest-
ing question: How can local interference be present in the ab-
sence of robust representations of single items? One possibility
is that the precision of single-item representations varies along a
continuum. At the lowest end of the continuum, representations
are absent or imprecise, followed by some representation of
single items without information about their spatial location,
and finally at the high end of the continuum single-item repre-
sentations are precise and bound with their spatial location.
Representations of single items without awareness of their spa-
tial locations would impair the ability to correctly assign one of
two exemplar values to a cued location, and would thus explain
the chance performance during the report single low-
interference condition in the present experiment.

We explore the failure to remember the spatial location of
individual items in greater detail in Experiments 4 and 5. But
first, in Experiment 3 we evaluate the ability to judge the set
membership of a candidate single item in the absence of both
interference and cues to spatial location. This will lead to a
more complete picture of how single items are represented in
the ensemble.

Experiment 3

Previous experiments explored single-item representation
through an interference paradigm where participants reported

the value of a cued single item from a specific location within
the ensemble. In Experiment 3 we investigate the nature of
single-item representation at a more elementary level, that is,
in the absence of explicit interference and without the need to
bind a stimulus feature to a spatial location. This will broaden
our understanding of single-item representation in ensemble
encoding and will serve as a foundation to explore the rela-
tionship between global and local ensemble processing in fur-
ther experiments. Importantly, the results of Experiment 3
may provide insight into how local interference can apparently
manifest in the absence of robust representations of single
items. Finally, it is possible that the pattern of previous results
in the high- and low-interference conditions is partially ex-
plained by an artefact of the testing procedure used. That is,
high-interference distractors were more similar to the target,
whereas low-interference distractors were more dissimilar to
the target (with the exception of the report single low-
interference condition in Experiment 2). To explore this pos-
sibility, in Experiment 3 we used a yes-no set-membership
task where participants were presented with only a single
probe item at test. If we still observe implicit biasing and
interference effects using this paradigm, then target-
distractor similarity at test cannot solely explain the pattern
of results observed previously.

Stimuli and procedures

The stimuli and procedures were very similar to those used in
the previous two experiments, with two important modifica-
tions. First, we replaced the 2AFC interference paradigm with
a set-membership identification task. Here, a single probe item
was presented in the center of the screen following the ensem-
ble display. The task was to judge whether or not it was a
member of the previous set. Thus, this experiment focuses
exclusively on reports of single orientation. Second, we

Fig. 3 Results of Experiment 2. (A) Results from accuracy were similar
to Experiment 1, namely the presence of a global precedence effect and
reciprocal interference across global and local processing. Note that
during report single low interference, participants were unable to
discriminate between two single item probes (both of which were

contained within the previously seen ensemble display, but only one of
which was the correct item), as performance was at chance. (B) Reaction
time (RT) shows a global precedence effect, but no interference effects.
Error bars represent ± 1 standard error. * p < .05, *** p < .001
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removed the white circular location cue to allow reports of set
membership that were independent of an item’s spatial loca-
tion. Participants were instructed to press “1” if the item was a
member of the previous set or “2” if the item was not a set
member, thereby ensuring that a response was necessary for
both possible decisions.

There were four possible stimulus conditions, categorized
by the probe item’s assigned value. The probe item could be:
(1) an actual randomly selected member of the set, (2) an item
just outside the range of the set (i.e., one step, or 20°, outside
the range, which was equivalent to the distance between items
within the ensemble), (3) the mean orientation (which was
never shown within the ensemble), or (4) an item far outside
the range of the set (i.e., four to six steps, or 90–110°, outside
the range). Like previous experiments, item values were
spaced in 20° steps, and those that were closest to the mean
were not selected as potential targets. Participants were blind
to these manipulations. Data was labeled as percent “yes”
responses for each condition, defined as the percentage of
times participants labeled an item as a set member.We defined
chance as the equal likelihood of accepting or rejecting a
probe item as a set member, set at 50%. There were 360 total
trials (15 predetermined means × 6 repetitions × 4 conditions).

Results

Percent “yes” responses and RTs were each analyzed using a
single-factor within-subjects ANOVA comparing responses
across the four different stimulus conditions. This was signif-
icant for percent “yes” (F3,84 = 218.63, p < .001, η2 = .886;
Fig. 4A), as were all possible pairwise comparisons (all mean
differences between 10.9% and 50.1%, all ts > 6.59, all
Bonferroni ps < .001, all ds between 1.23 and 3.36). All con-
ditions were also significantly different from chance (mean
differences from chance between 14.4% and 30.8%, all ts >
4.61, all Bonferroni ps < .001, all ds between 0.86 and 2.66).
The actual set member and the mean value were selected as set
members more often than not (with the mean being selected
significantly more often than the actual set member), and both
items outside of the range were correctly rejected from set
membership more often than they were labeled as set mem-
bers (with the item far outside the range being rejected signif-
icantly more often than the item just outside of the range).

For RT (Fig. 4B), we found a marginally significant effect
across the four conditions (F1.9,54.2 = 2.88, p = .066, η2 =
.093), and pairwise comparisons revealed that this was driven
by a significant difference between items that were set mem-
bers versus items that were one step outside the range bound-
ary (mean difference = 74 ms, t28 = 3.52, p = .008, d = 0.65).
No other pairwise comparison was significant (all mean dif-
ferences < 64 ms, all ts < 1.96, all ps > .360).

To further understand the representation of single items
within the ensemble, we examined whether correctly labeling

an item as a set member varied as a function of its distance to
the mean. To that end, we organized the data from condition 1
(i.e., an actual member of the set) based on a probe item’s
distance from the mean. Quadratic curve fitting was signifi-
cant for percent “yes” (Fig. 4C; F1,28 = 60.19, p < .001, η2 =
.682), but not for RT (Fig. 4D; F1,28 = 0.01, p = .958). Thus,
probe items that were closer to the mean had a greater likeli-
hood of being correctly selected as a set member, a bias that
was not driven by differences in RT. Interestingly, perfor-
mance for items at the range boundaries (±70° from the mean)
was not significantly different from chance (both had < 2.5%
difference from chance, both ts < 0.98, both ps > .999), but
these items were selected as set members more often than the
items one step outside of the boundary (t28 = 50.00, p < .001, d
= 9.28). In contrast, performance for items within the ensem-
ble range (±50° and ±30° from the mean) was significantly
above chance (mean difference from chance = 12.8%, all ts >
2.88, all ps < .023, all ds between 0.53 and 1.33). We discuss
the implications of this range effect next.

Discussion

The results of Experiment 3 reveal three important findings
with regard to global versus local representation in ensemble
encoding. First, the mean of the ensemble implicitly biases the
representation of single items. The mean was most likely to be
selected as a member of the set despite it not being present in
the ensemble display. Moreover, for actual set members, se-
lection likelihood varied as a function of their distance to the
mean. That is, items closer to the mean were correctly selected
as set members more often. Second, participants have robust
implicit knowledge of the range of the set. Specifically, single
items within the range were correctly labeled as set members
more often than not, performance for items at the range
boundary was at chance, and items outside the range were
rejected as set members more often than they were selected.
Together with the previous point, this suggests that the effect
of implicit knowledge of the range on ensemble encoding is
relative as opposed to categorical. Finally, these implicit bias-
ing and interference effects were observed using a task where
only a single probe item was presented at test, arguing that the
results of our previous experiments cannot be explained solely
by confounds of target-distractor similarity in a 2AFC task. To
further explore this issue, in Experiments 4, 5, and 6 we again
use a 2AFC task but employ better controls for target-
distractor similarity.

Given these findings, it is possible that the low accuracy for
single reports under low interference in Experiment 2 was
because the distractor was within the range of the set. Based
on the results of Experiments 2 and 3, it appears that under
high VWM load, participants do not have robust representa-
tions of single items from the set, but they do have a good
representation of the range of the set. Thus, when reporting
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single orientation and both the target and the distractor are
within the range of the set, participants will have difficulty
discerning what the correct orientation value is. We explore
a strong version of this prediction in Experiment 4. Taken
together, these results demonstrate that the representation of
ensemble range boundaries can be extracted implicitly and
subsequently has strong effects on hierarchical ensemble
encoding, which is consistent with recent findings
(Hochstein et al., 2018; Huang, 2020; Khayat & Hochstein,
2018; Utochkin & Brady, 2020).

Experiment 4

The previous experiment demonstrated that participants had a
robust representation of ensemble range. In this experiment
we investigate whether poor performance when reporting sin-
gle orientation under low interference in Experiment 2 is due
to implicit knowledge of the set range, as opposed to a failure
to remember an orientation value at a specific spatial location.

That is, when faced with a target and distractor that are both
within the range of the set, participants will have difficulty
discerning the correct orientation value. We test a strong ver-
sion of this hypothesis that states that this should be true
whether or not the distracting item was actually a member of
the set (and thus would not occupy a spatial location in the
previously seen ensemble). If knowledge of the range of the
set is indeed interfering with reports of a single item’s orien-
tation, then participants will not be able to correctly discrim-
inate between a member and non-member of the set if both
items are nevertheless within the range (regardless of whether
or not they correctly remember the spatial location of the set
member).

Stimuli and procedures

The stimuli and procedures were identical to those used in
Experiments 1 and 2, with one important difference, once
again in the report single low-interference condition.
Specifically, instead of being a non-member outside the range

Fig. 4 Results of Experiment 3. Responses to the actual set member are
displayed in orange. (A) Results from accuracy show a strong bias to the
mean, as the set mean was selected as a member more often than not, and
more often than the actual set member. Results also show participants had
a good representation of the range of the set, as items just outside the
range were rejected more often than not, and items far outside the range
were rejected more frequently than any other item. (B) Reaction time
(RT) was roughly consistent across all trial types, demonstrating that

performance was not a result of speed-accuracy-tradeoff. We also tested
whether correctly labeling an item as a set member varied as a function of
its distance to the mean (C andD). (C) For percent “yes” responses, there
was a significant quadratic fit, where items closer to the mean had an
increased likelihood of being selected. (D) For RT, there was no signif-
icant quadratic fit. Error bars represent ± 1 standard error. ** p < .01, ***
p < .001
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of the set (Experiment 1) or a member of the set (Experiment
2), the distractor was now a triangle that was within the range
of the set, but was not actually presented within the previously
seen ensemble. This distracting item was set to the middle
value between two randomly chosen adjacent single items
from the set (e.g., items 1 and 2, or 7 and 8). Importantly,
the distracting item was never set to the middle value of the
two items that were adjacent to the ensemble mean (i.e., items
4 and 5), since this value would be equal to the mean orienta-
tion itself (see Fig. 1A).

Results

The repeated-measures ANOVA design was consistent with
Experiments 1 and 2. For accuracy (Fig. 5A), we found sig-
nificance for both Task (F1,23 = 69.83, p < .001, η2 = .752) and
Interference (F1,23 = 48.11, p < .001, η2 = .677), as well as a
significant Task-Interference interaction (F1,23 = 29.77, p <
.001, η2 = .564). Pairwise comparisons found that the interac-
tion was driven by a significant difference between high and
low interference when reporting average orientation (mean
difference = 13.8%, t23 = 9.34, p < .001, d = 1.77), but not
when reporting single orientation (mean difference = 3.2%, t23
= 1.97, p = .061). Furthermore, we found that performance
was significantly greater than chance when reporting average
orientation under both high (difference from chance = 8.7%,
t23 = 6.45, p < .001, d = 1.32) and low interference (difference
from chance = 22.5%, t23 = 11.00, p < .001, d = 2.25). In
contrast, performance in both report single orientation condi-
tions was not significantly different from chance (both had <
2.14% difference from chance, both ts < 1.34, both ps > .385).

For RT (Fig. 5B), we found a significant effect of Task
(F1,23 = 13.42, p < .001, η2 = .369), a marginally significant
main effect of Interference (F1,23 = 3.37, p = .079), and a non-
significant interaction (F1,23 = 0.04, p = .854).

Similar to the analysis in Experiment 3, we fit a quadratic
curve comparing performance across all possible set members
(i.e., the correct target in the 2AFC task) for reports of single
orientation in both the high- and low-interference conditions.
We also did this for all possible distractors in the report single
low-interference condition (i.e., non-set members that were
nevertheless within the range of the set). All three of these fits
were not significant, both for accuracy (all Fs < 2.50, all ps >
.128 prior to Bonferroni correction) and for RT (all Fs < 0.50,
all ps > .486).

Discussion

During single orientation reports, we predicted that target
items that were set members would be indistinguishable from
distractor items that were not set members, but were neverthe-
less within the range of the set. This was supported by the
results of the present experiment. This effect held regardless
of the relative distance probe values were from the mean. This
is further evidence for the implicit extraction of the range in
ensemble encoding. Together with the results of Experiment
3, which demonstrated that participants have good knowledge
of the range of the set in the absence of requirements to re-
member the spatial location of single items, these results argue
that interference in the report single task is better explained by
implicit extraction of the range of the set (but we cannot con-
clusively rule out the influence of failing to remember the
spatial location of individual items; future research should
explore the relative weighting of these effects in greater de-
tail). Interestingly, when reporting single orientation, the
strength of the interference exerted by the mean and the range
(i.e., an in-range item not from the set) were roughly equiva-
lent, showing that global interference can manifest equally
from two different summary statistics. It is also worth noting
that we again replicated the global precedence effect in

Fig. 5 Results of Experiment 4. Both accuracy (A) and reaction time (RT;
B) were consistent with the previous experiments’ results, particularly
Experiment 2. Together, these results again show global precedence
and interference, and importantly, that implicit knowledge of the range
of the set interferes with reports of single orientation. That is, when

reporting single orientation under low interference, participants are
unable to disambiguate targeted single items from distractor single
items when both items are within the range of the set (despite the
distractor never being presented in the ensemble display). Error bars
represent ±1 standard error. *** p < .001, ns = not significant (p > .05)

Atten Percept Psychophys



ensemble processing, which demonstrates the reliability and
robustness of this effect.

In Experiment 3, we used a set-membership task and found
that participants were more likely to select items as members
based on their proximity to the mean (Fig. 4C), demonstrating
the influence of global features on local processing. In this
experiment, we returned to an interference-based 2AFC task
and revealed additional evidence for the dominance of global
perception. Namely, when reporting single orientation under
high interference, participants were equally likely to select the
mean over the correct single item regardless of that item’s
distance from the mean. The same result was observed when
the range served as the distracting item in the report single
low-interference condition.

Finally, we again replicated the finding that participants
were more accurate at reporting average orientation under
conditions of low compared with high interference. We pre-
viously classified this as a local interference effect, but the
results of the present experiment and Experiment 3 suggest
that the interference is not likely attributed to local orientation
values, since participants do not have robust representations of
single items in our ensemble displays. Instead, we suggest
these results are likely explained by interference from the
range of the set, which would imply an interaction between
different types of summary statistical processing in ensemble
encoding. We test this prediction in Experiment 5.

Experiment 5

The results of Experiment 4 demonstrated that participants
implicitly encode the range of the display, and this represen-
tation of ensemble range interferes with the perception of sin-
gle items. In Experiment 5, we investigate whether implicit
extraction of ensemble range can also interfere with the pro-
cessing of average orientation. Specifically, poorer perfor-
mance in the report average high-interference condition in
the previous experiments is likely attributed to the fact that
the distractor was within the range of the set, and not neces-
sarily because the distractor was a set member. Thus, we
would expect to again see lower performance in the report
average high-interference condition, compared with the low-
interference condition, when the distractor is within the range
of the set but was not actually presented within the previous
ensemble display (i.e., the same manipulation we made in the
report single low interference condition of Experiment 4).

Stimuli and procedures

The stimuli and procedures were identical to those used in
Experiment 4, except for a modified report average high-
interference condition. That is, the distractor in report average
high interference was now an item in the range of the previously

seen ensemble, but it did not take on a value of one of the actual
set members. This distractor manipulation is shared with the
report single low-interference condition that was used in
Experiment 4 and is again used in the current experiment.

Results

For accuracy (Fig. 6A), the effects of Task (F1,25 = 64.33, p <
.001, η2 = .720) and Interference (F1,25 = 30.47, p < .001, η2 =
.549) were both significant, as was the Task-Interference in-
teraction (F1,25 = 33.15, p < .001, η2 = .570). As was the case
in Experiment 4, this interaction was driven by a significant
difference in levels of interference for report average (mean
difference = 14.9%, t25 = 8.09, p < .001, d = 1.53) but not
report single (mean difference = 1.6%, t25 = 0.82, p = .427)
tasks. Additionally, performance was significantly above
chance when reporting average orientation under both high
and low interference (both had > 6.3% difference from
chance, both ts > 5.40, both ps < .001, both ds > 1.06). In
contrast, the accuracy in both report single conditions was not
significantly different from chance (both had < 1.6% differ-
ence from chance, both ts < 1.33, both ps > .389).

Like accuracy, the analysis of RT (Fig. 6B) also demon-
strated a complete replication of the results of Experiment 4.
Namely, the effect of Task was significant (F1,25 = 23.36, p <
.001, η2 = .483), Interference was marginally significant (F1,25
= 3.51, p = .073), and the interaction was not significant (F1,25
= 1.37, p = .254).

As a further demonstration of the similarity in results across
Experiments 4 and 5, independent sample t-tests comparing
each of the four unique conditions across experiments
returned non-significant results for both accuracy and RT pri-
or to applying Bonferroni corrections (all ts < 1.39, all ps >
.170, dfs = 48).

Discussion

The results of Experiment 5 were a complete replication of
those in Experiment 4, even with the modified report average
high-interference condition. Specifically, global interference
from the ensemble mean and range on single-item processing
were equal in magnitude (i.e., chance performance in both
high- and low-interference conditions during report single,
which did not differ), and we replicated the global precedence
effect in ensemble processing (i.e., faster processing for aver-
age compared with single ensemble features) for the fourth
time in this study. Importantly, we found the same poor per-
formance in the report average high-interference condition
when the distractor was within the range of the set, but was
not actually presented within the ensemble display, compared
with previous experiments where the distractor was a member
of the set. This demonstrates that what we called a local
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interference effect in previous experiments is more accurately
conceptualized as a range interference effect. Our findings that
the summary statistics of ensemble range and mean interact
are consistent with studies showing that altering the range of
an ensemble can affect reports of the mean (Chong &
Treisman, 2003; Maule & Franklin, 2015).

In contrast, Khvostov and Utochkin (2019) have suggested
that the mean and the range of an ensemble are processed by
independent cognitive mechanisms. To explain this discrep-
ancy, we highlight some important methodological differ-
ences between our studies. First, the authors used a task re-
quiring the explicit extraction of range, whereas in the present
study range is encoded implicitly. Second, as noted by the
authors and others (Hochstein et al., 2018), range can give
some information about the mean, but the opposite is not true:
the mean does not inform range estimates. To address this,
Khvostov and Utochkin had participants match the range of
a test set to a previously seen display set, but both ensembles
contained different mean values. They showed that partici-
pants can still match the range between two sets containing
different mean values, and thus argue for independent cogni-
tive mechanisms mediating the extraction of both features.
This does indeed show that the range of an ensemble can be
extracted without using the mean, but we argue that it does not
necessitate independence between the two (Maule & Franklin,
2015). In contrast, participants in our study encode the range
of the set from the same ensemble display that they are making
explicit judgments of mean orientation from, and we observe
an interaction between the two summary statistics. In the final
experiment of this study, we investigate the relationship be-
tween ensemble range and mean further by disentangling the
numerical value of both metrics.

Experiment 6

In all previous experiments, our ensemble stimuli were gener-
ated as a symmetrical uniform distribution, with equal

distance between items. While some research has utilized
asymmetrical distributions (Luo & Zhou, 2018), the majority
of studies investigating ensemble encoding do not. Even when
distributions are not uniform, they still tend to be symmetrical
(e.g., Chong & Treisman, 2003). In a symmetrical uniform
distribution, the mean and the center of the range are the same
value. Given this, it is unclear whether participants are using
an arithmetic mean or are simply centralizing the range
boundaries when reporting an average ensemble feature
(Hochstein et al., 2018). This raises the possibility that the
range and mean arise from the same summary metric.
Previous research has noted this problem when studying the
range and mean of ensemble stimuli (Hochstein et al., 2018;
Khvostov & Utochkin, 2019).

To resolve this ambiguity, in Experiment 6 wemanipulated
the ensemble distribution with the aim of disentangling the
arithmetic mean from the center of the range, thus separating
their potential influences. By doing so, we can investigate
whether participants are using the arithmetic mean or the cen-
ter of the range as their estimate of average orientation.
Furthermore, investigating whether or not these summary
metrics are distinct will shed light on the potential source of
interference between the processing of ensemble mean and
range observed in Experiment 5.

Stimuli and procedures

To disentangle the mean and the center of the range, subse-
quently referred to as the centroid, we used asymmetrically
skewed distributions. Individual triangles were -70°, -65°, -
55°, -40°, -20°, 5°, 35°, and 70° from the centroid for a pos-
itively skewed distribution. Values in a negatively skewed
distribution were -70°, -35°, -5°, 20°, 40°, 55°, 65°, and 70°
from the centroid. This maintained a consistent range (140°),
variance (50.5° in the present study compared with 49.0° in
previous experiments), and set size (eight items) compared
with all previous experiments. Thus, the main difference be-
tween this experiment and all previous experiments is in the

Fig. 6 Results of Experiment 5, which completely replicated the findings of Experiment 4, both for accuracy (A) and for reaction time (RT;B). Error bars
represent ± 1 standard error. *** p < .001, ns = not significant (p > .05)
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use of an asymmetrically skewed distribution, which yields
ensemble stimuli where the arithmetic mean and centroid have
different numerical values. Figure 1C shows a positively
skewed distribution. A negatively skewed distribution would
be a mirror reversal. We generated ten preset ensemble cen-
troid values. The mean was -17.5° from the centroid for pos-
itively skewed distributions, or 17.5° from the centroid for
negatively skewed distributions.

Similar to previous experiments, we used a 2AFC task and
asked participants to report average orientation in half of the
trials and single orientation in the other half. These two tasks
were randomly intermixed across trials. We utilized three dis-
tinct experimental conditions for each of the two tasks, de-
fined by the specific pairing of 2AFC probe items. In one
condition, both items occupied the same level on the ensemble
processing hierarchy. That is, in the report average task the
two targets were the arithmetic mean and the centroid (Mn vs.
Cd; both are referred to as targets because either could serve as
a correct response), and in the report single task the target and
distractor were both single items from the set (Sn vs. Sn, with
one being the cued target and the other being a distractor,
similar to Experiment 2). In another condition one item was
the centroid and the other was a single item from the set, with
the single item serving as a distractor in the report average task
(Cd vs. Sn) and the centroid serving as the distractor in the
report single task (Sn vs. Cd). Finally, in the third condition
one item was the arithmetic mean and the other was a single
item from the set, with the distractor being the single item in
report average (Mn vs. Sn) and the arithmetic mean in report
single (Sn vs. Mn). Note that with this experimental design, all
conditions are considered high interference, as both items in
the 2AFC task contain values from within the ensemble set.
Like previous experiments, participants were not informed
about these manipulations, and were only cued to report the
average or single orientation on each trial.

Items closest to the centroid and the mean were never se-
lected as candidate single items. In previous experiments this
corresponded to items 4 and 5 (see Fig. 1A). In the present
experiment, these were items 5 and 6 for a positively skewed
distribution, and items 3 and 4 for a negatively skewed distri-
bution (see Fig. 1C).

The presentation and timing of ensemble stimuli on each
trial were consistent with previous experiments. There were
720 trials (10 unique ensemble displays × 6 unique conditions
× 2 skew directions × 6 repetitions). For data analysis, results
from negatively skewed stimuli were transformed and com-
bined with the positively skewed stimuli.

Results

Accuracy and RT were both analyzed with a 2 (Task: report
average or report single) × 3 (Condition: both 2AFC items from
the same level on the ensemble processing hierarchy, Cd and

Sn, orMn and Sn) within-subjects ANOVA. For accuracy (Fig.
7A), we observed a significant effect of Task (F1,23 = 10.59, p =
.003, η2 = .876), but a non-significant effect of Condition (F2,46
= 0.34, p = .713) and a non-significant interaction (F2,46 = 1.02,
p = .368). Next, we found that performance in all three report-
average conditions was significantly above chance (mean dif-
ference from chance = 3.2%, all ts > 3.20, all Bonferroni ps <
.012, all ds between 0.65 and 0.72), while performance in all
report-single conditions was not significantly different from
chance (mean difference from chance = 0.1%, all ts < 0.28,
all ps > .999). We observed similar results with RT (Fig. 7B).
Namely, there was a significant effect of Task (F1,23 = 18.79, p
< .001, η2 = .450), but a marginal effect of Condition (F2,46 =
3.05, p = .057), and a non-significant interaction between the
two F2,46 = 0.06, p = .918).

To further understand the impact of using an asymmetri-
cally skewed distribution, we evaluated how the value held by
single items, as either targets or distractors, and in both the
skewed and non-skewed portions of the distribution, affected
participants’ accuracy in both the report average and report
single tasks. This was done for all conditions except for the
arithmetic mean versus centroid (i.e., Mn vs. Cd), which did
not contain single items. We were not able to employ quadrat-
ic curve fits, as the ensemble distributionwas not symmetrical.
Instead, we conducted three different linear orthogonal con-
trasts (illustrated in Fig. 8, top right, for a positively skewed
distribution): (1) comparing items in the non-skewed portion
of the distribution (Items 1–4) with items in the skewed tail
(Items 7 and 8), (2) comparing the two items within the
skewed tail (Items 7 and 8), and (3) comparing items within
the non-skewed portion of the distribution that were further
from the arithmetic mean (Items 1 and 2) with items that were
closer to the mean (Items 3 and 4). For reports of average
orientation (Fig. 8, top two graphs), the first contrast was
significant for trials when the centroid was the target and also
when the arithmetic average was the target (both Fs > 49.51,
both ps < .001, both η2 > .301). That is, accuracy when
reporting average was higher when the distractor was a single
item that came from the skewed tail compared with the non-
skewed portion of the distribution. The second contrast was
not significant for both report average conditions (both Fs <
0.57, both ps > .120), showing similar accuracy when either
item in the skewed tail served as a distractor. Finally, the third
contrast was significant when the arithmetic average was the
target (F1,105 = 5.55, p = .020, η2 = .046), but not when the
centroid was the target (F1,105 = 0.01, p = .970). We discuss
this finding in more detail in the Discussion.

For reports of single orientation (Fig. 8, bottom three
graphs), the first contrast was significant for all three condi-
tions (all Fs > 14.85, all ps < .001, all η2 > .116), indicating
significantly poorer performance when the target was a single
item from the skewed tail compared with the non-skewed
portion of the distribution. The second contrast, comparing
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the two items in the skewed tail, was not significant for single
versus single and single versus average (both Fs < 0.01, both
ps > .913), but was marginally significant for single versus
centroid (F1,105 = 3.82, p = .053, η2 = .033). Finally, the last
contrast – comparing items in the non-skewed portion of the
distribution that were further away from versus closer to the
arithmetic mean – was not significant for any of the three
report single conditions (all Fs < 2.46, all ps > .119).

When comparing performance to chance, we found signif-
icantly above-chance accuracy for both items in the skewed
tail when the single item was the distractor (all ts > 4.63, all ps
< .001, all ds > 0.94; Fig. 8, top two graphs), indicating that
participants correctly rejected the single distractor more often
than they selected it when it came from the skewed tail. When
a single item from the skewed tail was the target, significantly
below-chance accuracy was found for item 8 (the furthest item
in the skewed tail) when either the centroid or the mean was
the distractor (both ts > 3.08, both ps < .015, both ds > 0.63;
Fig. 8, bottom two panes excluding Sn Vs. Sn). When item 7
in the skewed tail was the target, significantly below chance
accuracy was observed when the distractor was the mean (t23
= 4.77, p < .001, d = 0.97) but not when it was the centroid (t23
= 0.66, p > .999). Finally, when items 1 and 2 from the non-
skewed tail were targets, significantly above-chance accuracy
was observed only when the meanwas the distractor (both ts >
2.78, both ps < .032, both ds > 0.57; Fig. 8, bottom row,
middle pane). All other comparisons were not significantly
different from chance.

Discussion

The results of this experiment, of Experiments 2–5, and of
previous literature (e.g., Khayat & Hochstein, 2018) all dem-
onstrate that participants are not only sensitive to the mean
feature value of ensemble displays, but that they are also

sensitive to the range. Furthermore, Khvostov and Utochkin
(2019) suggest that the processing of ensemble mean and
range are mediated by independent cognitive mechanisms,
whereas the results of Experiment 5 in the present study sug-
gest that they interact and are not independent. It is possible
that we observed this interaction because the numerical value
of the mean was equal to the center of the range (i.e., the
centroid) in Experiment 5. In other words, it was not clear
what participants’ computations of average orientation were
based on, and the interference may have resulted from inter-
actions between explicit (i.e., reports of average orientation)
and implicit (i.e., items within the range boundaries) process-
ing carried out by the same underlying cognitive resources,
instead of from two distinct ensemble metrics. To examine
this, and the processing of ensemble mean and range in greater
detail, in Experiment 6 we disambiguated the numerical
values of the arithmetic mean and centroid by using asymmet-
rically skewed distributions. We report three main findings.

First, participants were more sensitive to processing the
arithmetic mean compared with the centroid of the distribu-
tion. When faced with a 2AFC task where either item could be
the potential target, participants selected the arithmetic mean
as the correct average orientation more often than they select-
ed the centroid (Fig. 7, Mn vs. Cd). This is somewhat surpris-
ing, considering that the difference between the arithmetic
average and the centroid was only 17.5°, which is smaller than
the distance between single items on the uniform distribution
in our previous experiments. Furthermore, participants may
also have been drawn to the centroid because it was more
numerically consistent than the average, which varied depend-
ing on the direction of skew. This did not occur.

Further evidence for increased sensitivity to the arithmetic
mean came from the analysis comparing single items in the
non-skewed portion of the distribution that were either further
away from or closer to the arithmetic mean. Participants’ re-
ports of average orientation were less accurate when the

Fig. 7 Results of Experiment 6, comparing (A) accuracy and (B) reaction
time (RT) across all conditions. Conditions are labelled based on the
target-distractor combination in the 2AFC task: mean (Mn), centroid
(Cd), or single (Sn). For both accuracy and RT, we found differences
between report average and report single, but not across the three different

stimulus conditions, and no interaction. For report average, all accuracy
values were significantly above chance, whereas all values were at chance
for report single. Error bars represent ± 1 standard error. ** p < .01, *** p
< .001
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Fig. 8 Evaluating the effects of
single items in the skewed and
non-skewed portions of the en-
semble distribution. Each bar
represents a specific single item.
Green bars are items in the non-
skewed portion of the ensemble
distribution, whereas gold bars
are items in the skewed tail.
Single items were distractors dur-
ing the report average task (top
two graphs), and were targets
during the report single task (bot-
tom three graphs). Effects on ac-
curacy were tested using three
orthogonal linear contrasts (see
top right for a pictorial illustration
of each contrast). Contrast 1
compared accuracy for items in
the non-skewed portion of the
distribution (items 1–4) with
items in the skewed tail (items 7
and 8). This was significant for all
five conditions. Contrast 2 com-
pared accuracy for the two items
within the skewed tail (items 7
and 8). This was only marginally
significant for Sn vs. Cd. Finally,
Contrast 3 compared accuracy for
items within the non-skewed por-
tion of the distribution that were
further from the arithmetic mean
(items 1 and 2) with items that
were closer to the mean (items 3
and 4). This was only significant
for Mn vs. Sn. Asterisks above
each bar indicate significance
comparing accuracy against
chance levels of performance
(hashed line at 50%). Error bars
represent ± 1 standard error. † p <
.100, * p < .05, ** p < .01, *** p <
.001
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arithmetic average was the correct target and the distractor
was an item closer to the mean, compared with items further
away (Fig. 8, Mn vs. Sn, contrast 3). This was not observed
when the centroid was the target (Fig. 8, Cd vs. Sn, contrast 3).
This demonstrates that participants are likely more sensitive to
the arithmetic mean compared with the centroid. This sensi-
tivity is not likely explained by a proximity effect (i.e., inter-
ference when the distractor is in close physical proximity to
the target), wherein the effect was observed with the arithmet-
ic mean but not the centroid because the single items in ques-
tion (i.e., items 3 and 4) are physically closer to the arithmetic
mean on the orientation continuum. If a proximity effect were
operating, then when reporting the orientation of single items,
we should expect better performance for items 1 and 2 (i.e.,
the items furthest away from the mean in the non-skewed
portion of the distribution) when the centroid was the
distractor compared with the arithmetic mean, because these
items are even further away from the centroid. However, we
observed the opposite. Specifically, performance at reporting
the orientation of items 1 and 2 was significantly above
chance when the arithmetic mean was the distractor (Fig. 8,
Sn vs. Mn), but was not when the centroid was the distractor
(Fig. 8, Sn vs. Cd), despite the fact that items 1 and 2 are more
proximal to the arithmetic mean.

Examining reports of single orientation for items 7 and 8 in
the skewed tail of the distribution provided additional evi-
dence for increased sensitivity to the arithmetic mean. When
the centroid was the distractor, participants incorrectly chose it
as the target more often than not only for item 8 (Fig. 8, Sn vs
Cd, gold bars), but this occurred for both items when the
arithmetic mean was the distractor (Fig. 8, Sn vs. Mn, gold
bars). Note that these results are also in opposition to what
would be expected based on a proximity effect, since items 7
and 8 are more proximal to the centroid, compared with the
arithmetic mean. Taken together, all of these results suggest
that participants are more sensitive to the arithmetic mean
compared with the centroid, and thus when asking participants
to compute average orientation, their reports are likely based
on the former metric. These subtle differences would not be
apparent in a symmetrical distribution and highlight the need
for ensemble research to conduct more detailed investigations
into differently shaped distributions.

Second, despite the increased sensitivity to the arithmetic
mean compared with the centroid of an ensemble, the centroid
can nevertheless serve as an adequate summary statistic in
place of the arithmetic mean. For example, when reporting
average orientation, accuracy was equivalent when either the
centroid or the arithmetic mean was the target (Fig. 7, Cd vs.
Sn and Mn vs. Sn). Similarly, both produce equivalent levels
of interference on reports of single orientation (Fig. 7, Sn vs.
Cd and Sn vs. Mn), which is consistent with the findings in
Experiments 2, 4, and 5. Importantly, while the centroid is a

sufficient summary statistic, our results show that it is never-
theless distinct from the arithmetic mean.

Third, items 7 and 8 from the tail of the skewed distribution
were likely treated as outliers, but did not create a perceptual
pop-out effect whereby their increased salience attracted atten-
tion and affected participants’ performance accordingly. In a
symmetric uniform distribution used in previous experiments
and other ensemble studies, the distances between items on one
half of the distribution are equivalent to those on the other half.
For skewed distributions in Experiment 6, it is possible that the
items in the skewed tail of the distribution were perceptually
distinct from the items in the non-skewed portion. In other
words, it is possible that the skewed items were treated as
outliers. Previous studies have demonstrated that outliers tend
to be discounted during ensemble encoding (Haberman &
Whitney, 2010; Hochstein et al., 2018). Our results are consis-
tent with this finding. When the skewed items served as
distractors in the report average task, performance improved
(Fig. 8, Cd vs. Sn and Mn vs. Sn, gold bars). In contrast, when
the skewed items served as the target in the report single task,
performance suffered (Fig. 8, Sn vs. Cd and Sn vs. Mn, gold
bars). This pattern of results would be expected if outliers were
being discounted during ensemble encoding. These results fur-
ther show that the skewed items were not creating a perceptual
pop-out effect, in that if these items were more perceptually
salient than the other single items, we would have expected
superior performance in the report single task for items 7 and 8.
Instead, performance for these items was at or significantly
below chance (Fig. 8, bottom three graphs, gold bars).
Finally, a consequence of discounting the skewed items as
outliers is that the boundaries of the range are likely to have
been modified. Support for this comes from the observation
that performance when reporting average with the skewed
items as distractors (Fig. 8, Cd vs Sn and Mn vs. Sn, gold
bars) was comparable to the rejection rates for items one step
outside of the range in the membership-identification task of
Experiment 3. Thus, ensemble encoding is adaptive and effi-
cient, since discounting outliers decreases the variability of a
set and makes estimates of the mean potentially more reliable
(Haberman & Whitney, 2010).

In conclusion, the results of Experiment 6 demonstrate that
while the arithmetic average and centroid of an ensemble dis-
tribution share some similarities in ensemble encoding (e.g.,
their effect on single-item processing), they are nevertheless
distinct perceptual constructs that do not share identical cog-
nitive representations. Thus, the interference between the en-
semble mean and range observed in Experiment 5 is not likely
attributed to the possibility that the same underlying cognitive
resource is used to represent both ensemble summary statis-
tics. Instead, their representations may be distinct but overlap-
ping, which could lead to independence in some experimental
circumstances but interactivity in others.
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General discussion

The aim of this study was to elucidate the relationship between
global and local feature processing in ensemble encoding.
Supplementing our primary results is a successful replication
of the global precedence effect five times, which speaks to the
reliability and robustness of this effect and serves to validate
our global-local ensemble interference paradigm. This is like-
ly due to many shared mechanisms between ensemble
encoding and other global-processing strategies, such as the
statistical extraction of global spatial properties in scene per-
ception (Harel et al., 2020; Malcolm, Groen, & Baker, 2016).

Our main goal was to provide a deeper investigation into
the representation of local features in ensemble perception. To
achieve this, we explored whether local features (i.e., the ori-
entation of a single item from the set) could interfere with the
processing of global features (i.e., mean orientation). In other
words, we explored whether a local interference effect would
manifest in ensemble processing, in addition to the expected
global interference effect (i.e., interference from the mean
when reporting the orientation of a single item). The results
of Experiment 1 showed support for these hypotheses, reveal-
ing what appeared to be reciprocal interference between glob-
al and local ensemble processing. This was an interesting
finding, given the multitude of studies that have demonstrated
that detailed representations of single items are not necessary
to form a representation of the ensemble average (for review,
see Whitney & Yamanashi Leib, 2018). In the initial experi-
ments of our study, it seemed possible that some single items
were captured (Li, Castañón, & Solomon, 2017), which may
have explained the local interference effect. However, the re-
sults of Experiment 2 demonstrated that participants did not
have robust representations of single items from the set, and
the results of Experiment 3 showed that participants instead
had good implicit knowledge of another summary statistic,
that is, the range of the ensemble stimuli.

These results led us to question how local interference can
be observed in the absence of robust representations of single
items. We reasoned that the robust representation of ensemble
range boundaries observed in Experiment 3 could explain this
apparent contradiction. In Experiments 4 and 5 we used
distractors that were within the range of the set but were not
actually presented in the ensemble and replicated the interfer-
ence effects (both local and global) found in previous exper-
iments. Thus, the previous instances of local interference were
better characterized as a range interference effect, as the im-
plicit processing of ensemble range interfered with the explicit
processing of average orientation. In Experiment 6 we inves-
tigated if the presence of this interference was due to the fact
that both summary statistics were derived from the same
source, that is, the centroid or center of the range. In the sym-
metrical distributions used in all of our previous experiments,
the centroid and the arithmetic mean were the same value.

Thus, we disentangled the numerical values of the arithmetic
mean and centroid by using asymmetrically skewed distribu-
tions in Experiment 6. We found that, when reporting average
orientation, participants were more sensitive to the arithmetic
mean, despite the relatively close proximity of the two values
on the orientation continuum and the greater perceptual con-
sistency of the centroid (i.e., the arithmetic mean changed
value depending on the direction of skew, whereas the cen-
troid did not). Thus, the interference observed between the
ensemble mean and range may be explained by the presence
of distinct, but possibly overlapping, perceptual and cognitive
representations for each ensemble statistic.

Global-level interference on the processing of single items
was replicated throughout the study, across numerous exper-
imental manipulations, demonstrating that participants com-
monly perceived the mean as members of the set more often
than the correct single items. This occurred despite the mean
value not being present in any of the ensemble stimuli.
Importantly, we are the first to demonstrate that this interfer-
ence effect occurs with range too. That is, global interference
on the representation of single items can come from two dif-
ferent summary statistics, and this interference appears equal
in magnitude.

These findings are an important contribution to our under-
standing of global-local relationships in ensemble processing.
Rather than manipulating the saliency of particular single
items within the ensemble, we constructed a novel ensemble
paradigm that varied the level of global-local interference. We
found that even under high interference, the visual system
does not capture, and is not influenced by, single item values
when constructing ensemble representations. Instead, putative
local interference effects are better explained by an interaction
between the processing of ensemble range and mean values.
Knowledge of the range boundaries is certainly beneficial
when deciding if a single item is not a member of an ensemble,
as they allow participants to accurately reject items that are
outside the set range (Experiment 3; Hochstein et al., 2018).
However, the tradeoff is poor accuracy when deciding if a
single item is a set member, as any value within the range is
likely to be selected (even if it is not a set member), with
increased probability of being selected the closer the item is
to the mean (Experiment 3). Thus, the mean and the range of
an ensemble inform probabilistic estimates of set membership.
This conforms with recent research comparing visual percep-
tion to Bayesian-like inference (Cashdollar, Ruhnau, Weisz,
& Hasson, 2017; Fiser, Berkes, Orbán, & Lengye, 2010;
Kersten & Yuille, 2003; Kording, 2014; Purves, Monson,
Sundararajan, & Wojtach, 2014; Purves, Morgenstern, &
Wojtach, 2015). These inferences make use of statistical in-
formation, commonly present in ensembles (Orhan & Jacobs,
2014). Comparing our findings to these models, a candidate
single item acts as a marginal, and bias towards the mean is
captured as a likelihood estimate, as the closer the items are to
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the mean, the more likely that they are perceived as a set
member.

In mathematics, given a set of distribution parameters such
as mean, variance, and skew, we can statistically infer the
likelihood of a particular value coming from that distribution.
This can be done without any knowledge of actual values that
belong to that distribution. Alternatively, distribution param-
eters can also be calculated to fit a preselected set of values. It
appears that the visual system operates based on the former
principle, evaluating set membership based on how an object
fits perceived distribution parameters, and not based on some
stored representation of single objects. By extension, these
perceived distribution parameters (e.g., summary statistics)
are also not formed based on detailed single-object represen-
tations (Banno & Saiki, 2012; Haberman & Whitney, 2011;
Lau & Brady, 2018; Ward et al., 2016). We would argue that
bias from the mean and range occurs because these summary
statistics serve as the most representative values of the set.

This interpretation reveals an apparent circular paradox in
ensemble perception. That is, if set membership decisions are
evaluated based on their relationship to the mean and range,
how can the visual system calculate summary statistics in the
first place? It is possible that representations of single objects
are used to derive summary statistics in some circumstances,
such as when processing objects of expertise (Curby &
Gauthier, 2007; Wong, Peterson, & Thompson, 2008), or ob-
jects whose encoding is subject to a higher limit in VWM
capacity (Curby, Glazek, & Gauthier, 2009). For lower-level
orientation, which has a much more limited VWM capacity
(Jiang, Shim, & Makovski, 2008), there are at least two
possibilities.

First, Li et al. (2017) argued for robust averaging. This
occurs when nonlinear transformations favor items closer to
the mean, and the visual system preferentially selects these
when calculating summary statistics. This appears to be coun-
terintuitive, as some observations are inevitably discarded
which would reduce efficiency. However, the authors showed
that in situations where the system has noise (e.g., neural noise
in visual cortex), use of robust averaging results in better ac-
curacy compared to weighing each item equally. Based on our
results, even if select items are used in robust averaging, they
are immediately lost after constructing ensemble statistics.

While data from Experiment 3 mirrors the robust averaging
model described by Li et al. (2017), it does not confirm robust
averaging. It is unclear how the visual system weighs items
closer to the mean when calculating ensemble statistics. Data
from both the present study and Li et al. (2017) have not
identified a plausible mechanism that can place greater weight
on items closer to the mean despite not having robust repre-
sentations of these single items.

The second possibility models ensemble encoding as a type
of texture perception (Brady et al., 2017; Dakin &Watt, 1997;
Im & Halberda, 2013; Morgan, Chubb, & Solomon, 2014a;

Morgan, Raphael, Tibber, & Dakin, 2014b; Parkes, Lund,
Angelucci, Solomon, & Morgan, 2001). Texture provides an
estimate of variability, in that low variance ensembles will
appear more homogenous than high variance ensembles
(Lau & Brady, 2018). Given this, it is possible that some form
of texture perception is mediating the extraction of ensemble
statistical information such as average, variance, and range
from sets of stimuli (Whitney & Yamanashi Leib, 2018).
The data from Experiment 6 suggests skew as another impor-
tant metric, but evidence that skew is extracted from texture
information is mixed (Dakin & Watt, 1997; Motoyoshi,
Nishida, Sharan, &Adelson, 2007). Nevertheless, there seems
to be utility in considering ensemble encoding as a form of
texture processing, a position supported by the considerable
overlap between the image properties diagnostic of texture
and ensemble perception (Portilla & Simoncelli, 2000). In
light of this, it is perhaps unsurprising that similar underlying
neural mechanisms have been implicated in the processing of
textures and ensembles (Cant & Xu, 2012, 2017).
Interestingly, a similar problem has been raised in research
on numerosity, namely, how do participants quickly quantify
the number of observed stimuli? Texture-processing models
have achieved success in explaining this phenomenon
(Morgan, Raphael, et al., 2014b). Taken together, these results
suggest that appealing to mechanisms of texture perception
may explain how summary information is extracted from
large sets of objects, and further research may reveal how this
is accomplished with little-to-no sensitivity to individual items
from the set.

Alternatively, crowding effects may be responsible for lim-
itations in participants’ abilities to extract the orientation of
single items from the ensembles used in our study. Indeed,
when items are clustered together outside of foveal vision,
participants may have difficulty recalling the value of any
one item (Whitney & Levi, 2011). However, crowding does
not negate ensemble encoding (Parkes et al., 2001). Rather,
the two cognitive phenomena may be complementary, in that
crowding may confer an adaptive benefit to ensemble
encoding. However, since it has been demonstrated that
crowding and ensemble encoding may be governed by disso-
ciable cognitive mechanisms (Bulakowski, Post, & Whitney,
2011), participants’ ability to report average orientation
throughout our study is not likely explained solely by effects
due to crowding. Instead, asmentioned above, the influence of
crowding likely has a more pronounced effect on the process-
ing of single items from the set. Future research is necessary to
reveal the relative influence of global statistical processing
and crowding on the representation of single items in a group
of objects.

There are a number of unresolved issues in ensemble
encoding that future work should investigate. First, how does
attention affect the representation of single items, and does
this affect the balance of global-local processing in ensemble
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encoding? Attentively targeting single items can bias summa-
ry reports (de Fockert & Marchant, 2008), but the question
remains whether a single targeted item can be made salient
enough to dissolve a summary representation altogether. For
example, during a face-to-face conversation, would the visual
system still extract crowd statistics, or is this irrelevant in these
situations? A related question concerns how the processing of
targeted single items within an ensemble compares to the pro-
cessing of single items in isolation. This research is needed to
more accurately model the continuum of object representa-
tions, from detailed perceptual capture of single items to the
extraction of global statistical properties as the capacity limit
of VWM is approached and ultimately exceeded.

Second, how do variations in set size affect the extraction
of summary statistics such as the mean and range, and the
nature of global-local processing in ensemble encoding?
Research on smaller set sizes has shown that, when the set
size is at or near the supposed VWM capacity limit of four
items, it is still possible to capture detailed information about
single items (Cowan, 2001; Luck & Vogel, 1997; Raffone &
Wolters, 2001). Thus, true local interference may be observed
for ensembles containing four items, and this may affect the
formation of summary statistics. Conversely, less is known
about the processing of ensembles with much larger set sizes.
For example, are a majority of items integrated when forming
a summary statistic of an ensemble containing 100 items, or is
the statistic based on sub-sampling of a smaller group items
(e.g., in parafoveal vision)? One study found that increasing
set size up to 12 improved the accuracy of extracting average
size and orientation (Robitaille & Harris, 2011), but further
research should use much larger set sizes to examine when
this improvement plateaus.

Third, what is the nature of single-item representation in
higher-level stimuli? Some studies claim that the details of
individual faces are extracted from face ensembles (Li et al.,
2016; Neumann et al., 2018). However, the claim in these
studies was based on single faces that were within the range
of the set. Neither of these studies tested faces that were within
range but were not set members. Our findings that items not
present in the set but within the range boundaries are indistin-
guishable from actual set members calls into question the
claim that features of single items can be extracted from brief
ensemble displays. Instead, it is possible that these results are
better explained by the implicit processing of the range of the
face ensembles. Stronger evidence for single-item representa-
tions in ensemble encoding would entail showing that, in a
set-membership task, single items within the range were cho-
sen at a higher rate compared with single items that were
within the range but were not members of the set.

Fourth, a more conservative evaluation of global prece-
dence in ensemble processing would entail equating differ-
ences in accuracy across global (e.g., report average orienta-
tion) and local (e.g., report the orientation of a single set

member) tasks. In such a case, would features at the global
level still receive prioritized processing compared with local
features?

Finally, people are able to build rich statistical representa-
tions of ensembles, extracting information not only about
mean and variance, but distribution shape as well
(Chetverikov, Campana, & Kristjánsson, 2016, 2017). While
the extraction of mean and variance information from ensem-
bles has been studied previously (e.g., Haberman et al., 2015;
Solomon, 2010; Yang, Tokita, & Ishiguchi, 2018), the extrac-
tion of other statistics, such as kurtosis, has received far less
attention (but see Atchley & Andersen, 1995; Dakin & Watt,
1997). If kurtosis is extracted, then we would expect to see, in
a set-membership task, an exponential increase in selecting
single items the closer they are to the mean value for
leptokurtic ensembles, and the inverse for platykurtic ensem-
bles. This may be due to the visual system modifying range
boundaries to compensate for kurtosis, as we observed for
skew in Experiment 6. However, bias to the mean may be a
fairly common finding in ensemble encoding regardless of the
shape of the distribution, as almost all ensemble studies which
report such bias use uniform distributions, which essentially
are extreme platykurtic distributions.

In conclusion, our findings increase our understanding of
one of the more prevalent questions in ensemble processing,
namely, the nature of the relationship between the processing of
global statistics and local elements. We characterize what was
previously described as interference from local features as more
likely explained by an interaction between the representations
of the mean and range of an ensemble. We also show that
participants’ reports of average orientation are closer to the
arithmetic mean then they are to the center of the range (i.e.,
the centroid), and that these ensemble metrics are perceptually
distinct. Importantly, we suggest that the processing of ensem-
ble mean and range are likely mediated by separable but over-
lapping and interacting cognitive mechanisms. Additionally,
our study adds to the body of evidence that detailed features
of single items from ensembles are not extracted. Instead, we
show that judgments of local ensemble details are based on
probabilistic inferences of set summary statistics, such as the
mean and range. We therefore suggest that future studies of
single-item representation in ensemble encoding should inves-
tigate the biasing influence of both the mean and range on the
perception and recognition of single items from the set.
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