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Given the limited resources of visual working memory, multiple items may be remembered as an
averaged group or ensemble. As a result, local information may be ill-defined, but these ensemble
representations provide accurate diagnostics of the natural world by combining gist information with
item-level information held in visual working memory. Some neurodevelopmental disorders are char-
acterized by sensory processing profiles that predispose individuals to avoid or seek-out sensory
stimulation, fundamentally altering their perceptual experience. Here, we report such processing styles
will affect the computation of ensemble statistics in the general population. We identified stable adult
sensory processing patterns to demonstrate that individuals with low sensory thresholds who show a
greater proclivity to engage in active response strategies to prevent sensory overstimulation are less likely
to integrate mean size information across a set of similar items and are therefore more likely to be biased
away from the mean size representation of an ensemble display. We therefore propose the study of
ensemble processing should extend beyond the statistics of the display, and should also consider the
statistics of the observer.
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When processing information from the environment, the visual
system has to balance speed with accuracy. Typically, an initial
fast feedforward sweep of relatively coarse information is fol-
lowed by a slower but more accurate iterative feedback process (Di
Lollo, Enns, & Rensink, 2000; VanRullen & Thorpe, 2001; Oliva
& Torralba, 2006). While different priorities and constraints gov-
ern these processes, both are capacity limited. Regardless of which
way the balance between speed and accuracy tips, neither the
initial and more globally oriented nor the slower and more locally

oriented process includes a complete representation of the visual
input (Hochstein & Ahissar, 2002). How do we accurately and
efficiently perceive complex and crowded environments in the
face of such severe capacity limitations? One beneficial strategy is
to represent a set of similar items as an averaged group or ensem-
ble, enabling the condensing of multiple individual measurements
into a single, higher level of description (for a review, see Alvarez,
2011). While the majority of previous research has focused almost
exclusively on measuring the statistics of a display, the common
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element to different display types, however, is the observer. In the
present study, we tested the hypothesis that the variability in
observers’ stable disposition to represent visual information can
predict the incorporation of ensemble statistics with individual
items.

The natural world is composed of stable and highly regular
predictable patterns (Kersten, 1987), affording us the opportunity
to compress redundant visual input to reduce the heavy computa-
tional load placed on the visual system. Multiple studies have
confirmed that observers can compute accurate ensemble statistics
to average information across various individual measurements,
such as mean size (Ariely, 2001; Chong & Treisman, 2005),
orientation (Parkes, Lund, Angelucci, Solomon, & Morgan, 2001),
and location (Alvarez & Oliva, 2008), without explicitly encoding
individual items (Corbett & Oriet, 2011).

Beyond simple features, ensemble statistics may further drive
representations of the average emotion (Haberman & Whitney,
2007), identity (de Fockert & Wolfenstein, 2009), and gaze
(Sweeny & Whitney, 2014) of faces in a crowd, and may be
represented on multiple, independent levels differentiated through
high- and low-level attributes (Haberman, Brady, & Alvarez,
2015). Remarkably, ensemble statistics have been shown to im-
plicitly bias the representation of individual items held in visual
working memory, such that the remembered size of an individual
item was biased toward the mean size of items sharing the same
color (Brady & Alvarez, 2011). This occurrence, however, was not
without exception across observers, reflecting variation in the
ability to integrate ensemble statistics with individual items held in
visual working memory. Indeed, previous research has demon-
strated that interindividual differences in social anxiety levels bias
the coding of ensemble features for the average emotion of faces
in a crowd (Yang, Yoon, Chong, & Oh, 2013). Thus, distinguish-
able patterns of observer statistics may account for variance in the
processing of ensemble features, and provide unique insight for
understanding encoding in visual working memory.

Analogous to natural world statistics, stable observer statistics
may reflect predictable patterns of sensory experience, which
interact with the perception of our environment. Dunn’s (1997)
model of sensory processing captures individual variability in
processing patterns by measuring stable traits corresponding to
behavioral strategies (active-passive) and neurological responses
(high-low) to general sensory experiences. A four-quadrant model
describes interactions of a neurological threshold continuum with
a behavioral response continuum, representing behaviors in accor-
dance with sensory thresholds. These thresholds are centered on an
individual’s ability to modulate sensory input by monitoring and
regulating information for an appropriate response. When sensory
information is poorly modulated, individuals may exhibit maladap-
tive responses to incoming sensory input. For example, an indi-
vidual with low neurological threshold traits will show high exci-
tation responses for low-to-moderate-intensity stimuli, such as a
flickering light. This, in turn, may subsequently interact with an
active or passive behavioral continuum and result in avoidance
behaviors to limit exposure to stimuli (active), or distractibility and
discomfort (passive). In contrast, an individual with high neuro-
logical threshold traits may show greater habituation to the same
sensory stimulation, subsequently resulting in decreased reactivity
to the sensory environment. Thus, variation in the ability to mod-

ulate sensory input differentiates individuals across processing
styles.

Such extremes in sensory hypersensitivity or hyposensitivity
have been shown to correlate with the diagnosis of multiple
neurodevelopmental disorders, such as autism spectrum disorder
(ASD; Tomchek & Dunn, 2007). Interestingly, neurodevelopmen-
tal disorders such as ASD are partially characterized by sensory
challenges and social deficits in situations with rich sensory input,
such as processing gaze and emotional expression (Lord et al.,
2000). In such situations, the typically developing brain can take
advantage of ensemble statistics to reduce the inflow of sensory
information to a representative average of, for example, the emo-
tional expression of faces in a crowd (Haberman & Whitney,
2007). Given that neurodevelopmental disorders typically present
themselves along a continuum, it may also be the case that differ-
ent neurological thresholds for sensory stimulation across healthy
observers will modulate how effectively ensemble statistics can be
employed.

We propose stable patterns of sensory processing and sensitivity
to the visual environment predict perceptual behavior. Specifi-
cally, we suggest these stable predispositions predict the integra-
tion of ensemble statistics with information held in visual working
memory, resulting in a directional bias toward or away from the
mean representation of a set of items sharing common features. To
test this hypothesis, we combined a typical ensemble processing
task (Brady & Alvarez, 2011) with measures of sensory processing
recorded with the Adult Sensory Profile (Brown, Tollefson, Dunn,
Cromwell, & Filion, 2001). Additionally, we controlled and com-
pared cognitive ability and demographic factors by including mea-
sures of visual working memory capacity (K), general intelligence
(g), gender, and age. If hypersensitive (low-threshold) individuals
show perceptual patterns intended to prevent sensory overstimu-
lation, we could expect these individuals to employ avoidant
strategies which limit global perceptual input in favor of orienting
to local detail, thus failing to integrate similar items. Conversely,
individuals less susceptible to sensory overstimulation may be
more likely to efficiently process incoming information in parallel
by averaging similar items, and thus display a greater bias toward
the mean ensemble representation.

Method

Participants

Seventy-four undergraduate students of the University of To-
ronto community (19 male, 55 female) ranging in age from 18–54
years (M � 21.18) were compensated for participation in the study
with course credit. The experiment was terminated with the con-
clusion of the academic year, granted a minimum of 70 partici-
pants. We chose a minimum of 70 participants because that num-
ber provides power �80 to detect a correlation of 0.3, which we
determined to be sufficiently different from the null hypothesis
using G� Power (Faul, Erdfelder, Buchner, & Lang, 2009). All
participants had self-reported normal or corrected-to-normal visual
acuity, no history of colorblindness or abnormal neurological
conditions, and gave informed consent in accordance with the
University of Toronto Ethics Review Board. All participants com-
pleted three tasks in the following order: ensemble statistics task,
Short Raven’s Progressive Matrices Test, and the Adult Sensory
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Profile. In addition to the aforementioned tasks, 35 participants
completed a K-estimate change-detection task as part of a prelim-
inary analysis investigating the correlation between ensemble bias
and visual working memory capacity.

Display and Apparatus

Tasks were presented electronically using Matlab (MathWorks,
Natick, MA), E-Prime 1.0 (Psychology Software Tools, Pittsburgh,
PA), and Presentation (Version 11.0, www.neuro-bs.com), on a
ViewSonic 21-in. CRT monitor (1,280 � 1,024 pixels; 85-Hz refresh
rate) at a viewing distance of 57 cm (subtending 38.70° � 29.49° of
visual angle) held constant by using a desk-mounted chinrest. The
Adult Sensory Profile was completed by pen and paper.

Ensemble Statistics Task

To examine the bias of ensemble statistics for a set of items
sharing common features, we conducted a direct replication of the
first experiment presented in Brady and Alvarez (2011) under the
fixed presentation conditions described earlier. Participants were
presented with a total of 30 displays each consisting of nine circles
of varying size (three red, three blue, and three green), and were
asked to remember the size of the red and blue circles, while
ignoring the green circles. By asking participants to ignore a subset
of circles, this task incorporated a measure of attentional selection
which required the suppression of irrelevant distractors. Each
display appeared on screen for 1.5 s and was then followed by a 1-s
blank period, after which participants were cued to a target loca-
tion with a randomly sized circle appearing in black at the previous
location of a blue or red circle. Participants were then instructed to
use the computer mouse to resize the new black circle so that it
matched the red or blue circle they had previously viewed in that
location (see Figure 1a).

The nine circles appeared on a gray background that measured
600 � 400 pixels, and each circle was randomly positioned in an
unseen 6 � 4 grid, with a jitter of �10 pixels added to the circles’
locations to prevent collinearities. Circles were drawn from a
separate normal distribution for each color, and which color set

was selected to appear as largest or smallest was randomly chosen
on each trial. The mean diameter for the circles of a given color
was uniformly chosen on each trial from the interval (15 pixels, 95
pixels) of each individual circle, and individual circles were then
chosen from this mean’s normal distribution and a standard devi-
ation equal to one eighths of this mean. In order to directly test bias
in reported size, 15 displays were generated, and then another 15
matched displays were created by switching the color of the
to-be-tested item with the other nondistractor color. Thus, two
matched displays had the same items, but the tested item colors
were swapped between the displays. The 30 displays were then
randomly interleaved, with the constraint that paired displays
could not appear one after the other.

K-Estimate Change-Detection Task

A change-detection paradigm (Phillips, 1974; Luck & Vogel,
1997) was used to obtain an accurate representation of individual
visual working memory capacity (K). On each trial, participants
were briefly presented (150 ms) with a sample array consisting of
one to six randomly assigned colored squares appearing on an
invisible grid evenly distributed around a fixation point (six pos-
sible colors; eight possible locations), followed by a 1.2-s blank
period, and were then asked to determine if the color of a subse-
quently presented target square matched the color of the sample
square that appeared in the same location, by using the left (same)
and down (different) arrow keys on a computer keyboard. K was
determined by the average number of items successfully remem-
bered for any given set size (one to six) using the following
formula developed by Pashler (1988) and modified by Cowan
(2010):

K � S � (H � CR � 1)

Where S represents the given set-size, H represents the number
of hits, and CR corresponds to the number of correct rejections.
Thus, this formula yields an average number of items successfully
remembered (K) for a given set size (S), while accounting for
guessing (CR – 1).

Figure 1. (A) Stimuli and procedure used in the ensemble statistics task. Participants were asked to remember
the size of the red and blue circles, and ignore the green circles. After a short delay, they were asked to recall
and select the size of the circle previously seen in that location and cued by a black probe circle. (B) An
illustration showing how bias was determined from a pair of matched displays. Two matched displays had the
same items, but the tested item’s colors were swapped between the displays. Bias was calculated by dividing the
reported size for probed items presented in the color of the larger circles by the reported size for probed items
presented in the color of the smaller circles. A ratio greater than 1.0 indicates a bias toward the mean size of the
same-colored circles. Adapted from “Hierarchical Encoding in Visual Working Memory: Ensemble Statistics
Bias Memory for Individual Items,” by T. F. Brady and G. A. Alvarez, 2011, Psychological Science, 22, p. 386.
Copyright 2011 by SAGE Publications.
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Short Raven’s Progressive Matrices Test

We used the 36-item Short Raven’s Progressive Matrices Test to
obtain an unbiased estimate of nonverbal general intelligence
(Raven, 2000). In each question, participants were instructed to
select the missing pattern (from eight possible alternatives) in
order to complete a design from a series of diagrams. Participants
had 15 min to answer as many questions as possible (to a maxi-
mum of 36) using a keyboard number pad corresponding to eight
options, after which the total number of correct responses deter-
mined their general intelligence score (g).

Adult Sensory Profile

Sensory processing was assessed using the four-quadrant 60-
item Adult Sensory Profile (Dunn, 1997; Brown et al., 2001),
which measures stable sensory preference. Participants used pen
and paper to circle a response on a 5-point Likert scale (almost
never, seldom, occasionally, frequently, almost always). Each
quadrant consisted of 15 items representing each of four stable
traits (Low Registration, Sensation Seeking, Sensory Sensitivity,
and Sensation Avoiding), corresponding to an interaction of a
neurological threshold continuum (high vs. low) with a behavioral
response continuum (passive vs. active).

Low Registration measures difficulty in registering stimuli due
to a high neurological threshold for incoming sensory information.
Individuals with high scores in Low Registration often present as
underreactive, exhibiting slow response and quick habituation to
sensation. Sensation Seeking measures behaviors that aim to coun-
teract high neurological thresholds by engaging in activities which
increase sensory experience. Individuals scoring highly in Sensa-
tion Seeking may display active behavior to seek out rich sensory
environments and behaviors that create sensation in order to reg-
ulate sensory excitability and increase exposure to sensory stimu-
lation. Sensory Sensitivity measures increased sensitivity due to
low neurological thresholds for sensory stimulation. Individuals
scoring highly in Sensory Sensitivity may demonstrate hypersen-
sitivity to their environment through the inability to suppress
irrelevant incoming information, rapid attention switching, and
slow habituation. Sensation Avoiding measures low-threshold be-
havioral responses associated with engaging in behavior to avoid
activating their thresholds. Individuals scoring highly in Sensation
Avoiding may exhibit a need to reduce unpredictable stimulation
through active withdrawal and resistance in order to provide a
pattern of neural activity that is familiar and predictable.

Results

Ensemble Bias

We first assessed whether participants were able to perform the
size memory task accurately by comparing performance with an
empirical measure of chance obtained by randomly pairing a given
participant’s responses with the correct answers from different
trials (mean difference by chance � 30.5 pixels; Brady & Alvarez,
2011); 95% confidence intervals (CIs) are reported. Participants’
average error was 16.8 pixels, revealing performance that was
significantly better than the measure of chance (p � 2.41�15, 95%
CI [14.07, 19.45], d � �1.16).

To test ensemble bias, we examined whether participants’ size
estimates were biased toward or away from the mean size repre-
sentation of circles within the same color set. Each matched pair
(consisting of two displays that had the same items, but the tested
item’s colors were swapped between the displays) was divided on
the basis of which of the pair contained a tested item the same
color as the circles that were smaller on average and which
contained a tested item the same color as the circles that were
larger on average. The reported sizes of the probe items in the
latter trials were then divided by reported sizes on the former trials.
A ratio of 1.0 would indicate participants’ size estimates were not
biased. If participants’ size estimates were biased toward the mean
size of the circles in the same color as the tested item, however,
this ratio would be greater than 1.0 (see Figure 1b). On average,
the reported size of the tested circle was 1.03 times greater on trials
with the larger same-colored circles than on trials with the smaller
same-colored circles (see Figure 2a). This ratio was significantly
greater than 1.0, t(73) � 2.75, 95% CI [1.01, 1.05], p � .009, d �
.28, replicating findings by Brady and Alvarez (2011). Given our
predictions, we would expect to see variation in the directionality
and extent of ensemble bias across participants. This is precisely
what we observed (see Figure 2b), and we explore the source of
this variation below.

Demographic and Cognitive Variables

To investigate the influence of demographic and cognitive vari-
ables on the directionality of ensemble bias, we examined Pearson
correlations between ensemble bias and gender, age, K (M � 3.63,
SD � 1.02), and g (M � 19.19, SD � 4.79). For each correlation,
95% CIs are reported. Results did not reveal significant correla-
tions between ensemble bias and gender, r(74) � .020, 95% CI
[–.247, .209], p � .866, r2 � .001, or age, r(74) � �.067, 95% CI
[–.291, .164], p � .571, r2 � .005, showing that ensemble bias was
not explained by demographic factors in our study. Similarly, no
significant correlations were found between ensemble bias and K,
r(35) � 0.070, 95% CI [–.269, .394], p � .689, r2 � .005, and
general intelligence g, r(74) � �.218, 95% CI [–.425, .011], p �
.062, r2 � 0.048, indicating that variations in ensemble bias were
not explained by differences in these cognitive variables across
participants in our study.

Figure 2. (A) Mean bias averaged across participants. (B) The distribu-
tion and direction of mean size bias for all participants. For both graphs, a
bias greater than 1.00 represents a bias toward the mean, and a bias less
than 1.00 represents a bias away from the mean. Error bars represent the
standard error of the mean.
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Adult Sensory Profile

To investigate our main hypothesis, we examined correlations
between ensemble bias and the four quadrants of the Adult Sen-
sory Profile (see Figure 3). Findings revealed significant correla-
tions between ensemble bias and the low neurological threshold
traits of Sensory Sensitivity, r(74) � �.253, 95% CI [–.455, �.027],
p � .030, r2 � .064, and Sensation Avoiding, r(74) � �.392, 95% CI
[–.569, �.180], p � .001, r2 � .153, but not the high neurological
threshold traits of Low Registration, r(74) � �.039, 95% CI �
[-.265, .191], p � .741, r2 � .001, and Sensation Seeking, r(74) �
.143, 95% CI [–.088, .359], p � .224, r2 � .021. These results reveal
a significant inverse relationship between low neurological threshold
sensory traits and ensemble bias. In contrast, no relationship was
found between ensemble bias and high neurological threshold sensory
traits. These significant correlations remained significant when using
Spearman correlations.

A Predictive Model for Ensemble Bias

Further analysis aimed to determine which predictor variables
would remain significant with others held constant in order to
establish a predictive model for ensemble bias. On the first step of
a hierarchical multiple regression analysis (see Table 1), we con-
firmed that ensemble bias and combined demographic and cogni-
tive variables were not associated, F(3,70) � 1.394, p � .252,
�p

2 � .056. When quadrant scores from the Adult Sensory Profile
were added on the second step, the variance explained increased

significantly by 15.0%, Finc(4,66) � 3.102, p � .021, �p
2 � .150,

such that the regression model now accounted for 20.6% of the
variance explained in ensemble bias. Sensation Avoiding was the
only predictor to contribute significantly to the model, t(73) �
2.480, p � .016, even with all other predictors held constant.

To analyze potential mediating effects of Sensation Avoiding on
Sensory Sensitivity, we used a bootstrap mediation analysis
(Preacher & Hayes, 2004); 95% confidence intervals were deter-
mined from 5,000 bootstrap resamples and any interval that did not
include 0 was considered to be significantly different from 0.
Confirming results from the hierarchical multiple regression anal-
ysis, findings revealed no direct effect of Sensory Sensitivity on
ensemble bias (p � .787, 95% CI [–.005, .004]), and significant
mediation of Sensory Sensitivity by Sensation Avoiding (95% CI
[–.007, �.001]). In contrast, no significant mediation of Sensory
Avoiding by Sensory Sensitivity was observed (95% CI [–.003,
.002]), thus confirming Sensation Avoiding as the main predictor
driving correlations between sensory processing patterns and en-
semble bias.

Discussion

Our results reveal the overall estimation of size for items held in
visual working memory was significantly biased toward the mean
size representation of a set of items sharing common features,
replicating Brady and Alvarez (2011). We found considerable
variability across observers in both the magnitude and direction-
ality of ensemble bias, however, warranting further investigation.
Subsequent analyses revealed this variability was not explained by
either demographic variables such as age and gender or cognitive
variables such as general intelligence and working memory capac-
ity, the latter of which have both been shown to predict the
demands placed on executive function for tasks requiring focusing
and switching in the face of interference (Kane & Engle, 2002).

In contrast, our findings demonstrate for the first time that stable
observer statistics are powerful predictors for the integration of
ensemble statistics with individual item representations held in
visual working memory. Specifically, we found that individuals
with lower neurological sensory thresholds who show patterns of
sensory processing characterized by greater sensitivity and active

Figure 3. Scatter plots (with best-fitting regression lines) showing cor-
relations between measures of sensory processing and ensemble bias.
Measures of sensory processing are arranged by quadrants of intersecting
neurological thresholds (high vs. low) with behavioral responses (passive
vs. active). An ensemble bias greater than 1.00 represents a bias toward the
mean, and a bias less than 1.00 represents a bias away from the mean. CI �
confidence interval.

Table 1
Results From Hierarchical Multiple Regression

Predictor
Partial

correlation (pr) p Value

Step 1: R � .237, F(3,70) � 1.394, p � .252
Gender �.063 .604
Age �.072 .539
g �.236 .054

Step 2: R � .454, F(4,66) � 3.102, p � .021
Gender �.092 .427
Age �.057 .607
g �.216 .066
Low Registration .030 .809
Sensation Seeking .028 .813
Sensory Sensitivity �.064 .667
Sensation Avoiding �.346 .016

Note. Ensemble bias was the outcome variable. Significant results are
shown in bold.
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sensation avoidance strategies are more likely to be biased away
from the mean size representation of a set of items. Conversely,
individuals with less sensation avoidance are more likely to be
biased toward the mean size representation.

Our findings indicate that ensemble statistics bias individual
item representations toward the mean size of a set within a normal
range of sensory processing, yet reveal that stable sensory pro-
cessing patterns predict variability in the integration and extent to
which ensemble statistics bias these representations. Specifically,
our findings suggest avoidant strategies aimed to limit incoming
perceptual information may influence the integration of informa-
tion in visual working memory. Hypersensitive individuals may
actively utilize avoidance strategies, which deprive them of the
computational advantage of employing ensemble statistics for vi-
sual working memory representations. As a consequence of this
disruption, these individuals may display deficits in the ability to
effectively integrate similar information in visual working memory
in the presence of competition at the feature level.

From Stable Traits to Transient Representations

Ensemble representations are thought to reduce the computa-
tional challenges the visual system faces to fit almost infinite
incoming information into limited bandwidths. Much of the pre-
vious research on ensemble representation has focused on the
visual system’s capabilities in forming accurate ensemble repre-
sentations from readily available low-level summary statistics (Al-
varez, 2011). Here, we provide evidence that stable traits in sen-
sory processing significantly predict variance in the bias of
ensemble statistics for transient representations held in visual
working memory. As described in Dunn’s (1997) model of sensory
processing, individuals with greater sensitivity and lower sensory
thresholds are more likely to experience distraction, discomfort,
slow habituation, and ritual avoidance strategies, which are actions
repeated in a set precise manner to limit sensory input by reducing
exposure to stimuli known to produce overstimulation.

One explanation for our findings suggests hypersensitive indi-
viduals may be more sensitive to local changes in stimuli, incor-
porating avoidant processing styles which limit global sensory
input and overstimulation. These individuals may overcompensate
for observed local differences by actively exaggerating the differ-
ences between individual items sharing common features, and
consequently fail to integrate ensemble statistics with individual
items in visual working memory, resulting in a bias away from the
mean representation of a display. As hypersensitive individuals
exhibit slow habituation to incoming sensory information, these
individuals may have a tendency to systematically enhance indi-
vidual item differences, rather than regressing to the perceptual
mean. Low-threshold individuals may therefore be less able to
employ computational biases, thus failing to compress perceptual
regularities for similar sets into ensemble representations. Alter-
natively, as our task required individuals to actively suppress
irrelevant stimuli in the form of green circles, differences in
attentional selection between high- and low-threshold individuals
may be a contributive factor affecting the integration of similar
items into separate sets. For instance, Brady and Alvarez (2011)
observed that the removal of irrelevant distractors from an ensem-
ble display resulted in the absence of a bias toward the mean size
of same-colored circles in a display. In the present study, hyper-

sensitive individuals may therefore be unable to suppress irrele-
vant distractors, thereby failing to limit their perceptual experience
to behaviorally relevant environmental input. While this explana-
tion would account for an overall absence of bias in low-threshold
individuals, it would likely not explain the observed bias away
from the mean in this population.

Conversely, those less sensitive to sensory input may benefit
from the advantages of computational biases by underrepresenting
differences between individual items, and therefore may be
more likely to average items together and report a greater bias
toward the mean representation of a display. Furthermore, these
individuals may be less likely to employ avoidant strategies
which would limit their perceptual input. These findings sug-
gest that observer variance in the integration of information in
visual working memory may be substantially predicted by the
ability to effectively modulate and process complex and noisy
sensory input.

From Sensory Experience to Sensory Dysfunction

We have previously suggested that individuals with sensory
processing traits furthest from the mean in either direction may be
more heavily impacted in the integration of ensemble statistics
with visual working memory representations. Although sensory
preference is intimately tied with the general human experience,
patterns of sensory processing and dysfunction as measured by the
Adult Sensory Profile have been correlated with the diagnosis of
multiple neurodevelopmental disorders, such as attention-deficit/
hyperactivity disorder (Dunn & Bennett, 2002), obsessive–
compulsive disorder (Rieke & Anderson, 2009), and schizophrenia
(Brown, Cromwell, Filion, Dunn, & Tollefson, 2002). The most
extensive research on sensory processing abnormalities in neurode-
velopmental disorders, however, has focused on ASD, revealing per-
vasive difficulties in sensory processing and response in diagnosed
individuals (Tomchek & Dunn, 2007). Interestingly, sensory chal-
lenges were recently included as a core component of ASD in the
DSM–5 (American Psychiatric Association, 2013). The relationship
between sensory processing styles captured by the Sensory Profile
and the integration of ensemble statistics we report here leads to the
hypothesis that individuals with developmental disabilities that in-
clude sensory processing challenges, may also show difficulties in
ensemble processing.

Indeed, individuals with ASD exhibit impairments in the ability
to integrate multiple pieces of sensory information into coherent
wholes, for example the ability to integrate auditory and visual
speech (Stevenson, Siemann, Schneider, et al., 2014, Stevenson,
Siemann, Woynaroski, et al., 2014). Ensemble processing, which
requires integrating item-level information into a group average,
may present a similar challenge to those with ASD. Through
exploring the computational mechanisms surrounding ensemble
perception in the broader context of feature encoding in visual
working memory, our findings may break ground and inspire new
avenues for future research examining the relationship between
neurodevelopmental disorders and the dynamic interplay between
representations held in visual working memory. Such research may
provide insight into potential links between perceptual predispo-
sitions, visual working memory biases and neurodevelopmental
disorders, by shedding light on how individuals with neurodevel-
opmental disorders characterized by sensory processing predispo-
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sitions (as observed in the present study) perceive sensory input
and subsequently integrate this information in visual working
memory.

From Current Knowledge to Future Directions

It is well documented that individual differences in visual
working memory performance are related to how attention is
controlled and information is stored (Vogel, McCollough, &
Machizawa, 2005). Individual differences in ensemble process-
ing, as we have reported here, may be another promising way to
account for variance in visual working memory performance.
Beyond stable sensory processing patterns, observer statistics
may interact with ensemble statistics across multiple dimen-
sions. For instance, future research should explore whether
ensemble processing is related to cognitive mechanisms that
interact with other stable interindividual differences, such as
temperament and personality (Matusz, Traczyk, Sobkow, &
Strelau, 2015), or those that are more fluid and context depen-
dent (Thelen, Matusz, & Murray, 2014). Thus, these findings
open the opportunity to explore multiple dimensions of ob-
server statistics and how they relate to ensemble coding and
visual working memory representations.

Conclusion

Ensemble statistics provide a valuable opportunity for the visual
system to overcome the limited resources of visual working mem-
ory. Thus, ensemble representations play a pivotal role in the
ability to accurately and efficiently perceive the natural world, and
afford critical insight into the mechanisms underlying visual work-
ing memory processes. Our findings shed light on individual
variability in the integration of ensemble statistics with perceptual
experience. We therefore propose extending the study of ensemble
processing by not only considering the statistics of the display, but
also the statistics of the observers.
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