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Abstract 

The credibility of the scientific methodology of numerical models and their adequacy to form the basis of public policy 
decisions have been frequently challenged. The first part of this chapter aims to address the issue of model reliability by 
evaluating the current state of aquatic biogeochemical modeling. We provide evidence that there is still considerable 
controversy among modelers and the resource managers about how to develop, evaluate, and interpret mathematical models. 
Our arguments are that (1) models are not always developed in a consistent manner, clearly stated purpose, and predeter
mined acceptable model performance level, and (2) the potential users select models without properly assessing their 
technical value. The second part of this presentation argues that the development of novel methods for rigorously assessing 
the uncertainty underlying model predictions should be a top priority of the modeling community. Striving for novel 
uncertainty analysis tools, we introduce Bayesian calibration of process-based models as a methodological advancement that 
warrants consideration in aquatic ecosystem research. This modeling framework combines the advantageous features of both 
process-based and statistical approaches, that is, mechanistic understanding that remains within the bounds of data-based 
parameter estimation. The incorporation of mechanism improves the confidence in predictions made for a variety of 
conditions, whereas the statistical methods provide an empirical basis for parameter value selection and allow for realistic 
estimates of predictive uncertainty. Other advantages of the Bayesian approach include the ability to sequentially update 
beliefs as new knowledge is available, and the consistency with the scientific process of progressive learning and the policy 
practice of adaptive management. Finally, we illustrate some of the anticipated benefits from the Bayesian calibration 
framework, well suited for stakeholders and policy makers when making environmental management decisions, using the 
Hamilton Harbour – a eutrophic system in Ontario, Canada – as a case study. 
9.10.1 Evaluation of the Current State of Aquatic 
Biogeochemical Modeling: Where Are We? 

Mechanistic aquatic biogeochemical models have formed the 
scientific basis for environmental management decisions by 
providing a predictive link between management actions and 
ecosystem response. They have provided an important tool for 
elucidating the interactions between climate variability and the 
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carbon cycling in the oceans, and thus for assessing the pace 
and impacts of climate change (Doney, 1999; Franks, 2002). 
Acknowledging their central role in aquatic ecosystem research, 
several compelling questions arise, such as: What is the capacity 
of the current models to simulate the dynamics of coastal and 
estuarine ecosystems? How carefully do modelers develop their 
models? How rigorously do we assess what a model can or 
cannot predict? Arhonditsis and Brett (2004) attempted to 
173 
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answer some of these questions by reviewing 153 modeling 
studies published in the literature between 1990 and 2002. 
Their hypothesis was that the sizable number of aquatic eco
system modeling studies, which successfully passed the 
scrutiny of the peer-review process along with the experience 
gained from addressing an extent of management problems, 
can objectively reveal the systematic biases, methodological 
inconsistencies, and common misconceptions characterizing 
the field of aquatic ecosystem modeling. Indeed, despite the 
heterogeneity of the modeling studies examined with respect to 
model complexity, type of ecosystem modeled, spatial and 
temporal scales, and model development objectives, this 
study was able to detect statistically significant trends of the 
model performance and to pinpoint methodological omis
sions in the current modeling practice. 

The first interesting finding was the absence of systematic 
goodness-of-fit assessment of the original models, that is, plots 
in which simulated values were visually compared with 
observed data were only presented for 16.8% of the model 
endpoints, and even fewer (1.3%) were the cases in which 
thorough statistical examination of the error was reported. In 
the cases in which measures of fit or comparison plots were 
presented, Arhonditsis and Brett (2004) independently 
assessed state variable performance as expressed by the relative 
error (RE = Σ |observed values – simulated values|/Σ observed 
values) and the coefficient of determination (r2) (Table 1). It 
was found that temperature and dissolved oxygen had the 
lowest RE (median < 10%) and the highest r2 values (the 
respective medians were 0.93 and 0.70). The typical limiting 
nutrient forms (NO3, NH4, PO4, and Si) in freshwater and 
oceanic ecosystems along with the phytoplankton biomass 
had intermediate fit, with median r2 values varying from 0.40 
to 0.60 and the median RE lying around the 40% level. 
Zooplankton dynamics were characterized by the highest RE 
(70%) and the widest range of r2 (interquartile range ∼0.8) and 
Table 1 Performance of the aquatic biogeochemical models for the study

Percentile Temperature Dissolved oxygen Nitrate Ammonium 

10th r 2 0.42 0.34 0.10 0.05 
RE(%) 2 4 8 18 

20th r 2 0.62 0.52 0.37 0.13 
RE(%) 4 7 18 30 

30th r 2 0.81 0.58 0.47 0.18 
RE(%) 5 8 26 34 

40th r 2 0.92 0.62 0.56 0.29 
RE(%) 5 10 32 40 

50th r 2 0.93 0.70 0.68 0.39 
RE(%) 7 12 36 48 

60th r 2 0.95 0.78 0.79 0.44 
RE(%) 7 14 44 55 

70th r 2 0.96 0.86 0.84 0.57 
RE(%) 9 17 57 65 

80th r 2 0.97 0.88 0.91 0.78 
RE(%) 

90th r 2 
11 
0.98 

19 
0.92 

68 
0.95 

77 
0.89 

RE(%) 15 22 88 101 
100th r 2 0.99 1.00 1.00 0.99 

RE(%) 25 31 554 206 

Coefficient of determination (r 2) and relative error (RE%) values for: temperature, dissolved ox
Adapted from Arhonditsis, G.B., Brett, M.T., 2004. Evaluation of the current state of mechanis
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RE (interquartile range ∼85%) values. Similarly, bacteria were 
also poorly modeled (median r2 value <0.06), indicating that 
the performance of existing mechanistic aquatic biogeochem
ical models declines as we move from physical–chemical to 
biological components of planktonic systems. On a positive 
note, it was found that these results were obtained without the 
introduction of a major ‘calibration bias’, that is, in the process 
of maximizing the fit for a specific state variable (usually 
phytoplankton biomass), the modelers did not seem to com
promise on the fit for other state variables (such as limiting 
nutrient concentrations or herbivorous zooplankton biomass). 

Arhonditsis and Brett (2004) also assessed the effects of 
model complexity (expressed as the number of state variables), 
spatial dimension (from zero- to three-dimensional models), 
simulation period (from days to decades), and ecosystem type 
on model performance. The study reported a positive correla
tion between the number of state variables and the RE values 
for the different model outputs (r = 0.219, p < 0.001). This 
(counterintuitive) positive trend was even stronger when con
sidering the RE values for phytoplankton (r = 0.248, p = 0.003) 
and zooplankton (r = 0.626, p < 0.001) biomass, suggesting 
that more complex models usually result in slightly poorer 
model performance. It should be noted, however, that the 
majority of the complex models considered in this analysis 
belonged to the European Regional Seas Ecosystem Model 
(ERSEM) family, and therefore the reported complexity– 
performance relationship was influenced by the development 
purposes, modeled environments and practices, followed by 
this particular family of models (Baretta et al., 1995). Similarly, 
a (very weak) positive correlation was found between the dura
tion of the simulation period and the state variable RE values 
(r = 0.098, p = 0.022), indicating that longer simulations 
are also increasing model misfit. Marginally significant correla
tions also exist between the spatial complexity of the models 
and their (RE values) performance trends (r = 0.104, p = 0.015). 
 period 1990–2002 

Phosphate Silicate Phytoplankton Zooplankton Bacteria 

0.07 0.20 0.08 0.06 0.00 
19 18 20 17 21 
0.13 0.35 0.16 0.09 0.00 
26 30 26 31 25 
0.20 0.46 0.30 0.12 0.01 
32 32 32 44 33 
0.30 0.52 0.41 0.19 0.03 
36 34 37 52 35 
0.47 0.61 0.48 0.24 0.06 
42 37 44 70 36 
0.57 0.66 0.56 0.37 0.18 
47 41 51 79 37 
0.69 0.69 0.63 0.69 0.21 
55 46 58 115 42 
0.80 0.80 0.76 0.90 0.24 
69 
0.86 

55 
0.89 

66 
0.83 

138 
0.97 

49 
0.39 

84 64 79 201 59 
0.96 0.98 0.98 1.00 0.64 
218 302 128 435 66 

ygen, nitrate, ammonium, phosphate, silicate, phytoplankton, zooplankton, and bacteria. 
tic aquatic biogeochemical modeling. Marine Ecology Progress Series 271, 13–26. 
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Model error also did not vary depending on the type of ecosys
tem modeled (lakes/reservoirs, embayments/lagoons, coastal 
ecosystems/estuaries, and oceanic systems). These results pro
vide overwhelming evidence that the ambitious efforts to 
increase the level of ecological information mathematically 
represented by the models, to increase spatial complexity, and 
to use longer simulation periods have not led to a systematic 
improvement in model performance. 

Aquatic ecosystem modelers do not also seem to consis
tently apply conventional methodological steps during the 
development of their models (Arhonditsis and Brett, 2004). 
The large majority of the published studies in the field over the 
past decade did not properly assess model sensitivity to the 
input vectors (Figure 1(a)); aquatic ecosystem modelers are 
still reluctant to embrace optimization techniques during 
model calibration (Figure 1(b)); and to assess the ability of 
their models to match the observed data during the ‘model 
training’ phase (Figure 1(c)). The same study also compiled 
information for three types of validation: (1) predictive valida
tion defined as an evaluation of model performance against 
(a) 

Sensitivity 
Yes analysis 
45.1% 

Yes−No 
27.4% 

No 
27.5% 

0  20  40  60  

(c) 

Quantification 
of goodness of fit 

Yes 
30.1% 

No 
69.9% 

0  20  40  60  80  

Figure 1 Proportion of aquatic biogeochemical modeling studies that (a) pe
calibration, (c) quantified the fit between model predictions and observed data
category Yes–No in (a) indicates qualitative approaches that solely tested the 
parameters without providing any quantitative measures of model response to
G.B., Brett, M.T., 2004. Evaluation of the current state of mechanistic aquatic 

Treatise on Estuarine and Coastal Science, 2011, Vol.9
data acquired from the real system after model calibration; 
(2) model transferability to different systems (performance of 
a specific model structure to different regions or ecosystem 
types); and (3) structural validation defined as the assessment 
of the realistic reproduction of the operational characteristics, 
causal relationships, and relative magnitudes of various com
ponents of the system by the model (biological rates and 
derived quantities). These validation procedures were carried 
out (or at least explicitly reported) in 47.1% of the aquatic 
ecosystem modeling studies, whereas the remaining 52.9% 
were not predictively or structurally validated (Figure 1(d)). 

Building upon the results presented in the Arhonditsis and 
Brett (2004) study, Arhonditsis et al. (2006) attempted a sec
ond quantitative assessment of the current state of aquatic 
biogeochemical modeling by focusing on the features that 
primarily determine our decision to utilize a specific model. 
The main objectives of this analysis were (1) the evaluation of 
how the modeling community has received the 153 aquatic 
biogeochemical models published from 1990 to 2002 and 
(2) the identification of the characteristics of a model that are 
(b) 

Optimization 

Yes
 
8.5%
 

No 
91.5% 

0  20  40  60  80  100

(d) 

Validation 

Yes 
47.1% 

No 
52.9% 

0  20  40  60

 

 

rformed sensitivity analysis, (b) used optimization techniques for model 
, and (d) validated the models (see text for definitions of validation). The 
influence of certain model structures (e.g., alternative formulations) or 
 the perturbations induced to the input vector. Adapted from Arhonditsis, 
biogeochemical modeling. Marine Ecology Progress Series 271, 13–26. 
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more attractive to the potential users and may influence the 
frequency of its use and subsequent citation. Citation rates are 
increasingly recognized as a convenient measure for assessing 
the importance and utility of scientific research; ideally, high-
quality papers should motivate future research and should be 
used as a source of information by subsequent studies in the 
field (Adams, 2002; Leimu and Koricheva, 2005). The articles 
citing aquatic biogeochemical modeling studies were classified 
in 60 different disciplines. Oceanography was found to be the 
most popular thematic area of the articles that cite mechanistic 
(a) 

Fisheries 1.72% 

1.81% Water resources 

Limnology 2.30% 

Env. engineering 2.37% 

4.30% Atmospheric sciences 

8Env. sciences 

Ecology 

Geosciences 

Aquatic biology 

Oceanography 

0 200 400 60

(b) 

120 

80 

40 

0 

Coastal area estuary B

11 5 

C
ita

tio
ns

 

Mesocosm

Figure 2 (a) Frequency histogram of the scientific classification (subject cate
papers. (b) Citation frequency for different types of modeled ecosystem. Adap
Reckhow, K.H., 2006. Evaluation of the current state of mechanistic aquatic b
Environmental Science and Technology 40, 6547–6554. 
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aquatic biogeochemical models and more than 27% (∼1500 
counts) of the total citations were related to this research topic 
(Figure 2(a)). The second most popular subject category was 
marine and freshwater biology (21.75%), followed by geo
sciences (10.90%) and ecology (10.33%). Disciplines more 
closely related to environmental management, for example, 
environmental sciences (8.21%), environmental engineering 
(2.37%), and water resources (1.81%), received a relatively 
low proportion of the total citations. The same study also 
examined the association between citation rates and several 
.21% 

10.33% 

10.90% 21.75% 

27.19% 

0 800 1000 1200 1400 1600 

Citations 

ay−Lagoon−Harbor Ocean−Sea 

27 34 70 4 

 Lake−Reservoir River 

gory) of the papers that cite mechanistic aquatic biogeochemical modeling 
ted from Arhonditsis, G.B., Adams-VanHarn, B.A., Nielsen, L., Stow, C.A., 
iogeochemical modeling: citation analysis and future perspectives. 
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characteristics of the published modeling studies: ecosystem 
type, methodological consistency, and model performance. 
Using the type of the ecosystem modeled as a criterion, the 
published modeling studies were classified into six categories: 
coastal area estuary, mesocosm, bay–lagoon–harbor, lake– 
reservoir, ocean–sea, and river. Ocean modeling studies have 
received significantly higher citations (F = 7.87, df =5,  
p < 0.001) among the various ecosystem types (Figure 2(b)). 

Regarding the model complexity (expressed as the number 
of state variables) as a model feature that attracts citations, it 
was found that the citation rates of the individual articles were 
not significantly correlated with the corresponding model com
plexity (r = 0.111, p = 0.183), although there was an increasing 
citation trend for models with over 40 state variables 
(Figure 3(a)). Model performance was also not considered as 
a criterion for citing modeling papers; for example, citation 
rates and model performance for the key state variable phyto
plankton were not significantly correlated (r = 0.163, p = 0.07; 
Figure 3(b)). It was also examined whether the methodological 
consistency of the published modeling studies is a factor that 
determines their citation rates. The citation counts did not 
differ significantly among studies whether they presented 
(thorough/partial) sensitivity analysis or not (F = 1.16, df =2,  
p = 0.316). The citation patterns of the modeling studies were 
not affected by whether the modelers reported assessment of 
the goodness of fit (F = 0.05, df =1,  p = 0.943; Figure 3(c)), and 
by whether the original modeling studies presented structural 
or predictive validation (F = 2.03, df = 1,  p = 0.156). 

Overall, after four decades of experience in the field of 
aquatic biogeochemical modeling, there is evidence that the 
current generation of models can sufficiently represent the 
physical and chemical components of planktonic food webs, 
whereas our ability to obtain accurate simulations is reduced as 
we move from the first to the higher trophic levels. There is also 
notable methodological inconsistency regarding the steps fol
lowed during the development stages of the models; that is, 
conventional modeling procedures, such as sensitivity analysis, 
validation, or even assessment of goodness of fit, have not been 
applied in a high proportion of the published modeling stu
dies. The citations of the aquatic biogeochemical modeling 
papers are determined neither by the model complexity nor 
by the reported performance and methodological consistency. 
The type of the ecosystem being modeled is the most influen
tial factor shaping the citation patterns of the modeling papers. 
Ocean modeling studies receive considerable attention and 
overwhelmingly dominate the total citation counts. Model 
application for addressing environmental management issues 
on a local scale faces challenges as a scientific tool. The number 
of published studies from lakes, reservoirs, coastal embay
ments, estuaries, and harbors combined was approximately 
equal to the number of oceanic applications, whereas the 
majority of these – local character – modeling studies have 
received fairly low citations. Arhonditsis et al. (2006) high
lighted the failure to engage novelty and creativity when 
attempting to provide solutions to management problems as 
a main reason for the low citation rates, which inevitably 
results in unattractive modeling products that cannot export 
knowledge to other disciplines. Evidently, some of the current 
modeling practices have to change, as the need for robust 
modeling tools to assist with the restoration of impaired 
Treatise on Estuarine and Coastal Science, 2011, Vol.9
water bodies is more pressing now than ever before; for exam
ple, the costly implementation of total maximum daily loads 
for pollutants during the next 5–10 years has raised the bar for 
innovative model developments that can accommodate rigor
ous error analysis (Borsuk et al., 2002). 
9.10.2 Why Bayesian Calibration? 

The importance of investigating the effects of uncertainty on 
mathematical model predictions has been extensively high
lighted in the modeling literature (Omlin and Reichert, 1999; 
Brun et al., 2001; Reichert et al., 2002; Chen et al., 2007). The 
question of model credibility is important because models are 
used to identify polluters, to direct the use of research funds, 
and to determine management strategies that have consider
able social and economic implications (Chapra, 1997). 
Erroneous model outputs and failure to account for uncertainty 
could produce misleading results and misallocation of limited 
resources during the costly implementation of alternative 
environmental management schemes. For better model-based 
decision making, the uncertainty in model projections must be 
reduced, or at least explicitly acknowledged, and reported in a 
straightforward way that can be easily used by policy planners 
and decision makers (Reckhow and Chapra, 1999). One weak
ness of the conventional calibration strategies, that is, mere 
adjustment of model parameters until the discrepancy between 
model outputs and observed data is minimized, is that 
although they may provide the best fit to the data available at 
the moment, the resulting calibration vector is specific to the 
given data set at hand. As new data become available, the 
models should be recalibrated and, in the common calibration 
practice, there is no formal way of considering previous results. 
In this sense, we do not really update previous knowledge 
about model input parameters, but rather we make the models 
data set specific (Arhonditsis et al., 2007). 

Another problematic aspect of the current modeling prac
tice is that the usual calibration methods do not address the 
equifinality (poor model identifiability). Equifinality is the 
nonuniqueness of the model solutions, whereby several dis
tinct choices of model inputs lead to the same model outputs, 
that is, many sets of parameters fit the data about equally well 
(Beven, 1993). The main reason for the equifinality problem is 
that the causal mechanisms/hypotheses used for understand
ing how the system works internally is of substantially higher 
order of what can be externally observed (Beck, 1987). As a 
result, our ability to set quantitative (or even qualitative) con
straints as to what is realistic/behavioral simulation of an 
ecological structure and therefore the learning capacity of a 
model is significantly reduced. However, having a model that 
realistically reflects the natural system dynamics is particularly 
important when the model is intended for making predictions 
in the extrapolation domain, that is, predicting future condi
tions significantly different from those used to calibrate the 
model (Reckhow and Chapra, 1999). For example, when a 
water-quality model does not operate with realistic relative/ 
absolute magnitudes of biological rates and transport pro
cesses, even if the fit between model outputs and 
observations is satisfactory (“good results for the wrong rea
sons”), its credibility to provide predictions about how the 
system will respond under different external nutrient loading 
, 173-192, DOI: 10.1016/B978-0-12-374711-2.00910-4
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Figure 3 Citation frequency for different levels of (a) model complexity (number of state variables), (b) model performance for phytoplankton and 
(c) reported assessment of the goodness of fit in the original modeling study. Adapted from Arhonditsis, G.B., Adams-VanHarn, B.A., Nielsen, L., Stow, C.A., 
Reckhow, K.H., 2006. Evaluation of the current state of mechanistic aquatic biogeochemical modeling: citation analysis and future perspectives. Environmental 
Science and Technology 40, 6547–6554. 
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conditions is very limited. In this case, the application of math
ematical models for extrapolative tasks is an exercise in 
prophecy rather than scientific action based on robust prog
nostic tools (Beven, 2006). 

Model uncertainty analysis essentially aims to make infer
ence about the joint probability distribution of model inputs, 
reflecting the amount of knowledge available for model para
meters, initial conditions, forcing functions, and model 
structure. In this regard, Bayes’ theorem provides a convenient 
means to combine existing information (prior) with current 
observations (likelihood) for projecting future ecosystem 
response (posterior). Hence, the Bayesian techniques are 
more informative than the conventional model calibration 
practices, and can be used to refine our knowledge of model 
input parameters while obtaining predictions along with 
uncertainty bounds for output variables (Arhonditsis et al., 
2007). Despite the compelling arguments for considering 
Bayesian inference techniques as an integral part of the model 
development process, their high computational demands 
along with the lack of analytical expressions for the posterior 
distributions were until recently a major impediment for their 
broader application (Reichert and Omlin, 1997). Nonetheless, 
the advent of fast computing has allowed the development of 
several methods for performing Bayesian inference and the 
most commonly used technique is called Markov chain 
Monte Carlo (MCMC), a general methodology that provides a 
solution to the difficult problem of sampling from multidi
mensional distributions for the purpose of numerical 
integration (Gilks et al., 1996; Qian et al., 2003). 

In the context of water-quality modeling, there are several 
recent studies illustrating how the Bayesian inference techni
ques can improve model forecasts and management actions 
over space and time. For example, Malve et al. (2005) showed 
how the Bayesian parameter estimation of a dynamic nonlinear 
model can be used to quantify the winter respiration rates 
(oxygen depletion per unit area of hypolimnetic surface) in a 
hypereutrophic shallow Finnish lake. A conceptually similar 
modeling approach was also used to elucidate the confounded 
bottom-up and top-down effects on the phytoplankton com
munity structure of the shallow, mesotrophic Lake Pyhäjärvi 
(Malve et al., 2007). Arhonditsis et al. (2007, 2008a, 2008b) 
introduced a Bayesian calibration scheme using simple mathe
matical models (<10 state variables) and statistical 
formulations that explicitly accommodate measurement error, 
parameter uncertainty, and model structure error; this frame
work was then used to quantify the information that the data 
contain about model inputs, to offer insights into the covar
iance structure among parameter estimates, and to obtain 
predictions along with credible intervals for model outputs. A 
recent study also integrated the Bayesian calibration framework 
with a complex aquatic biogeochemical model simulating mul
tiple elemental cycles and functional plankton groups to 
illustrate how the Bayesian parameter estimation can be used 
for assessing the exceedance frequency and confidence of com
pliance with different water-quality criteria (Zhang and 
Arhonditsis, 2008). In this chapter, we present another exercise 
in which Bayesian inference techniques are used to calibrate a 
fairly complex eutrophication model. Our case study is the 
Hamilton Harbour, an eutrophic system in the Province of 
Ontario, Canada, where the anticipated benefits from the 
Bayesian framework can be used from stakeholders and policy 
Treatise on Estuarine and Coastal Science, 2011, Vol.9
makers to guide the use of millions of dollars of restoration and 
to dictate the best management practices. 
9.10.3 A Case Study: Eutrophication Risk Assessment 
in Hamilton Harbour 

Hamilton Harbour, a large embayment located at the Western 
Lake Ontario, has a long history of eutrophication problems 
primarily manifested as excessive algal blooms, low water 
transparency, predominance of toxic cyanobacteria, and low 
hypolimnetic oxygen concentrations during the late summer 
(Charlton, 1997; Hiriart-Baer et al., 2009). Since the mid
1980s, when the Harbour was identified as an area of concern 
(AOC) by the Water Quality Board of the International Joint 
Commission, the significant reductions of the exogenous nutri
ent loading have resulted in reduced total phosphorus (TP) 
concentrations and improved water clarity, which in turn has 
triggered aquatic macrophyte resurgence in most areas with 
Secchi disk depth greater than 3 m (Charlton and Le Sage, 
1996). Yet, the system still receives substantial loads of phos
phorus, ammonia, and suspended solids from the Burlington 
and Hamilton sewage treatment plants, while population 
growth and increasing urbanization accentuate the need for 
expansion of the wastewater treatment facilities (Charlton, 
1997). As a result, the Hamilton Harbour Remedial Action 
Plan (RAP) formulated through a wide variety of government, 
private sector, and community participants to provide the fra
mework for actions aimed at restoring the Harbour 
environment, calls for remedial measures and further reduc
tions in sewage discharges (Charlton, 2001). 

The development of appropriate nutrient load reductions 
and the setting of water-quality goals in the Hamilton Harbour 
have been founded upon an ecosystem approach that considers 
the complex interplay among abiotic parameters and biotic 
components pertinent to the beneficial uses of the Harbour 
(Hamilton Harbour Technical Team – Water Quality, 2007). In 
particular, the technical team used an analytically rigorous 
approach that involved data analysis, modeling, and expert 
judgment to determine that the respective phosphorus loading 
and TP concentration targets should ultimately be set at 142 kg 
d−1 and 17 μg l−1, whereas the environmental goals related to 
chlorophyll a concentrations (5–10 μg l−1) and Secchi disk 
depth (3.0 m) emerged through a consensus on what was 
desirable and/or achievable targets for the Harbour (Charlton, 
2001). The implementation of these water-quality criteria 
requires an operational procedure to assess the compliance of 
the Harbour with the desirable water-quality goals. In water 
resources management practice, the typical approach has been 
to collect a limited number of samples that are then analyzed 
with a statistical test to infer whether the water body is still 
impaired or not. Using a limited number of samples for statis
tical inference, however, introduces uncertainty into the 
assessment of compliance, and the degree of this uncertainty 
depends on the sampling scheme used (i.e., the quality and 
quantity of samples collected) as well as on the degree of 
confidence required from the statistical test (Borsuk et al., 
2002). Beyond that, the system restoration process requires 
predicting future compliance, after a pollutant load reduction, 
usually based on a water-quality model; an endeavor that is 
highly uncertain mainly because the relationship between 
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pollutant loading and receiving water body response can never 
be perfectly known (Arhonditsis et al., 2006). Therefore, the 
practical limitations of ambient monitoring programs, the 
uncertainty in predicting water-quality outcomes, the intrinsic 
variability characterizing natural ecosystem dynamics along 
with the measurement error suggest that it is unrealistic to 
forbid any standard violations at all points in the system at 
all times (Barnett and O’Hagan, 1997; Reckhow et al., 2005). 
These shortcomings underscore the importance of adopting 
probabilistic methodologies in the Hamilton Harbour, such 
as the percentile-based approach endorsed by the US 
Environmental Protection Agency. The latter requires that 
more than 10% of samples in space and time should violate a 
criterion before inferring that a system does not fully support 
its designated use (US EPA, 1997). 

Our objective herein is to illustrate how the Bayesian cali
bration can be used for rigorously assessing the uncertainty of 
eutrophication models associated with model structure and 
parameters. The present modeling exercise will ultimately be 
used to estimate the critical loads for pollutants based on 
acceptable probabilities of compliance with different water-
quality criteria (e.g., chlorophyll a and TP); to elucidate the 
interplay among different ecological mechanisms that drive the 
phytoplankton variability in the system; to illustrate a metho
dological framework that is in alignment with the policy 
practice of adaptive management; and ultimately to provide a 
realistic platform for evaluating the potential ramifications of a 
variety of scenarios (e.g., urbanization/land-use changes, cli
mate change, invasion of exotic species, and alternative 
restoration practices) on ecosystem functioning with special 
emphasis on the control of phytoplankton growth in the 
Harbour. 
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9.10.3.1 Model Description 

This section provides the description of the basic conceptual 
design of the model. The flow diagrams of the nitrogen and 
phosphorus cycles used in this model are depicted in Figures 4 
and 5, whereas the definitions of the model parameters are 
given in Table 2. 

9.10.3.1.1 Model spatial structure and forcing functions 
We considered a two-compartment vertical segmentation 
representing the epilimnion and hypolimnion of the 
Harbour. The depths of the two boxes varied with time and 
were explicitly defined based on extensive field measure
ments for the study period 1987–2007 (Dermott et al.,
2007; Hiriart-Baer et al., 2009). During the stratified period, 
the epilimnion was defined as the maximum depth where the 
water temperature varied ≤1 °C relative to the temperature at 
0.5 m; otherwise, we assumed a box depth of 13 m and the 
mass exchanges between the two compartments were com
puted using Fick’s law  (Klapwijk and Snodgrass, 1985; 
Hamblin and He, 2003). Other external forcing functions 
include the solar radiation, day length, precipitation, and 
evaporation based on meteorological data from 
Environment Canada, namely, the Canadian Daily Climate 
Data (1996–2002) and the Canadian Climate Normals 
(1971–2000). Loadings of inorganic nutrients and organic 
matter enter the Hamilton Harbour from the following 
main sources: Red Hill and Grindstone creeks, combined 
sewer overflows (CSOs), Dofasco and Stelco steel mills, 
Woodward and Skyway wastewater treatment plants 
(WWTPs), and Cootes Paradise. Estimates of flow and nutri
ent loadings are based on available data from the Water 
Survey of Canada and the RAP loading report (Hamilton 
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Figure 5 The phosphorus biogeochemical cycle of the model: (1) external forcing to phytoplankton growth (temperature and solar radiation); 
(2) zooplankton grazing; (3) phytoplankton basal metabolism excreted as PO4 and OP; (4) zooplankton basal metabolism excreted as PO4 and OP; (5) OP 
mineralization; (6) water–sediment PO4 and OP exchanges; (7) settling of particles; (8) exogenous inflows of PO4 and OP; (9) outflows of PO4 and OP; and 
(10) phytoplankton PO4 uptake. 
Harbour Technical Team: 1996–2002 Contaminant Loadings 
and Concentrations to Hamilton Harbour, 2004). Similar to 
the Arhonditsis and Brett (2005) study, the model was run 
with the mean hydrological and nutrient loading annual cycle 
over the 1996–2002 period. The exchanges between the 
Hamilton Harbour and the relatively high-quality waters of 
Lake Ontario through the Burlington Ship Canal are another 
major regulatory factor of the Harbour water quality determin
ing the dilution of the pollutant concentrations, the decrease of 
Harbour’s residence time, and the oxygenation of the hypo-
limnetic waters (Barica, 1989; Hamblin and He, 2003). In 
particular, the winter exchanges are primarily driven by short-
term oscillations due to water-level differences at the two 
ends of the canal, whereas the exchanges during the sum
mer-stratified period are mediated by slowly fluctuating 
density gradients, that is, warm Harbour water flowing into 
the lake in the top layer and colder lake water flowing into the 
Harbour in the bottom layer (see figures 1 and 2 in Barica 
1989). Existing evidence also suggests that the Hamilton 
Harbour–Lake Ontario interplay during the stratified condi
tions is much stronger and steadier than in the winter period 
(Hamblin and He, 2003). In this study, following the 
Klapwijk and Snodgrass (1985; see their figure 3) conceptual 
model, we assumed that 10% of the Lake Ontario inflows are 
directly discharged to the epilimnion, whereas 90% of the 
fresher oxygenated lake water replaces the hypolimnetic 
masses in the Harbour. 
9.10.3.1.2 Equations 
We developed an ecological model that considers the interac
tions among the eight state variables: nitrate, ammonium, 
phosphate, phytoplankton, cyanobacteria, zooplankton, 
organic nitrogen (ON), and organic phosphorus (OP). 
Treatise on Estuarine and Coastal Science, 2011, Vol.9
9.10.3.1.3 Phytoplankton 
The ecological submodel simulates two phytoplankton func
tional groups, labeled as cyanobacteria and phytoplankton, 
which differ with regard to their strategies for resource competi
tion (nitrogen, phosphorus, light, and temperature) and 
metabolic rates as well as their morphological features (settling 
velocities and self-shading effects). The cyanobacteria-like group 
is modeled as K-strategist with low maximum growth and meta
bolic rate, weak P and strong N competitor, higher tolerance to 
low light availability, low settling velocity, and high-temperature 
optimum. By contrast, the more generic phytoplankton group 
aims to represent the rest of the phytoplankton community, 
having attributes of r-selected organisms with high maximum 
growth rates and higher metabolic losses, fast phosphorus and 
slow nitrogen kinetics, lower tolerance to low light availability, 
low-temperature optima, and high sinking velocities. 

The governing equation for phytoplankton biomass 
accounts for phytoplankton production and losses due to 
mortality, settling, dreissenid filtration, and herbivorous zoo
plankton grazing. The phytoplankton growth is limited by the 
water temperature conditions and the nutrient and light 
availability. The dependence of phytoplankton growth on tem
perature has an optimum level (Topt) and is modeled by a 
function similar to Gaussian probability curve (Cerco and 
Cole, 1994; Arhonditsis and Brett, 2005). Phosphorus 
dynamics within the phytoplankton cells account for luxury 
uptake, that is, phytoplankton nutrient uptake depends on 
both internal and external concentrations and is confined by 
maximum and minimum internal levels (Hamilton and 
Schladow, 1997; Arhonditsis et al., 2002). Our model explicitly 
considers the role of new and regenerated production using 
separate formulations that relate phytoplankton uptake to the 
ambient nitrate and ammonium concentrations (Eppley– 
Peterson f-ratio paradigm; Eppley and Peterson, 1979). 
Regarding the dependence of photosynthesis on solar 
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Table  2 Sensitivity of the posterior parameter distributions  on the prior specifications 

Posteriors 

Priors Log-uniform  Lognormal 95% 

Parameters Description Units Min. Max.  Median Interquartile  range  Median Interquartile  range  

AH(cy)  

AH(phyt)  

Denitrifmax 

Filter(cy)  

Filter(phyt)  

Growthmax(cy)  

Growthmax(phyt)  

Ik(cy)  

Ik(phyt)  

Kbackground  

Kchl a(cy)  

Kchl a(phyt)  

KCrefmineral 

Half-saturation constant for ammonium cyanobacteria uptake 

Half-saturation constant for ammonium phytoplankton  uptake  

Maximum  denitrification rate 

Cyanobacteria  filtering rate from dreissenids 

Phytoplankton filtering rate from dreissenids 

Cyanobacteria  maximum  growth rate 

Phytoplankton maximum growth rate 

Half-saturation light intensity for cyanobacteria 

Half-saturation light intensity for phytoplankton  

Background  light  extinction  coefficient 

Self-shading  effect  for  cyanobacteria  

Self-shading  effect  for phytoplankton 

Carbon mineralization rate 

μg N L−1 

μg N L−1 

μg N L−1 d−1 

d−1 

d−1 

d−1 

d−1 

MJ m−2 d−1 

MJ m−2 d−1 

m−1 

L(μg  chl a m)−1 

L(μg  chl a m)−1 

d−1 

30 

80 

1 

0.0045 

0.010 

1.0  

2.2  

100 

100 

0.15 

0.01 

0.01 

0.0043 

80 

150 

10 

0.0245 

0.050 

1.8  

3.0  

250 

250 

0.30 

0.08 

0.06 
0.0243 

76.5 

144.1 

1.79 

0.0070 

0.010 

1.06 

2.58 
143.4 
204.3 

0.230 

0.029 

0.048 

0.0059 

5.0 

9.8 

1.49 
0.0035 
0.001 

0.10 

0.28 

29.9 

39.9 

0.064 

0.024 

0.011 

0.0014 

120.5 

175.9 

1.55  

0.0070 

0.005 

1.21  

2.64  

185.5 

201.2 

0.244 

0.032 

0.048 

0.0070 

21.3 

14.4  

1.47 

0.0015 

0.002 

0.11 

0.14 

15.7  

26.8  

0.045 

0.017 

0.004 

0.0023 

KNrefmineral  Nitrogen  mineralization rate d−1 0.0043 0.0243 0.0057 0.0012 0.0051 0.0020 

KPrefmineral  Phosphorus mineralization rate d−1 0.0043 0.0243 0.0062 0.0012 0.0052 0.0012 

Kz 

Max grazing 

mp(cy)  

mp(phyt)  

mz 

NH(cy)  

NH(phyt)  

Nitrifmax  

PH(cy)  

PH(phyt)  

Pmaxuptake(cy)  

Pmaxuptake(phyt)  

Vsettling 

Half-saturation constant for zooplankton grazing 

Zooplankton maximum grazing  rate 

Cyanobacteria  mortality  rate 

Phytoplankton mortality  rate  

Zooplankton mortality rate 

Half-saturation constant for nitrate cyanobacteria  uptake 

Half-saturation constant for nitrate phytoplankton uptake 

Maximum  nitrification  rate 

Half-saturation constant for phosphorus  cyanobacteria  uptake 

Half-saturation constant for phosphorus phytoplankton uptake  

Maximum  phosphorus uptake rate for cyanobacteria 

Maximum  phosphorus uptake  rate  for  phytoplankton  

Autochthonous particle settling velocity 

μg C L−1 

d−1 

d−1 

d−1 

d−1 

μg N L−1 

μg N L−1 
μg N L−1 d−1 

μg P L−1 

μg P L−1 

μg P L−1 d−1  

μg P L−1 d−1  

d−1 

80 

0.40 
0.01 

0.01 

0.15 

30 

80 

10 

18 

5 

0.005 

0.01 

0.50 

120 

0.60 

0.05 

0.05 

0.19 

80 

150 

30 

30 

15 

0.025 

0.05 

1.50 

111.7 

0.457 

0.019 

0.012 

0.152 

47.99 

106.6 

17.19 

20.93 

12.64 

0.011 

0.020 

0.648 

8.6 

0.008 

0.005 

0.003 

0.002 

24.41 

31.7 

4.26 

4.22 

3.65 

0.003 

0.007 

0.015 

99.5  

0.453 

0.015 

0.012 

0.156 

48.35 

111 

17.89 

24.58 

13.79 

0.010 

0.022 

0.659 

7.7  

0.007 

0.003 

0.003 

0.004 

15.52 

24.1  

1.06 

1.66 

1.19 

0.001 

0.001 

0.029 

Vsettling(biogenic) 

Vsettling(cy)  

Vsettling(phyt)  

Biogenic particle settling  velocity 

Cyanobacteria  settling velocity 

Phytoplankton settling velocity  

d−1 

d−1 

d−1 

0.05 

0.01 

0.12 

0.25 

0.05 

0.25 

0.068 

0.037 

0.185 

0.028 

0.017 

0.028 

0.076 

0.042 

0.196 

0.016 

0.011 

0.022 

βN  Fraction of inert  nitrogen buried into deeper sediment  0.30 0.60 0.319 0.017 0.448 0.044 

βP Fraction of inert  phosphorus  buried into deeper sediment  0.80 0.95 0.897 0.013 0.868 0.015 
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radiation, we used Steele’s equation along with Beer’s law to 
scale photosynthetically active radiation to depth. The extinc
tion coefficient is determined as the sum of the background 
light attenuation and attenuation due to chlorophyll a (Jassby 
and Platt, 1976). The phytoplankton mortality includes all 
internal processes that decrease algal biomass (respiration 
and excretion) as well as natural mortality and is assumed to 
increase exponentially with temperature. We also incorporated 
a first-order loss rate representing the filtration from the zebra 
and quagga mussels, which is a potentially important factor for 
the phytoplankton biomass levels, especially in nearshore areas 
(Bierman et al., 2005). 

9.10.3.1.4 Zooplankton 
Zooplankton grazing and losses due to natural mortality/con
sumption by higher predators are the two main terms in the 
zooplankton biomass equation. Zooplankton has three alter
native food sources (the two phytoplankton groups and 
biogenic particulate material or detritus) grazed with prefer
ence that changes dynamically as a function of their relative 
proportion (Fasham et al., 1990). (It should also be noted, 
however, that the present model parametrization also postu
lates a selective zooplankton preference for phytoplankton and 
detritus over cyanobacteria.) Temperature-modulated zoo
plankton grazing was modeled using a Michaelis–Menten 
equation and the assimilated fraction of the grazed material 
fuels growth. In the absence of information to support more 
complex forms, we selected a linear closure term that represents 
the effects of a seasonally invariant predator biomass (see 
Edwards and Yool, 2000). 

9.10.3.1.5 Nitrogen cycle 
There are three nitrogen forms considered in the model: nitrate 
(NO3), ammonium (NH4), and ON (Figure 4). The ammo
nium equation considers the phytoplankton uptake and the 
proportion of phytoplankton and zooplankton mortality that 
is returned back to the system as ammonium ions. Ammonium 
is also oxidized to nitrate through nitrification and the kinetics 
of this process is modeled as a function of the ammonium, 
dissolved oxygen, temperature, and light availability (Cerco 
and Cole, 1994; Tian et al., 2001). We used Wroblewski’s 
model (Wroblewski, 1977) to describe ammonium inhibition 
of nitrate uptake. The nitrate equation also takes into account 
the amount of ammonium oxidized to nitrate through nitrifi
cation and the amount of nitrate lost as nitrogen gas through 
denitrification. The latter process is modeled as a function of 
dissolved oxygen, temperature, and the contemporary nitrate 
concentrations (Arhonditsis and Brett, 2005). The ON equa
tion considers the contribution of phytoplankton and 
zooplankton mortality to the ON pool and the seasonally 
forced bacterial mineralization that transforms ON to ammo
nium. External nitrogen loads to the system and losses via the 
exchanges with Lake Ontario are also included. 

9.10.3.1.6 Phosphorus cycle 
Two state variables of the phosphorus cycle are considered in 
the model: phosphate (PO4) and OP (Figure 5). The phos
phate equation considers the phytoplankton uptake, the 
proportion of phytoplankton and zooplankton mortality/ 
higher predation that is directly supplied into the system in 
inorganic form, the bacteria-mediated mineralization of OP, 
Treatise on Estuarine and Coastal Science, 2011, Vol.9
and the net diffusive fluxes between epilimnion and hypolim
nion. We also accounted for the phosphorus precipitation to 
sediment due to the iron loadings from the two steel mills, 
based on an empirical equation originally implemented to 
correct for the observed Hamilton Harbour phosphorus con
centrations (Hamilton Harbour Technical Team – Water 
Quality, 2007). The OP equation also considers the amount 
of OP that is redistributed through phytoplankton and zoo
plankton basal metabolism. A fraction of OP settles to the 
sediment and another fraction is mineralized to phosphate 
through a first-order reaction. We also consider external phos
phorus loads to the system and losses via the exchanges with 
Lake Ontario. 

9.10.3.1.7 Fluxes from the sediment 
As a simple approximation to model the role of the sediments, 
we followed a simple dynamic approach that relates the fluxes 
of nitrogen and phosphorus from the sediment with the algal 
and particulate matter sedimentation and burial rates while 
also accounting for the role of temperature (Arhonditsis and 
Brett, 2005). The relative magnitudes of ammonium and 
nitrate fluxes were also determined by nitrification and deni
trification occurring at the sediment surface. 
� �
� �

9.10.3.2 Bayesian Framework 

9.10.3.2.1 Statistical formulation 
Our presentation examines a statistical formulation founded 
upon the assumption that the eutrophication model is an 
imperfect simulator of the environmental system and the 
model error is invariant with the input conditions, that is, the 
difference between model and system dynamics was assumed 
to be constant over the annual cycle for each state variable. This 
formulation aims to combine field observations with simula
tion model outputs to update the uncertainty of model 
parameters, and then use the calibrated model to give predic
tions (along with uncertainty bounds) of the natural system 
dynamics. An observation i for the state variable j, yij, can be 
described as 

yij ¼ f ðθ; xi; y0Þ þ  δj; i ¼ 1; 2; 3; …:; n and j ¼ 1; …; m ½1� 
where f(θ, xi, y0) denotes the eutrophication model, xi is a vector 
of time-dependent control variables (e.g., boundary conditions 
and forcing functions) describing the environmental conditions, 
the vector θ is a time-independent set of the calibration model 
parameters, y0 corresponds to the vector of the concentrations of 
the 16 state variables at the initial time point t0 (initial condi
tions), and δj is the stochastic term that accounts for the 
discrepancy between the model and the natural system. Under 
the normality assumption, the likelihood function will be 

m Y
− 1=2 

pðyj f ðθ; x; y0ÞÞ ¼  ð2πÞ− n=2 �Σδj
�

j ¼ 1
 

1 � �T � �
Σ −1exp − yj − f jðθ; x; y0Þ yj − f jðθ; x; y0Þ ½2�δj2 

where m corresponds to the number of state variables of our 
model for which data are available (m =16);  n is the number of 
observations in time used to calibrate the model (n = 12 average 
monthly values); yj = [y1j, …, ynj]

T and fj(θ, x, y0) = [f1j(θ, x1, y0), …, 
fnj(θ, xn, y0)]

T correspond to the vectors of the field observations 
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�

� �

� �
��� �

and model predictions for the state variable j; Σδj = In·σj 
2 denotes 

the model structural error; and σj 
2 represents the time-indepen

dent, variable-specific stochastic terms. In the context of the 
Bayesian statistical inference, the posterior density of the para
meters θ and the initial conditions of the 16 state variables y0 

given the observed data y is defined as 

pðy f ðθ; x; y0; σ2ÞÞp θ ð Þ ð Þj ð Þp y0 p σ2
pðθ; y0; σ2jyÞ ¼  

∫∫∫p y fð j ðθ; x; y0; σ2ÞÞp θ p y0 ð Þdθdy0dσ2ð Þ ð Þp σ2� � �� � �
∝p y f  � θ; x; y0; σ2 p θ p y0 p σ2 ½3�ð Þ ð Þ

where p(θ) is the prior density of the model parameters θ and p 
(y0) is the prior density of the initial conditions of the 16 
variables y0. The characterization of the prior density p(y0) 
was based on the assumption of a Gaussian distribution with 
a mean value derived from the January monthly averages dur
ing the study period and standard deviation that was 25% of 
the mean value for each state variable j (Van Oijen et al., 2005); 
the prior densities p(σj 

2) were based on the conjugate inverse-
gamma distribution (Gelman et al., 1995). Thus, the resulting 
posterior distribution for θ, y0, and σ2 is 

m 
− n − 1=2

Y
pðθ; y0; σ2jyÞ∝ ð2πÞ =2j∑δjj


j¼1
 

1 T∑−1�exp − ½yj − f j ðθ ; x ; y0 Þ� δj ½yj − f jðθ; x; y0Þ� 2 
l

− 1=2 ∑θ
− 1=2 ∏ 

1 �ð2πÞ j j
k¼1 θk 

1 T∑−1�exp − ½log θ−θ0 � ½log θ −θ0�θ2 
− m=2 −1=2�ð2πÞ ∑y0 j
1 T∑ −1�exp − ½y0 −y0m � ½y0−y0m�y02 ! 

βaj m βjj 
σ
−2ðαjþ1Þ� ∏ exp ½4� 

j¼1 ΓðαjÞ j σ2 
j

where l is the number of the model parameters θ used for the model 
calibration (l=33);  θ0 indicates the vector of the mean values of 
θ in logarithmic scale; Σθ = Il ·σθ 

T·σθ and σθ = [σθ1, …, σθl]
T 

corresponds to the vector of the shape parameters of the l log
normal distributions (standard deviation of log θ); the vector 
y0m= [y1,1, …, y1,16]

T corresponds to the January values of the 
16 state variables; Σy0 = Im · (0.25)2 ·y0m 

T·y0m; αj (=0.001) and βj 
(=0.001) correspond to the shape and scale parameters of the m 
noninformative inverse-gamma distributions used in this 
analysis. 

9.10.3.2.2 Prior parameter distributions 
The calibration vector consists of the 33 most influential 
parameters as identified from a preliminary sensitivity analy
sis of the model. The present analysis examines two different 
sets of priors aiming to assess the sensitivity of the posterior 
patterns on the assumptions made during the prior parameter 
specification, which has been an historical criticism of the 
Bayesian inference in the literature (Dennis, 1996; Ellison, 
2004). The prior parameter distributions reflected the existing 
knowledge (field observations, laboratory studies, literature 
information, and expert judgment) on the relative plausibility 
of their values. Specifically, the characterization of the para
meter distributions was similar to the protocol used in 
Steinberg et al. (1997), that is, we identified the minimum 
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and maximum values for each parameter and then we 
assigned lognormal and log-uniform distributions parameter
ized such that 95% and 100% of the respective values were 
lying within the identified ranges. The group-specific para
meter spaces were delineated using the framework 
introduced by Zhang and Arhonditsis (2008). The prior dis
tributions of all the parameters of the model calibration 
vector are presented in Table 2. 

9.10.3.2.3 Numerical approximations for posterior 
distributions 
As presented in several recent studies (Arhonditsis et al., 2007, 
2008a, 2008b; Zhang and Arhonditsis, 2008), sequence of 
realizations from the posterior distribution of the model was 
obtained using MCMC simulations (Gilks et al., 1996). 
We used the general normal-proposal Metropolis algorithm 
coupled with an ordered over-relaxation to control the serial 
correlation of the MCMC samples (Neal, 1998). In this 
study, we are testing two parallel chains with starting points: 
(1) a vector that consists of the mean values of the prior 
parameter distributions and (2) a vector based on a prelimin
ary calibration of the model. The model was run for 40 000 
iterations and convergence was assessed with the modified 
Gelman–Rubin convergence statistic (Brooks and Gelman, 
1998). The accuracy of the posterior estimates was inspected 
by assuring that the Monte Carlo error (an estimate of the 
difference between the mean of the sampled values and the 
true posterior mean; see Spiegelhalter et al., 2003) for  all  the  
parameters was less than 5% of the sample standard devia
tion. Our framework is implemented in the WinBUGS 
Differential Interface (WBDiff) – an interface that allows 
numerical solution of systems of ordinary differential equa
tions within the WinBUGS software. 
9.10.3.3 Model Results and Prediction of the Frequency of 
Water-Quality Standard Violations 

The two MCMC sequences of the model applications with the 
two sets of priors converged rapidly (≈5000 iterations) and 
the statistics reported were based on the last 35 000 draws by 
keeping every 20th iteration (thin = 20). The uncertainty under
lying the values of the 33 model parameters after the MCMC 
sampling is depicted on the respective marginal posterior dis
tributions (Table 2 and Figure 6). Generally, the summary 
statistics of the posterior parameter distributions indicate that 
substantial amount of knowledge was gained for the 33 para
meters after updating the eutrophication model. Namely, several 
of the posteriors were characterized by significant shifts of their 
medians relative to the prior assigned values (e.g., Maxgrazing, 
KZ, βP, Vsettling,  and  Vsettling(phyt)), whereas the posterior inter
quartile ranges of all the parameters were significantly lower 
(<50%) than the ranges specified prior to the calibration. 
Nonetheless, there were also model parameters with fairly unin
formative/flat (e.g., Growthmax(phyt), Ik(cy), Ik(phyt), NH(cy), and  
NH(phyt)) and bi- or multimodal posterior distributions 
(e.g., PH(phyt), Pmaxuptake(cy), Pmaxuptake(phyt)). We also high
light the robustness of the posterior patterns on the prior 
parameter specifications, as the discrepancy between the 
posterior medians derived from the two priors was lower than 
20% for the vast majority of the parameters. Notable exceptions 
were the two half saturation constant for ammonium uptake 
73-192, DOI: 10.1016/B978-0-12-374711-2.00910-4



Author's personal copy

60 80 80 45 
AH(cy) AH(phyt) βN βP 

30 

30	 40 40 

15 

0 0 0 0 
60 70 80 100 120 140 150 0.3 0.4 0.75 0.80 0.85 

80	 Denitrifmax Filter 80 Filter(cy) (phyt) 40 Growthmax(cy)80 

4040	 40 20

0 0 0 0
 
5  10  0.005 0.010 0.015 0.020 0.010 0.012 0.014 1.0 1.2
 

Growthmax(phyt)	 30 Ik Ik 30

(cy) (phyt) Kbackground 

24 20 
20 

15
12	 10 10 

0	 0 0 0 
2.2 2.6 3.0 100 160 200 150 200 250 0.15 0.20 0.25 0.30 

120 
30 kchl a(cy) kchl a(phyt) 80 KCrefmineral KNrefmineral 

24 

60
15 12 40 

0	 0 0 0 
0.02 0.04 0.06 0.08 0.04 0.05 0.06 0.005 0.010 0.015 0.005 0.010 0.015 

80 
30 KPrefmineral 40 Kz Max grazing 30 mp(cy) 

4015 20	 15 

0	 0 0 0 
0.004	 0.008 80 100 120 0.40 0.45 0.50 0.01 0.02 

60 24 
40 mp NH(phyt)	 mz (cy) NH(phyt) 24 

16 
16 30 20 

8 
8 

0	 0 0 0 
0.01 0.02 0.15 0.16 0.17 40 60 80 80 100 120 140 

40 
Nitrifmax 40 PH(cy) 30 PH(phyt) 40 Pmaxuptake(cy) 

20 
20 15	 20 

0 0 0 0 
10 15 20 25 20 30 10 15 0.010 0.015 

80 
40 Pmaxuptake Vsettling 40 (phyt) (biogenic) Vsettling 24 Vsettling(cy) 

16
4020	 20 

8 

0	 0 0 0 
0.02 0.03 0.1 0.2 0.60 0.65 0.70 0.01 0.03 0.05 

40 Vsettling(phyt) 

20 

0 
0.1 0.2 0.3 

Integration of Bayesian Inference Techniques with Mathematical Modeling 185 

Figure 6 Posterior parameter distributions based on the assumption that the 33 parameters of the calibration vector follow a log-uniform distribution 
within the range provided in Table 2. 
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(AH(cy), AH(phyt)), the half-saturation light intensity for cyano
bacteria (Ik(cy)), and the fraction of inert phosphorus buried into 
deeper sediment (βP). The seasonally invariant (model structure) 
error terms (σj) delineate constants zone around the model 
predictions for the 16 state variables (Table 3). The majority of 
the error terms were also remarkably similar between the two 
experiments with the different priors. The only notable relative 
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Table 3 Markov Chain Monte Carlo posterior estimates of the mean 
values and standard deviations of the model structure error terms 

Log-uniform Lognormal 95% 

Parameters Mean Std. Dev. Mean Std. Dev. 

σPO4epi 0.589 0.172 0.501 0.141 
σOPepi 1.170 0.268 1.112 0.281 
σNH4epi 66.78 18.76 65.74 15.79 
σNO3epi 111.8 27.40 106.4 25.87 
σONepi 7.981 1.943 7.637 2.040 
σCYAepi 1.834 0.784 1.119 0.538 
σPHYTepi 40.31 11.29 44.26 14.64 
σZOOPepi 13.50 5.555 7.880 4.691 
σPO4hypo 0.868 0.221 0.728 0.190 
σOPhypo 0.961 0.244 0.890 0.221 
σNH4hypo 50.53 18.32 46.35 11.32 
σNO3hypo 147.6 36.79 126.8 32.03 
σONhypo 11.62 2.516 11.15 2.750 
σCYAhypo 3.937 1.055 3.501 0.854 
σPHYThypo 39.11 10.44 35.13 10.08 
σZOOPhypo 6.084 1.378 5.980 1.420 

Figure 7 Comparison between the observed data (black dots) and the mean
phosphorus, ammonium, nitrate, total nitrogen, chlorophyll a, and total zoopla
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(percentage) differences were the higher error terms for the 
epilimnetic cyanobacteria and zooplankton biomass derived 
from the log-uniform distributions, which were also character
ized by higher coefficients of variation (>40%). 

The model provided accurate representation of the system 
dynamics, that is, the mean predictions along with 95% cred
ible intervals were fairly close to the observed values for 
phosphate, TP, ammonium, nitrate, total nitrogen, chlorophyll 
a, and total zooplankton biomass in Hamilton Harbour 
(Figure 7). In particular, the model accurately predicts the 
winter maxima (≈11.5 μg l−1) and the summer minima (≈2.2– 
4.7 μg l−1) of the epilimnetic phosphate levels as well as the 
hypolimnetic accumulation during the summer-stratified per
iod (≈4.2–7.3 μg l−1). The latter pattern is primarily driven by 
the interplay between the Lake Ontario inflows and the phos
phorus sediment fluxes. The model underpredicts somewhat 
the epilimnetic TP concentrations that may stem from the 
assumptions made to overcome the lack of consistent data 
regarding the within-year variability of the exogenous loading, 
that is, it was assumed that the phosphorus inflow rates follow 
the precipitation month-to-month variability as calculated 
from the 1971–2000 climate normals. The model closely 
reproduces the winter (≈4.5 μg chl a l−1) and the summer 
(≈14 μg chl a l−1) phytoplankton levels, but seems to overpre
dict the spring chlorophyll a concentrations in that the model 
predicts a major spring phytoplankton bloom exceeding the 

l−1level of 20 μg chl a . This discrepancy in regard to the 
Harbour phenology may stem from the absence of reliable 
information from the system (Hiriart-Baer et al., 2009), as the 
sampling cruises of the monitoring programs typically do not 
start before the first or second week of May – a period that may 
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coincide with the recession rather than the peak of the spring 
bloom. Our model also predicts two major peaks of the zoo
plankton biomass: the first peak follows the spring 
phytoplankton bloom (≈200 μg C l−1), whereas the second 
one is predicted to occur at the end of summer–early fall 
(≈180 μg C l−1). These predictions match closely with the 
observed patterns reported by Dermott et al. (2007; 62–63, 
e.g., see figures 8 and 9), if we assume an average wet-to-dry 
biomass ratio equal to 10 along with 0.4 μg C per μg of dry 
zooplankton biomass (Downing and Rigler, 1984). 
9.10.3.3.1 Exceedance frequency and confidence of 
compliance with water-quality standards 
The MCMC posterior samples were also used to examine the 
exceedance frequency and confidence of compliance with dif
ferent water-quality standards under the present conditions 
and after 30% nutrient loading reduction. For illustration pur
poses, we selected two water-quality variables of management 
interest (i.e., chlorophyll a and TP concentrations), and 
then specified their threshold values (numerical criteria) at 
15 μg chl a l−1, and 25 μg TP l−1, respectively. For each iteration, 
we calculated the weekly predicted values and the 
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Figure 8 Marginal predictive distributions of total phosphorus and chlorophy
a, 15  μg l−1; total phosphorus, 25 μg l−1) during the summer-stratified period in
area below the 10% cutoff point is termed the confidence of compliance (CC), 
the 10% EPA guideline. 
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corresponding probabilities of exceeding the two water-quality 
criteria. The latter probabilities were calculated as follows: 

c ′−f ðθ; x; y0Þ′ p ¼ P c > c jθ; x; y0; σÞ ¼ 1−F ð5Þ 
σ 

where p is the probability of the response variable exceeding a 
numerical criterion c′, given values of θ, x, and  y0, σ is the model 
error, and F(.) is the value of the cumulative standard normal 
distribution. The weekly predicted values along with the calcu
lated exceedance frequencies were then averaged over the 
summer-stratified period (June–September). The distribution of 
these statistics across the posterior space (1750 MCMC samples) 
can be used to assess the expected exceedance frequency and the 
confidence of compliance with the two water-quality standards 
given the average nutrient loading conditions of the study system, 
while accounting for the uncertainty that stems from the model 
parameters and the model error. We also note that for illustration 
purposes, the present analysis focuses on the mean seasonal 
patterns in the study system and does not consider the interann
ual variability, which should be accommodated to improve the 
realism of our risk assessment statements. 

The model predicts that the expected exceedance frequen
cies of the 15 μg chl a l−1 and 25 μg TP l−1 numerical criteria, 
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Figure 9 Marginal predictive distributions of total phosphorus and chlorophyll a and exceedance frequency of two water-quality standards (chlorophyll 
, 15 μ g l−1 −a ; total phosphorus, 25 μg l 1) during the summer-stratified period in Hamilton Harbour after 30% reduction of the external nutrient loading. 
under the present loading conditions, are 32.9% and 70.1%, 
respectively (Figure 8). The corresponding confidence of com
pliance levels (the proportion of the exceedance frequency 
distribution that lies below the 10% cutoff point) were 
approximately 24.6% and 1.8%, and therefore it is nearly 
impossible to comply with the 10% Environmental 
Protection Agency (EPA) guideline (Figure 9). Based on the 
scenario of 30% reduction of the external nutrient loading, the 
exceedance frequencies of the chlorophyll a and TP threshold 
levels were 4.9% and 9.3%, respectively. As a result, our con
fidence of compliance increases to 84.5% and 72.3% for 
chlorophyll a and TP, respectively, indicating that these two 
water-quality criteria are likely to be met. This probabilistic 
assessment of the water-quality conditions should make 
model results more useful, because the deterministic state
ments are avoided and the optimal management schemes 
(e.g., reduction of nutrient loading) are determined by expli
citly acknowledging an inevitable risk of nonattainment. 

Under the present conditions, the relationship between chl 
a and TP in the surface waters was significant, although relatively 
weak with an r2  value approximately equal to 0.29 (Figure 10(a)). 
Given that other factors beyond nutrients can limit primary 
production, samples were classified based on their chl 
a/particulate phosphorus (PP) ratios (Hiriart-Baer et al., 
2009). Samples with chl a/PP ratios <0.8 were categorized as 
Treatise on Estuarine and Coastal Science, 2011, Vol.9, 1
phosphorus sufficient and those with ratios ≥0.8 were categor
ized as phosphorus limited. Indeed, the model predicts that 
phosphorus-limited algae occurs in the system but the frequency 
of the P-limited runs was lower than 1% of the total MC samples 
used in this analysis. Using this approach, it becomes evident 
that P controls growth in the Harbour only when other factors 
such as light availability and nitrogen supply are abundant and 
high growth rates are achieved. A reduction of the nutrient 
loading by 30% increased the slope (0.273 vs. 0.303) and the 
r 2 value (0.47) of the chl a–TP relationship, showing a more 
abrupt decline in chl a with a concomitant decrease in TP 
(Figure 10(b)). The number of P-limited samples also signifi
cantly increases (≈20%), indicating that the system will be 
experiencing phosphorus limitation more frequently. During 
times of P limitation, the chl a versus TP relationship consider
ably improved, with phosphorus availability accounting for 
81% of the variability in phytoplankton biomass 
(Figure 10(c)). Overall, these results provide evidence that the 
30% nutrient loading reduction will improve the water-quality 
conditions in the Harbour and is likely to meet the numerical 
criteria of 15 μg chl a  l−1 and 25 μg TP l −1. However, our analysis 
also suggests that the system will not achieve compliance with 
the current targeted environmental goals related to TP (17 μg l−1) 
and chlorophyll a concentrations (5–10 μg l−1), and therefore 
more drastic loading reductions will be necessary. 
73-192, DOI: 10.1016/B978-0-12-374711-2.00910-4



Author's personal copy

(a) (b) 

20 
17 [Chl a] = 6.088 + 0.3027 [TP] 

–1
 

l –1
 

l 

g  g  

, μ , μa a 14 

yl
l 

yl
l 

C
hl

or
op

h 14 

C
hl

or
op

h

11 

[Chl a] = 6.5239 + 0.2735 [TP] 
8 8 
20 26 32 14 20 26 

TP, μg –1 
 l TP, μg  l–1 

(c) 

16 [Chl a] = 1.0946 + 0.6152 [TP]

–1
 

l 
g  

, μ 14 

a
yl

l 
C

hl
or

op
h

12 

10 
14 18 22 

TP, μg  l–1 

Integration of Bayesian Inference Techniques with Mathematical Modeling 189 

Figure       a             
present conditions (a) and after 30% reduction of the external nutrient loading (b). Panel (c) illustrates the same relationship for the data classified as 
phosphorus limited (chl a:PP > 0.8) under the loading reduction scenario. 

10 The predicted relationship between chlorophyll and total phosphorus during the summer-stratified period in Hamilton Harbour under the
9.10.4 Conclusions and Future Perspectives 

As the articulation level of the water-quality models continues 
to grow, an emerging imperative is the development of novel 
uncertainty analysis techniques to rigorously assess the error 
pertaining to model structure and input parameters (Reichert 
and Omlin, 1997). The assessment of the uncertainty 
characterizing the multidimensional parameter spaces of 
mathematical models involves two important decisions: 
(1) selection of the likelihood measure to quantify model 
error and (2) selection of the sampling algorithms to generate 
a series of model realizations. In this chapter, we presented 
a Bayesian framework founded upon a Markov Chain Monte 
Carlo (MCMC) sampling algorithm and a Gaussian likelihood 
that enables the development of robust probabilistic analysis 
of error and uncertainty in model predictions by explicitly 
taking into account the measurement error, parameter uncer
tainty, and model structure imperfection. The proposed 
framework combines the advantageous features of both pro
cess-based and statistical approaches in that the models offer 
mechanistic understanding but still remain within the realm of 
data-based parameter estimation. The incorporation of 
mechanism improves the confidence in predictions made for 
a variety of conditions, whereas the statistical methods provide 
an empirical basis for parameter estimation. We have also 
illustrated some of the practical benefits for environmental 
management from the Bayesian calibration framework, such 
as the assessment of the exceedance frequency and confidence 
Treatise on Estuarine and Coastal Science, 2011, Vol.9
of compliance with different water-quality criteria as well as 
probabilistic inference on cause–effect relationships pertaining 
to water-quality management. Furthermore, the probabilistic 
predictions for water-quality variables of management interest 
(e.g., chlorophyll a and dissolved oxygen) can also be used to 
maximize the value of information gained from environmental 
monitoring programs (Van Oijen et al., 2005; Zhang and 
Arhonditsis, 2008). 

Aside from the probabilistic assessment of the water-
quality conditions, another benefit of the Bayesian parameter 
estimation is the alignment with the policy practice of adap
tive management, that is, an iterative implementation strategy 
that is recommended to address the often-substantial uncer
tainty associated with water-quality model forecasts, and to 
avoid the implementation of inefficient and flawed manage
ment plans (Walters, 1986). Adaptive implementation or 
‘learning while doing’ supports initial model forecasts of 
management schemes with post-implementation monitoring, 
that is, the initial model forecast serves as the Bayesian prior, 
the post-implementation monitoring data serve as the sample 
information (the likelihood), and the resulting posterior 
probability (the integration of monitoring and modeling) 
provides the basis for revised management actions (Qian 
and Reckhow, 2007). The Bayesian inference and decision 
theory can also provide a coherent framework for decision 
making in problems of natural resources management 
(Dorazio and Johnson, 2003). Management objectives can 
be evaluated by integrating the probability of use attainment 
, 173-192, DOI: 10.1016/B978-0-12-374711-2.00910-4
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for a given water-quality goal with utility functions that reflect 
different socioeconomic costs and benefits. The water-quality 
goals (resulting from specific management schemes) asso
ciated with the highest expected utility might then be chosen 
(Dorazio and Johnson, 2003). 

A recent analysis offered a new perspective by introducing a 
Bayesian hierarchical framework for simultaneously calibrating 
aquatic biogeochemical models at multiple systems (or sites of 
the same system) with differences in their trophic conditions, 
prior precisions of model parameters, available information, 
measurement error, or interannual variability (Zhang and 
Arhonditsis, 2009). This Bayesian hierarchical proposition 
may be useful for a variety of applications in aquatic sciences 
where partial, but not complete, commonality can be assumed 
among the modeled units. A characteristic case is the semi-
enclosed coastal embayments adjacent to the mouths of large 
rivers with restricted mixing with the open sea. These areas are 
intermediate zones in that they receive highly polluted inland 
waters from watersheds with significant agricultural, urban, 
and/or industrial activities while mixing with offshore waters 
of different chemical and biological characteristics (Smith et al., 
1999; Diaz and Rosenberg, 2008). This type of spatial hetero
geneity cannot be fully accommodated by the typical practice 
of developing spatially explicit mechanistic models with com
mon parameter values over the entire systems; that is, how 
realistic is it to assume that the same phytoplankton growth 
or zooplankton grazing rates occur throughout the water body? 
Rather, the practical compromise between entirely site-specific 
and globally common parameter estimates offered by the hier
archical approach may be a conceptually more sound strategy. 
In a similar manner, this methodology also enables the transfer 
of information across systems, thereby allowing the effective 
modeling of systems with limited information, that is, pro
blems of insufficient local data can be overcome by 
borrowing strength from well-studied sites on the basis of 
distributions that connect systems in space (Zhang and 
Arhonditsis, 2009). This outcome is also highly relevant to 
conservation practices of regions with high number of water 
resources for which complete data could never be practically 
collected. 

Several technical issues regarding the formulation of the 
error structure, the selection of the parameter priors and like
lihood functions, the optimal model complexity, and the 
computational efficiency of the Bayesian calibration scheme 
require particular attention and/or invite further investiga
tion. Although the present exercise showed that the posterior 
patterns are fairly robust to the prior parameter specification, 
evidence from the literature suggests that selection of the prior 
parameter space or the statistical representation of the model 
error can significantly alter the inference (Thiemann et al., 
2001; Forest et al., 2002). In this regard, robust Bayesian 
analysis is a promising framework to rigorously assess the 
conclusions drawn from typical uncertainty analysis applica
tions based on single prior distributions and/or likelihood 
functions (Berger, 1994). For example, Tomassini et al. 
(2007) examined the robustness of the uncertainty analysis 
results of climate system properties using classes of parameter 
priors, different scaling of the observational error, and alter
native likelihood functions. The posterior predictive patterns 
highlighted the critical role of the prior parameter distribu
tions, and also dictated areas where future data collection 
Treatise on Estuarine and Coastal Science, 2011, Vol.9, 1
efforts should focus on to constrain climate model sensitivity. 
Despite its sound premise though, the broad adoption of 
robust Bayesian uncertainty analysis in water-quality model
ing is still unclear given the computational demands that this 
framework entails. 

Recent efforts to improve the computational efficiency of 
MCMC implementations of Bayesian inference for water-
quality models have focused on the development of parallel 
algorithms (Altekar et al., 2004; Whiley and Wilson, 2004). 
Parallel computation for MCMC can reduce the time needed 
to generate a sufficient number of samples from target distri
butions of larger dimensions, although Whiley and Wilson 
(2004) assert that a good proposal distribution is of equal 
importance as the implementation of a parallelization 
scheme. Other propositions to efficiently estimate the poster
ior probability density function of parameters in complex 
high-dimensional problems involve the development of 
adaptive MCMC schemes that ensure ergodicity while adjust
ing the scale and orientation of the proposal distributions, for 
example, the differential evolution adaptive Metropolis 
(DREAM) introduced by Vrugt et al. (2008). The integration 
of such adaptive MCMC schemes with the generalized like
lihood uncertainty estimation (GLUE) method is likely to 
offer flexible, easily implemented frameworks that overcome 
the inefficiency of the typically used Monte Carlo-based sam
pling to locate behavioral simulations and reduce the 
associated computational time (Blasone et al., 2008). An 
appealing alternative may be the replacement of the rigid 
structure of complex mathematical models with more flexible 
modeling tools (e.g., Bayesian networks) that have the ability 
to integrate quantitative descriptions of ecological processes 
at multiple scales and in a variety of forms (intermediate 
complexity mathematical models, empirical equations, and 
expert judgments), depending on available information 
(Borsuk et al., 2004). 
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