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“I stress that the problem was not mathematics per se but the place of idolatry we have given it. And it

is idolatry. Like any priesthood, it has developed its own language, rituals and mystical signs to

maintain its status and to keep a befuddled congregation subservient, convinced that criticism is

blasphemy…Most frightening at all, our complacent acceptance of this approach shows that

mathematics has become a substitute of science. It has become a defense against an appropriate

humility, and a barrier to the acquisition of knowledge and understanding of our ocean

environments…When used improperly, mathematics becomes a reason to accept absurdity”

James O’Malley, former member of the New England Fisheries Management Council and Executive

Director of the East Coast Fisheries Federation, as quoted in the “Useless Arithmetic: Why

Environmental Scientists Can’t Predict the Future” by O.H. Pilkey & L. Pilkey-Jarvis.

Useless arithmetic or useful scientific tool?

Since the final quarter of the twentieth century, mathematical modeling has been extensively

used in environmental science as: (i) a technique for elucidating causal mechanisms, complex

interrelationships, direct and indirect paths in ecological structures, (ii) a substitute for performing

experiments that are technologically or economically unattainable by other means, and (iii) a heuristic

tool for developing conceptual models, testable hypotheses, and -ultimately- theories. Models have

widespread use in environmental decision-making and management, where they assist with the

examination of “what-if?” scenarios representing alternative management schemes. In this context,

models have offered an indispensable methodological tool for assessing system response to different

environmental stress conditions and for communicating potential repercussions/preferred options to

managers and politicians who must make decisions but lack scientific expertise. Examples of models
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used in environmental science as decision support tools for the management of natural resources include

those for air pollution chemistry, relating air pollution to adverse health effects, hydrology, surface and

ground water quality, population dynamics (e.g., fisheries models), land use planning, climate change on

global, regional and local scales, and system adaptation. In all these disciplines, the appeal of models

mainly stems from their ability to synthesize among different types of information reflecting our best

understanding of the ecosystem functioning, to identify the key individual relationships and feedback

loops from an inconceivably complex array of intertwined environmental processes, and to probe their

relative role on system behavior using a range of model application domains (Spear, 1997).

Despite the considerable progress accomplished over the last 3-4 decades, the credibility of

models for forming the basis of public policy decisions has been severely criticized in the literature.

With over 650 citations, the Oreskes et al. (1994) paper stands out as one of the classical critiques of the

veracity of their scientific methodology, advocating the -somewhat provocative- viewpoint that the

validation of models which deal with open systems is inherently impossible. If we go beyond the

controversy arising from the technical/philosophical meaning of validation (Rykiel, 1996), this

statement essentially highlights the important notion that model outputs should be viewed through the

prism of the underlying assumptions and that model acceptance in two or more settings is not evidence

for general model applicability, but rather the start of a perpetual race for confirmation. The greater the

number of cases where the model is tested and confirmed, the higher the likelihood that its structure and

conceptualizations are not fundamentally defective. More recently, Pilkey and Pilkey-Jarvis (2007)

disputed the trustworthiness of many models for addressing vexing aspects of the environmental

stewardship. Using several examples, their book demonstrated how recklessly developed models have

provided shaky foundation for environmental management policies, thereby leading to faulty decisions

with –oftentimes- devastating effects on the environment, e.g., poisoned mining sites, misleading
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predictions of sea level rise rates, uncontrolled nuclear wastes, unrealistic cost projections of artificial

beaches, and erroneous estimations of fish population yields. The authors attributed the documented

inadequacy for addressing societally important issues to the fact that mathematical modeling has

advanced without the healthy dose of criticism required to obtain good science; partly because the

“impenetrable” nature of mathematics has prohibited sober views from the user community, which in

turn “has allowed modelers to carry their trade far beyond the limits of reality” (Pilkey and Pilkey-

Jarvis, 2007).

Regardless of how one responds to the critical views of mathematical modeling as a scientific

endeavor, it cannot be denied that the arbitrary selection of higher –and often unattainable- threshold

values for environmental variables (quality goals/standards) as a hedge against unknown forecast errors,

risky model-based management decisions, and unanticipated system responses are often experienced in

current management practice. Modelers are far from being in a position to claim that the current

generation of ecological models has the capacity to address increasingly complex issues on the

management of natural resources (Clark et al., 2001). Our experience indicates that the forecasting of

natural system behavior is extremely difficult, as ecosystem dynamics are driven by foreseeable

environmental processes which are often confounded with self-organized, complex adaptive behaviors

that are difficult to be predicted (Stow et al., 2003). Nonetheless, despite the compelling reasons for

identifying the idiosyncrasies and knowledge gaps of the natural environment, for differentiating

between predictable and unpredictable patterns, and for critically evaluating model outputs, modelers

frequently overstate the power of models making unfounded statements and misleading projections.

Furthermore, the modeling community has not reached a consensus yet about the methodological

protocol needed to develop mathematical models or about the appropriate standards, test procedures, and

specific metrics required for objectively assessing model performance (Rykiel, 1996). Contrary to other
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disciplines, there is still considerable confusion about the theoretical, operational, and data components

pertaining to mathematical modeling, although several critical voices have appeared in the literature

pinpointing the controversy amongst model developers and the resource managers who use them about

how to develop, evaluate and interpret numerical earth science models (Levins, 1966; Holling, 1978;

Beck, 1987; Franks, 1995; Rykiel, 1996).

What is the capacity of the current models to simulate the dynamics of environmental systems?

How carefully do modelers develop their models? Which model features primarily determine our

decision to utilize a specific model? How rigorously do we assess what a model can or cannot predict?

The purpose of this paper is to answer some of these questions by reviewing the state of aquatic

biogeochemical modeling; a research tool that has been extensively used for understanding and

quantitatively describing aquatic ecosystems. Mechanistic aquatic biogeochemical models have form the

scientific basis for environmental management decisions by providing a predictive link between

management actions and ecosystem response; they have provided an important tool for elucidating the

interactions between climate variability and plankton communities, and thus for addressing questions

regarding the pace and impacts of climate change. The sizable number of aquatic ecosystem modeling

studies which successfully passed the scrutiny of the peer-review process along with the experience

acquired from addressing a breadth of management problems can objectively reveal the systematic

biases, methodological inconsistencies, and common misconceptions characterizing the modeling

practice in environmental science. My arguments are that (i) models are not always developed in a

consistent manner, clearly stated purpose, and predetermined acceptable model performance level, (ii)

the potential “customers” select models without properly assessing their technical value, (iii) the

development of novel methods for rigorously assessing the uncertainty underlying model predictions

should be a top priority of the modeling community, and (iv) the model complexity should be



- 6 -

commensurate to the available knowledge from the system; we need to adopt techniques that allow

selecting parsimonious models over unjustifiably complex or oversimplistic modeling constructs.

How effectively do we model aquatic ecosystem dynamics?

It is about 40 years ago when Chen (1970) introduced a general model structure for addressing a

broad class of water quality problems. This modeling framework essentially proposed a general set of

equations for describing key physical, chemical, and biological processes with site-specific parameters,

initial conditions, and forcing functions which then were used to reproduce real-world dynamics, to gain

insights into the ecosystem functioning, and to project future system response under significantly

different external conditions (e.g., nutrient enrichment, climate change). The philosophy and the basic

set of equations proposed in these early models still remain the core of the current generation of

mechanistic aquatic biogeochemical models, although advances in scientific understanding and

improvements in methods of numerical analysis have brought significant progress with regards to the

accuracy and sophistication. Reckhow and Chapra (1999) interpreted the fact that all the recent

improvements in water quality modeling have built and evolved upon the foundation provided by early

studies from the mid-70s, as evidence of the strength of the original modeling propositions (O'Connor et

al., 1975; Thomann et al., 1975; Donigian and Crawford, 1976). On the other hand, Arhonditsis et al.

(2006) argued that the absence of novel ideas and creativity may also be a pathological symptom of the

field of aquatic ecosystem modeling inviting one to ask what it would take to prime the pump for

significant breakthroughs to come along.

In an attempt to evaluate the current state of aquatic biogeochemical modeling, Arhonditsis and

Brett (2004) presented a meta-analysis of 153 modeling studies published in the peer-reviewed literature

between 1990 and 2002. Despite the heterogeneity of the modeling studies examined with respect to
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model complexity, type of ecosystem modeled, spatial and temporal scales, and model development

objectives, this study unveiled statistically significant trends of the model performance. The first striking

feature of this analysis was the absence of systematic goodness-of-fit assessment of the original models,

i.e., plots in which simulated values were visually compared with observed data were only presented for

16.8% of the model endpoints, and even less (1.3%) were the cases in which thorough statistical

examination of the model fit was reported. In the cases in which measures-of-fit or comparison plots

were presented, Arhonditsis and Brett (2004) independently assessed state-variable performance as

expressed by the relative error (RE = Σ|observed values–simulated values|/Σobserved values) and the

coefficient of determination (r2) (Fig. 1). It was found that temperature and dissolved oxygen had the

lowest RE (median < 10%) and the highest r2 values (the respective medians were 0.93 and 0.70). The

typical limiting nutrient forms (NO3, NH4 , PO4 and Si) in freshwater and oceanic ecosystems along with

the phytoplankton biomass had intermediate fit, with median r2 values varying from 0.40 to 0.60 and the

median RE lying around the 40% level. Zooplankton dynamics were characterized by the highest RE

(70%) and the widest range of r2 (interquartile range ~0.8) and RE (interquartile range ~85%) values.

Similarly, bacteria were also poorly modeled (median r2 value <0.06), indicating that the performance of

existing mechanistic aquatic biogeochemical models declines as we move from physical-chemical to

biological components of planktonic systems. On a positive note, it was found that these results were

obtained without the introduction of a major “calibration bias”, i.e., in the process of maximizing the fit

for a specific state variable (usually phytoplankton biomass), the modelers do not seem to compromise

on the fit for other state variables (such as limiting nutrient concentrations or herbivorous zooplankton

biomass).

Arhonditsis and Brett (2004) also assessed the effects of model complexity (expressed as the

number of state variables), spatial dimension (from zero- to three-dimensional models), simulation
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period (from days to decades), and ecosystem-type on model performance. The study reported a positive

correlation between the number of state variables and the RE values for the different model outputs (r =

0.219, p < 0.001). This (counterintuitive) positive trend was even stronger when considering the RE

values for phytoplankton (r = 0.248, p = 0.003) and zooplankton (r = 0.626, p < 0.001) biomass

suggesting that more complex models usually result in slightly poorer model performance. Similarly, a

(very weak) positive correlation was found between the duration of the simulation period and the state

variable RE values (r = 0.098, p = 0.022) indicating that longer simulations are also increasing model

misfit. Marginally significant correlations also exist between the spatial complexity of the models and

their (RE values) performance trends (r = 0.104, p = 0.015). Finally, model error did not vary depending

on the type of ecosystem modeled (lakes/reservoirs, embayments/lagoons, coastal ecosystems/estuaries

and oceanic systems). These results provide overwhelming evidence that ambitious effort to increase the

level of ecological information mathematically represented by the models, to increase spatial complexity

and to use longer simulation periods, has not lead to a systematic improvement in model performance.

How carefully do we develop our models?

After four decades of experience, there are many excellent presentations in several modeling

textbooks of what “rational model development” is (e.g., Chapra, 1997; Jorgensen and Bendoricchio,

2001). The modeling literature emphatically argues the need for methodological consistency of the way

models are being developed, highlighting the importance of several critical steps, such as sensitivity

analysis, formal model calibration, and rigorous model validation. Nonetheless, Arhonditsis and Brett

(2004) showed a surprising absence of a systematic methodological protocol widely followed from the

modelers. In particular, only 27.5% of the models published from 1990 to 2002 reported results of

sensitivity analysis, while 27.4% of the studies solely tested the influence of certain model structures
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(e.g., alternative formulations) or parameters without providing any quantitative measures of model

response to the perturbations induced to the input vector. On the other hand, 45.1% of the modeling

studies did not provide any insights into the model behavior by evaluating the sensitivity of the model

outputs to parameters, forcing functions, or state-variable submodels. These results are quite

disappointing because this step is essential for indicating the accuracy required for the forcing function

data as well as for identifying the parts of the model that need to be estimated with greater precision.

However, modelers do not seem to appreciate the instrumental role of sensitivity analysis for selecting

the optimal structure and complexity in the model development process.

Modelers are commonly confronted with what is called an inverse problem: there is sufficient

information on the levels and the variability of the state (or dependent) variables, but little is known

about the values of the model parameters. The procedure by which the modeler adjusts the model

parameters to find the best agreement between modeled and observed data is called calibration. Model

calibration can be carried out by trial and error or by using optimization techniques. The optimization

methods are designed to search the parameter space for combinations of parameters which provide the

best fit through minimization of cost or objective functions (i.e., functions that measure the discrepancy

between observed data and model outputs). Thus, the latter strategy ensures that the calibration

parameter set is optimal and that a significant lack of fit is due to the inadequacy of the model structure

and not due to poor parameter choice (Chapra and Canale, 1998). Despite the conceptual and practical

advantages of model optimization, Arhonditsis and Brett (2004) found that only a small proportion

(8.5%) of the aquatic biogeochemical modeling studies base their calibration results on optimization

algorithms, whereas the vast majority (91.5%) of the modelers adopted the traditional manual

calibration. For some inexplicable reason, aquatic ecosystem modelers seem reluctant to embrace

optimization techniques and to include them in their repertoire when developing models.
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Modeling textbooks also emphasize that the calibration of a model (or “model training” phase)

does not provide any information with regards to its predictive power, but merely examines the ability of

a specific model structure to match a single dataset (Chapra, 1997). It is recommended that the

calibration should always be followed by the predictive evaluation; a procedure whereby the modeler

tests the model against an independent set of data, which ideally should be significantly different from

the one used during the calibration phase. This phase is also referred to as model “validation”, although

this term may be inappropriate for models that deal with open systems and numerous sources of

uncertainty (Oreskes et al., 1994). Arhonditsis and Brett (2004) compiled information for three types of

validation: (i) predictive validation defined as an evaluation of model performance against data acquired

from the real system after model calibration, (ii) model transferability to different systems (performance

of a specific model structure to different regions or ecosystem types), and (iii) structural validation

defined as the assessment of the realistic reproduction of the operational characteristics, causal

relationships, and relative magnitudes of various components of the system by the model (biological

rates, derived quantities). These validation procedures were carried out (or at least explicitly reported) in

47.1% of the aquatic ecosystem modeling studies, while the remaining 52.9% were not predictively or

structurally validated.

Generally, aquatic ecosystem modelers do not seem to consistently apply conventional

methodological steps during the development of their models. The large majority of the published

studies in the field over the last decade did not properly assess model sensitivity to the input vectors;

aquatic ecosystem modelers are still reluctant to embrace optimization techniques during model

calibration, and assess the ability of their models to support predictions in the extrapolation domain.

Thus, the establishment of a systematic methodological protocol for model development, which is

widely accepted by the aquatic biogeochemical modeling community, should be a top priority. The
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modelers should understand that the methodological consistency is an analogue to the way a chemical

analyst strives to attain clean laboratory conditions, excellent standardization curve, and faithful

application of the analytical protocol.

Which factors determine the impact of a modeling study?

Citation rates and impact factors are increasingly recognized as convenient tools for assessing

the importance and utility of scientific research; ideally, high quality papers should motivate future

research and should be used as source of information by subsequent studies in the field (Adams, 2002;

Leimu and Koricheva, 2005). Building upon the results presented in the Arhonditsis and Brett (2004)

study, Arhonditsis et al. (2006) attempted a second quantitative assessment of the current state of aquatic

biogeochemical modeling by focusing on the factors that determine their citation frequency. The main

objectives of this analysis were: (i) the evaluation of how has the modeling community received the 153

aquatic biogeochemical models published from 1990 to 2002; and (ii) the identification of the

characteristics of a model that are more attractive to the potential users and may influence the frequency

of its use and subsequent citation.

The articles citing aquatic biogeochemical modeling studies were classified in 60 different

disciplines. Several of these disciplines (e.g., astronomy, computer science, software engineering, plant

sciences, genetics and heredity) did not have close association with aquatic ecosystem models, which

may be evidence that this field can produce scientific knowledge (e.g., methodological advancements for

system analysis, ecological questions addressed) with broader application to different subject areas.

Oceanography was found to be the most popular thematic area of the articles that cite mechanistic

aquatic biogeochemical models and more than 27% (approximately 1500 counts) of the total citations

were related to this research topic (Fig. 2a). The second most popular subject category was marine and
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freshwater biology (21.75%) followed by geosciences (10.90%) and ecology (10.33%). On the other

hand, disciplines more closely associated with environmental management, e.g., environmental sciences

(8.21%), environmental engineering (2.37%) and water resources (1.81%), received a relatively low

proportion of the total citations.

The same study also examined the association between citation rates and several characteristics

of the published modeling studies: ecosystem-type, methodological consistency, and model

performance. Using as a criterion the type of the ecosystem modeled, the published modeling studies

were classified in six categories, i.e., “Coastal area-Estuary”, “Mesocosm”, “Bay-Lagoon-Harbour”,

“Lake-Reservoir”, “Ocean-Sea’, and “River”. Ocean modeling studies have received significantly higher

citations (F=7.87, df=5, p<0.001) among the various ecosystem-types (Fig. 2b). Regarding the model

complexity (expressed as the number of state variables) as a model feature that attracts citations, it was

found that the citation rates of the individual articles were not significantly correlated with the

corresponding model complexity (r=0.111, p=0.183), although there was an increasing citation trend for

models with over 40 state variables (Fig. 3a). Model performance was also not considered as a criterion

for citing modeling papers; e.g., citation rates and model performance for the “key” state variable

phytoplankton were not significantly correlated (r=0.163, p=0.07; Fig. 3b). It was also examined

whether the methodological consistency of the published modeling studies is a factor that determines

their citation rates. The citation counts did not differ significantly among studies that presented

(thorough/partial) sensitivity analysis or not (F=1.16, df=2, p=0.316). The citation patterns of the

modeling studies were not affected by whether or not the modelers reported assessment of the goodness-

of-fit (F=0.05, df=1, p=0.943; Fig. 3c), and by whether or not the original modeling studies presented

structural or predictive validation (F=2.03, df=1, p=0.156).
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Overall, these results show that the citations of the aquatic biogeochemical modeling studies are

determined neither by the model complexity nor by the reported performance and methodological

consistency. The type of the ecosystem being modeled is the most influential factor shaping the citation

patterns of the modeling papers. Ocean modeling studies receive considerable attention and

overwhelmingly dominate the total citation counts. Arhonditsis et al. (2006) attributed the high number

of citations of oceanic modeling to two basic reasons. First, many of the oceanic numerical models have

been developed to offer insights into the oceanic response to climate change and also to illuminate the

interplay between plankton dynamics and atmospheric CO2 levels via several feedback mechanisms,

e.g., “biological pump”, calcification (Hays et al., 2005). Thus, oceanic modeling produces knowledge

that is appealing to a broader audience and stimulates research spanning a wide range of tightly

intertwined disciplines. Second, oceanic modeling appears to be a more methodologically-coherent and

vibrant area of research, oceanic modelers are keener to embrace technical advances for controlling

prediction error or for addressing problems of underdetermination, e.g., to implement assimilation

schemes, to test new ecological theories, and to include specific plankton functional types and multiple

element cycles (Doney, 1999; Denman, 2003; Anderson, 2005).

Model application for addressing environmental management issues on a local scale faces

challenges as a scientific tool. The number of studies from lakes, reservoirs, coastal embayments,

estuaries, and harbors combined was approximately equal to the number of oceanic applications,

whereas the majority of these -local character- modeling studies have received fairly low citations.

Arhonditsis et al. (2006) highlighted as a main reason for the low citation rates the failure to engage

novelty and creativity with solutions to management problems which inevitably results in unattractive

modeling products that cannot export knowledge to other disciplines. Reckhow and Chapra (1999)

emphasized that the conceptual weaknesses, methodological omissions, lack of quantification of the
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residual variability and parameter uncertainty in predictions are more critical when addressing practical

management problems. Evidently, modelers are reluctant to borrow experiences and new ideas from

other disciplines or similar character modeling studies when addressing environmental management

issues; for example, data assimilation techniques, formulations that consider new ecological theories

(e.g., stoichiometric nutrient recycling theory), and novel calibration methods are relatively rare (Errico,

1997; Kennedy and Hagan, 2001; Arhonditsis and Brett, 2005a,b). Clearly, some of the current

modeling practices have to change, as the need for robust modeling tools to assist with the restoration of

impaired water bodies is more pressing now than ever before; e.g., the costly implementation of total

maximum daily loads for pollutants during the next 10-15 years has raised the bar for innovative model

developments that can accommodate rigorous error analysis (Borsuk et al., 2002).

Distinguishing between what we can and what we cannot learn from a model

Uncertainty analysis of mathematical models has received considerable attention in aquatic

ecosystem research, and there have been several attempts to rigorously address issues pertaining to

model structure and input error (Beck, 1987; Reichert and Omlin, 1997). Model structure error is mainly

associated with (i) the selection of the appropriate state variables for reproducing ecosystem behavior,

(ii) the selection of the suitable equations among a variety of mathematical formulations for describing

the ecological processes, e.g., Monod and Variable-Internal Stores (VIS) models for simulating the

phytoplankton uptake of nutrients from the water column and their utilization/storage in phytoplankton

cells, and (iii) the fact that our models are based on relationships which are derived individually in

controlled laboratory environments but may not collectively yield an accurate picture of the real world

dynamics (Reichert and Omlin, 1997). Model input error mainly stems from the uncertainty underlying

the values of model parameters, initial conditions and forcing functions as well as the realization that all
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models are drastic simplifications of reality that approximate the actual processes, i.e., essentially, all

parameters are effective (e.g., spatially and temporally averaged) values unlikely to be represented by

fixed constants.

Model practitioners also encounter the problem that several distinct choices of model inputs lead

to the same model outputs, i.e., many sets of parameters fit the data about equally well. This non-

uniqueness of the model solutions is known in the modeling literature as equifinality (Beven, 1993). The

main reason for the equifinality (poor identifiability) problem is that the causal mechanisms/hypotheses

used for understanding how the system works internally is of substantially higher order of what can be

externally observed (Beck, 1987). As a result, our ability to set quantitative (or even qualitative)

constraints as to what is realistic/behavioral simulation of an ecological structure along with the learning

capacity of a model is significantly reduced. Having a unique determination of model structure (and

associated parameter values) that realistically reflects the natural system dynamics is particularly

important when our goal is to make predictions for future hypothesized states. For example, when an

eutrophication model does not operate with realistic ecological structure (e.g., relative/absolute

magnitudes of biological rates and transport processes), even if the fit between model outputs and

observational data is satisfactory, its credibility to provide predictions about how the system will

respond under significantly different external nutrient loading conditions is very limited. Finally, another

problem that is seldom explicitly acknowledged is that the conventional calibration schemes, i.e., mere

adjustment of model parameters until the discrepancy between model outputs and observed data is

minimized, may provide the best fit to the dataset available at the moment, but it is specific to the given

dataset at hand. As new data become available, the model should be recalibrated and in the common

calibration practice there is no way of considering previous results. In this sense, we do not update
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previous knowledge about model input parameters, but rather we make the models dataset-specific

(Arhonditsis et al., 2007a).

In recognition of the uncertainty and equifinality problems, it is suggested that the model

calibration practice should change from seeking a single “optimal” value for each model parameter, to

seeking a distribution of parameter sets that all meet a pre-defined fitting criterion (Stow et al., 2007;

Arhonditsis et al., 2007a). These acceptable parameter sets may then provide the basis for estimating

model prediction error associated with the model parameters. Model uncertainty analysis can be viewed

as an attempt to formulate the joint probability distribution of model inputs, reflecting the amount of

knowledge available for model parameters, initial conditions, forcing functions, and model structure,

and then to update our knowledge on the form of this distribution after considering the observed data

from the system. In this regard, Bayes’ Theorem provides a convenient means to combine existing

information (prior) with current observations (likelihood) for projecting future ecosystem response

(posterior). Hence, the Bayesian techniques are more informative than the conventional model

calibration practices, and can be used to refine our knowledge of model input parameters as well as to

obtain predictions along with uncertainty bounds for output variables (Arhonditsis et al., 2007a). The

work of Hornberger and Spear (1981) was the first “Bayesian-like” effort to identify plausible parameter

sets for large multi-parameter environmental models. The proposed method, called regionalized (or

generalized) sensitivity analysis (RSA), was a Monte Carlo sampling approach to assess model

parameter sensitivity. RSA was a conceptually simple way to use limited information to bound model

parameter distributions. Given a particular model and an environmental system being modeled, the

modeler first defines the plausible range of certain key model endpoints as the “behavior”. For example,

based on existing information from the system the total phosphorus concentration lies within the range

of 10-30 μg/L. The modeler then samples from (usually) uniform distributions of each of the model
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parameters; all the parameter sets that result in total phosphorus predictions within the “behavioral”

range are termed “behavior generating” and become part of the model parameter distribution.

The assessment of the uncertainty characterizing the multidimensional parameter spaces of

mathematical models involves two critical steps: i) selection of the sampling scheme for generating

input vectors which then are evaluated with regards to the model performance, and ii) selection of the

likelihood measure to quantify model misfit. The selection of the scheme for generating input vectors

addresses the sampling efficiency of the approach, e.g., Random sampling, Latin hypercube, Markov

chain Monte Carlo (MCMC). Many Bayesian or non-Bayesian uncertainty analysis applications (e.g.,

Generalized Likelihood Uncertainty Estimation, Bayesian Monte Carlo) have been combined with

sampling algorithms which draw samples uniformly and independently from the prior parameter space.

These sampling strategies often insufficiently cover regions of high model likelihood; especially, when

the joint prior parameter distribution is very wide or the parameters are highly correlated (Qian et al.,

2003). To address this problem, several studies advocate the use of MCMC sampling schemes

specifically designed to sample directly from the posterior distribution and to converge to the higher

model likelihood regions (Gelman et al., 1995; Arhonditsis et al., 2007a; Stow et al., 2007). On the other

hand, the selection of the likelihood measures entails conceptual dilemmas involving the selection of

generalized (e.g., Root Mean Square Error, U-uncertainty, Reliability Index, Modeling Efficiency) or

purely probabilistic (e.g., Normal, Lognormal or Poisson error) likelihood functions that can

significantly change the results (Beven, 2001). In typical uncertainty analysis illustrations, the likelihood

measure is broadly specified as any measure of goodness-of-fit that can be used to compare observed

data with model predictions, e.g., sum of squared errors, fuzzy measures or even qualitative measures

for model evaluation (Beven, 2001). From a statistical inference standpoint, the lack of formal

representation of the model error has been criticized for providing biased parameter estimates when not
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taking into account the correct model error structure (Thiemann et al., 2001). It has also been argued that

unless the likelihood measure corresponds to a well-defined probability distribution that directly

connects the data with model input parameters and output state variables, the uncertainty analysis results

do not have a clear Bayesian interpretation (Engeland and Gottschalk, 2002; Hong et al., 2005).

Several recent water quality modeling studies have attempted to demonstrate how the Bayesian

inference techniques combined with MCMC sampling schemes can improve model forecasts and

management actions over space and time (Malve et al., 2007; Arhonditsis et al., 2007a; 2008a,b).

Arhonditsis et al. (2007a) introduced a Bayesian calibration scheme using intermediate complexity

mathematical models (4-8 state variables) and statistical formulations that explicitly accommodate

measurement error, parameter uncertainty, and model structure imperfection. Namely, the Bayesian

configuration of the model was based on statistical formulations that assumed (i) a ‘‘perfect’’ model

structure along with additive (or multiplicative) measurement error; and (ii) a simulator that imperfectly

represents the dynamics of the natural system. The former formulation postulates that the model misfit is

solely caused by the error associated with the data, whereas the latter one also considers errors in the

model structure, e.g., missing key ecological processes, misspecified forcing functions, erroneous

formulations. It should also be noted that, aside from the analytical/sampling error, the term

measurement error also reflects the notion that the observational data are just a “snapshot” of the real

system, an instantaneous record of few components from numerous complex and interactive processes

that depending on the sampling network used, the ecosystem modeled and the questions addressed, can

form an objective criterion for evaluating model performance (Fagerstrom, 1987). The characterization

of the uncertainty underlying the model parameters prior to model calibration (prior parameter

distributions) was based on field observations from the lake, laboratory studies, literature information,

and expert judgment using the protocol presented by the Steinberg et al. (1997) study. The Bayesian
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calibration framework was then used to quantify the information the data contain about model inputs, to

offer insights into the covariance structure among parameter estimates, and to obtain predictions along

with credible intervals for model outputs (Arhonditsis et al., 2007a; 2008a, b).

Some of the technical advances from the Bayesian calibration methodology are as follows:

i) Identification Problem: By incorporating prior information on the model parameters, the

Bayesian inference techniques offer an effective strategy to alleviate the identification problem. Prior

knowledge of the magnitudes of ecological processes can be converted into probability distributions that

reflect the relative plausibility of different values of the respective model parameters, which then can be

included into the “prior-likelihood-posterior” update cycles. As a result, the use of additional

information (along with the calibration dataset) reduces the disparity between what ideally we want to

learn (internal description of the system) and what can realistically be observed, which is the primary

reason for the poor model identifiability (Beck, 1987). In this regard, Arhonditsis et al. (2007a) showed

that the assumption of a perfect model structure usually results in narrow-shaped parameter

distributions, whereas the statistical formulation representing the imperfect simulator tends to provide

flatter posteriors (Fig. 4). Although the latter finding indicates that the inclusion of the model

discrepancy error terms reduces the information gained regarding the values of the calibration vector,

the low posterior variances of the former approach do not necessarily depict the amount of knowledge

with regards to the parameter values when considering prior literature information and available data

from the system modeled. This result may stem from an overconditioning of the parameter estimates

owing to an overestimation of the information content of the observations, which then can limit the

potential applicability of the model in the extrapolation domain (Arhonditsis et al., 2008a)

ii) Realistic uncertainty estimates of the ecological forecasts: For the purpose of prediction, the

Bayesian approach generates a posterior predictive distribution that represents the current estimate of the
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value of the response variable, taking into account both the uncertainty about the parameters and the

uncertainty that remains when the parameters are known (Gelman et al., 1995). Therefore, the estimates

of uncertainty of Bayesian model predictions convey significant information in regards to model

credibility. In particular, the statistical formulations that explicitly consider the discrepancy between

mathematical model and environmental system have been repeatedly shown to improve the model

performance, i.e., the median predictions along with the 95% credible intervals delineate zones that

accurately describe the observed data (Fig. 5). Thus, Arhonditsis et al. (2008a) pointed out that the

development of statistical formulations explicitly recognizing the lack of perfect simulators of natural

system dynamics is a promising prospect for the Bayesian calibration framework, but future research

should seek for possible modifications to accommodate complex mathematical models.

In a follow up study, Zhang and Arhonditsis (2008a) used a complex aquatic biogeochemical

model that simulates multiple elemental cycles, multiple functional phytoplankton (diatoms, green algae

and cyanobacteria) and zooplankton (copepods and cladocerans) groups to illustrate how the Bayesian

calibration framework can be used for assessing the exceedance frequency and confidence of

compliance of different water quality criteria (Fig. 6). A recent analysis also demonstrates how the

incorporation of updated models into Bayesian hierarchical frameworks enables the transfer of

information across systems, thereby allowing the effective modeling of lakes with limited information,

i.e., problems of insufficient local data can be overcome by “borrowing strength” from well-studied sites

on the basis of distributions that connect systems in space (Zhang and Arhonditsis, 2008b). This

outcome is highly relevant to conservation practices of regions with high number of water resources for

which complete data could never be practically gathered (Fig. 7). Finally, aside from the probabilistic

assessment of the water quality conditions, another benefit of the Bayesian parameter estimation is the

alignment with the policy practice of adaptive management, i.e., an iterative implementation strategy
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that is recommended to address the often-substantial uncertainty associated with water quality model

forecasts, and to avoid the implementation of inefficient and flawed management plans (Walters, 1986).

Adaptive implementation or “learning while doing” supports initial model forecasts of management

schemes with post-implementation monitoring, i.e., the initial model prediction serves as the Bayesian

prior, the post-implementation monitoring data serve as the sample information (the likelihood), and the

resulting posterior probability (the integration of monitoring and modeling) provides the basis for

revised management actions (Qian and Reckhow, 2007).

Complex mathematical models: An emerging imperative or “shiny mathematical castles on grey

biological sand”?

As knowledge regarding the complex components of environmental systems continues to grow,

there is a demand for increasing the articulation levels of our mathematical models. Generally, the

premise for constructing complex models is to mirror the complexity of natural systems and consider

ecological processes that can become important in future states driven by significantly different

conditions (Reichert and Omlin, 1997). Modelers essentially believe that if they can include all the

significant processes in the mathematical equations, then the model will closely mimic the real system

and thus will have increased predictive ability under a wide range of environmental conditions.

However, there are several important reasons to be very careful when we decide to opt for more

complex models. First, the basic elements of large process-oriented models are simple equations adopted

as useful first approximations of isolated behaviors in controlled laboratory experiments. Although this

practice was convenient and necessary to make complex models manageable, it would seem surprising

that simple disparate equations should collectively yield accurate information about ecosystem behavior.

Indeed, Arhonditsis et al. (2006) showed that the typical assumptions made to characterize mechanisms
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in mathematical models negate the premise that “if the modelers use correct process descriptions then

the models can effectively reproduce natural system dynamics”. This is simply not a reasonable

expectation! Beyond that, we seem to be locked into a space/time scale that has become the de facto

modeling standard, yet is beyond our ability to correctly capture in the mathematics and is also

incompatible with available data for parameter estimation (Arhonditsis et al., 2006). Furthermore, the

complex models with their many degrees of freedom (tunable parameters) can in principle provide good

fit to any data set, but it should not be neglected that the increasing complexity also reduces our ability

to properly constrain the model parameters from observations, i.e., the number of parameters that must

be specified from the data is approximately proportional to the square of the number of model

compartments (Denman, 2003). Thus, to overcome the overparameterization problem, the ultimate

challenge for any model training exercise is to find a parameter vector that performs equally well against

both calibration and validation datasets, thereby effectively connecting current system dynamics with

conditions representing chosen scenarios.

In the context of aquatic biogeochemical modeling, there is an increasing pressure to explicitly

treat multiple biogeochemical cycles, to increase the functional diversity of biotic communities, and to

refine the mathematical description of the higher trophic levels (Anderson, 2005; Arhonditsis and Brett,

2005a; Fennel, 2008). In particular, there are views in the literature suggesting the inclusion of multiple

nutrients along with the finer representation of plankton communities, as necessary model

augmentations for disentangling critical aspects of aquatic ecosystem dynamics, e.g., species

populations are more sensitive to external perturbations (nutrient enrichment, episodic meteorological

events), and key biogeochemical processes are tightly linked to specific plankton functional groups

(Cottingham and Carpenter, 1998; Flynn, 2005; Arhonditsis et al., 2007b). Nonetheless, the derivation

of distinct functional groups from fairly heterogeneous planktonic assemblages poses challenging



- 23 -

problems. Because of the still poorly understood ecology, we do not have robust group-specific

parameterizations that can support predictions in a wide array of spatiotemporal domains (Anderson,

2005). For example, preliminary efforts to incorporate plankton functional types into global

biogeochemical models were based on speculative parameterization and –not surprisingly- resulted in

unreliable predictions (Anderson, 2005). Likewise, Zhao et al. (2008a) showed that the reproduction of

seasonal succession plankton patterns in freshwater ecosystems is quite fragile and only occurs in a

fairly narrow window of the model parameter space. The latter study also pondered if it is “reasonable to

expect single-valued data set-specific parameter estimates of artificially defined biotic entities to be

extrapolated over wider geographical regions?” Furthermore, recent attempts to integrate

biogeochemistry with fish production underscore the uncertainty arising from the mismatch between the

operating time scales of planktonic processes and fish life cycles as well as the need to consolidate the

mechanistic description and parameterization of several critical processes, such as the reproduction and

mortality of the adult stages (Fennel, 2008). Despite the repeated efforts to increase model complexity,

we still haven’t gone beyond the phase of identifying the unforeseeable ramifications and the challenges

that we need to confront so as to improve the predictive power of our models (Anderson, 2006).

Another topic that has received considerable attention is the mathematical representation of the

biochemical heterogeneity at the primary producer–herbivore interface to illuminate the patterns of

nutrient and energy flow transferred through the food web (Andersen, 1997; Arhonditsis and Brett,

2005a; Mulder and Bowden, 2007, Zhao et al., 2008b). One of the most debatable issues in the aquatic

ecology is the relative role of the deficiencies in essential elements (e.g., carbon, nitrogen, phosphorus)

and biochemical compounds (e.g., essential fatty acids) on zooplankton growth and reproduction. There

are studies underscoring the critical role of the discrepancy between the prey and predator elemental

somatic ratios on food web structure, e.g., mineral phosphorus-limitation hypothesis (Sterner and
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Schulz, 1998; Elser and Urabe, 1999). Others suggest that the algal taxonomic differences in food

quality due to differences in their fatty acid (FA), protein, amino acid content, and digestion resistance

determine the trophic transfer efficiency in aquatic pelagic food webs, e.g., FA limitation hypothesis

(Muller-Navarra et al., 2004). In this regard, considerable insights into the potential implications of the

ecological stoichiometry have been gained by a series of homeostatic consumer models that examine the

effects of P-deficient food on zooplankton growth rate as well as on consumer-driven P recycling (e.g.,

Loladze et al., 2000; Andersen et al., 2004). On the other hand, Perhar and Arhonditsis (2008)

highlighted the significant gap in the literature of predictive frameworks for the FA limitation, i.e.,

modeling studies that explicitly consider the constraints on zooplankton growth stemming from the

biochemical heterogeneity of the lake seston. Recently, Zhao et al. (2008b) pinpointed two major

outstanding challenges of the multi-elemental lower trophic level models: (i) assessment of the role of

the non-limiting element recycling (e.g., partitioning between dissolved and particulate phase of the

excess carbon and nitrogen) on different ecological processes, such as sedimentation,

nitrification/denitrification, and sediment diagenesis rates (Elser and Foster, 1998; Arhonditsis and

Brett, 2005b); (ii) the relaxation of the assumption of strict elemental homeostasis and the impact of

zooplankton adaptive stoichiometry on ecosystem functioning (Mulder and Bowden, 2007; Ferrão-Filho

et al., 2007). Yet, to elucidate these unknown aspects of the food-web dynamics, we cannot merely rely

on modeling exercises but rather we need comprehensive data sets that can uniquely constrain some of

the pertinent pathways (Flynn, 2006).

Reviewing the recent literature, one can find several interesting recommendations with regards to

the future aquatic ecosystem modeling. For example, the series of “Horizons” articles hosted in the

Journal of Plankton Research has offered many fresh ideas and pointers for progress (Anderson, 2005;

Flynn, 2006; Le Quéré, 2006). Their proposition to open the dialogue between biologists and
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mathematicians is certainly one of the ways forward. I also find very intriguing the advocated focus on

the relative role of the interconnections among the different biotic subunits on system dynamics. Flynn

(2006) emphatically argues that “it is becoming increasingly clear that there are a whole host of

interactions between members of plankton that the vast majority of models do not even hint at.” The

question arising is are we ready to mathematically depict or even to frame data collection efforts in this

direction? Until we can give a positive answer to this question, I believe that the gradual incorporation

of complexity, where possible and relevant, is the most prudent strategy. But any such model

development should be tightly coupled with rigorous assessment of the underlying uncertainty and the

Bayesian inference can be an invaluable ally in this frontier. Of equal importance is the establishment of

a systematic methodological protocol for aquatic biogeochemical model development along with

performance criteria widely accepted by the modeling community. Even if the journals cannot enforce

the submission of all the material required to reconstruct the mathematical models (Flynn, 2005), they

can still demand the modeling studies to meet certain methodological and performance criteria. Finally,

I couldn’t agree more with Anderson’s (2006) standpoint that prediction is not everything. We should

not be afraid from complex models even if their structure reduces the predictive ability. Complex

models offer excellent heuristic tools that allow insights into the direct, indirect, and synergistic effects

of the numerous ecological mechanisms forming the foundation of system behaviour. They are an

absolutely worthwhile scientific activity!
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Figure 1: Performance of aquatic biogeochemical models for the study period 1990 to 2002. Relative error

(%) and coefficient of determination (r2) values for temperature (TEMP), dissolved oxygen (DO), nitrate

(NO3), ammonium (NH4), phosphate (PO4), silicate (Si), phytoplankton (PHYT), zooplankton (ZOOP) and

bacteria (BACT). Numbers of studies for each state variable are indicated at the top of the corresponding

box-plots. [Adapted from Arhonditsis and Brett, 2004. Evaluation of the current state of mechanistic

aquatic biogeochemical modeling. Marine Ecology Progress Series, 271, 13–26.]
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Figure 2: (A) Frequency histogram of the scientific classification (subject category) of the papers that cite

mechanistic aquatic biogeochemical modeling papers. (B) Citation frequency for different types of

modeled ecosystem. [Adapted from Arhonditsis et al., 2006. Evaluation of the current state of mechanistic

aquatic biogeochemical modeling: Citation analysis and future perspectives. Environmental Science &

Technology, 40, 6547–6554.]

(B)

(A)
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Figure 3: Citation frequency for different levels of (A) model complexity (number of state variables), (B)

model performance for phytoplankton, and (C) reported assessment of the goodness-of-fit in the original

modeling study. [Adapted from Arhonditsis et al., 2006. Evaluation of the current state of mechanistic

aquatic biogeochemical modeling: Citation analysis and future perspectives. Environmental Science &

Technology, 40, 6547–6554.]
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Figure 4: Prior (thick black lines) and posterior parameter distributions of a limiting nutrient-phytoplankton-

zooplankton-detritus model: gray and thin black lines correspond to statistical formulations that assume

perfect and imperfect model structure, respectively. [Adapted from Arhonditsis et al., 2007a. Eutrophication

risk assessment using Bayesian calibration of process-based models. Ecological Modelling, 208, 215–229.]
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Figure 5: Comparison between the observed data and posterior predictive monthly distributions for

phosphate, total phosphorus, chlorophyll a and total zooplankton abundance. Black and gray lines correspond

to statistical formulations that assume perfect and imperfect model structure, respectively. Dashed lines

correspond to the 2.5 and 97.5% credible intervals. [Adapted from Arhonditsis et al., 2007a. Eutrophication

risk assessment using Bayesian calibration of process-based models. Ecological Modelling, 208, 215–229.]
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Figure 6: (A-B) Predictive distributions for water quality variables of management interest (chlorophyll a, total

phosphorus). The dashed lines correspond to the numerical criteria used to determine the frequency of violations under

different trophic conditions. (C-D) The exceedance frequency of the different water quality standards (chlorophyll a: 5

μg/L, total phosphorus: 25μg/L). In these distributions, the area below the 10% cutoff point is termed the confidence of

compliance (CC), and represents the probability that the true exceedance frequency is below the 10% EPA guideline.

(A) (B)

(C) (D)
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Figure 7: Structure of the Bayesian hierarchical framework: The problem of parameter estimation using cross-system

data is viewed as a hierarchy. At the bottom of the hierarchy are the process-based models for individual waterbodies i,

μνi = f(θνi). In the next level, the spatial heterogeneity is accommodated by introducing ν(=5) “regional” distributions;

i.e., depending on the geographical location, the model parametersθνi are drawn from one of these local populations.

Similarly, in the upper stage, the local population parameters μνand σνare specified probabilistically in terms of global

population parameters or hyper-parameters; for example, a global mean μand variance σthat correspond to the wider

Canadian area. The observed data yνi are used to estimate the model parameters θνi, the “regional” population

parameters μν, σνand the hyperparameters μ, σ.


