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The causal linkage between lake productivity and phosphorus loading has provided the basis for a family of
models that predict lake total phosphorus concentrations as a function of lake morphometric/hydraulic charac-
teristics, such as the areal phosphorus loading rate, mean lake depth, fractional phosphorus retention and areal
hydraulic loading.Most of these empirical models have been derived from “cross-sectional” datasets, comprising
multiple pointmeasurements or single averages from anumber of lakes, and are typically used to predict changes
within a single system at different points in time. This practice implicitly postulates that the large scale (cross-
sectional) patterns described in the model are also representative of the dynamics of individual systems. In
this study, we relax this assumption using a Bayesian hierarchical strategy that aims to accommodate the role
of significant sources of variability (morphology, hydraulic regime). We first examine several hierarchical struc-
tures representing different characterizations of model error, parameter covariance, and prior distribution
followed by the hyperparameters. Our analysis primarily highlights the robustness of the posterior group-level
patterns to the hierarchical formulation developed. We also show that the delineation of homogeneous subsets
of lakes with respect to their morphological/hydraulic characteristics and the subsequent integration with hier-
archical frameworksmay give empirical phosphorus retention/loading models with better predictive ability. We
thenpresent a complementary exercise that aims to accommodate the spatial and seasonal total phosphorus var-
iability within individual systems, using a spatially-explicit simple mass-balance model forced with idealized si-
nusoidal loading. Our study concludes by advocating that the hierarchical Bayes provides a conceptually
appealing framework to gradually accommodate different sources of variability and more prudently increase
the complexity of simple empirical models.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Vollenweider's (1975) eutrophication modelling work has spawned
a family of predictive tools that link total phosphorus concentrations
with lake morphometric/hydraulic characteristics (areal phosphorus
loading rate, fractional phosphorus retention, mean lake depth, and
areal hydraulic loading) and is often considered as one of themost influ-
ential contributions to the field of limnology. Despite their conceptual
and structural simplicity, these empirical models represent important
tools for the management of impaired lakes and the protection of unaf-
fected waterbodies (Brett and Benjamin, 2008; Dillon and Molot, 1996;
Reckhow and Chapra, 1983). The use of “cross-sectional” datasets,
consisting of multiple point measurements or single averages from a
number of lakes, is one of their appealing features as the significant
intersystem variability typically leads to well-identified parameters
and a fairly broad application domain (Prairie and Marshall, 1995).
Another major characteristic of their integration with the lake manage-
ment is their use for predicting within-system dynamics under the
1 416 287 7279.
ditsis).
assumption that large-scale (among-system) variability, reflected by
their parameter estimates, is also representative of the patterns charac-
terizing individual systems (Cheng et al., 2010; Reckhow, 1993). The
latter practice essentially postulates that the regulation of lake produc-
tivity by phosphorus inputs is the same among and within systems
and therefore all the lakes in the dataset have identical behaviour.

The credibility of the inference drawn by “global-scale” models to
address water quality issues in individual lakes has often been chal-
lenged, given that the variability within a single system is generally
much smaller than across multiple systems and may be confounded
by the seasonal patterns. In addition, the vast majority of the existing
empirical models fail to accommodate the interplay between offshore
and inshore sites in larger lakes. Nearshore areas represent transitional
zones in that they can receive polluted inland waters from watersheds
with significant agricultural, urban and/or industrial activities, while
mixing with offshore waters having different biological and chemical
characteristics (Shimoda et al., 2011). In the same context, the arrival
of dreissenid mussels in many parts of the Laurentian Great Lakes has
induced a major restructuring of the biophysical littoral environment
with profound shifts on the retention and recycling of nutrients, thereby
casting doubt on the suitability of simple mass-balance phosphorus
models to serve as management tools (Hecky et al., 2004; Kim et al.,
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2013). Namely, because of their founding assumption that the lakes re-
semble to well-mixed reactors, it has been argued that the lack of dis-
tinction between nearshore and offshore regions and the adoption of
lake-wide sedimentation rates fail to accurately reproduce the capacity
of the “nearshore shunt” inmodulating the particle and nutrient remov-
al from the water column in space and time (Hecky et al., 2004).

Recognizing the structural inadequacies of the classical phosphorus
loading models, the development of statistical techniques that relax
the assumption of globally-common parameter estimation has been
one of the priorities of the relevant modelling efforts. A characteristic
example is the random coefficient linear regression model that uses
random draws from a common probability distribution to obtain
system-specific characterization (Judge et al., 1985; Swamy, 1971),
thereby accommodating the behaviour of individual lakes and effective-
ly reducing the prediction error compared to classical (global) models
(Reckhow, 1993). More recently, Malve and Qian (2006) developed a
Bayesian hierarchical linear model to assess the likelihood of compli-
ance of Finnish lakes with chlorophyll a concentration standards
under different nitrogen and phosphorus loading conditions. This
modelling strategy offered the ability to transfer information across sys-
tems and support predictions in lakes with few observations and limit-
ed observational range, while the use of Bayesian inference allowed
impartially assessing the uncertainty associated with parameter esti-
mates and model predictions (Malve and Qian, 2006). Along the same
line of reasoning, Cheng et al. (2010) introduced a Bayesian hierarchical
configuration to evaluate the relative performance of seven lake phos-
phorus models, while achieving an optimal balance between site-
specific (where limited local data is a problem) and globally-common
(where heterogeneous systems inwide geographical areas are assumed
to be identical) parameter estimates. The hierarchical framework led to
significant improvement in the performance of the phosphorus reten-
tion/loading models against a cross-system dataset of 305 lakes,
although the predictive statements derived for individual lakes still
had a large error (Cheng et al., 2010).

In this study, our thesis is that the Bayesian hierarchical proposition
offers a convenient means for addressing a variety of aquatic science
and nutrient modelling problems in which partial, but not complete,
commonality can be assumed among the modelled units. First, we
examine several hierarchical formulations representing different char-
acterizations of model error, parameter covariance, and prior distribu-
tion followed by the hyperparameters. This part of our analysis
primarily aims to shed light on (i) the robustness of the posterior pa-
rameter patterns to the assumptions of the hierarchical formulation
used; and (ii) the potential of the delineation of homogeneous subsets
of lakes in regard to their morphological/hydraulic characteristics to
provide empirical hierarchical models with better predictive ability.
Second, we present a complementary exercise intended to accommo-
date the spatial and seasonal total phosphorus variability within indi-
vidual systems, using a spatially-explicit simple mass-balance model
forced with idealized sinusoidal loading. Striving for an improvement
of the credibility of model-based eutrophication management, our
study argues in favour of simple models that remain within the bounds
of empirical parameter estimation and therefore can accommodate
complete error analysis. The Bayesian hierarchical approach offers a
flexible ad-hoc strategy to gradually increase model complexity and
augment their explanatory value, whenever possible and relevant.

2. Methods

2.1. Cross-system TP (or “Vollenweider-type”) model

The first part of our analysis builds upon the dataset compiled by
Brett and Benjamin (2008) along with the key findings from the
Bayesian hierarchical reanalysis presented by Cheng et al. (2010). The
dataset consists of 305 North American and European lakes, collected
from eight published, large-scale phosphorus mass-balance budgets.
For each lake included in the dataset, we have an in-lake TP concentra-
tion, TPlake (μg L−1), the associated inflow weighted TP concentration,
TPin (μg L−1), and the basic morphometric/hydrologic characteristics
(i.e., lake volume, lake surface area, mean lake depth, inflow rate, hy-
draulic retention time). The configuration of our Bayesian hierarchical
framework is based on the delineation of the homogeneous groups de-
rived by Cheng et al.'s (2010) classification and regression tree (CART)
analysis, which identified the important morphometric (volume,
mean depth, surface area) and hydrologic (hydraulic retention time, in-
flow rates) characteristics alongwith the ideal cutoff levels of the ambi-
ent TP variability. In particular, we present our hierarchical modelling
exercise under two grouping schemes. The first one simply discrimi-
nates between deep and shallow lakes based on Cheng et al.'s (2010)
first splitting condition at a critical mean lake depth of 10.3 m, while
the second classification comprises the eight terminal nodes of
the same CART analysis (see lake characteristics in Table 1 of the
Electronic Supplementary Material). Among the different formulations
proposed in the limnological literature (Brett and Benjamin, 2008;
Cheng et al., 2010), we used the TPlake model that postulates the phos-
phorus loss term, σ, to be represented by an expression of the form
σ = k · τwx − 1, where τw is the mean hydraulic retention time (yr)
and k, x are adjustable parameters (see Appendix A). Several phospho-
rusmodelling studies over the past four decades have rendered support
to this model (Chapra and Reckhow, 1979; Larsen and Mercier, 1976;
Uttormark and Hutchins, 1978; Vollenweider, 1976; Walker, 1977),
which was also found to be the most parsimonious construct with the
present dataset (Brett and Benjamin, 2008; Cheng et al., 2010).

In our dataset, there are i = 1, 2,⋯, N separate lakes, with N = 305,
each classified in one of the m lake types or groups (2 or 8) delineated
by the CART analysis. In our predictive model, different lakes within
the same lake type are viewed as lakes with identical behaviour and
therefore share the same model parameters. Because our dataset con-
tains single TP observations for each system, presumably representative
of its typical phosphorus loading and hydrological conditions, our as-
sumption postulates that a particular model structure and parameter
specification is sufficient to accommodate the observed variabilitywith-
in each lake group. On the other hand, the same assumption does not
hold true for lakes that have been classified in different lake groups,
although some similarity is not ruled out. Therefore, estimates of
group-specific model parameters are expressed in terms of a common
prior distribution. In other words, we assume that lake type-specific
model parameters are random variables from a common distribution.
Computationally, it is natural to model the data hierarchically. That is,
TP average values of individual lakes are modelled conditional on lake
group-specific model parameter values, the lake group-specific model
parameter values are modelled conditional on one parameter distribu-
tion reflecting all lakes in our dataset, which are themselves modelled
conditional on hyperparameters that represent the hypothetical lake
population from which the lakes in our dataset have been sampled.
An important feature of the hierarchical model is that the hierarchical
probability distribution imposes dependence among parameters,
which allows a hierarchical model to have enough parameters to form
a realistic model without overfitting the data (Borsuk et al., 2001). The
inference drawn and the robustness of the parameter estimates of the
cross-system TP model was evaluated under five hierarchical formula-
tions summarized as follows:

(i) Classical hierarchical model:

log yi j
� �

� N f θ j; xi j
� �

; τ2
� �

θ j � N θ;σ j
2� �

θ j � N μ;σ2� �
μ � N 0; 10000ð Þ σ2 � IG 0:001;0: 001ð Þ
σ j

2 � IG 0:001;0:001ð Þ
τ2 � IG 0:001;0:001ð Þ
i ¼ 1;…;305 j ¼ 1;2 or8ð Þ



Table 1
Rootmean square error (RMSE) andNash SutcliffeModel Efficiency (NSME) values of phosphorus loadingmodelswith lake classifications in twoand eight groups. Numbers in parentheses
represent the RMSE values (μg TP L−1) when the lake TP concentrations in the corresponding groups were predicted with the two-group classification. The morphological/hydraulic and
water quality characteristics of the eight lake types are provided in the Electronic Supplementary Material.

Model 1 — Classical Model 2 — Informative
Global Prior

Model 3 — Alternative
Model Error

Model 4 — Multivariate
Normal

Model 5 — Multivariate
Normal & Alternative Error

Two-group lake classification
RMSE (overall) 185.2 185.9 191.2 186.6 191.9
NSME (overall) −0.113 −0.120 −0.187 −0.130 −0.195
RMSE (z ≤ 10.3 m) 229.0 228.2 234.8 229.1 235.7
NSME (z ≤ 10.3 m) −0.231 −0.223 −0.295 −0.233 −0.305
RMSE (z N 10.3 m) 37.87 37.84 37.49 37.86 37.49
NSME (z N 10.3 m) 0.613 0.613 0.620 0.613 0.620

Eight-group lake classification
RMSE (overall) 173.1 172.3 172.3 175.5 179
NSME (overall) 0.015 0.024 0.024 −0.009 −0.050
RMSE Group I 519.9 (567.7) 517.3 517.3 529.1 540.4
NSME Group I −1.155 −1.133 −1.133 −1.232 -1.329
RMSE Group II 45.81 (49.20) 45.75 45.75 45.78 47.83
NSME Group II 0.311 0.313 0.313 0.312 0.249
RMSE Group III 45.69 (51.70) 45.70 45.70 45.81 48.22
NSME Group III 0.683 0.682 0.682 0.681 0.647
RMSE Group IV 96.03 (100.5) 96.08 96.08 97.09 96.28
NSME Group IV 0.788 0.788 0.788 0.783 0.787
RMSE Group V 28.44 (28.51) 28.51 28.51 28.65 28.77
NSME Group V 0.650 0.648 0.648 0.645 0.642
RMSE Group VI 38.96 (38.92) 38.95 38.95 38.90 38.57
NSME Group VI 0.612 0.612 0.612 0.613 0.620
RMSE Group VII 47.05 (57.19) 47.07 47.07 47.58 47.57
NSME Group VII 0.578 0.577 0.577 0.568 0.568
RMSE Group VIII 7.421 (9.254) 7.406 7.406 7.555 8.122
NSME Group VIII 0.355 0.358 0.358 0.332 0.228
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where log(yij) is the observed log-transformed TPlake value from
the lake i in the group (lake type) j; f(θj, xij) is the empirical phos-
phorus loading model used; τ2 is the model error variance; θj is
the group-specific parameter set; xij represents the vector of
lake-specific input variables, i.e., the inflowweighted TP concen-
tration, TPin (μg L−1), and the mean hydraulic retention time, τw
(yr); θ corresponds to the global parameters; σj

2 is the group-
specific variance or alternatively the among-lake variance of
model parameters for the lake type j; μ and σ2 are the mean
and variance of the global parameter distributions (or the
hyperparameters), respectively;N(0, 10000) is the normal distri-
bution with mean 0 and variance 10000, and IG(0.001, 0.001)
is the inverse gamma distribution with shape and scale parame-
ters of 0.001. The prior distributions for τ2, σ2, and μ are consid-
ered “non-informative” or vague. The latter treatment of the
hyperparameters differs from the approach followed by Cheng
et al. (2010), in which both μ and σ2 are treated as known inputs
andwere associated (in varying degrees)with the corresponding
least square estimates reported by Brett and Benjamin (2008; see
their Table 5). A second major difference is that Cheng et al.
(2010) treated the group-specific parameters θj as draws
from normal distributions with unknown means and known
variances set equal to a very high value (=10,000), whereas
both first and second order moments with the current hierarchi-
cal configuration represent stochastic nodes that are subject to
updating.

(ii) Hierarchical model with informative global prior:

log yi j
� �

� N f θ j; xi j
� �

; τ2
� �

θ j � N θ;σ j
2� �

θ � N μ;σ2� �
μ � N μLS;σ LS

2� �
σ2 � IG 0:001;0:001ð Þ

σ j
2 � IG 0:001;0:001ð Þ

τ2 � IG 0:001;0:001ð Þ
i ¼ 1; ::::;305 j ¼ 1; 2 or 8ð Þ:
The difference between the second hierarchical structure and
the classical one is the use of an informative prior for the
hyperparameter μ. In particular, the specification of the vectors
μLS = [μk, μx] and σLS

2 = [σk
2, σx

2] was based on the assumption
that 68% of the corresponding values are lying within the least
square mean ± standard error ranges reported by Brett and
Benjamin (2008). Strictly speaking, this assumption implies
that information from the same dataset is used twice (formula-
tion of prior hyperparameter distributions, model updating),
and thus the second hierarchical formulation is purposely de-
signed to offer a reference strategy for comparing the robustness
of posterior parameter patterns. It is also worth noting that rela-
tive to the Cheng et al.'s (2010) parameterization, the present hi-
erarchical model allocates all the background information to the
global means, while the corresponding variances were assigned
“non-informative” inverse gamma priors.

(iii) Hierarchical model with alternative model structural error:

log yi j
� �

� N f θ j; xi j
� �

; τi j2
� �

θ j � N θ;σ j
2� �

θ � N μ;σ2� �
μ � N 0; 10000ð Þσ2 � IG 0:001;0:001ð Þ
σ j

2 � IG 0:001;0:001ð Þ
log τi j−2� � ¼ φ0 þ φ1 1=TPinij

� �
φ0;φ1 � N 0; 10000ð Þ
i ¼ 1; ::::;305 j ¼ 1;2 or 8ð Þ:

The third hierarchical structure is practically identical to the clas-
sical one with the only difference being the characterization of
the structural error τ2. In particular, we specify a regression
model that expresses the logarithm of lake-specific error preci-
sion (1/variance) as a linear function of the inverse of the corre-
sponding inflow weighted TP concentration. The slope, φ1, and
intercept, φ0, of the latter model are assigned flat normal priors.
This equation postulates a pattern of rectangular hyperbola



80 Y. Shimoda, G.B. Arhonditsis / Ecological Informatics 29 (2015) 77–91
between the model standard error and the inflow weighted TP
concentration.

(iv) Hierarchical model with multivariate normal parameter prior:

log yi j
� �

� N f θ j; xi j
� �

; τ2
� �

θ j � ΜN θ;Σθð Þ
θ � ΜN μ;Σμ

� �
μ ¼ 0; 0½ �;Σμ ¼ 10000 0

0 10000

� �
Σθ � IW R;2ð ÞR ¼ 0:1 0

0 0:1

� �
τ2 � IG 0:001;0:001ð Þ
i ¼ 1; ::::;305 j ¼ 1;2 or 8ð Þ:

Relative to the classical hierarchical model, the fourth configura-
tion explicitly accommodates the covariance between the model
parameters k and x at the lake-type (group) level. The covariance
matrix Σθ is assigned an inverse Wishart prior, in which the scale
matrix R represents an assessment of the order of magnitude of
the covariancematrix between the two group-specific parameters.
To represent lack of confidence on the existing information, we
chose two degrees of freedom for this distribution (n = 2),
which is equal to the rank of thematrix. A secondmajor difference
is that the fourth hierarchical model does not explicitly consider
the lake type-specific model parameter variance σj

2; that is, the
among-lake variance of model parameters for each lake type j is
now replaced by two stochastic nodes (diagonal elements of Σθ)
that capture the variability of the model parameters k, x across
the all the lake in our dataset. A multivariate normal distribution
with knownmean vector and covariancematrix is used as a global
prior; the mean values were set equal to zero, while the diagonal
elements of the covariance matrix were assigned high values
(=10,000) and the non-diagonal entries were set equal to zero.

(v) Hierarchical model with multivariate normal parameter prior and
alternative structural error:

log yi j
� �

� N f θ j; xi j
� �

; τi j2
� �

θ j � ΜN θ;Σθð Þ
θ � ΜN μ;Σμ

� �
μ ¼ 0; 0½ �;Σμ ¼ 10000 0

0 10000

� �
Σθ � IW R;2ð ÞR ¼ 0:1 0

0 0:1

� �
log τi j−2� � ¼ φ0 þ φ1 1=TPinij

� �
φ0;φ1 � N 0; 10000ð Þ
i ¼ 1; ::::;305 j ¼ 1; 2 or 8ð Þ:

The final hierarchical model combines the multivariate normal
characterization of the two parameters k and xwith the specifica-
tion of the logarithm of the structural error precision as a linear
function of the inverse of the inflow weighted TP concentration.

2.2. Continuously stirred tank reactor model forced with sinusoidal loading

The second part of our analysis is based on a spatially-explicit, mass-
balance model forced with idealized sinusoidal loading to predict total
phosphorus concentrations. The model was originally introduced by
Gudimov et al. (2012) to represent the epilimnion of Lake Simcoe,
Ontario, Canada, as a feedforward system of continuously stirred tank
reactors (Fig. 2). [A brief description of the basic limnological character-
istics of Lake Simcoe is provided in the Electronic Supplementary
Material.] A central feature of the feedforward configuration is
the postulation of a net unidirectional flow within the framework of
serial reactors considered; an assumption that was critically examined
by Gudimov et al. (2012). The analytical solution of the differential
equations that describe the TP balance in the three segments (S1, S2,
S3) is determined by the exogenous loading sources and three sinks
(outflow, reaction, and settling) that deplete the ambient phosphorus
levels in the system is:

For j ¼ S1; S2; S3 TPti j ¼
Wavg i jð Þ
λ i jð ÞV i jð Þ

þ
Wamplitude i jð Þ

V i jð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ i jð Þ

2 þω2
q sin ωt−θ i jð Þ−ϕ i jð Þ ωð Þ

h i

ϕ i jð Þ ωð Þ ¼ arctan
ω
λ i jð Þ

 !

λ i jð Þ ¼ κ1 i jð Þ þ κ2 i jð Þκ1 i jð Þ ¼
Q i jð Þ
V i jð Þ

κ2 i jð Þ ¼ k i jð Þ þ
v jð Þ
H jð Þ

in which TPtij is the total phosphorus concentration (μg L−1) in segment
j, year i, and day t;Wavg(ij) is the mean loading (tonnes day−1) entering
the segment j in year i; Wamplitude(ij) corresponds to the amplitude
around the mean loading Wavg(ij) (tonnes day−1); λ(ij) is the total loss
rate (day−1); V(ij) is the volume (m3) of segment j in year i; θ(ij) repre-
sents the phase shift (radians) of the loading from the standard wave;
φ(ij)(ω) is an additional phase shift related to the segment-specific re-
sponse; and ω denotes the angular frequency (radians day−1) of the
loading oscillation; Q(ij) is the volumetric outflow rate (m3 day−1)
from segment j in year i; ν( j) represents the settling velocity
(m day−1) in segment j; H( j) is the mean depth (m) of the segment j;
and k(ij) denotes the first-order reaction coefficient (day−1) in segment
j and year i. In a similar manner, the analytical solutions for the TP con-
centrations in day t in the other two sections are as follows:

Fork ¼ S4 TPtik ¼
X
j

Q i jð ÞWavg i jð Þ
λ i jð ÞV i jð Þλ ikð ÞV ikð Þ

þ Wavg ikð Þ
λ ikð ÞV ikð Þ

þ
Wamplitude ikð Þ

V ikð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ ikð Þ

2 þω2
q sin ωt−θ ikð Þ−ϕ ikð Þ ωð Þ

h i

þ
X
j

Q i jð ÞWamplitude i jð Þ

V i jð ÞV ikð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ i jð Þ

2 þω2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ ikð Þ
2 þω2

q
� sin ωt−θ i jð Þ−ϕ i jð Þ ωð Þ−ϕ ikð Þ ωð Þ

h i
For l ¼ S5 TPtil ¼

X
j

Q ikð ÞQ i jð ÞWavg i jð Þ
λ ilð ÞV ilð Þλ i jð ÞV i jð Þλ ikð ÞV ikð Þ

þ Q ikð ÞWavg ikð Þ
λ ilð ÞV ilð Þλ ikð ÞV ikð Þ

þ Wavg ilð Þ
λ ilð ÞV ilð Þ

þ
Wamplitude ilð Þ

V ilð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ ilð Þ

2 þω2
q sin ωt−θ ilð Þ−ϕ ilð Þ ωð Þ

h i

þ
Q ikð ÞWamplitude ikð Þ

V ilð ÞV ikð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ ikð Þ

2 þω2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ ilð Þ
2 þω2

q
� sin ωt−θ ikð Þ−ϕ ikð Þ ωð Þ−ϕ ilð Þ ωð Þ

h i
þ
X
j

Q ikð ÞQ i jð ÞWamplitude i jð Þ

V ilð ÞV i jð ÞV ikð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ i jð Þ

2 þω2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ ikð Þ
2 þω2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ ilð Þ

2 þω2
q

� sin ωt−θ i jð Þ−ϕ i jð Þ ωð Þ−ϕ ikð Þ ωð Þ−ϕ ilð Þ ωð Þ
h i

:

The hierarchical formulation used to accommodate the spatio-
temporal variability of the TP concentrations was specified as follows:

log TPti j
� � � N f κ1 i jð Þ; κ2 i jð Þ;Wavg i jð Þ; Wamplitude i jð Þ; θ i jð Þ

� �
; τ2

� �
τ2 � IG 0:001;0:001ð Þ
κ1 i jð Þ � N κ1 j; σκ1 j

2� �
κ2 i jð Þ � N κ2; σκ2 j

2� �
κ2 � N κ2μ ; σκ2

2� �
κ2μ � N 0; 10000ð Þ;σκ2

2 � G 0:001; 0:001ð Þ;σκ2 j
2 � IG 0:001;0:001ð Þ

Wavg i jð Þ � N WavgML i jð Þ;ΣTot i jð Þ
2

� �
ΣTot i jð Þ

2 ¼ σW ijð Þ2 þ σWavg i jð Þ2

Wamplitude i jð Þ � N WamplitudeML i jð Þ;σamplitude i jð Þ
2� �

θ i jð Þ � N θML i jð Þ;σθ i jð Þ2
� �

i¼1;…;5j¼1;…;5t¼1;…;7
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where TPtij corresponds to the average TP concentration at segment j,
year i, and day t (samples collected from April to October from 1999
to 2003); τ2 denotes the structural error variance of the seasonally-
forced TP model; κ1(ij) is the net outflow rate from segment j at year i;
the κ1j and σκ1j correspondingly denote the segment-specific average
flushing rates and the associated interannual variability, as calculated
from the respective water balance budgets; κ2ij is the net TP loss rate
in segment j at year i; κ2 represents the hyperparameter or the lakewide
TP loss rate; σκ2j

2 is the segment-specific variance, accounting for the
year-to-year variability of the sedimentation rates within each seg-
ment; and κ2μ and σκ2

2 are the mean and variance of the global parame-
ter distribution, respectively. The normal prior distribution assigned to
the parameter κ2μ and the inverse gamma distributions assigned to
the parameters σκ2

2 and σκ2j
2 were flat or uninformative. The mean

(Wavgij), amplitude (Wamplitudeij), and phase shift (θij) values of the phos-
phorus loading at segment j, year i and day t were drawn from normal
distributions in which the mean values (WavgMLij, WamplitudeMLij, θMLij)
and error variances (σWavgij

2, σamplitudeij
2, σθij

2) were themaximum like-
lihood estimators obtained from fitting sinusoidal functions to the cor-
responding monthly loading data. The normal distributions of the
mean annual loading (Wavgij) also considered the estimates of model
error variance (σWij

2) obtained from themaximum likelihood fitting ex-
ercise. In brief, the statistical calibration framework of the feedforward
model accommodates the spatial and year-to-year TP variability with
segment- and year-specific estimates of the sedimentation rate and
water residence time, while its mathematical structure postulates that
the TP seasonal patterns are primarily regulated by thewithin-year var-
iability of the inflowing phosphorus from the adjacent watershed.

2.3. Model computations

Sequences of realizations from the posterior distributions of all of
the models examined were obtained using Markov chain Monte Carlo
(MCMC) simulations (Gilks et al., 1998). Specifically, we used the
general normal-proposal Metropolis algorithm as implemented in the
WinBUGS software; this algorithm is based on a symmetric normal pro-
posal distribution, whose standard deviation is adjusted over the first
4000 iterations such as the acceptance rate ranges between 20 and
40% (Lunn et al., 2000). We used three chain runs of 100,000 iterations
and samples were taken after the MCMC simulation converged to the
true posterior distribution. Convergence of the MCMC chains was
checked using the Brooks–Gelman–Rubin (BGR) scale–reduction factor
(Brooks andGelman, 1998). TheBGR factor is the ratio of between-chain
variability to within chain variability. The chains have converged when
the upper limits of the BGR factor are close to one. Generally, we noticed
that the sequences converged very rapidly (≈1000 iterations), and the
summary statistics reported in this study were based on the last 95,000
draws by keeping every 10th iteration (thin= 10) to avoid serial corre-
lation. The accuracy of the posterior parameter values was inspected
by assuring that theMonte Carlo error (an estimate of the difference be-
tween themean of the sampled values and the true posterior mean; see
Lunn et al., 2000) for all parameters was less than 5% of the sample
standard deviation (Spiegelhalter et al., 2002).

3. Results-discussion

3.1. What additional insights do we gain from the hierarchical configuration
of phosphorus loading models?

The model fit assessment for the Bayesian hierarchical formulations,
founded upon the distinction between shallow (≤10.3) and deeper
(N10.3) lakes, is presented in Table 1. Generally, the application of the
phosphorus loading/retention model to the shallow lakes resulted in
distinctly higher root mean square error (RMSE) (N228 μg TP L−1) and
negative Nash Sutcliffe Model Efficiency (NSME) (b−0.220) values
relative to the deeper ones (RMSE ≈ 38 μg TP L−1 and NSME N 0.615).
The classical hierarchical formulation, the one with the informative
global prior, and the hierarchical configuration with multivariate
normal parameter prior resulted in nearly identical model perfor-
mance (RMSE ≈ 185 μg TP L−1). By contrast, the two formulations
with structural error expressed as a function of the inflow weighted
TP concentration were characterized by somewhat inferior fit
(RMSE N 190 μg TP L−1), which is directly related to their distinctly
weaker performance with the shallow lakes (RMSE ≈ 235 μg TP L−1).
The refinement of the lake classification into eight groups led to an im-
provement of the overall model performance (Table 1, Fig. 1). In partic-
ular, the comparison between observed and predicted log-transformed
TP concentrations indicated that the highest r2 valuewas obtained with
Group III, 0.900, and the lowest one with Group VIII, 0.529 (Fig. 1). On
the other hand, the lowest error (RMSE ≈ 7.5 μg TP L−1) was found
with the group of lakes deeper than 10.3 m and hydraulic retention
time longer than 17.8 years (Group VIII), followed by the group of
lakes with mean depth between 1.65 m and 10.3 m and surface area
greater than 20.3 km2 or Group V (RMSE ≈ 28.5 μg TP L−1). Nonethe-
less, the former group was characterized by distinctly lower NSME
values (0.228–0.358) relative to the latter one (N0.640). The shallow
lakes withmean depth lower than 1.65m (Group I) were again charac-
terized by the highest RMSE values 517–540 μg TP L−1. Notably, the
same group resulted in negative NSME values, which suggests that the
average value of the corresponding data subset allows drawing better
predictions than the model itself! High discrepancy betweenmeasured
and modelled TP concentrations was also found with the group of lakes
with surface area between 0.68 km2 and 20.3 km2, and hydraulic reten-
tion time longer than 0.17 years or Group IV (RMSE≈ 96 μg TP L−1). The
model errorwith the rest of the lake types ranged from38–48 μg TP L−1.
Similar to the previous classification schemewith two nodes, the classi-
cal hierarchical formulation with flat or informative global priors
outperformed the models with the alternative structural error charac-
terization. Based on the classical hierarchical model, we also examined
which of the eight groups demonstrated the greatest improvement
after refining our analysis from the second- to the eight-lake categoriza-
tion scheme (numbers in parentheses in Table 1). The shallow lakes
with depth lower than 1.65 m (Group I) displayed a substantial reduc-
tion of the corresponding RMSE value (568 versus 519 μg TP L−1), rela-
tive to the TP predictions derived when they are pooled within a more
heterogeneous assemblage of lakes. Distinct improvements were also
found with the Group VII (57.2 versus 47.05 μg TP L−1) and Group III
(51.7 versus 45.4 μg TP L−1), whereas the rest of the groups were char-
acterized by fairly similar performance between the two
parameterizations.

Generally, the two-group hierarchical configuration of the phospho-
rus loading model resulted in group-specific posterior mean parameter
estimates that were relatively similar to the corresponding global pa-
rameter values, i.e., k1 = 1.07 year−0.52–1.13 year−0.50 and x1 = 0.50–
0.52 for the shallow lakes, k2 = 1.08 year−0.47–1.14 year−0.46 and
x2 = 0.46–0.47 for the deeper ones (Table 2). We also highlight the
high identification levels of the k1(2) and x1(2) means, as depicted by
their fairly low coefficient of variation values of 10–11% and 10–13%, re-
spectively. By contrast, the posterior estimates of the group-specific
standard deviations of the two parameters, σkj and σxj with j = 1,2,
were poorly identified and the samewas true for the rest of the stochas-
tic nodes included in the two group hierarchical formulations. On a final
note, the posterior estimates for the parameters φ0 (=1.22± 0.10) and
φ1 (=3.65± 2.37) suggest that the lake-specific model structural error
(τij2) is approximately equal to 0.38 (TP concentrations in logarithmic
units) when the phosphorus loading lies in very low levels
(b5 μg TP L−1), whereas a plateau within the range of 0.52–0.55
loge(μg TP L−1) is reached when the inflow weighted TP
concentrations exceed a threshold of 40 μg TP L−1.

Notwithstanding the substantial complexity increase of the hierar-
chical formulations, the consideration of eight homogeneous groups
led to a significant improvement of the identification patterns of the



Fig. 1. Observed versus median predicted lake total phosphorus (TPlake) concentrations [μg L−1] for the eight groups delineated from the Cheng et al. (2010) CART analysis. Grey lines
correspond to the 2.5 and 97.5% credible intervals. The diagonal line represents the perfect fit between predicted medians and observed values. The eight groups represent lakes with:
(a) mean depth lower than 1.65 m; (b) mean depth between 1.65m and 10.3m and surface area lower than 1.47 km2; (c) mean depth between 1.65m and 10.3m, surface area between
1.47 km2 and 20.3 km2, and hydraulic retention time shorter 0.17 years; (d)mean depth between 1.65m and 10.3m, surface area between 0.68 km2 and 20.3 km2, and hydraulic retention
time longer than 0.17 years; (e) mean depth between 1.65m and 10.3m and surface area greater than 20.3 km2; (f) mean depth greater than 10.3m and hydraulic retention time shorter
than 9.8 years; (g)mean depth greater than10.3m andhydraulic retention time between 9.8 years and17.8 years; (h)meandepth greater than 10.3mand hydraulic retention time longer
than 17.8 years.
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Table 2
Lake phosphorus loadingmodel: summary statistics of the posterior parameter distributions for thefivehierarchicalmodel configurations foundedupon the distinction between shallow
(z≤10.3 m) and deep lakes (z≥10.3 m).

Model 1 — Classical Model 2 — Informative
global Prior

Model 3 — Alternative
model Error

Model 4 — Multivariate
Normal

Model 5 — Multivariate
Normal & Alternative Error

Mean SD Mean SD Mean SD Mean SD Mean SD

k1 1.13 0.09 1.13 0.09 1.07 0.10 1.13 0.10 1.07 0.10
k2 1.13 0.12 1.13 0.11 1.08 0.12 1.14 0.12 1.08 0.12
x1 0.50 0.07 0.50 0.06 0.52 0.07 0.51 0.07 0.52 0.07
x2 0.46 0.05 0.46 0.04 0.47 0.05 0.46 0.05 0.47 0.05
k 1.22 1.08 1.12 0.13 1.20 2.05 1.15 0.34 1.09 0.33
x 0.57 0.89 0.48 0.95 0.57 0.64 0.52 0.32 0.54 0.41
σk1 1.45 20.26 2.6 123.1 1.40 20.92
σk2 1.65 25.46 1.1 26.4 1.97 36.61
σx1 7.19 498.6 0.55 4.74 1.05 11.31
σx2 1.10 11.98 0.70 9.11 1.14 16.32
σk 723 43420 0.79 8.84 59.84 548.40 0.37 0.35 0.38 0.40
σx 190 10290 1.00 36.84 84.64 1170 0.36 0.38 0.37 0.51
σkx 0.01 0.64 0.03 0.94
μk 11.4 26.5 1.12 0.07 11.61 27.26
μx 11.3 27.3 0.47 0.04 11.16 26.45
σ 0.52 0.02 0.52 0.02 0.52 0.02
φ1 3.65 2.38 3.64 2.37
φ0 1.22 0.10 1.22 0.10
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stochastic nodes examined. Drawing parallels with Gelman and Hill
(2007; pages 476–480), we calculated the degree to which the j group-
specific parameter estimates are pooled together (based on the global
mean) rather than estimated separately (based on the raw data of each
lake type). Counter to Gelman and Hill's (2007) Eq. (21.13) though, the
pooling factors of the first three hierarchical formulations are calculated
by normalizing the standard error (se) of the deviance of the lake
group-specific parameter estimates from the global mean by the corre-

sponding parameter variance σj
2, λθ j ¼ ðseðθ j−θÞÞ2

σ2
j

. The values of these

pooling factors are not directly comparable with those derived by the
multivariate normal parameter specification, which are based on the
typical standardization over the diagonal entries of the covariance ma-

trix Σθ, λθ j ¼ ðseðθ j−θÞÞ2
σ2

θ
. Plotting the latter pooling factors against the

sample size of the eight lake types considered (Fig. S1), we can infer
that the Group VII with small sample size (n=7) has high pooling fac-
tors (that is, the parameter estimates are halfway or closer to the global
mean) followed byGroup III (n=35) andGroup I (n=30). By contrast,
Group VI (n = 80) and Group IV (n = 60) demonstrate the lowest
pooling factor values and therefore are closer to the no-pooling esti-
mates. Interestingly, the consideration of group-specific variances
with the first three hierarchical formulations allowed greater flexibility
and thus more distinct excursions of the group-specific parameter esti-
mates from the grand means regardless of the corresponding sample
size (Table 3), such as the values of the k coefficient in Groups I
(1.53 ± 0.37 year−0.55), V (0.81 ± 0.19 year−0.66), and VII (0.95 ±
0.39 year−0.39), and the x power in the Groups II (0.26 ± 0.11), and
VII (0.39 ± 0.21).

According to the phosphorus loading model used, the TP loss rate is
approximately proportional to the inverse of the lake hydraulic reten-
tion time, and our exercise also renders support to the Cheng et al.'s
(2010) finding that the nature of the σ − 1/τw relationship varies
significantly with the morphological/hydraulic characteristics of
the lakes. Specifically, the slope of this relationship is steeper in
shallow lakes (k = 1.53 ± 0.37 year−0.55) as well as in lakes with
intermediate depth (1.65 m ≤ z ≤ 10.3 m) and surface area
(1.47 km2 ≤ A ≤ 20.3 km2) along with hydraulic retention time shorter
than 0.17 years (k = 1.23 ± 0.50 year−0.45) (Table 3). By contrast, the
relationship is somewhat weaker in lakes with large surface area
(N20.3 km2) and intermediate depth (k = 0.81 ± 0.19 year−0.66), and
deep lakes with hydraulic retention time between 9.8 years and
17.8 years (k = 0.95 ± 0.39 year−0.39). In a similar manner, our results
verify the conclusions of other studies that the TP sedimentation rate is
best approximated as being proportional to the inverse square root of
τw, i.e., σ ≈ τw−0.53 (see also Fig. 2b in Ahlgren et al., 1988). However,
we also found that the same relationship can vary from a power of 0.26,
in lakes with mean depth between 1.65 m and 10.3 m and surface area
lower than 1.47 km2, to a power of 0.76, in lakes of intermediate
depth (1.65 m ≤ z ≤ 10.3 m) and surface area (1.47 km2 ≤ A ≤ 20.3 km2)
with hydraulic retention time longer than 0.17 years.

Based on the posterior parameter patterns, lakes with intermediate
depths and large surface areas demonstrate phosphorus loss rates of
0.32 to 5.0 year−1 (Group V) across the range of hydraulic retention
times τw (b0.007–12.7 years) recorded in our dataset. Along the same
line of thinking, we can infer that the median sedimentation rates
vary from 0.79 to 41.2 year−1 in very shallow lakes (Group I). In the
same context though, the relatively poor model performance reinforces
the scepticism about the applicability of the “conventional” phosphorus
loading models with the latter type of lakes (Jensen et al., 2006;
Nürnberg and LaZerte, 2004). Several studies advocate the notion that
some of the underlying assumptions (e.g., steady state, first-order
losses) should be revisited and other unaccounted factors affecting the
efficiency of TP retention need to be explicitly considered. For example,
the lack of stratification during extended periods in the summer and the
tight water column–sediment coupling are predominant features of the
shallowwater bodies (Scheffer, 2004). In shallow systems, the sediment
surface to water volume ratio is high, and therefore the intense sedi-
ment–water column interplay aggravates the eutrophication problem,
leading to a considerable time lag in their response to the reduction of
external nutrient loading (Søndergaard et al., 2003). Sediment resus-
pension, driven by both bioturbation and wind action, is responsible
for a substantial nutrient reflux rates into the water column. Likewise,
the elevated amount of phosphorus retained in the sediments is subject
to diagenesis processes and gets mobilized to the interstitial waters as
phosphate, subsequently returning into the water column through
Fickian diffusive transport (Søndergaard et al., 2003). Many of the asso-
ciated sediment processes (e.g., bacteria-mediated mineralization) also
display seasonal variation, with their maximal rates typically observed
during the summer period when the highest water temperatures
occur (Søndergaard et al., 2003). Hence, while the improvement
brought about by the eight-group hierarchical configuration is certainly
encouraging, the multitude of transient dynamics that typically
characterize the shallow systems invites building more realism into



Table 3
Lake phosphorus loadingmodel: summary statistics of the posterior parameter distributions for the four hierarchicalmodel configurations founded upon the eight groups delineated from
the Cheng et al. (2010) CART analysis.

Model 1 —
classical

Model 2 —
informative prior

Model 3—
alternative error

Model 4 — multivariate
normal

Model 5 — multivariate
normal & alternative error

Mean SD Mean SD Mean SD Mean SD Mean SD

k1 1.53 0.37 1.52 0.37 1.49 0.38 1.29 0.24 1.23 0.24
k2 1.01 0.19 1.02 0.19 0.95 0.19 1.06 0.17 0.98 0.17
k3 1.23 0.5 1.23 0.52 1.19 0.52 1.13 0.25 1.08 0.25
k4 1.05 0.14 1.05 0.14 1.03 0.14 1.08 0.13 1.06 0.13
k5 0.81 0.19 0.81 0.19 0.79 0.19 0.91 0.17 0.88 0.17
k6 1.16 0.13 1.16 0.13 1.10 0.13 1.15 0.12 1.09 0.12
k7 0.95 0.39 0.96 0.39 0.91 0.39 1.01 0.28 0.96 0.27
k8 1.16 0.36 1.17 0.36 1.09 0.34 1.11 0.23 1.05 0.23
x1 0.55 0.17 0.55 0.17 0.56 0.18 0.49 0.14 0.5 0.15
x2 0.26 0.11 0.26 0.12 0.28 0.13 0.31 0.11 0.33 0.12
x3 0.45 0.19 0.44 0.17 0.47 0.19 0.43 0.13 0.45 0.14
x4 0.76 0.13 0.76 0.13 0.78 0.13 0.7 0.12 0.7 0.12
x5 0.66 0.16 0.65 0.17 0.66 0.17 0.58 0.13 0.59 0.13
x6 0.45 0.09 0.45 0.09 0.49 0.10 0.46 0.09 0.49 0.09
x7 0.39 0.21 0.38 0.2 0.41 0.21 0.36 0.14 0.38 0.14
x8 0.5 0.08 0.5 0.08 0.51 0.09 0.51 0.06 0.51 0.07
k 1.09 0.17 1.09 0.15 1.04 0.18 1.09 0.14 1.04 0.14
x 0.51 0.13 0.49 0.12 0.52 0.13 0.48 0.09 0.49 0.09
σk1 0.56 0.83 0.54 0.45 0.55 0.52
σk2 0.39 0.29 0.39 0.28 0.40 0.30
σk3 0.48 0.45 0.47 0.49 0.48 0.48
σk4 0.39 0.29 0.38 0.29 0.39 0.31
σk5 0.44 0.37 0.45 0.38 0.44 0.34
σk6 0.39 0.28 0.38 0.28 0.39 0.30
σk7 0.45 0.35 0.46 0.36 0.46 0.38
σk8 0.43 0.34 0.43 0.32 0.43 0.34
σx1 0.39 0.29 0.39 0.28 0.39 0.29
σx2 0.42 0.3 0.41 0.3 0.42 0.33
σx3 0.39 0.29 0.39 0.28 0.39 0.28
σx4 0.43 0.32 0.43 0.38 0.43 0.32
σx5 0.4 0.31 0.4 0.3 0.40 0.31
σx6 0.37 0.24 0.38 0.27 0.38 0.29
σx7 0.4 0.29 0.4 0.29 0.40 0.32
σx8 0.38 0.3 0.37 0.29 0.37 0.28
σk 0.5 0.55 0.38 0.27 0.51 0.74 0.25 0.11 0.24 0.11
σx 0.49 0.54 0.36 0.23 0.49 0.69 0.21 0.07 0.21 0.07
σkx −0.01 0.04 −0.004 0.036
μk 1.16 0.66 1.12 0.08 1.14 0.79
μx 0.67 0.62 0.47 0.04 0.68 0.72
σ 0.5 0.02 0.5 0.02 0.51 0.02
φ1 2.96 2.51 3.17 2.49
φ0 1.28 0.11 1.27 0.11
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the phosphorus loading models. It seems unlikely that a steady
state model, originally developed to support predictions on an annual
scale, will capture biogeochemical processes occurring in shorter time
scales.

Lakes with intermediate mean depths and small surface areas
(Group II) display a very wide range of sedimentation rates, 0.35 to
283 year−1, depending on the prevailing hydraulic loading conditions
(5.5 · 10−4 − 4.1 years). Likewise, lakes with mean depths and surface
areas lying at intermediate values are projected to experience sedimen-
tation rates of 3.36–45.6 year−1 and 0.64–1.57 year−1, if their average
hydraulic retention time is shorter (Group III) or longer (Group IV)
than 0.17 years, respectively. In a similar manner, deep lakes with hy-
draulic retention time shorter than 9.8 years (Group VI) are character-
ized by sedimentation rates of 0.35 to 12.8 year−1. Further increase of
the residence time in deep lakes (Group VII) leads to a decline of
the sedimentation rates (0.15–0.20 year−1) and ultimately results in
fairly low sedimentation rates (0.04 to 0.26 year−1), when very low
flushing rates are experienced (Group VIII). Generally, the higher
sedimentation rates in lakes with short hydraulic retention times over
the rates calculated for longer retention times reinforces the well-
documented positive relationship between TP loss and lake flushing
rates (Ahlgren et al., 1988). This counterintuitive relationship was
attributed to the fact that the former lakes usually receive relatively
greater inputs of allochthonous, mineral-bound (and thusmore suscep-
tible to settling) particulate phosphorus than do the latter ones
(Canfield and Bachmann, 1981; Schindler et al., 1978). In addition, al-
though deep waters are generally less turbulent than surface waters
which increases particle aggregation and consequently the effective set-
tling velocity of particulatematter (Malmaeus andHåkanson, 2004), the
predicted pattern of lower TP loss rates in the latter group of lakes em-
phasizes the capacity of in-lake processes (mineralization, uptake) to
increase the nutrient retention time in the water column.

On a final note, we should always bear in mind that Vollenweider-
type models predict steady-state outcomes, although lakes are subject
to considerable year-to-year variations and therefore steady-state con-
ditions can only be approximated with long-term averages. The present
analysis was based on systems that were not experiencing transient dy-
namics, after the implementation of phosphorus loading reduction
strategies, and were studied from one year to several decades (Brett
and Benjamin, 2008). However, models based on studies of small
lakes that last less than 5–7 years are less likely to predict long-term av-
erages accurately, because of the pronounced effect that extreme years
can have. Evenwhen steady-state models are parameterizedwithmore
than 5 years worth of data, there is always an increased likelihood that a
given year is not close to the long-term mean. Inter-annual variation in
runoff can affect residence time, a key predictor variable, muchmore in



Fig. 2. Spatial segmentation (a) and basic concepts (b) of the continuously-stirred-talk reactor (CSTR)model, forcedwith idealized sinusoidal loading, to predict total phosphorus concen-
trations in Lake Simcoe, Ontario, Canada. (c) Hierarchical configuration of the phosphorus loading model for Lake Simcoe.

85Y. Shimoda, G.B. Arhonditsis / Ecological Informatics 29 (2015) 77–91
small than in large systems, and this could be another plausible explana-
tion for the higher error typically found with the former group of lakes.

3.2. How effectively can we accommodate the seasonality and spatial het-
erogeneity of phosphorus dynamics within a single large lake?

Striving for an improvement of the existing lake eutrophication
models, the Bayesian hierarchical proposition may be useful when
modelling large systems, where the most degraded areas are nearshore
zones above the summer thermocline adjacent to the mouths of
large rivers and/or semi-enclosed embayments with restricted mixing
with offshore waters. In this regard, Zhang and Arhonditsis (2009)
questioned to what extent this type of spatial heterogeneity can be
fully accommodated by spatially-explicit, process-based models with
common parameter values over the entire system; that is, how realistic
is to assume that the same sedimentation rate (a surrogate of a suite of
physical, chemical, and biological processes) characterizes the entire
waterbody? The practical compromise between entirely site-specific
and globally-common parameter estimates offered by the hierarchical
approachmaybe a conceptuallymore sound strategy. Here,we evaluate
a novel phosphorus loading model that is founded upon two basic
augmentations: (i) TP spatial patterns are accommodated by location-
specific sedimentation rates; and (ii) TP dynamics within each location
are primarily modulated by the seasonal variability of the external
phosphorus loading. Lake Simcoe is an excellent case study to examine
the model due to its distinct morphological characteristics of embay-
ments, as the adoption of a single-box, steady state approach will not
offer the capacity to reproduce the considerable intra-annual variability
of the inshore locations, while a multi-box strategy with lakewide
parameters may be inadequate to shed light on their interplay with
the central segments of the lake (Gudimov et al., 2012). Importantly,
probability distributions with known mean and variances are used to
reproduce the year- and segment-specific phosphorus loading (Fig. 3)
and flushing rates (Fig. 4), and thus the error of the corresponding esti-
mates is propagated through the model.

The application of the TPmodel provided satisfactory fit to themea-
sured TP concentrations in the five segments considered, resulting in
RMSE values lower than 5 μg TP L−1 (Fig. 5). The main exception was
the segment that represents the Cook's Bay (RMSE = 6.87 μg TP L−1),
which is also consistently characterized by the highest TP levels in the
system (18.4 ± 7.7 μg TP L−1). The second highest model error was re-
corded in the Main Basin (RMSE=4.95 μg TP L−1), while the rest three
segments were characterized by RMSE values lower than 4 μg TP L−1.
Given the aforementioned assumption that the segment-specific TP dy-
namics aremainly driven by the seasonal variability of exogenous load-
ing, our model predicts that the inflowing TP loads alone can indeed
induce significant oscillatory behaviour in Cook's Bay. However, the
discrepancy between observed and predicted concentrations partly
stems from the fact that the postulated phase shifts, φ(ij)(ω), cannot
fully capture the evolution of ambient TP levels in the system. The
predicted TP dynamics in larger and/or offshore segmentswere also sig-
nificantly muted, indicative of a more complex interplay among exoge-
nous loading, hydrodynamics, and biological productivity that most
likely modulates in-lake TP variability. In particular, we note that the
coarser representation of Kempenfelt Bay of the present study relative
to Gudimov et al.'s (2012) segmentation (i.e., one instead of three spa-
tial compartments) profoundly understated the observed intra-annual
phosphorus variability.

All the posterior estimates of the segment- and year-specific net TP
loss rates, κ2tj, were well-identified and independent from the
corresponding estimates of the flushing (or net exchange) rates (see
also Fig. 3 in the Supporting Information of Gudimov et al., 2012). The
sedimentation rates demonstrated significant year-to-year and
among-segment variability (Table 4). Not surprisingly, the highest sed-
imentation rates were estimated in Cook's Bay (i.e., from 2.125 ±
0.546 year−1 to 4.810 ± 0.854 year−1) and Kempenfelt Bay (i.e., from
0.800±0.302 year−1 to 2.216±0.711 year−1). Given that both embay-
ments are located in the vicinity of major tributary outlets, there are
several plausible explanations for this distinct behaviour relative to
rest of the lake: (i) both spatial compartments constitute transitional
zones that regulate the fate and transport of external phosphorus load-
ings to the deeper parts of the lake; (ii) the presence of dreissenids that
have the capacity to filter suspended particles from the water column,
thereby exerting significant control of the ambient TP; and (iii) the



Fig. 3. Posterior predictive distributions of annual TP loading (tonnes year−1) in each segment of Lake Simcoe; (a) Cook's Bay, (b) Kempenfelt Bay, (c) Main Basin, (d) Eastern Basin, and
(e) Atherley Narrows.
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excessivemacrophyte growth that capitalizes upon the favourable envi-
ronment of Cook's Bay (i.e., shallower depths, elevated nutrient levels,
increased water clarity, and fine-grained sediments) and act as a net
sink of the TP pool in the water column (Dittrich et al., 2013; Gudimov
et al., 2015). Consistent with the previously reported identifiability pat-
terns, the segment-specific standard error values of the sedimentation
rates (σκ2j) were also well delineated, reflecting the significant year-
to-year variability in Cook's Bay (3.408 year−1) and Kempenfelt Bay
(1.152 year−1) relative to the other three segments (b0.345 year−1).

Generally, the posterior estimates of the sedimentation and outflow
rates suggest that a significant portion of the annual TP inputs from
the Holland River in Cook's Bay (≈380 mg m−2 year−1) is lost
(295 mg m−2 year−1) in the sediments or in the hypolimnion of the
outer Bay, while a lower fraction (85.7 mg m−2 year−1) is transported
horizontally to the Main Basin (Fig. 6). Likewise, more than half of
the TP loads (≈255 mg m−2 year−1) in Kempenfelt Bay are subjected
to sedimentation (149.2 mg m−2 year−1) and the remaining
amount of phosphorus is transferred to the central area of the lake
(105.8 mg m−2 year−1). Relative to our posterior net sedimentation
rates, Hiriart-Baer et al. (2011) recently reported post-1970 estimates
of the gross TP accumulation in Cook's Bay and Kempenfelt Bay
sediments at the level of 250–750 mg P m−2 year−1 and 300 mg
P m−2 year−1, respectively. The two-fold difference between gross
and net TP sedimentation rates could be interpreted as a support to
our earlier point that a suite of ecological factors and feedback loops,
such as macrophyte growth, dreissenids activity, sediment resuspen-
sion and P release determine the fate and transport of phosphorus
in the two embayments. The net areal sedimentation rate in the
Main Basin was nearly twice (94.46 mg m−2 year−1) as high as
the values predicted in the Eastern Bain and the Atherley Narrows
(41.07 to 52.01 mg m−2 year−1). It is also worth noting that the
average areal loading in the latter three segments ranged from
64.73 mg m−2 year−1 (Eastern Basin) to 94.46 mg m−2 year−1 (Main
Basin). The annual TP outflows from Atherley Narrows were estimated
at an average level of 289 mg m−2 years−1 (or 9.3 tonnes year−1),
and the TP retention fraction varied from 85% to 93%; both values are
consistent with existing estimates independently calculated from TP
mass balance budgets for Lake Simcoe (Young et al., 2011).

The proposed phosphorus loading model, comprising a feedforward
series of completely mixed reactors, is a pragmatic approach to



Fig. 5. Comparison of the observed versusmean predicted (alongwith 95% credible inter-
vals) total phosphorus concentrations in each segment of Lake Simcoe; (a) Cook's Bay,
(b) Kempenfelt Bay, (c) Main Basin, (d) Eastern Basin, and (e) Atherley Narrows.

Fig. 4.Posterior predictivedistributions of TP outflowrates (tonnes year−1) at the outlet of
Lake Simcoe (Atherley Narrows) during the examined period (1999–2003).
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accommodate the spatial variability in Lake Simcoe, given the lack of
consistent chloride measurements to properly constrain the interseg-
ment mixing processes during the study period. This approach is con-
ceptually suitable to model horizontal mass exchanges in a chain of
lakes or a stream, and Gudimov et al. (2012) showed that its credibility
to accommodate the spatial heterogeneity within a single lake is limited
under certain conditions. One instance is when wind-induced circula-
tion patterns negate the pre-specified unidirectional flow, and thus
the model fails to account for the dilution effect of the predominant in-
flows of water masses from the outer lake into the two embayments
[See Gudimov et al.'s (2012) Supporting Information]. A second prob-
lematic facet of themodel is the large spatial compartment representing
the eastern basin, inwhich the estimated net outflow rates are fairly low
(relative to its volume) and therefore the model postulates that the
inflowing TP loads from the watershed are subject to prolonged
sedimentation. As a post-hoc exercise, we here examine Gudimov
et al.'s (2012) hypothesis that this simplification could potentially
lead to an overestimation of the sedimentation rates, when the corre-
sponding segment receives substantial exogenous loads and/or is char-
acterized by a distinct TP concentration gradient. The phosphorus
loading model was calibrated under two alternative scenarios of low
(present average values) and high (present average values increased
by 10 μg L−1) TP concentrations in the Eastern Basin and we subse-
quently compared the annual phosphorus fluxes and sedimentation
rates. The posterior statistics suggest that the characterization of the
phosphorus cycle with the present model unidirectional construct is
fairly robust and (Table S2 & Fig. S2). Counter to Gudimov et al.'s
(2012) assertions though, the sedimentation fluxes in the Eastern
Basin were somewhat reduced and instead themodel posteriors are in-
dicative of higher net TP export into the Main Basin and enhanced set-
tling rates in the latter segment (Fig. S2). This model projection is
consistent with Gudimov et al.'s (2015) conceptualization that pin-
points the close association of the energy and nutrient subsidies from
the littoral zone, stemming from both allochthonous and autochtho-
nous sources, with the broader ecosystem functioning, potentially me-
diated by the particular morphological features and hydrodynamic
patterns of Lake Simcoe.

4. Conclusions

In this study, we revisited the predictive capacity of phosphorus
loading models using a Bayesian hierarchical framework. These models
offer a first-principles approach to assist the decision-making process
and potentially facilitate lake management actions in space and time
(Brett and Benjamin, 2008; Chapra and Dolan, 2012; Cheng et al.,
2010; Stow et al., 2014). The Bayesian hierarchical proposition is a com-
promise between site-specific (where limited local data is a problem)
and globally-common (where heterogeneous systems in wide geo-
graphical areas are assumed to be identical) parameter estimates.
Under the hierarchical structure, the models are dissected into levels
(hierarchies) that explicitly account for the role of significant sources
of variability, e.g., geographical location, trophic status, morphometry,



Table 4
Continuously stirred tank reactor model: Summary statistics of the posterior parameter distributions for the five segments in Lake Simcoe.

Cook's Bay Kempenfelt Bay Main Basin Eastern Basin Atherley Narrows

Parameters Mean SD Mean SD Mean SD Mean SD Mean SD

κ2(1999j) 3.283 0.688 2.216 0.711 1.026 0.209 0.785 0.148 0.664 0.276
κ2(2000j) 4.810 0.854 1.929 0.575 1.070 0.188 0.766 0.140 0.655 0.268
κ2(2001j) 2.947 0.676 0.800 0.302 0.578 0.110 0.362 0.097 0.661 0.263
κ2(2002j) 2.125 0.546 0.994 0.327 0.533 0.094 0.376 0.094 0.650 0.261
κ2(2003j) 3.683 0.840 0.930 0.312 0.712 0.122 0.613 0.128 0.657 0.256
σκ2j 3.408 1.506 1.152 0.6938 0.3453 0.2078 0.2933 0.1627 0.2311 0.2198
τ 0.327, 0.025
κ2 0.683, 0.118
κ2μ 10.70, 25.70
σκ2 53.37, 645.4
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mixing regime, or even watershed land use patterns. The major lessons
learned from our exercise are as follows:

• Consistent with Ahlgren et al.'s (1988) assertion, the present analysis
provides evidence that the delineation of more homogeneous subsets
of data can indeed givemodelswith better predictive value. The eight-
node configuration has led to a distinct model performance improve-
ment, founded upon well-identified posterior parameter estimates
that allow drawing meaningful large-scale patterns.

• A second key finding from our analysis is that the application of phos-
phorus loadingmodels to shallow lakes has limited learning capacity,
even with the coarse annual resolution of the “Vollenweider-type”
models, as some of the underlying assumptions (e.g., steady state,
first-order losses) may not hold true. Further improvements with
the modelling of shallow lakes can only be obtained if several poten-
tially important ecological factors and feedback loops are explicitly
considered.

• The group-level posterior patterns are robust to the different assump-
tions/complexity levels of the hierarchical framework used, although
the degree of specificity of the parameter estimates depends on the
sample size of the corresponding group.

• The characterization of the model structural error as function of the
inflow weighted TP concentration was intended to offer a lake-
specific characterization of the model inadequacy relative to the
typically used global specifications. While this strategy led to a
model improvement in the oligo- and mesotrophic systems included
in our dataset, the postulated rectangular hyperbolic pattern evident-
ly inflates the error when applied to the eutrophic end of the lake
spectrum. The identification of the optimal relationship between the
Fig. 6. Areal average TP sources, sinks, and transport (mg m−
residual model variability and the potential explanatory variables
could be a meaningful follow-up exercise.

• Recognizing its conceptual limitations, the feedforward series of
completelymixed reactors combinedwith a Bayesianhierarchical cal-
ibration framework offers a first approximation of the spatial variabil-
ity in cases where we have evidence that the single-box approach is
an oversimplification. Our example with the Lake Simcoe application
showed that the derived sedimentation rates aswell as the character-
ization of the phosphorus fate and transport are on par with existing
empirical evidence from the system.

• The assumption that phosphorus dynamics in a particular location are
primarily shaped by the seasonal variability of the adjacent external
phosphorus loading cannot consistently reproduce the temporal pat-
terns in large lakes. Unless the grid resolution is appropriately refined,
the proposed scheme is likely inadequate to reproduce the suite of
mechanisms underlying the intra-annual lake variability; especially
in offshore areas.

The tendency to invoke complexity as a means for improving the
learning capacity of our models is primarily prompted by the need to
address environmental management problems that often involve com-
plex policy decisions. Problems related to eutrophication, biodiversity,
fisheries management, habitat conservation and restoration, and ulti-
mately sustainable economic development are often supported by com-
plex ecosystem models. However, our ability to properly constrain the
inputs of such modelling constructs from existing empirical knowledge
and data is limited, and thus the resulting poor identifiability under-
mines their credibility as management tools. In this context, we believe
2 year−1) among the spatial segments in Lake Simcoe.



89Y. Shimoda, G.B. Arhonditsis / Ecological Informatics 29 (2015) 77–91
that lakemodellers should cherish the role of phosphorus loadingmodels,
as they offer adequate first approximations until simplicity can be gradu-
ally traded for increased explanatory power. In this study, we highlight
the benefits of simple models that remain within the bounds of data-
based parameter estimation and therefore can undergo rigorous error
analysis. The Bayesian hierarchical approach offers an appealing ad-hoc
strategy to gradually increase model complexity and subsequently en-
hance their mechanistic underpinning, whenever possible and relevant.
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Appendix A. Terminology and notation of the models examined in
this analysis

Lake phosphorusmodel: The foundation for predicting the total phos-
phorus concentrations in lakes was first proposed by Vollenweider
(1969) with his mass-balance model. Under steady state conditions, this
model is expressed as:

TPlake ¼
L

z ρþ σð Þ :

This relationship is mathematically equivalent to the classic model
from chemical engineering relating input and output concentrations of a
substance that undergoes a first-order decay reaction in a continuous
flow stirred tank reactor (Higgins and Kim, 1981; Brett and Benjamin,
2008):

TPlake ¼
TPin

1þ στw
:

If we assume that σ= kτwx − 1, where k and x are adjustable param-
eters, then the model becomes:

TPlake ¼
TPin

1þ kτxw

TP lake TP concentration in the lake and its outflow (μg L−1)
TPin inflow weighted TP concentration (μg L−1)
L areal TP loading rate (mg TPm−2 year−1), L = (Q × TPin)/AL
σ first-order rate coefficient for TP loss (or sedimentation) from

the lake (yr−1)
z mean lake depth (m), z = V/AL
AL lake surface area (m2), AL = V/z
V lake volume (m3), V = AL × z
τw mean hydraulic retention time (yr), τw = 1/ρ = Q/V
ρ flushing rate (yr−1), ρ = 1/τw = V/Q
qs areal hydraulic loading (m yr−1), Q/AL = ρ × z = z/τw
Q hydraulic inflow rate (m3 year−1), Q= qs × AL= V/τw = V × ρ.

Continuously stirred tank reactor model forced with sinusoidal
loading:

Wavg mean loading entering each segment (tonnes day−1)
Wamplitude amplitude around the mean loading (tonnes day−1)
λ total loss rate (day−1), where λ= Q/V+ k + ν/H, κ1 = Q/V,

and κ2 = k + ν/H
Q volumetric flow rate water sources entering each segment

(m3 day−1)
V volume of system (m3)
k first-order decay rate (day−1)
ν first-order settling rate (m day−1)
H mean depth of each segment (m)
θ phase shift (radians)
φ(ω) additional phase shift (radians) that is a function of the

frequency
ω angular frequency of oscillation (radians day−1), ω = 2π/T
T period of the oscillation (day)
i year
t Julian day of year i.

Spatial segmentation of model:

j segments that do not have antecedent spatial compartments
(Cook's Bay, Kempenfelt Bay and Eastern Bay)

k segment that receives pollutants from adjacent segments
(Main Basin)

l segment that receives pollutants from segment k and exports
them out of the system via outflows (Atherley Narrows).

Appendix B. Bayesian parameter estimation for the hierarchical
cross-system TP model

Using the notation in Section 2.1 and Appendix A, the likelihood
function for the hierarchical model is:

L yjx; Σθ; μ; Σμ ; τ2
� � ¼ L yjx; θ0; τ2� �

L θ0jθ; Σθð ÞL θjμ; Σμ
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nj

where y= in-lake TP concentrations used to update the model;m=
number of lake types considered by the hierarchical model; nj =
number of lakes in lake type j; x = model inputs with xij the vector
[TPin, τw] for lake i in group j; θ′=[θ1, θ2,…, θj] with θj=vector of param-
eters [kj, xj] in lake type j; θ=vector of global parameters [k, x]; μ=vector
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is the model error variance;The posterior of the classical hierarchical
model is:
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eters for the inverse gamma distributions assigned to model error
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variance, global, and group-specific parameter variance terms, respective-
ly; κ= the dimension of θj or number of model parameters (=2) and β,
β0, βj = the scale parameters for the inverse gamma distributions
assigned to the model error variance, global, and group-specific parame-
ter variance terms.

The posterior of the hierarchicalmodelwith alternativemodel struc-
tural error is:
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The posterior of the hierarchicalmodel withmultivariate normal pa-
rameter prior is:
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where ν N κ− 1 the degrees of freedom set equal to 2, representing lack
of confidence on the existing information.

Appendix C. Analytical solution for the mass-balance model forced
with sinusoidal loading

The phosphorus mass balance for a finite time period can be
expressed as:

V
dTP
dt

¼ Wloading tð Þ−Q � TP−k � V � TP− v
H
� TP

which after simple mathematical manipulations leads to the following
equation:

dTP
dt

þ λ � TP ¼ Wloading tð Þ
V

:

Based on this equation and if we set Wloading(t) = Wavg +
Wamplitude sin(ωt − θ), TP is equal to:

TP ¼ e−λt Co þ
Z t

o

Wavg þWamplitude sin ωt−θð Þ
V

eλtdt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
" #

①:

The selected term① can be decomposed into two terms:

Z t

o

Wavg

V
eλtdt|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

②

þ
Z t

o

Wamplitude sin ωt−θð Þ
V

eλtdt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
③:

The term ② is equal:

Z t

o

Wavg

V
eλtdt ¼ Wavg

λV
eλt :

The term ③ is:

Wamplitude

V

Z t

o
sin ωt−θð Þ eλtdt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

④

and as shown in Box (1), the term ④ is equal:

Z t

o
sin ωt−θð Þ eλtdt ¼ sin ωt−θ−φ ωð Þð Þ eλtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 þ ω2
p :

Thus, the differential equation becomes:

TP ¼ e−λt Co þWavg

λV
eλt þ Wamplitude

V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ ω2

p sin ωt−θ− φ ωð Þð Þ eλt
" #

TP ¼ Co e−λt þWavg

λV
þ Wamplitude

V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ ω2

p sin ωt−θ− φ ωð Þð Þ
if t→0

TP ¼ 0 ¼ TPo þWavg

λV
þ Wamplitude

V
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λ2 þ ω2

p sin −θ− φ ωð Þð Þ

TPo¼ −
Wavg

λV
−

Wamplitude

V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ ω2

p sin −θ− φ ωð Þð Þ:

The analytical solution of the differential equation becomes:

TP ¼ −
Wavg

λV
−

Wamplitude

V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ ω2

p sin −θ− φ ωð Þð Þ
" #

e−λt þWavg

λV
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V
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p sin ωt−θ− φ ωð Þð Þ

TP ¼ Wavg

λV
1−e−λt� �þ Wamplitude
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−
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p sin −θ− φ ωð Þð Þ e−λt

φ ωð Þ ¼ αrc tan
ω
λ

� �

if t → + ∞ the final solution is:

TP ¼ Wavg

λV
þ Wamplitude

V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ ω2

p sin ωt−θ− φ ωð Þð Þ :
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Appendix D. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ecoinf.2015.07.005.
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DESCRIPTION OF LAKE SIMCOE 

Lake Simcoe is the largest lake in Southern Ontario (after the Great Lakes) with a surface area of 722 

km
2
, watershed area of 2,899 km

2
, and a maximum and mean depth of 42 m and 14.2 m, respectively. Lake 

Simcoe experienced severe eutrophication problems as a result of the agricultural practices and increasing 

urbanization in its catchment since 1930s (North, 2013). The eutrophication problems became particularly 

severe in the 1970s with excessive algal and macrophyte growth, and more recently, hypolimnetic hypoxia 

has been occasionally manifested at the end of summer stratification period (Eimers et al., 2005). Despite 

continuous efforts to reduce P loading (Winter et al., 2002), only subtle water quality improvements have 

been experienced and the ambient TP concentrations in Lake Simcoe have not declined accordingly (Young et 

al., 2010).  

Lake Simcoe is generally divided into three morphologically distinct regions: (i) Kempenfelt Bay, a 

narrow and the deep embayment with surface area of 34 km
2 

and mean depth of 20 m, is located near the city 

of Barrie at the south west corner of the lake. The urbanization activities associated with the rapid population 

growth of the City of Barrie are the main vector of P loading into the bay, resulting in fairly high TP 

concentration in the water column, e.g., 14.0 ±2.7 μg TP L
-1

 (Dittrich et al., 2013). Oxygen depletion in the 

hypolimnion also occurs at the end of the summer in Kempenfelt Bay, which may contribute to high P release 

into the water column (Dittrich et al., 2013). (ii) The Cook's Bay with a mean depth of 13 m, maximum depth 

of 15 m and a surface area of 45 km
2
. This embayment is located at the southern end of the lake near Holland 

March, where the dominant use of the watershed is agriculture (43% of total watershed area). Cook’s Bay 

receives approximately twice the external P loading that Kempenfelt Bay receives, resulting in distinctly 

higher ambient TP levels (18.4 ±7.7 μg TP L
-1

). The shallow morphometry of the bay provides a desirable 

habitat for macrophytes that significantly influence the P dynamics through significant P uptake from the 

sediments and P release via the decomposition of the dead plant tissues (Bini et al., 2010). The largest, main 

basin has a mean depth of 14 m, maximum depth of 33 m and surface area of 643 m
2
. The catchment of this 

basin experienced gradual deforestation, which has been the one of the main driver of the TP loading 

variability. Because of its shallow morphometry, a large portion of the eastern area of the bay is located 
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within the euphotic and well-mixed zone, and thus the elevated benthic photosynthesis and access of the 

dreissenids to sestonic algae create favorable conditions for biodeposition and nutrient recycling (Ozersky et 

al., 2013). More than 50% of the total dreissenid biomass (≈12 tonnes of shell-free dry mass) is found in 

Kempenfelt Bay and the main basin, areas with depth up to 8 m (see Fig. 1 in Schwalb et al., 2013). 

Dreissenid mussels can take up considerable amount of particulate matter from the water column; however, 

the net P removal is significantly lower due to the high P release rate as faces, pseudofeces or other metabolic 

excreta (Gudimov et al., 2015). The internal nutrient regeneration mechanisms through dreissenid mussel 

activity, proliferation of macrophytes (Gudimov et al., 2015), and the interplay between water column and 

sediments (Dittrich et al., 2013, Gudimov et al., 2015) have been hypothesized as a key regulatory factor that 

determines the spatially and temporally variability of phosphorous dynamics in Lake Simcoe. 
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Table S1:  Lake characteristics and observed TPlake (µg L
-1

) concentrations of the eight terminal nodes 

identified by CART analysis (Cheng et al., 2010). 

Class 
Number 

of sample 
Depth (m) 

Surface area 

(km
2
) 

Residence time 

(yr) 

Median 

TPlake 

(µg L
-1

) 

TP range*  

(µg L
-1

) 

I 30 z ≤ 1.65   160.0 989.5 

II 34 1.65 < z ≤ 10.3 A ≤ 1.47  20.8 173.9 

III 35 1.65 < z ≤ 10.3 1.47 < A ≤ 20.3 τw ≤ 0.17 45.0 261.6 

IV 60 1.65 < z ≤ 10.3 1.47 < A ≤ 20.3 τw > 0.17 70.5 491.0 

V 40 1.65 < z ≤ 10.3 A > 20.3  33.5 162.4 

VI 85 z > 10.3  τw ≤ 9.8 14.5 113.2 

VII 7 z > 10.3  9.8 <  τw ≤ 17.8 73.9 232.0 

VIII 14 z > 10.3  τw > 17.8 8.8 33.0 

* The values represent the difference between the 95
th
 and 5

th
 percentiles.  

Table S2: Posterior statistics of sedimentation rates between two 

scenarios of high (present average values increased by 10 µg TP 

L
-1

) and low (present levels) TP concentrations in the Eastern 

Basin of Lake Simcoe. 

 Low  High 

 Mean SD Mean SD  

Cook’s Bay 1.077 0.437 1.065 0.444  

Kempenfelt Bay 0.851 0.212 0.841 0.208  

Eastern Basin 0.753 0.102 0.317 0.071  

Main Basin 0.636 0.091 0.690 0.106  

Atherley Narrows 0.659 0.329 0.651 0.313  
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FIGURES LEGENDS 

Figure S1: Scatter plots of the pooling factor λ for the two adjustable constant parameters k (a, b) and x (c, d) 

from the Multivariate Normal (left panel) and Classical Hierarchical (right panel) models.  

 

Figure S2: Annual TP fluxes (mg m
-2

 yr
-1

) of each segment under two scenarios of high (present average 

values increased by 10 µg TP L
-1

) and low (present levels) TP concentrations in Eastern Basin of Lake 

Simcoe. Values provided in bracket represent the scenario of high TP concentrations.  
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Bayesian reassessment of the lake phosphorus retention & loading concept in limnology  

The WinBUGS codes associated with the lake phosphorus loading models are as follows: 

  

Model 1 (Classical) :  

 

model { 

 

for (i in 1:N) {  

TPlakem1[i]<-log(TPinput1[i]/(1+k4l[1]*mu1[i]) ) 

mu1[i]<-pow(tw1[i], x4l[1])  

TPlake1[i]~dnorm(TPlakem1[i],tau)  

LPredTPlake1[i]~dnorm(TPlakem1[i],tau) 

PredTPlake1[i]<-exp(LPredTPlake1[i])} 

for (i in 1:M) {  

TPlakem2[i]<-log(TPinput2[i]/(1+k4l[2]*mu2[i]) ) 

mu2[i]<-pow(tw2[i], x4l[2])  

TPlake2[i]~dnorm(TPlakem2[i],tau)  

LPredTPlake2[i]~dnorm(TPlakem2[i],tau) 

PredTPlake2[i]<-exp(LPredTPlake2[i])} 

for (i in 1:2) { 

k4l[i]~dnorm(k4,kltau[i])I(0,) 

kltau[i]~dgamma(0.001,0.001) 

klsigma[i]<-sqrt(1/kltau[i]) 

x4l[i]~dnorm(x4, xltau[i])I(0,) 

xltau[i]~dgamma(0.001,0.001) 

xlsigma[i]<-sqrt(1/xltau[i])} 

k4~dnorm(kmu,ktau)I(0,) 

kmu~dnorm(0,0.0001)I(0,) 

ktau~dgamma(0.001,0.001) 

ksigma<-sqrt(1/ktau) 

x4~dnorm(xmu,xtau)I(0,) 

xmu~dnorm(0,0.0001)I(0,) 

xtau~dgamma(0.001,0.001) 

xsigma<-sqrt(1/xtau) 

sigma<-sqrt(1/tau) 

tau~dunif(0.01,100) 

} 

 

Inference Data 
list(N=199, 

tw1=c(paste tw1.dat here), 

TPinput1=c(paste TPinput1.dat here), 

TPlake1=c(paste TPlake1.dat here), 

M=106, 

tw2=c(paste tw2.dat here), 

TPlake2=c(paste TPlake2.dat here)) 

 

Initial values 1 
list(k4=1, x4=1, kmu=1, xmu=1, k4l=c(1,1), x4l=c(1,1), tau =1, ktau=1, xtau=1,kltau=c(1,1), xltau=c(1,1), 

LPredTPlake1=c(paste LPredTPlake1.dat here), 
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LPredTPlake2=c(paste LPredTPlake2.dat here)) 

 

Initial values 2 
list(k4=0.1, x4=0.1, kmu=0.1, xmu=0.1, k4l=c(0.1,0.1), x4l=c(0.1,0.1), tau =0.1, ktau=0.1, 

xtau=0.1,kltau=c(0.1,0.1), xltau=c(0.1,0.1), 

LPredTPlake1=c(paste LPredTPlake1.dat here), 

LPredTPlake2=c(paste LPredTPlake2.dat here)) 

 

Initial values 3 
list(k4=2, x4=2, kmu=2, xmu=2, k4l=c(2,2), x4l=c(2,2), tau =2, ktau=2, xtau=2,kltau=c(2,2), xltau=c(2,2), 

LPredTPlake1=c(paste LPredTPlake1.dat here), 

LPredTPlake2=c(paste LPredTPlake2.dat here)) 

 

 

Model 2 (Informative Global Prior) 

 

model { 

 

for (i in 1:N) {  

TPlakem1[i]<-log(TPinput1[i]/(1+k4l[1]*mu1[i]) ) 

mu1[i]<-pow(tw1[i], x4l[1])  

TPlake1[i]~dnorm(TPlakem1[i],tau)  

LPredTPlake1[i]~dnorm(TPlakem1[i],tau) 

PredTPlake1[i]<-exp(LPredTPlake1[i])} 

for (i in 1:M) {  

TPlakem2[i]<-log(TPinput2[i]/(1+k4l[2]*mu2[i]) ) 

mu2[i]<-pow(tw2[i], x4l[2])  

TPlake2[i]~dnorm(TPlakem2[i],tau)  

LPredTPlake2[i]~dnorm(TPlakem2[i],tau) 

PredTPlake2[i]<-exp(LPredTPlake2[i])} 

for (i in 1:2) { 

k4l[i]~dnorm(k4,kltau[i])I(0,) 

kltau[i]~dgamma(0.001,0.001) 

klsigma[i]<-sqrt(1/kltau[i]) 

x4l[i]~dnorm(x4, xltau[i])I(0,) 

xltau[i]~dgamma(0.001,0.001) 

xlsigma[i]<-sqrt(1/xltau[i])} 

k4~dnorm(kmu,ktau)I(0,) 

kmu~dnorm(1.12,156.25)I(0,) 

ktau~dgamma(0.001,0.001) 

ksigma<-sqrt(1/ktau) 

x4~dnorm(xmu,xtau)I(0,) 

xmu~dnorm(0.47,625)I(0,) 

xtau~dgamma(0.001,0.001) 

xsigma<-sqrt(1/xtau) 

sigma<-sqrt(1/tau) 

tau~dunif(0.01,100) 

} 

 

 

Inference Data 
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list(N=199, 

tw1=c(paste tw1.dat here), 

TPinput1=c(paste TPinput1.dat here), 

TPlake1=c(paste TPlake1.dat here), 

M=106, 

tw2=c(paste tw2.dat here), 

TPinput2=c(paste TPinput2.dat here), 

TPlake2=c(paste TPlake2.dat here)) 

 

Initial values 1 
list(k4=1, x4=1, kmu=1, xmu=1, k4l=c(1,1), x4l=c(1,1), tau =1, ktau=1, xtau=1,kltau=c(1,1), xltau=c(1,1), 

LPredTPlake1=c(paste LPredTPlake1.dat here), 

LPredTPlake2=c(paste LPredTPlake2.dat here)) 

 

Initial values 2 
list(k4=0.1, x4=0.1, kmu=0.1, xmu=0.1, k4l=c(0.1,0.1), x4l=c(0.1,0.1), tau =0.1, ktau=0.1, 

xtau=0.1,kltau=c(0.1,0.1), xltau=c(0.1,0.1), 

LPredTPlake1=c(paste LPredTPlake1.dat here), 

LPredTPlake2=c(paste LPredTPlake2.dat here)) 

 

Initial values 3 
list(k4=2, x4=2, kmu=2, xmu=2, k4l=c(2,2), x4l=c(2,2), tau =2, ktau=2, xtau=2,kltau=c(2,2), xltau=c(2,2), 

LPredTPlake1=c(paste LPredTPlake1.dat here), 

LPredTPlake2=c(paste LPredTPlake2.dat here)) 

 

 

Model 3 (Alternative Model Error) 

 

model { 

 

for (i in 1:N) {  

TPlakem1[i]<-log(TPinput1[i]/(1+k4l[1]*mu1[i]) ) 

mu1[i]<-pow(tw1[i], x4l[1])  

TPlake1[i]~dnorm(TPlakem1[i],tau1[i])  

LPredTPlake1[i]~dnorm(TPlakem1[i],tau1[i]) 

log(tau1[i])<-theta_error+phi*(1/TPinput1[i]) 

sigma1[i]<-sqrt(1/tau1[i]) 

PredTPlake1[i]<-exp(LPredTPlake1[i])} 

for (i in 1:M) {  

TPlakem2[i]<-log(TPinput2[i]/(1+k4l[2]*mu2[i]) ) 

mu2[i]<-pow(tw2[i], x4l[2])  

TPlake2[i]~dnorm(TPlakem2[i],tau2[i])  

LPredTPlake2[i]~dnorm(TPlakem2[i],tau2[i]) 

log(tau2[i])<-theta_error+phi*(1/TPinput2[i]) 

sigma2[i]<-sqrt(1/tau2[i]) 

PredTPlake2[i]<-exp(LPredTPlake2[i])} 

for (i in 1:2) { 

k4l[i]~dnorm(k4,kltau[i])I(0,) 

kltau[i]~dgamma(0.001,0.001) 

klsigma[i]<-sqrt(1/kltau[i]) 

x4l[i]~dnorm(x4, xltau[i])I(0,) 
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xltau[i]~dgamma(0.001,0.001) 

xlsigma[i]<-sqrt(1/xltau[i])} 

k4~dnorm(kmu,ktau)I(0,) 

kmu~dnorm(0,0.0001)I(0,) 

ktau~dgamma(0.001,0.001) 

ksigma<-sqrt(1/ktau) 

x4~dnorm(xmu,xtau)I(0,) 

xmu~dnorm(0,0.0001)I(0,) 

xtau~dgamma(0.001,0.001) 

xsigma<-sqrt(1/xtau) 

theta_error~dnorm(0,0.0001) 

phi~dnorm(0,0.0001) 

} 

 

Inference Data 
list(N=199, 

tw1=c(paste tw1.dat here), 

TPinput1=c(paste TPinput1.dat here), 

TPlake1=c(paste TPlake1.dat here), 

M=106, 

tw2=c(paste tw2.dat here), 

TPinput2=c(paste TPinput2.dat here), 

TPlake2=c(paste TPlake2.dat here)) 

 

Initial values 1 
list(k4=1, x4=1, kmu=1, xmu=1, k4l=c(1,1), x4l=c(1,1), phi =0.5, theta_error=0.2, ktau=1, 

xtau=1,kltau=c(1,1), xltau=c(1,1), 

LPredTPlake1=c(paste LPredTPlake1.dat here), 

LPredTPlake2=c(paste LPredTPlake2.dat here)) 

 

Initial values 2 
list(k4=0.1, x4=0.1, kmu=0.1, xmu=0.1, k4l=c(0.1,0.1), x4l=c(0.1,0.1), phi =0.5, theta_error=0.2, ktau=0.1, 

xtau=0.1,kltau=c(0.1,0.1), xltau=c(0.1,0.1), 

LPredTPlake1=c(paste LPredTPlake1.dat here), 

LPredTPlake2=c(paste LPredTPlake2.dat here)) 

 

Initial values 3 
list(k4=2, x4=2, kmu=2, xmu=2, k4l=c(2,2), x4l=c(2,2), phi =0.5, theta_error=0.2, ktau=2, 

xtau=2,kltau=c(2,2), xltau=c(2,2), 

LPredTPlake1=c(paste LPredTPlake1.dat here), 

LPredTPlake2=c(paste LPredTPlake2.dat here)) 

 

 

Model 4 (Multivariate Normal) 

 

model { 

 

for (i in 1:N) {  

TPlakem1[i]<-log(TPinput1[i]/(1+theta[1,1]*mu1[i]) ) 

mu1[i]<-pow(tw1[i], theta[1,2])  

TPlake1[i]~dnorm(TPlakem1[i],mtau)  
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LPredTPlake1[i]~dnorm(TPlakem1[i],mtau) 

PredTPlake1[i]<-exp(LPredTPlake1[i])} 

for (i in 1:M) {  

TPlakem2[i]<-log(TPinput2[i]/(1+theta[2,1]*mu2[i]) ) 

mu2[i]<-pow(tw2[i], theta[2,2])  

TPlake2[i]~dnorm(TPlakem2[i],mtau)  

LPredTPlake2[i]~dnorm(TPlakem2[i],mtau) 

PredTPlake2[i]<-exp(LPredTPlake2[i])} 

for (i in 1:2) { 

theta[i, 1:2] ~ dmnorm(gmu[1:2], gtau[1:2, 1:2])I(Q[],)} 

gmu[1:2] ~ dmnorm(mean[1:2], prec[1:2, 1:2])I(Q[],) 

gtau[1:2, 1:2] ~ dwish(R[1:2, 1:2], 2) 

sigma2[1:2, 1:2] <- inverse(gtau[1:2, 1:2])  

for (i in 1:2) {sigma[i] <- sqrt(sigma2[i, i])} 

msigma<-sqrt(1/mtau) 

mtau~dunif(0.01,100) 

} 

 

Inference Data 
list(mean = c(0, 0),Q=c(0,0), 

         R = structure(.Data = c(0.1, 0, 

              0, 0.1), .Dim = c(2, 2)), 

        prec = structure(.Data = c(1.0E-6, 0,  

      0, 1.0E-6), .Dim = c(2, 2)), 

N=199, 

tw1=c(paste tw1.dat here), 

TPinput1=c(paste TPinput1.dat here), 

TPlake1=c(paste TPlake1.dat here), 

M=106, 

tw2=c(paste tw2.dat here), 

TPinput2=c(paste TPinput2.dat here), 

TPlake2=c(paste TPlake2.dat here)) 

 

Initial values 1 
list(mtau =1, theta = structure(.Data = c(1.12, 0.47,  

                     1.12, 0.47),.Dim = c(2, 2)),  

          gmu = c(1.12, 0.47),  

          gtau = structure(.Data = c(0.1, 0, 

        0, 0.1), .Dim = c(2, 2)), 

LPredTPlake1=c(paste LPredTPlake1.dat here), 

LPredTPlake2=c(paste LPredTPlake2.dat here)) 

 

Initial values 2 
list(mtau =0.1, theta = structure(.Data = c(2, 0.5,  

                         2, 0.5),.Dim = c(2, 2)),  

  gmu = c(2, 0.5),  

  gtau = structure(.Data = c(0.1, 0, 

           0, 0.1), .Dim = c(2, 2)), 

LPredTPlake1=c(paste LPredTPlake1.dat here), 

LPredTPlake2=c(paste LPredTPlake2.dat here)) 
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Initial values 3 
list(mtau =0.01, theta = structure(Data = c(1, 0.5,  

                           1, 0.5),.Dim = c(2, 2)),  

  gmu = c(1, 0.5),  

  gtau = structure(.Data = c(0.1, 0, 

           0, 0.1), .Dim = c(2, 2)), 

LPredTPlake1=c(paste LPredTPlake1.dat here), 

LPredTPlake2=c(paste LPredTPlake2.dat here)) 

 

 

Model 5 (Multivariate Normal & Alternative Error) 

 

model { 

 

for (i in 1:N) {  

TPlakem1[i]<-log(TPinput1[i]/(1+theta[1,1]*mu1[i]) ) 

mu1[i]<-pow(tw1[i], theta[1,2])  

TPlake1[i]~dnorm(TPlakem1[i],mtau1[i])  

LPredTPlake1[i]~dnorm(TPlakem1[i],mtau1[i]) 

log(mtau1[i])<-theta_error+phi*(1/TPinput1[i]) 

msigma1[i]<-sqrt(1/mtau1[i]) 

PredTPlake1[i]<-exp(LPredTPlake1[i])} 

for (i in 1:M) {  

TPlakem2[i]<-log(TPinput2[i]/(1+theta[2,1]*mu2[i]) ) 

mu2[i]<-pow(tw2[i], theta[2,2])  

TPlake2[i]~dnorm(TPlakem2[i],mtau2[i])  

LPredTPlake2[i]~dnorm(TPlakem2[i],mtau2[i]) 

log(mtau2[i])<-theta_error+phi*(1/TPinput2[i]) 

msigma2[i]<-sqrt(1/mtau2[i]) 

PredTPlake2[i]<-exp(LPredTPlake2[i])} 

for (i in 1:2) { 

theta[i, 1:2] ~ dmnorm(gmu[1:2], gtau[1:2, 1:2])I(Q[],)} 

gmu[1:2] ~ dmnorm(mean[1:2], prec[1:2, 1:2])I(Q[],) 

gtau[1:2, 1:2] ~ dwish(R[1:2, 1:2], 2) 

sigma2[1:2, 1:2] <- inverse(gtau[1:2, 1:2])  

for (i in 1:2) {sigma[i] <- sqrt(sigma2[i, i])} 

theta_error~dnorm(0,0.0001) 

phi~dnorm(0,0.0001) 

} 

 

Inference Data 
list(mean = c(0, 0),Q=c(0,0), 

   R = structure(.Data = c(0.1, 0, 

        0, 0.1), .Dim = c(2, 2)), 

   prec = structure(.Data = c(1.0E-6, 0,  

            0, 1.0E-6), .Dim = c(2, 2)), 

N=199, 

tw1=c(paste tw1.dat here), 

TPinput1=c(paste TPinput1.dat here), 

TPlake1=c(paste TPlake1.dat here), 
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M=106, 

tw2=c(paste tw2.dat here), 

TPinput2=c(paste TPinput2.dat here), 

TPlake2=c(paste TPlake2.dat here)) 

 

Initial values 1 
list(phi =0.5, theta_error=0.2, theta = structure(.Data = c(1.12, 0.47,  

                          1.12, 0.47),.Dim = c(2, 2)),  

    gmu = c(1.12, 0.47),  

    gtau = structure(.Data = c(0.1, 0, 

                    0, 0.1), .Dim = c(2, 2)), 

LPredTPlake1=c(paste LPredTPlake1.dat here), 

LPredTPlake2=c(paste LPredTPlake2.dat here)) 

 

Initial values 2 
list(phi =0.25, theta_error=0.4, theta = structure(.Data = c(2, 0.5,  

                           2, 0.5),.Dim = c(2, 2)),  

      gmu = c(2, 0.5),  

      gtau = structure(.Data = c(0.1, 0, 

                       0, 0.1), .Dim = c(2, 2)), 

LPredTPlake1=c(paste LPredTPlake1.dat here), 

LPredTPlake2=c(paste LPredTPlake2.dat here)) 

 

Initial values 3 
list(phi =0.15, theta_error=0.1, theta = structure(.Data = c(1, 0.5,  

                            1, 0.5),.Dim = c(2, 2)),  

      gmu = c(1, 0.5),  

      gtau = structure(.Data = c(0.1, 0, 

                     0, 0.1), .Dim = c(2, 2)), 

LPredTPlake1=c(paste LPredTPlake1.dat here), 

LPredTPlake2=c(paste LPredTPlake2.dat here)) 

 

Continuously Stirred Tank Reactor Hierarchical Model with sinusoidal loading 

 

model { 

 

for (t in 1:L){ 

       for (i in 1:M) { 

TPmodel_cbm[t,i]<- max(0.0001,Wmean_cb[t]/(lamda_cb[t,i]*volume_cb[t,i]) 

         +(Wamp_cb[t]/(volume_cb[t,i]*sqrt(pow(lamda_cb[t,i],2) 

         +pow(omega,2))))*sin(omega*time[t,i]-theta_cb[t]-phi_cb[t,i])) 

 

TPmodel_cb[t,i]<-log(TPmodel_cbm[t,i]) 

TP_cbraw[t,i]<-exp(TP_cb[t,i]) 

TPprec_cb[t,i]<-1/log(1+pow(0.15*TP_cbraw[t,i],2)/pow(TP_cbraw[t,i],2)) 

TP_cb[t,i]~dnorm(TPobsint_cb[t,i],TPprec_cb[t,i]) 

TPobsint_cb[t,i]~dnorm(TPmodel_cb[t,i],tau) 

outflow_cb[t,i]<-volume_cb[t,i]/ResidenceTime_cbm[t] 

phi_cb_1[t,i]<-(1/zint_cb[t,i])-pow((1/zint_cb[t,i]),3)/3+pow((1/zint_cb[t,i]),5)/5-pow((1/zint_cb[t,i]),7)/7 

phi_cb_2[t,i]<-zint_cb[t,i]-pow(zint_cb[t,i],3)/3+pow(zint_cb[t,i],5)/5-pow(zint_cb[t,i],7)/7 
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phi_cb[t,i]<-step(zint_cb[t,i]-1)*((-1)* phi_cb_1[t,i]+1.570796)+step(1-zint_cb[t,i])*phi_cb_2[t,i] 

zint_cb[t,i]<-omega/lamda_cb[t,i]  

lamda_cb[t,i]<-outflow_cb[t,i]/volume_cb[t,i]+v_cb[t]                           

                            } 

v_cb[t]<-sedimentation_cb[t]/365 

Wmean_cb[t]<-(1000000)*Wmean_cbm[t] 

Wamp_cb[t]<-(1000000)*Wamp_cbm[t] 

                            } 

for (t in 1:L){ 

Wmean_cbm[t]~dnorm(Wmean_cbreg[t],Wmean_cbreg_tau[t])I(Wmean_cbreg_min[t],) 

Wmean_cbreg_min[t]<-0.9*Wmean_cbreg[t] 

Wmean_cbreg_tau[t]<-1/pow(Wmean_cbRMSE_sb[t]/3,2) 

Wamp_cbm[t]<-Wamp_cbreg[t] 

theta_cb[t]<-theta_cbreg[t] 

} 

for (t in 1:L){ 

       for (i in 1:M) { 

TPmodel_kbm[t,i]<-max(0.0001,Wmean_kb[t]/(lamda_kb[t,i]*volume_kb[t,i]) 

         +(Wamp_kb[t]/(volume_kb[t,i]*sqrt(pow(lamda_kb[t,i],2) 

         +pow(omega_kb[t],2))))*sin(omega_kb[t]*time[t,i]-theta_kb[t]-phi_kb[t,i])) 

 

TPmodel_kb[t,i]<-log(TPmodel_kbm[t,i]) 

TP_kbraw[t,i]<-exp(TP_kb[t,i]) 

TPprec_kb[t,i]<-1/log(1+pow(0.15*TP_kbraw[t,i],2)/pow(TP_kbraw[t,i],2)) 

TP_kb[t,i]~dnorm(TPobsint_kb[t,i],TPprec_kb[t,i]) 

TPobsint_kb[t,i]~dnorm(TPmodel_kb[t,i],tau) 

outflow_kb[t,i]<-volume_kb[t,i]/ResidenceTime_kbm[t] 

phi_kb_1[t,i]<-(1/zint_kb[t,i])-pow((1/zint_kb[t,i]),3)/3+pow((1/zint_kb[t,i]),5)/5-pow((1/zint_kb[t,i]),7)/7 

phi_kb_2[t,i]<-zint_kb[t,i]-pow(zint_kb[t,i],3)/3+pow(zint_kb[t,i],5)/5-pow(zint_kb[t,i],7)/7 

phi_kb[t,i]<-step(zint_kb[t,i]-1)*((-1)* phi_kb_1[t,i]+1.570796)+step(1-zint_kb[t,i])*phi_kb_2[t,i] 

zint_kb[t,i]<-omega_kb[t]/lamda_kb[t,i] 

lamda_kb[t,i]<-outflow_kb[t,i]/volume_kb[t,i]+v_kb[t] 

} 

v_kb[t]<-sedimentation_kb[t]/365 

Wmean_kb[t]<-(1000000)*Wmean_kbm[t] 

Wamp_kb[t]<-(1000000)*Wamp_kbm[t] 

} 
 

for (t in 1:L){ 

Wmean_kbm[t]~dnorm(Wmean_kbreg[t],Wmean_kbreg_tau[t])I(Wmean_kbreg_min[t],) 

Wmean_kbreg_min[t]<-0.9*Wmean_kbreg[t] 

Wmean_kbreg_tau[t]<-1/pow(Wmean_kbRMSE_sb[t]/3,2) 

Wamp_kbm[t]<-Wamp_kbreg[t] 

theta_kb[t]<-theta_kbreg[t] 

} 

omega_kb[1]<-omega 

omega_kb[2]<-omega 

omega_kb[3]<-2*omega 

omega_kb[4]<-omega 

omega_kb[5]<-omega 
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for (t in 1:L){ 

       for (i in 1:M) { 

TPmodel_ebm[t,i]<-max(0.0001,Wmean_eb[t]/(lamda_eb[t,i]*volume_ebcor[t,i]) 

         +(Wamp_eb[t]/(volume_ebcor[t,i]*sqrt(pow(lamda_eb[t,i],2) 

         +pow(omega,2))))*sin(omega*time[t,i]-theta_eb[t]-phi_eb[t,i])) 

 

TPmodel_eb[t,i]<-log(TPmodel_ebm[t,i]) 

TP_ebraw[t,i]<-exp(TP_eb[t,i]) 

TPprec_eb[t,i]<-1/log(1+pow(0.15*TP_ebraw[t,i],2)/pow(TP_ebraw[t,i],2)) 

TP_eb[t,i]~dnorm(TPobsint_eb[t,i],TPprec_eb[t,i]) 

TPobsint_eb[t,i]~dnorm(TPmodel_eb[t,i],tau) 

outflow_eb[t,i]<-volume_ebcor[t,i]/ResidenceTime_ebm[t] 

phi_eb_1[t,i]<-(1/zint_eb[t,i])-pow((1/zint_eb[t,i]),3)/3+pow((1/zint_eb[t,i]),5)/5-pow((1/zint_eb[t,i]),7)/7 

phi_eb_2[t,i]<-zint_eb[t,i]-pow(zint_eb[t,i],3)/3+pow(zint_eb[t,i],5)/5-pow(zint_eb[t,i],7)/7 

phi_eb[t,i]<-step(zint_eb[t,i]-1)*((-1)* phi_eb_1[t,i]+1.570796)+step(1-zint_eb[t,i])*phi_eb_2[t,i] 

zint_eb[t,i]<-omega/lamda_eb[t,i] 

volume_ebcor[t,i]<-volume_eb[t,i]*10 

lamda_eb[t,i]<-outflow_eb[t,i]/volume_ebcor[t,i]+v_eb[t] 

} 

v_eb[t]<-sedimentation_eb[t]/365 

Wmean_eb[t]<-(1000000)*Wmean_ebm[t] 

Wamp_eb[t]<-(1000000)*Wamp_ebm[t] 

} 

for (t in 1:L){ 

Wmean_ebm[t]~dnorm(Wmean_ebreg[t],Wmean_ebreg_tau[t])I(Wmean_ebreg_min[t],) 

Wmean_ebreg_min[t]<-0.9*Wmean_ebreg[t] 

Wmean_ebreg_tau[t]<-1/pow(Wmean_ebRMSE_sb[t]/3,2) 

Wamp_ebm[t]<-Wamp_ebreg[t] 

theta_eb[t]<-theta_ebreg[t] 

} 
 

for (t in 1:L){ 

       for (i in 1:M) { 

TPmodel_mbm[t,i]<-max(0.0001,TPmodel_mb1[t,i]+TPmodel_mb2[t,i]+TPmodel_mb3[t,i]) 

 

TPmodel_mb1[t,i]<-(outflow_cb[t,i]*Wmean_cb[t])/(lamda_cb[t,i]*lamda_mb[t,i]*volume_cb[t,i] 

         *volume_mbcor[t,i]) 

         +(outflow_kb[t,i]*Wmean_kb[t])/(lamda_kb[t,i]*lamda_mb[t,i]*volume_kb[t,i] 

         *volume_mbcor[t,i]) 

         +(outflow_eb[t,i]*Wmean_eb[t])/(lamda_eb[t,i]*lamda_mb[t,i]*volume_ebcor[t,i] 

         *volume_mbcor[t,i]) 

         +Wmean_mb[t]/(lamda_mb[t,i]*volume_mbcor[t,i]) 

TPmodel_mb2[t,i]<-(Wamp_mb[t]/(volume_mbcor[t,i]*sqrt(pow(lamda_mb[t,i],2) 

         +pow(omega,2))))*sin(omega*time[t,i]-theta_mb[t]-phi_mb[t,i]) 

         +((outflow_cb[t,i]*Wamp_cb[t])/(volume_cb[t,i]*volume_mbcor[t,i] 

         *sqrt(pow(lamda_cb[t,i],2) 

         +pow(omega,2))*sqrt(pow(lamda_mb[t,i],2)+pow(omega,2)))) 

         *sin(omega*time[t,i]-theta_cb[t]-phi_cb[t,i]-phi_mb[t,i]) 

TPmodel_mb3[t,i]<-((outflow_kb[t,i]*Wamp_kb[t])/(volume_kb[t,i]*volume_mbcor[t,i] 

         *sqrt(pow(lamda_kb[t,i],2) 

         +pow(omega_kb[t],2))*sqrt(pow(lamda_mb[t,i],2)+pow(omega,2)))) 
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         *sin(omega_kb[t]*time[t,i]-theta_kb[t]-phi_kb[t,i]-phi_mb[t,i]) 

         +((outflow_eb[t,i]*Wamp_eb[t])/(volume_ebcor[t,i]*volume_mbcor[t,i] 

         *sqrt(pow(lamda_eb[t,i],2)+pow(omega,2))*sqrt(pow(lamda_mb[t,i],2) 

         +pow(omega,2))))*sin(omega*time[t,i]-theta_eb[t]-phi_eb[t,i]-phi_mb[t,i]) 

 

TPmodel_mb[t,i]<-log(TPmodel_mbm[t,i]) 

TP_mbraw[t,i]<-exp(TP_mb[t,i]) 

TPprec_mb[t,i]<-1/log(1+pow(0.15*TP_mbraw[t,i],2)/pow(TP_mbraw[t,i],2)) 

TP_mb[t,i]~dnorm(TPobsint_mb[t,i],TPprec_mb[t,i]) 

TPobsint_mb[t,i]~dnorm(TPmodel_mb[t,i],tau) 

outflow_mb[t,i]<-volume_mbcor[t,i]/ResidenceTime_mbm[t] 

phi_mb_1[t,i]<-(1/zint_mb[t,i])-pow((1/zint_mb[t,i]),3)/3+pow((1/zint_mb[t,i]),5)/5-pow((1/zint_mb[t,i]),7)/7 

phi_mb_2[t,i]<-zint_mb[t,i]-pow(zint_mb[t,i],3)/3+pow(zint_mb[t,i],5)/5-pow(zint_mb[t,i],7)/7 

phi_mb[t,i]<-step(zint_mb[t,i]-1)*((-1)* phi_mb_1[t,i]+1.570796)+step(1-zint_mb[t,i])*phi_mb_2[t,i] 

zint_mb[t,i]<-omega/lamda_mb[t,i] 

volume_mbcor[t,i]<-volume_mb[t,i]*10 

lamda_mb[t,i]<-outflow_mb[t,i]/volume_mbcor[t,i]+v_mb[t] 

} 

v_mb[t]<-sedimentation_mb[t]/365 

outflow_mbavg[t]<-mean(outflow_mb[t,]) 

Wmean_mb[t]<-(1000000)*Wmean_mbm[t] 

Wamp_mb[t]<-(1000000)*Wamp_mbm[t] 

} 

for (t in 1:L){ 

Wmean_mbm[t]~dnorm(Wmean_mbreg[t],Wmean_mbreg_tau[t])I(Wmean_mbreg_min[t],) 

Wmean_mbreg_min[t]<-0.9*Wmean_mbreg[t] 

Wmean_mbreg_tau[t]<-1/pow(Wmean_mbRMSE_sb[t]/3,2) 

Wamp_mbm[t]<-Wamp_mbreg[t] 

theta_mb[t]<-theta_mbreg[t] 

} 
 

for (t in 1:L){ 

       for (i in 1:M) { 

TPmodel_anm[t,i]<-max(0.0001,TPmodel_an1[t,i]+TPmodel_an2[t,i]+TPmodel_an3[t,i] 

         +TPmodel_an4[t,i]+TPmodel_an5[t,i]+TPmodel_an6[t,i]+TPmodel_an7[t,i] 

         +TPmodel_an8[t,i]) 

 

TPmodel_an1[t,i]<-(outflow_mb[t,i]*outflow_cb[t,i]*Wmean_cb[t])/(lamda_an[t,i]*volume_an[t,i] 

         * lamda_cb[t,i]*lamda_mb[t,i]*volume_cb[t,i]*volume_mbcor[t,i]) 

         +(outflow_mb[t,i]*outflow_kb[t,i]*Wmean_kb[t])/(lamda_an[t,i]*volume_an[t,i] 

         *lamda_kb[t,i]*lamda_mb[t,i]*volume_kb[t,i]*volume_mbcor[t,i]) 

         +(outflow_mb[t,i]*outflow_eb[t,i]*Wmean_eb[t])/(lamda_an[t,i]*volume_an[t,i] 

         *lamda_eb[t,i]*lamda_mb[t,i]*volume_ebcor[t,i]*volume_mbcor[t,i]) 

TPmodel_an2[t,i]<-(outflow_mb[t,i]*Wmean_mb[t])/(lamda_an[t,i]*volume_an[t,i]*lamda_mb[t,i] 

         *volume_mbcor[t,i]) 

TPmodel_an3[t,i]<-Wmean_an[t]/(lamda_an[t,i]*volume_an[t,i]) 

TPmodel_an4[t,i]<-(Wamp_an[t]/(volume_an[t,i]*sqrt(pow(lamda_an[t,i],2)+pow(omega,2)))) 

         *sin(omega*time[t,i]-theta_an[t]-phi_an[t,i]) 

TPmodel_an5[t,i]<-((outflow_mb[t,i]*Wamp_mb[t])/(volume_mbcor[t,i]*volume_an[t,i] 

         *sqrt(pow(lamda_mb[t,i],2)+pow(omega,2))*sqrt(pow(lamda_an[t,i],2) 

         +pow(omega,2))))*sin(omega*time[t,i]-theta_mb[t]-phi_mb[t,i]-phi_an[t,i]) 
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TPmodel_an6[t,i]<-((outflow_mb[t,i]*outflow_cb[t,i]*Wamp_cb[t])/(volume_an[t,i]*volume_cb[t,i] 

        *volume_mbcor[t,i]*sqrt(pow(lamda_cb[t,i],2)+pow(omega,2))*sqrt(pow(lamda_mb[t,i],2) 

        +pow(omega,2))*sqrt(pow(lamda_an[t,i],2)+pow(omega,2))))*sin(omega*time[t,i] 

        -theta_cb[t]-phi_cb[t,i]-phi_mb[t,i]-phi_an[t,i]) 

TPmodel_an7[t,i]<-((outflow_mb[t,i]*outflow_kb[t,i]*Wamp_kb[t])/(volume_an[t,i]*volume_kb[t,i] 

         *volume_mbcor[t,i]*sqrt(pow(lamda_kb[t,i],2)+pow(omega_kb[t],2)) 

         *sqrt(pow(lamda_mb[t,i],2)+pow(omega,2))*sqrt(pow(lamda_an[t,i],2)   

         +pow(omega,2))))*sin(omega_kb[t]*time[t,i]-theta_kb[t]-phi_kb[t,i] 

         -phi_mb[t,i]-phi_an[t,i]) 

 

TPmodel_an8[t,i]<-((outflow_mb[t,i]*outflow_eb[t,i]*Wamp_eb[t])/(volume_an[t,i]*volume_ebcor[t,i] 

        *volume_mbcor[t,i]*sqrt(pow(lamda_eb[t,i],2)+pow(omega,2))*sqrt(pow(lamda_mb[t,i],2) 

        +pow(omega,2))*sqrt(pow(lamda_an[t,i],2)+pow(omega,2))))*sin(omega*time[t,i] 

        -theta_eb[t]-phi_eb[t,i]-phi_mb[t,i]-phi_an[t,i]) 

 

TPmodel_an[t,i]<-log(TPmodel_anm[t,i]) 

TP_anraw[t,i]<-exp(TP_an[t,i]) 

TPprec_an[t,i]<-1/log(1+pow(0.15*TP_anraw[t,i],2)/pow(TP_anraw[t,i],2)) 

TP_an[t,i]~dnorm(TPobsint_an[t,i],TPprec_an[t,i]) 

TPobsint_an[t,i]~dnorm(TPmodel_an[t,i],tau) 

outflow_an[t,i]<-volume_an[t,i]/ResidenceTime_anm[t] 

phi_an_1[t,i]<-(1/zint_an[t,i])-pow((1/zint_an[t,i]),3)/3+pow((1/zint_an[t,i]),5)/5-pow((1/zint_an[t,i]),7)/7 

phi_an_2[t,i]<-zint_an[t,i]-pow(zint_an[t,i],3)/3+pow(zint_an[t,i],5)/5-pow(zint_an[t,i],7)/7 

lamda_an[t,i]<-outflow_an[t,i]/volume_an[t,i]+v_an[t] 

phi_an[t,i]<-step(zint_an[t,i]-1)*((-1)* phi_an_1[t,i]+1.570796)+step(1-zint_an[t,i])*phi_an_2[t,i] 

zint_an[t,i]<-omega/lamda_an[t,i] 

 

} 

v_an[t]<-sedimentation_an[t]/365 

TPRetention[t]<-

TPmodel_anmavg[t]*outflow_anavg[t]/(Wmean_an[t]+Wmean_mb[t]+Wmean_eb[t]+Wmean_kb[t]+Wmean

_cb[t]) 

TWoutput[t]<-(TPmodel_anmavg[t]*outflow_anavg[t]/1000000)*365/1000 

TWmean[t]<-

((Wmean_an[t]+Wmean_mb[t]+Wmean_eb[t]+Wmean_kb[t]+Wmean_cb[t])/1000000)*365/1000 

TPmodel_anmavg[t]<-mean(TPmodel_anm[t,]) 

outflow_anavg[t]<-mean(outflow_an[t,]) 

Wmean_an[t]<-(1000000)*Wmean_anm[t] 

Wamp_an[t]<-(1000000)*Wamp_anm[t] 

} 

 

for (t in 1:L){ 

Wmean_anm[t]~dnorm(Wmean_anreg[t],Wmean_anreg_tau[t])I(Wmean_anreg_min[t],) 

Wmean_anreg_min[t]<-0.9*Wmean_anreg[t] 

Wmean_anreg_tau[t]<-1/pow(Wmean_anRMSE_sb[t]/3,2) 

Wamp_anm[t]<-Wamp_anreg[t] 

theta_an[t]<-theta_anreg[t] 

} 

 

for (t in 1:L){ 

        sedimentation_cb[t]~dnorm(gv,gtau[1])I(0,)     
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        sedimentation_kb[t]~dnorm(gv,gtau[2])I(0,) 

        sedimentation_eb[t]~dnorm(gv,gtau[3])I(0,) 

        sedimentation_mb[t]~dnorm(gv,gtau[4])I(0,) 

        sedimentation_an[t]~dnorm(gv,gtau[5])I(0,) 

        ResidenceTime_cbm[t]~dnorm(ResidenceTime_cb,ResidenceTime_cb.tau)I(0,) 

        ResidenceTime_kbm[t]~dnorm(ResidenceTime_kb,ResidenceTime_kb.tau)I(0,) 

        ResidenceTime_ebm[t]~dnorm(ResidenceTime_eb,ResidenceTime_eb.tau)I(0,) 

        ResidenceTime_mbm[t]~dnorm(ResidenceTime_mb,ResidenceTime_mb.tau)I(0,) 

        ResidenceTime_anm[t]~dnorm(ResidenceTime_an,ResidenceTime_an.tau)I(0,) 

                 } 

for (i in 1:5){ 

gtau[i]~dgamma(0.001,0.001) 

gsigma[i]<-sqrt(1/gtau[i])} 

 

gv~dnorm(gvmu,gvtau) 

gvmu~dnorm(0,0.0001)I(0,) 

gvtau~dgamma(0.001,0.001) 

gvsigma<-sqrt(1/gvtau) 

 

ResidenceTime_cb.tau<-1/pow(0.25*ResidenceTime_cb,2) 

ResidenceTime_kb.tau<-1/pow(0.25*ResidenceTime_kb,2) 

ResidenceTime_eb.tau<-1/pow(0.25*ResidenceTime_eb,2) 

ResidenceTime_mb.tau<-1/pow(0.25*ResidenceTime_mb,2) 

ResidenceTime_an.tau<-1/pow(0.05*ResidenceTime_an,2) 

 

omega<-2*3.1415/365 

tau~dgamma(0.001,0.001) 

sigma<-sqrt(1/tau) 

} 
 

Inference Data 
list(L=5, M=7,time=structure(.Data=c(paste time5.dat here),.Dim=c(5,7)), 

TP_cb=structure(.Data=c(paste TPcb.dat here),.Dim=c(5,7)), 

volume_cb=structure(.Data=c(paste Volumecb.dat here),.Dim=c(5,7)), 

TP_kb=structure(.Data=c(paste TPkb.dat here),.Dim=c(5,7)), 

volume_kb=structure(.Data=c(paste Volumekb.dat here),.Dim=c(5,7)), 

TP_eb=structure(.Data=c(paste TPeb.dat here),.Dim=c(5,7)), 

volume_eb=structure(.Data=c(paste Volumeeb.dat here),.Dim=c(5,7)), 

TP_mb=structure(.Data=c(paste TPmb.dat here),.Dim=c(5,7)), 

volume_mb=structure(.Data=c(paste Volumemb.dat here),.Dim=c(5,7)), 

TP_an=structure(.Data=c(paste TPan.dat here),.Dim=c(5,7)), 

volume_an=structure(.Data=c(paste Volumean.dat here),.Dim=c(5,7)),                                                         

 

ResidenceTime_cb=429, 

ResidenceTime_kb=477, 

ResidenceTime_eb=2887, 

ResidenceTime_mb=3265, 

ResidenceTime_an=79, 

 

Wmean_kbreg=c(paste Wmean_kb.dat here), 

Wmean_kbRMSE_sb=c(paste Wmean_kbRMSE.dat here), 
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Wamp_kbreg=c(paste Wamp_kb.dat here), 

theta_kbreg=c(paste theta_kb.dat here), 

 

Wmean_cbreg=c(paste Wmean_cb.dat here), 

Wmean_cbRMSE_sb=c(paste Wmean_cbRMSE.dat here), 

Wamp_cbreg=c(paste Wamp_cb.dat here), 

theta_cbreg=c(paste theta_cb.dat here), 

 

Wmean_mbreg=c(paste Wmean_mb.dat here), 

Wmean_mbRMSE_sb=c(paste Wmean_mbRMSE.dat here), 

Wamp_mbreg=c(paste Wamp_mb.dat here), 

theta_mbreg=c(paste theta_mb.dat here), 

 

Wmean_ebreg=c(paste Wmean_eb.dat here), 

Wmean_ebRMSE_sb=c(paste Wmean_ebRMSE.dat here), 

Wamp_ebreg=c(paste Wamp_eb.dat here), 

theta_ebreg=c(paste theta_eb.dat here), 

 

Wmean_anreg=c(paste Wmean_an.dat here), 

Wmean_anRMSE_sb=c(paste Wmean_anRMSE.dat here), 

Wamp_anreg=c(paste Wamp_an.dat here), 

theta_anreg=c(paste theta_an.dat here)) 

 

Initial values 1 
list( 

sedimentation_cb=c(0.005,0.005,0.005,0.005,0.005), 

sedimentation_kb=c(0.005,0.005,0.005,0.005,0.005), 

sedimentation_eb=c(0.005,0.005,0.005,0.005,0.005), 

sedimentation_mb=c(0.005,0.005,0.005,0.005,0.005), 

sedimentation_an=c(0.005,0.005,0.005,0.005,0.005), 

gv=0.005, 

gvmu=0.005, 

gtau=c(0.1,0.1,0.1,0.1,0.1),  

gvtau=0.1, 

ResidenceTime_cbm=c(429,429,429,429,429), 

ResidenceTime_kbm=c(477,477,477,477,477), 

ResidenceTime_ebm=c(2887,2887,2887,2887,2887), 

ResidenceTime_mbm=c(3265,3265,3265,3265,3265), 

ResidenceTime_anm=c(79,79,79,79,79), 

tau=0.1,  

Wmean_kbm=c(paste Wmean_kbm.dat here), 

Wmean_cbm=c(paste Wmean_cbm.dat here), 

Wmean_mbm=c(paste Wmean_mbm.dat here), 

Wmean_ebm=c(paste Wmean_ebm.dat here), 

Wmean_anm=c(paste Wmean_anm.dat here), 

TPobsint_cb=structure(.Data=c(paste TPobs_cb.dat here),.Dim=c(5,7)),           

TPobsint_kb=structure(.Data=c(paste TPobs_kb.dat here),.Dim=c(5,7)),        

TPobsint_eb=structure(.Data=c(paste TPobs_eb.dat here),.Dim=c(5,7)), 

TPobsint_mb=structure(.Data=c(paste TPobs_mb.dat here),.Dim=c(5,7)), 

TPobsint_an=structure(.Data=c(paste TPobs_an.dat here),.Dim=c(5,7))) 
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Initial values 2 
list( 

sedimentation_cb=c(0.0075,0.0075,0.0075,0.0075,0.0075), 

sedimentation_kb=c(0.0075,0.0075,0.0075,0.0075,0.0075), 

sedimentation_eb=c(0.0075,0.0075,0.0075,0.0075,0.0075), 

sedimentation_mb=c(0.0075,0.0075,0.0075,0.0075,0.0075), 

sedimentation_an=c(0.0075,0.0075,0.0075,0.0075,0.0075), 

gv=0.0075, 

gvmu=0.0075, 

gtau=c(0.25,0.25,0.25,0.25,0.25),  

gvtau=0.25, 

ResidenceTime_cbm=c(435,435,435,435,435), 

ResidenceTime_kbm=c(485,485,485,485,485), 

ResidenceTime_ebm=c(2897,2897,2897,2897,2897), 

ResidenceTime_mbm=c(3275,3275,3275,3275,3275), 

ResidenceTime_anm=c(89,89,89,89,89), 

tau=0.25,  

Wmean_kbm=c(paste Wmean_kbm.dat here), 

Wmean_cbm=c(paste Wmean_cbm.dat here), 

Wmean_mbm=c(paste Wmean_mbm.dat here), 

Wmean_ebm=c(paste Wmean_ebm.dat here), 

Wmean_anm=c(paste Wmean_anm.dat here), 

TPobsint_cb=structure(.Data=c(paste TPobs_cb.dat here),.Dim=c(5,7)),           

TPobsint_kb=structure(.Data=c(paste TPobs_kb.dat here),.Dim=c(5,7)),        

TPobsint_eb=structure(.Data=c(paste TPobs_eb.dat here),.Dim=c(5,7)), 

TPobsint_mb=structure(.Data=c(paste TPobs_mb.dat here),.Dim=c(5,7)), 

TPobsint_an=structure(.Data=c(paste TPobs_an.dat here),.Dim=c(5,7))) 

 

 

 

 

 

 

 

 

 

 

 


