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ABSTRACT: Watershed models have been widely used for
creating the scientific basis for management decisions regarding
nonpoint source pollution. In this study, we evaluated the
current state of watershed scale, spatially distributed, process-
based, water quality modeling of nutrient pollution. Beginning
from 1992, the year when Beven and Binley published their
seminal paper on uncertainty analysis in hydrological modeling,
and ending in 2010, we selected 257 scientific publications
which (i) employed spatially distributed modeling approaches
at a watershed scale; (ii) provided predictions of flow, nutrient/
sediment concentrations or loads; and (iii) reported fit to
measured data. Most “best practices” (optimization, validation,
sensitivity, and uncertainty analysis) are not consistently
employed during model development. There are no statistically significant differences in model performance among land
uses. Studies which used more than one point in space to evaluate their distributed models had significantly lower median values
of the Nash-Sutcliffe Efficiency (0.70 vs 0.56, p < 0.005, nonparametric Mann−Whitney test), and r2 (p < 0.005). This finding
suggests that model calibration only to the basin outlet may mask compensation of positive and negative errors of source and
transportation processes. We conclude by advocating a number of new directions for distributed watershed modeling, including
in-depth uncertainty analysis and the use of additional information, not necessarily related to model end points, to constrain
parameter estimation.

1. INTRODUCTION

Watershed models have been extensively used in hydrological
science and environmental management research for a number of
important tasks, including estimating nonpoint source pollutant
inputs to receiving waterbodies and their source areas and
predicting the effects of climate and land-use change on water
quality.1 Extensive research has focused on augmenting the
mechanistic foundation of these watershed models and making
them spatially distributed. Spatially distributed models disag-
gregate watersheds into multiple discrete units to represent the
spatial variability of parameters and inputs.2 However, the
adequacy of earth science models for informing decision making
has been questioned.3,4 Concerns of overparameterization and
equifinality have brought to the forefront of modeling efforts the
development of methodologies that will obtain “the right
answers for the right reasons”.5,6 Distributed, process-based
models remain key tools for understanding and managing
nonpoint source pollutants and the effects of land use
change.7,8,1,9 Models focused on nutrient pollution have a very
long history of development and application for the purposes of
management and policy, and form the focus of this paper.2

The documented inadequacy of many models to address
important societal issues has frequently been attributed to the
fact that the field has advanced without the healthy dose of

introspection required to obtain good science.3,4 For example,

little work has quantitatively examined the practices of process-
based watershed modeling. It is unknown to what extent “best

practices” of model application are followed. While there are
conventional recommendations of how “accurate” a model

should be,10 there is no sense of how well the existing class of
distributed, process-based models performs across a variety of
state variables, and howmodel development affects performance.
In this paper we quantitatively evaluate the state of distributed,

process-based watershed models. We assess performance of a
number of state variables associated with nutrient pollution and

quantify how performance varies with model development. We
also assess how often best model development practices are

followed. This paper compliments more comparative, review-
type approaches,2,11 and aims to lead to concrete recommenda-
tions for the advancement of the field as a whole.
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Figure 1.Map of model application watershed locations. Inset displays (a) bar graph of dominant landuse of each watershed, as identified by the authors
of each study, and (b) area of model application watersheds in km2 (note logarithmic x-axis).

Figure 2. Histograms of (a) minimum mean monthly temperature; (b) maximum mean monthly temperature; (c); annual precipitation; and (d) the
percentage of studies applying each model. Note that each study may apply more than one model.
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2. MATERIALS AND METHODS

We sampled distributed watershed modeling work published in
scientific journals between January of 1992 and July of 2010. The
start of this period was the first appearance of the Generalized
Likelihood Uncertainty Estimation (GLUE) methodology.12 To
be included, a publication had to (i) present watershed-scale
predictions from a spatially distributed, process-based watershed
model; (ii) make predictions of discharge as well as at least one
nutrient or sediment concentration or load; and (iii) compare
simulations to measurements from the studied system. Papers
which presented sediment estimates as the sole water quality
variable were included only if they used a model which could
estimate nutrient concentrations or loads as well. To locate
studies, we searched ISI’s Web of Science database, using terms
“watershed model(l)-ing”, “model(l)-ing”, “hydrological model-
(l)-ing”, plus one of: “nutrient(s)”, “phosphorus”, “phosphate”,
“nitrogen”, “nitrate,” or “ammonia”. We found a total of 257
papers listed in the Supporting Information that fit these criteria.
We extracted metrics of fit for each simulated time series using

two metrics: the coefficient of determination, r2 = {∑[(O−O̅) ×
(S−S ̅)]}2/{∑(O−O̅)2 × ∑(S−S̅)2)} and the Nash-Sutcliffe
Efficiency,13 NSE= (1−∑(O−S)2/∑(O−O̅)2), where O refers
to observations, S refers to simulations, O̅ (S) to the average of
the observations (simulations). With both commonly used
metrics, higher values indicate better fit and 1.0 indicates perfect
fit. A NSE of 0 indicates a model which predicts as well as the
average of the observations, and a negative NSE indicates a
model which predicts more poorly than the average of the
observations. The NSE penalizes for bias, where the r2 does not
penalize for linear bias. From each model application, we
collected the metrics of fit, model name, method of spatial
disaggregation, spatial and temporal resolution, length of time
series, method of calibration, sensitivity and uncertainty analysis,
basin size, land use types, latitude and longitude, the presence of
point sources, and climate normals for 1980−2010.14

3. RESULTS

The 257 studies comprised 494 watersheds distributed globally,
albeit with a preponderance of studies in the United States and
Western Europe and some in China (20 watersheds, 16 studies),
India (11 watersheds, 9 studies), and South Korea (9 watersheds,
8 studies; Figure 1). Notable areas with few or no studies in this
database are Latin America, Northern Asia, and Africa. While
there has been considerable distributed, process-based modeling
in the Amazon basin, little of it focused on nutrients or sediment
concentrations.15 Only studies published in ISI indexed journals
were selected for analysis. This disqualifies some studies in
regional journals and all of the gray literature. Only watershed-
scale studies which compare discharge and nutrients to
observations are included. Most systems studied with nonpoint
source models are agricultural systems, though there has been
significant work in forested areas (Figure 1a). There is little
published work in urban systems, despite the existence of
nonpoint source process models specialized to urban areas
(Storm Water Management Model).16 More published work on
this topic will allow us to assess the urban water quality modeling
strategies currently in use. We found a roughly log-normal
distribution of watershed sizes studied (Figure 1b). This range
spans the research catchment scale through the mesoscale (10−
10 000 km2). Notable is the paucity of regional scale studies, only
two (2) were based in a catchment larger than 35 000 km2. While
temperate, warm, and humid areas have been well studied with

the models, we found cold and dry regions have not (Figure 2a−
c). We note that five models comprise more than 80% of the
literature we sampled (Figure 2d). This is in contrast with aquatic
ecology, where models used are typically assembled for each
study.17,18

3.1. Variables Simulated and Their Spatiotemporal
Resolution.The 257 studies presented 1873 simulated variables
(Figure 3a). Discharge, sediment, and nitrate variables were

simulated most commonly. Simulations of dissolved phosphorus
species were presented by only 17% of studies. Few studies
examined the individual flow paths to the stream. Only 4% of all
studies presented simulations of surface runoff (overland flow),
and only one study presented a simulation of groundwater flow.
Distributed models discretize time and space. We found that

92% of studies employed a daily or monthly time step for
evaluation and reporting (Supporting Information (SI) Figure S-
1a). This implies that important biogeochemical or hydrological
processes occurring on a time scale of hours (e.g., biological
oxygen demand, first flush, snowmelt, changing source water
contributions) may not be well represented in these models, even
if their mathematical representation is adequate to characterize
them at the required finer temporal resolution.
Detailed information in space may also be required to resolve

important processes. For instance, denitrification requires the
presence of nitrate and carbon and the absence of oxygen. Failure
to sufficiently resolve these variables in space or time could lead

Figure 3. Bar graphs showing the percentage of studies which: (a)
simulate each variable, and (b) employ particular spatial segmentation
methods. The group “Others” refers to anymodel which was used in less
than 5% of studies.
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to a failure to simulate denitrification. By far the most common
method of spatial segmentation is the subbasin, where
topography is used to disaggregate discrete areas of drainage
(Figure 3b). We found a log-normal distribution of the number
of subbasins used, with a peak of roughly 20 subbasins (SI Figure
S-1b). There was a significant but weak relationship between log
transformed basin size and log transformed number of subbasins
(p < 0.01, r = 0.31).
3.2. How Consistently Do Modelers Follow Best

Practices? Environmental modeling textbooks typically present
a sequence of best practices during model development. These
include sensitivity analysis, optimization, validation, uncertainty
analysis, and quantification of fit.19 Sensitivity analysis is an
assessment of how much model output varies, given a specific
level of variability of the parameters and other inputs. By
pinpointing parameters and inputs which exert a strong influence
on model outputs, sensitivity analysis gives a sense of accuracy
and precision requirements. Nevertheless, only 25% of studies
reported any results of sensitivity analysis (Figure 4).

Considerable work has been focused on the need for
uncertainty analysis in watershed modeling.20 Uncertainty in
watershed models partly stems from the use of simplified,
abstract mathematics to simulate real world processes. The
information we use to force, parameterize, and calibrate these
models is also subject to significant uncertainty.21−24,1 Because
deterministic model applications ignore this uncertainty, many
researchers have found that deterministic applications may not
be particularly meaningful.1,4,12,17,18,20−24 Tremendous effort has
gone into developing uncertainty analysis frameworks in
watershed modeling.25,21,26,22,27 However, only 10% of dis-
tributed, process-based, nonpoint source pollutant modeling
studies attempted to account for the uncertainty of their model
predictions in a quantitative manner (Figure 4); a somewhat
surprising result, given that the starting point of our study period
is the publication of the Beven and Binley seminal paper.2

The meaning of validation has been debated extensively in the
literature.3 Rykiel28 emphasizes that validation does not imply
the model is “true”, or even optimalonly that it is acceptable
for a given purpose. Power29 defines as the simplest form of

validation the quantification of goodness of fit. Seventy-seven
percent (77%) of watershed modeling studies in our data set
quantified goodness of fit. Predictive validation refers to the
ability of a model to fit data to which it was not calibrated, and is
the most common validation practice. Validation was performed
by the majority of studies in our database (57%, Figure 4).
Structural validation refers to assessing the realism of one or
more components of the model (e.g., causal relationships,
relative magnitudes of fluxes).17 Only six studies explicitly
performed structural validation on any variables: corn and soy
yields;30,31 soil nutrient concentrations;32 TN:TP ratios;33

evapotranspiration;34 and water table heights.34,35

When calibration is done manually, it is unclear if any lack of fit
is due to a poor parameter choice or inadequate model structure.
Optimization is any automated, objective method of selecting a
parameter vector (e.g., genetic algorithms). Despite the
tremendous amount of research effort invested into developing
optimization techniques in the watershed modeling literature,36

only 17% of studies reported the use of any kind of optimization
technique (Figure 4).

3.3. How Well Do Process Based, Nonpoint Source
Watershed Models Simulate the Real World? We present
box plots of the NSE values in Figure 5 and include boxplots for
the r2 values in the SI as Figure S2. We also present performance
percentiles in tabular form in SI Table S-1. The hydrometric
variables tended to be simulated more accurately than the water
quality variables. The median values of all of the variables
presented in Figure 5a are respectable. However, the 25th
percentile for some water quality variables is quite low. Negative
NSE values indicate that the model predictions perform more
poorly than the observed mean value. Of the 257 studies, 40
(16%) studies published at least one simulated variable with NSE
< 0. There was little variability of performance across the
different dominant land uses in the data set (Figure 5b).
Performance did vary across models, with Agricultural NonPoint
Source pollution model in both event and continuous modes
(AGNPS and AnnAGNPS) being characterized by better
performance, and the Integrated Catchment Model (INCA)
and Hydrologiska Byran̊s Vattenbalansavdelning (HBV) being
characterized by worse performance (Figure 5c). It should be
noted that the INCA and HBV communities calibrate and
assesses their models at a large number (10 or more) of discharge
and water quality nodes within the basin. As we substantiate in
Section 4.2, this degree of rigor would likely result in lower
metrics of fit for the other models in Figure 5. Finally, model
error did not vary across time step (Figure 5d).

3.4. HowDoesModel Development Influence Perform-
ance? Table 1 presents the correlation coefficients and p-values
of relationships between performance metrics and various
aspects of study design. There was no consistent relationship
between the number of subelements or the subelement size and
the model performancemodels which have more detail in
space were not on the whole more accurate than those which had
less detail in space. We found either no significant relationship or
a very weak positive relationship. We did find some weak
relationships between various environmental covariates and
performance. Generally, models performed slightly better as
minimum and maximum temperatures got warmer, conditions
got wetter, and elevation increased. We noted a positive
relationship between fit and the number of study citations.
This finding contrasts the trends reported for aquatic
biogeochemical modeling,37 although we stress that the
relationship is weak.

Figure 4. Percentage of studies which quantify any metrics of fit,
perform a validation, perform a sensitivity analysis, perform some kind
of objective optimization procedure, and perform an uncertainty
analysis. We here define uncertainty analysis as any attempt to present a
range of predictions based on the uncertainty of parameters, inputs, or
model structure. Optimization is here defined as any attempt to
objectively locate a “best fit” solution, that is, any method more
advanced than manual parameter adjustment.
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4. DISCUSSION

In this paper, we sampled the process-based, distributed
watershed modeling literature and assessed the state of the
practice. We found that this class of models is applied globally,
across a wide range of climatic and land cover conditions, albeit
with a preponderance of studies in North American and
European agricultural areas. Daily and monthly time steps for
reporting and comparing predictions are the norm (96% of
papers), as are subbasin spatial delineations (75% of papers).
Model validation is common, though far from universal (57% of
studies; Figure 4). However, despite the considerable amount of
research effort into optimization and uncertainty analysis, only
10% of the studies we sampled attempted uncertainty analysis,
and optimization is only presented in 17% of studies (Figure 4).
We found a tremendous range in the performance of watershed
models, with respectable median values of the Nash-Sutcliffe
Efficiency (0.4−0.7), but many poor simulations reported (25th

percentiles between −0.36 and 0.65; SI Table S-1). None of the
study aspects reported in Table 1 were able to explain this
variability. It seems that much of the variability of model fit
results from aspects which are difficult to extract from papers, for
example, diligence in calibration, fitness of the model for the
studied system, the characteristics of the calibration data set at
hand (e.g., relative representation of the baseline versus event-
based conditions, sampling frequency), or the quality of the
inputs (quantity and timing of nutrients applied).

4.1. A Comparison of the Most Common Watershed
Models.While 41models appeared in our database, only five (5)
models appeared in more than 3% of the studies in the database:
Soil−Water Assessment Tool (SWAT),38 INCA,7,8 Agricultural
Nonpoint Source Pollution Model/Annual Agricultural Non-
point Source PollutionModel (AGNPS/AnnAGNPS),39 Hydro-
logical Simulation Program-Fortran (HSPF),40 and HBV41

Figure 5. Box plots of Nash-Sutcliffe Efficiency for (a) selected variables; (b) dominant landuse types; (c) models used; and (d) time steps employed.
Numbers above each box indicate number of samples in each group. Variables in (a) were selected to have at least 26 samples. Wildlands in (b) refers to
any land other than Forest which is not dominated by human land uses, for example, grassland. Panels b−d include all variables.
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(Figure 2d). We synthesized some of the key elements of these
models in Tables 2−5.
Most of the models in Table 2 posit that their fundamental

calculation units are connected directly to a stream. This
precludes incorporating any explicit representation of upland
topology. Topology is pivotal to the location of biogeochemical
hot spots, or locations where chemically complementary
flowpaths meet.42 Topology is also key to understanding the
“fill and spill” mechanisms operating in many northern

catchments.43 While a depiction of upland topology may be
unnecessary in large catchments, many of the catchments where
these models have been applied are on the order of size that
upland topology could be of great importance (<1 km2; Figure
1b). Incorporating the upland-riparian topology could be a
critical feature for improving the representation of biogeochem-
istry into these models. Some progress in this regard has already
been made with SWAT. Easton et al.35 used topographic wetness
indices as the basis for their HRUs instead of landuse and soil
type. This resulted in each hillslope being divided into a cascade
of HRUs, and improved model fit for dissolved phosphorus.35,44

Other work45,46 has shown that the HRUs for SWAT can be
delineated according to landscape position along a catena, or
series of downslope cascading flows. This spatial framework
yielded increased accuracy and decreased bias when applied to
sediment yield.47 More focus on how models represent topology
may lead to improvements in catchment scale biogeochemical
simulations.
The five models in Table 3 have similar conceptual models of

the upland origins and routing of streamflow. Flow to the stream
consists mainly of a surface component and a shallow soil
component. SWAT, INCA, HSPF, and HBV include a
groundwater component, whereas AnnAGNPS and HBV
include a tile drainage component. There was considerable
diversity of calculation procedures employed, although they all
tended to be empirical, especially in the case of surface runoff.
These empirical approaches allow models to be applied to large
areas without extremely detailed surface data. However, they can
make it difficult to determine whether these models assume that
surface runoff is typically generated using infiltration excess (e.g.,
Hortonian) or saturation excess mechanisms,48 as runoff
increases with stored soil moisture. The models in Table 3
may not be able to locate runoff prone areas, especially in
catchments where these areas expand and contract seasonally.
We note that for these models, surface runoff is the main
flowpath by which phosphorus, sediment, and many other
important pollutants are deposited into the stream.
The models in Table 4 varied in terms of their approach to

modeling overland sediment inputs. Some models use the
empirical Universal Soil Loss Equation or a similar approach
(SWAT, AGNPS/AnnAGNPS, and HBV). HSPF and INCA are
somewhat physically based, and use calibrated relationships
between overland flow volume and velocity and transport
capacity, and both account for splash and sheet erosion.49 The in-
stream sediment components tended to rely on Bagnold-type
models, where transport capacity is estimated as a function of
flow or peak flow, and this capacity results in sediment being
suspended if the load is below capacity or deposited if it is
above.50 Separate size classes are often addressed in the in-stream
routing components, with each size class being characterized
with a critical shear stress. Transport can only occur when this
critical shear stress is exceeded.With the exception of HBV, these

Table 1. Results of Regressions between Fit Metrics and
Covariatesa

covariate metric p-value r

spatial covariates
subelement average size (km2) NSE 0.52

r2 0.21

number of subelements NSE 0.11
r2 <0.01 0.11

basin area (km2) NSE 0.34
r2 0.51

catchment area/DEM cell size NSE 0.18
temporal Covariates r2 0.42
length (days) NSE <0.01 0.14

r2 0.12

length (steps) NSE 0.21
r2 0.18

environmental covariates
minimum mean monthly temperature (°C) NSE <0.01 0.14

r2 <0.01 0.11

maximum mean monthly temperature NSE 0.04 0.08
(°C) r2 <0.01 0.17

precipitation (mm) NSE <0.01 0.1
r2 <0.01 0.14

elevation (MASL) NSE <0.01 0.1
r2 <0.01 0.15

bibliographic covariates
number of citations NSE 0.03 0.1

r2 <0.01 0.13

year of publication NSE <0.01 0.13
r2 0.25

aFit (r2) and slopes of regressions are presented only when the p-
values were less than 0.05. Regressions were calculated for all state
variables. Values of NSE less than −1 were omitted.

Table 2. Representation of Space by Common Watershed Modelsa

SWAT INCA AGNPS/AnnAGNPS HSPF HBV

primary disaggregation
unit

subbasins subbasins irregular “cells” of uniform land
management and soil

subbasins subbasins

secondary
disaggregation unit

HRUs on the basis of landuse, soil,
and slope

landuse pervious and impervious
landuse

elevation
zones

tertiary disaggregation
unit

1 km2

pixels
land use
zones

aThese five models together accounted for 83% of the studies in our sample.
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relatively robust in-stream algorithms render these models able
to address questions of stream bank versus upland sources of
sediment, an important emerging concern.51

The nitrogen and phosphorus components of the models in
Table 5 had virtually the same structure. There are a small
number of conceptual pools of organic and mineral forms of each
nutrient, and the transformations between each pool are
governed by first-order kinetics. Often the base reaction rates
were included as calibration parameters, with modifications
dependent on temperature. These model structures differ
strikingly from models focused on biogeochemistry, for instance
DNDC.52 DNDC integrates the nitrogen and carbon cycles. For
instance, denitrification can only take place when both carbon
and nitrate are present. The isolation of the biogeochemical
cycles from each other by the watershed models in Table 5 is
another serious impediment to using them to accommodate “hot
spot” phenomena, where chemically distinct waters mix and
react.42 The simplified conceptual models in Table 5 also neglect
the different fates various forms of occluded phosphorus may
have. Iron and Manganese bound phosphorus can become
released during anoxic conditions in streambank sediments,
whereas calcium bound phosphorus tends to be more stable.53,54

4.2. What Additional Information Should Be Incorpo-
rated into Distributed, Process Models? Only 19% of
studies in our database calibrated to more than one location in
space. While virtually all of the studies calibrated to streamflow,
only 4% calibrated to surface runoff, and no studies calibrated or
assessed the ability of their models to simulate any other
hydrological fluxes. Researchers have cautioned that reliance on
information from only one location in space and only one
hydrological flux makes it possible that poor simulations of one
flux can be compensated for by poor simulations of another flux
of the opposite sign.4,6 The danger of this fit through error
compensation instead of faithful depiction of basin dynamics is
heightened by the highly empirical nature of many model
components. We recommend that future studies consider using
three additional sources of information to further constrain their
predictions and get the right answers for the right reasons:
additional information in space, information on additional model
fluxes, and tracer information to help constrain model sources.
Constraining simulated in-stream fluxes of water and water-

borne constituents may be improved by incorporating
information from a greater variety of locations in space. Research
focused on inorganic nitrogen with the Hydrological Predictions
for the Environment (HYPE) model suggests that calibrating a
distributed, process-based model to multiple stations within a
nested basin context can reduce the uncertainty of the water
quality predictions and also improve the accuracy at the upstream
stations.55 Work with HBV has reached a similar conclusion.56

To test the hypothesis that nested basin approaches can generally
improve an assessment of model accuracy and uncertainty, we
took the metrics of fit and categorized each into one of two
categories. The first category consisted of studies where the
calibration was to a nested basin, and the second to studies where
the model was constrained only at the basin outlet. We
conducted a nonparametric Mann−Whitney U test on the two
groups and rejected the null hypothesis of no difference (p <
0.005). Note that we did separate tests for values of the NSE and
the r2. For each of the metrics of fit, the median was higher when
calibrating only to the basin outlet (0.70 vs 0.56 for NSE, and
0.78 vs 0.63 for r2). Calibrating only to the basin outlet likely
results in an overconfident assessment of a distributed model’s
ability to reproduce the internal dynamics of the basin, including

source attributions and land use scenarios. INCA and HBV are
usually calibrated in a nested basin context, which at least partly
explains their lower performance (Figure 3). In this regard, we
highlight the importance of using information from multiple
locations in space to constrain model predictions. Increasing
information in space could better support spatially variable
parameters. Future work should seek to develop and apply
frameworks which use additional information in space to allow
the model parameters to vary spatially. Bayesian hierarchical
frameworks are one possible approach for doing so. Bayesian
hierarchical frameworks use global hyperparameters to share
information across sites, while allowing parameter values some
degree of site-specificity.57

Future work should better take advantage of the multiple
criteria which watershed models can be calibrated to. The most
common approach to calibrate multiple variables has tradition-
ally been to start with hydrology, then proceed to sediment and
then nutrients.58 Yet, studies which have examined this practice
find that it results in suboptimal results when compared with
approaches which calibrate flow and water quality all at once.59,56

The models included in our database simulate all the major fluxes
of the hydrological cycle (e.g., evapotranspiration, groundwater
flow, overland flow, return flow), yet the common practice is to
calibrate only to streamflow. This implies that we do not know
how realistically these models reproduce the hydrological cycle.
By incorporating additional hydrological fluxes such as
evapotranspiration or tile drain flow into the model evaluation,
it might be possible to arrive at more credible estimates of the
other hydrological fluxes. This may result in more credible
estimates of pollutant export.
Model calibration can be aided by incorporating empirical

information about the sources of water, sediment, and nutrients.
HYPE,34 HBV,41 and WATFLOOD60 explicitly account for
water isotope mixing. Approaches to incorporate tracer-derived
information intomodel calibration that do not require alterations
to existing structures should be developed. There are a variety of
techniques developed for drawing inferences from tracer data,
including end member mixing analysis,61 sediment finger-
printing,51 and isotope analysis of some dissolved nutrients.62

Source attributions estimated from these techniques could be
used to constrain model predictions by calibrating the model’s
summary statistics to statistics of source estimates.63 Yen et al.64

recently used annual rates of denitrification in addition to
discharge and nitrate concentration for calibration and found
that doing so improved the realism of the scenario analysis. Other
approaches such as approximate Bayesian computation (ABC)65

and the Generalized Likelihood Uncertainty Estimation
(GLUE)66,67 approach could allow the incorporation of
empirical source attributions with model-based estimates of
source areas.

4.3. The Importance of Best Practice in Modeling. An
important result from this study is that performing sensitivity
analysis, uncertainty analysis, and optimization are not the norm.
Similar results have been found regarding the state of aquatic
biogeochemical modeling.17,18,37 This is despite these “best
practices” being described in some detail in most modeling
textbooks.19,68,69 Significant improvement to the contemporary
modeling practice can be achieved simply bymaking standard the
practice of reporting on the results of validation, sensitivity
analysis, and uncertainty analysis.
There were a number of papers in our database which were

focused on conducting sensitivity analyses or uncertainty
analyses, mainly with the SWAT model. The importance of
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sensitivity and uncertainty analysis are underscored by the
following findings of these studies: (i) much of the sensitivity and
the uncertainty of the SWATmodel may stem from just one, two,
or three parameters;70,71 (ii) the SWAT model is sensitive to the
spatial resolution selected, with performance increasing with
spatial detail as subbasins and HRUs are coarse and remaining
relatively constant after an appropriate amount of detail is
found;72 (iii) the SWAT model is sensitive to the density of rain
gauges used to force it;73 and (iv) the most sensitive parameters
of the SWAT model vary with application site, and may not even
be the same at water quality stations upstream of the basin
outlet.70,74,75Many of these findings are likely due to the complex
and spatially distributed nature of the SWAT model, character-
istics shared with the other models in our sample. Sensitivity
analysis allows modelers to defend their choice of calibration
vector and should be standard reporting for distributed model
results.
It was somewhat surprising to see how little uncertainty

analysis had been conducted. Considerable work has been
undertaken by the hydrological modeling community to develop
uncertainty analysis techniques,12,76 yet they have rarely been
applied to the water quality predictions of distributed, process-
based watershed scale water quality models, likely due to the
models’ complexity (but see Yen et al.64,77). One of the
challenges of the contemporary modeling practice is the
development of calibration techniques that can effectively
accommodate the uncertainties related to the behavior of
watersheds during extreme events, given that the frequency of
such events is expected to increase if the current urbanization and
climate change trends continue. Our work on this subject
involved a novel Bayesian hierarchical framework postulating
two distinct states with respect to the watershed response to
precipitation; that is, precipitation depth above a certain
threshold triggers an extreme state, characterized by a
qualitatively different response of the watershed to precipitation.
The integration of this calibration framework with the SWAT
model offered reasonable end of basin fit of discharge and
sediment load (NSE ∼ 0.7) and state-specific parameters
coherently identified.78,79 Yet, we found that the 95% credible
intervals of urban and agricultural sediment export overlapped.79

The widespread adoption of uncertainty analysis techniques to
model end points (e.g., in-stream phosphate concentrations) and
source apportionments (e.g., mass of phosphate exported from
croplands) will help make the predictions of complex over-
parameterized (but necessary) models more credible to decision
makers.

5. CONCLUSIONS

We assessed the state of the art of spatially distributed, process-
based watershed models with a sample of 257 papers published
between 1992 and 2010. While the median performance was
respectable, there was a very wide range, and performance
declined as we moved from water quantity components to water
quality components. The distributed watershed water quality
modeling community does not consistently adhere to best
practices. Doing so would constitute a methodological advance-
ment which is well within our reach. We recommend that an
examination of model best practices (error metric calculation,
validation, sensitivity analysis, optimization, uncertainty analysis,
and assessment at more than one station) become a typical part
of the review of papers using mathematical models. While not
every paper needs to employ every best practice, the onus should

be on authors to explain which best practices were not employed
and what the corresponding effects on their results might be.
Performance did not significantly covary with degree of spatial

or temporal detail of the models employed. However, evaluating
distributed models with information from more than one water
quantity or quality station significantly negatively impacted their
assessed performance. This suggests that the common practice of
assessing a distributed model only at the basin outlet gives an
overconfident assessment of its ability to reproduce within-basin
dynamics.
The field of process-based, distributed watershed modeling is

dominated by five models: SWAT, INCA, AGNPS/AnnAGNPS,
HSPF, and, HBV, which together constitute roughly 83% of the
studies in our data set. These models have similar representations
of spatial variability (uplands all connect directly to streams),
relevant flow paths (surface water, shallow subsurface water), and
nutrient biogeochemistry (a small number of pools with reaction
rates treated as calibration parameters; no interaction between
nutrient cycles). These model structures pose some difficulty to
accommodating contemporary ideas of observational hydrology
and biogeochemistry, especially the “hot-spot” and “fill-and-spill”
concepts. While these models may be appropriate for mesoscale
analysis, we found that they are often used at fairly fine scales
(catchments less than 10 km2). Future work should examine how
appropriate these models are at evaluating the effects of best
management practices, given that these practices typically work
at a field scale. While the sources of parameter sensitivity have
been explored, the sources of predictive uncertainty are still
relatively unknown with the class of models in this paper. This is
true of model end points and even more so for internal basin
dynamics, such as source attributions. Elucidating the sources
and magnitudes of uncertainty in these models would constitute
a key advancement in their use, and would make them more
suitable decision support tools. On a final note, we believe that
the publication of several recent meta-analysis/critique papers in
the context of earth science modeling17,18,20,37 is a sign of
maturation of the field, as they offer the healthy dose of self-
criticism and restless mindset required to address the demand for
attractive and powerful management tools.
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FIGURE CAPTIONS 

Figure S-1: Panel (a) shows the percentage of studies which employ particular timesteps. Panel 

(b) shows the number of subbasins used by studies which employ the subbasin spatial 

segmentation method. Note that the relationship between basin size and number of subbasins 

used was significant but very weak (p<0.01, r
2
 = 0.10). 

Figure S-2: Box plots of coefficient of determination (r
2
) for: a) selected variables; b) dominant 

landuse types; c) models used; and d) time steps employed. Numbers above each box indicate 

number of samples in each group. Variables in (a) were selected to have at least 20 samples. 

Wildlands in (b) refers to any land other than Forest which is not dominated by human land uses, 

e.g. grassland. Panels b – d include all variables. 

Figure S-3: Box plots of Nash-Sutcliffe Efficiency comparing concentration and load of selected 

variables.    



 

Figure S-1: Bar graphs. Panel (a) shows the percentage of studies which employ particular 

timesteps. Panel (b) shows the number of subbasins used by studies which employ the subbasin 

spatial segmentation method. Note that the relationship between basin size and number of 

subbasins used was significant but very weak (p<0.01, r
2
 = 0.10). 
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Figure S-3: Box plots of Nash-Sutcliffe Efficiency comparing concentration and load of selected 

variables.    



 

 

 

Table S-1: Percentiles of Nash-Sutcliffe Efficiency of selected water quality variables during 

calibration and validation periods. Both concentration and load simulations are included. C refers 

to calibration period, V to validation period. 

Variable Calibration N 
2.5

th
  

Percentile 

25
th

  

Percentile 
Median 

75
th

  

Percentile 

97.5
th

  

Percentile 

Discharge C 167 0.24 0.61 0.74 0.84 0.94 

Discharge V 121 -0.37 0.56 0.71 0.84 0.93 

Runoff C 13 0.6 0.65 0.79 0.88 0.96 

Runoff V 13 -0.04 0.63 0.75 0.86 0.99 

Sediment C 75 -0.53 0.25 0.56 0.77 0.91 

Sediment V 46 -0.83 0.32 0.66 0.83 0.93 

Total 

Nitrogen 
C 69 -0.02 0.4 0.54 0.7 0.85 

Total 

Nitrogen 
V 24 -0.46 0.17 0.49 0.69 0.99 

NO3 C 67 -3.62 -0.36 0.35 0.68 0.9 

NO3 V 44 -0.26 0.3 0.51 0.7 0.82 

Total 

Phosphorus 
C 51 -0.59 0.25 0.51 0.74 0.97 

Total 

Phosphorus 
V 32 -0.72 0.37 0.55 0.66 0.95 

PO4 C 19 0.11 0.54 0.74 0.78 0.86 

PO4 V 15 0.02 0.56 0.71 0.75 0.81 


	Environmental Science and Technology-2015b.pdf
	Environmental Science and Technology-2015b (SI).pdf

