
ARTICLE

Received 3 Jul 2014 | Accepted 11 Feb 2015 | Published 25 Mar 2015

A Bayesian modelling framework for tornado
occurrences in North America
Vincent Y.S. Cheng1,2, George B. Arhonditsis1, David M.L. Sills3, William A. Gough2 & Heather Auld4

Tornadoes represent one of nature’s most hazardous phenomena that have been responsible

for significant destruction and devastating fatalities. Here we present a Bayesian modelling

approach for elucidating the spatiotemporal patterns of tornado activity in North America.

Our analysis shows a significant increase in the Canadian Prairies and the Northern Great

Plains during the summer, indicating a clear transition of tornado activity from the United

States to Canada. The linkage between monthly-averaged atmospheric variables and like-

lihood of tornado events is characterized by distinct seasonality; the convective available

potential energy is the predominant factor in the summer; vertical wind shear appears to have

a strong signature primarily in the winter and secondarily in the summer; and storm relative

environmental helicity is most influential in the spring. The present probabilistic mapping can

be used to draw inference on the likelihood of tornado occurrence in any location in North

America within a selected time period of the year.
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T
ornadoes represent one of nature’s most hazardous
phenomena, capable of causing significant destructions
and devastating injuries and fatalities. In May of 2011, the

single deadliest tornado event in history occurred with 158 deaths
in Joplin, Missouri1. Over the same year, tornadoes in the United
States caused a total of over $28 billion in property damages1.
Canada has also experienced significant losses caused by tornado
activity, with significant tornado events occurring in recent years
(for example, 14 tornadoes on 2 August 2006; 18 tornadoes on
20 August 2009)2. These events have brought the study of
tornado activity to the forefront of climatological research, raising
questions regarding the relative influence of large-scale climatic
signals and the importance of delineating the role of the
underlying atmospheric processes at the appropriate
spatiotemporal scale. Tornado climatology represents a
significant source of information used by a wide variety of
groups, such as weather forecasters and researchers, emergency
managers, civil engineers and insurance companies alike.
Generally, the probability of tornado occurrence is derived from
gridded values of tornado observations coupled with smoothing
methods (for example, kernel densities) that are typically applied
to delineate large-scale spatial patterns and to subsequently
improve estimates for any single location3,4. However, these
approaches rarely associate large-scale tornado variability with
atmospheric variables that vary on relevant climatic timescales5,6.
Predicting tornado activity from surrogate variables of the
associated atmospheric processes can overcome issues related to
data quality, particularly in areas where tornado observations are
unreliable to form the basis of robust inference, due to either
population density biases and/or the rarity of occurrence2,7. More
importantly, the explicit consideration of large-scale climatic
processes can shed light on the principal mechanisms of
tornadogenesis and assess tornado frequency under different
climate change scenarios or climate analogue studies6.

Characterization of the interplay between large-scale atmo-
spheric processes and local conditions leading to tornado
formation has been examined in the severe storm research
community7–9. Atmospheric variables such as convective
available potential energy and vertical wind shear have been
shown to be most relevant to mechanisms related to severe
thunderstorm and tornado formation7. Conditions conducive to
more intense tornadoes (F2–F5) appear to be more
distinguishable than lower-end tornadoes (F0–F1), particularly
by vertical shear parameters9–11. It has also been recognized that
favourable conditions for tornado formation tend to vary
seasonally. Namely, cool-season tornadoes are predominantly
related to high vertical wind shear/low buoyancy regimes,

particularly for more intense (F2–F5) tornadoes, relative to the
considerably greater buoyancy/high shear conditions generating
tornadoes in the warm season12–17. Recent research has also
shown that the convective storm morphology and near-storm
environment associated with tornadoes have clear seasonal and
geographic patterns11,18,19; notably, spring tornadoes in the Great
Plains are produced by discrete, supercellular storms as compared
with the predominantly quasi-linear convective systems in the
Ohio Valley and the southeast United States11,18,20. Evidence that
the prevailing conditions conducive to tornado occurrence exhibit
clear seasonal and geographical variability leads us to hypothesize
that the detailed characterization of their spatiotemporal patterns
may address the current predictive deficiencies and consequently
advance our capacity to effectively develop prognostic tools for
tornado occurrence.

In this study, the main objective is to delineate the seasonal and
geographic variability of the relationship between large-scale
climatological/atmospheric variables and both F0–F5 and F2–F5
tornado occurrence. Our analysis identifies the optimal combina-
tion of atmospheric variables and explicitly considers the
sampling biases in tornado observations to collectively predict
the monthly and seasonal tornado activity in North America.
Specifically, we use Bayesian inference techniques to dissect the
problem of tornado occurrence into a two step-process, in which
we first consider the causal linkages between atmospheric
variables and tornado activity in space and time, and we then
postulate that the likelihood to observe a tornado is closely related
to the population density. A conditional autoregressive term is
also introduced in the statistical formulation to explicitly
accommodate the serial correlation patterns of model residuals.
Our ultimate goal is to develop an empirical modelling tool that
can be used for drawing inference on the frequency of tornado
occurrence or exceedance of a threshold number of tornadoes in
any location in North America within a selected time period of
the year.

Results
Model performance and posterior parameter patterns. We
investigated seven combinations of predictor variables to predict
the tornado occurrence (F0–F5 and F2–F5) for each calendar
month and season independently (Supplementary Table 1). All of
the predictor variables were standardized to examine their relative
importance and possibly control any multicollinearity issues. We
used two criteria to identify the optimal model configuration:
(i) model performance as depicted by the deviance values or
� 2 � log[model likelihood] (Supplementary Tables 2 and 3) and

Table 1 | Posterior parameter mean and s.d. values of the highest-performing model that considers the variables CAPE, HLCY and
VWSH to predict F0–F5 tornadoes.

F0F5 a0 a1—CAPE a2—HLCY a3—VWSH b r

Model Mean s.d. Mean s.d. Mean s.d. Mean s.d. Mean s.d. Mean s.d.

January � 8.50 1.04 0.23 0.10 0.02 0.23 4.46 1.04 5.57 1.46 2.66 0.16
February � 7.93 0.90 0.43 0.09 0.25 0.20 3.98 0.90 5.63 1.21 2.39 0.15
March �4.62 0.40 0.14 0.10 0.51 0.12 1.41 0.44 3.06 0.46 1.95 0.09
April � 2.94 0.25 0.19 0.11 0.33 0.09 0.69 0.37 3.25 0.33 1.67 0.06
May � 1.81 0.14 0.25 0.11 0.26 0.07 0.10 0.21 2.82 0.19 1.62 0.05
June � 1.92 0.14 0.49 0.10 0.25 0.07 0.71 0.31 2.32 0.16 1.72 0.05
July � 2.12 0.13 0.72 0.11 0.13 0.07 0.98 0.16 2.27 0.17 1.82 0.06
August � 2.46 0.15 0.53 0.12 0.14 0.10 0.67 0.20 2.22 0.20 2.15 0.08
September � 3.18 0.21 0.44 0.11 0.30 0.12 0.47 0.29 2.81 0.31 2.10 0.09
October � 3.99 0.35 0.08 0.10 0.16 0.14 0.33 0.42 3.84 0.51 2.43 0.11
November �4.25 0.50 0.12 0.08 0.44 0.17 0.09 0.64 6.22 1.12 2.19 0.11
December � 6.72 0.89 0.06 0.10 0.01 0.22 2.11 1.01 6.14 1.59 2.44 0.16
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(ii) the identifiability patterns of the parameter posteriors. When
combined with CAPE, models with SHEAR and to a lesser extent
with VWSH tended to perform better than the ones with HLCY
in February to May. HLCY and SHEAR improved performance in
June and July, respectively. VWSH tended to improve model
performance in late summer-early autumn, while SHEAR out-
performed the rest of the potential predictors throughout autumn
until December. Interestingly, when reproducing F2–F5 tornadic
activity, model performance with HLCY became better in January
and VWSH improved model fit in June. On the basis of the two
criteria of model performance and parameter identification, we
inferred that the optimal model considers the variables CAPE,
HLCY, VWSH to predict monthly values of F0–F5 and F2–F5
tornado counts. (Notably, the post hoc implementation of the
deviance information criterion values suggests that the same
model is not only the highest performing, but also the most
parsimonious one in the majority of the cases examined.). The
corresponding parameter posterior means and s.d. are shown in
Tables 1 and 2, respectively. Results for the rest of the models
examined are shown in Supplementary Tables 4–15.

The posteriors of the standardized regression coefficients were
characterized by clear seasonal patterns, which were consistent
across all models tested. According to our modelling analysis,
CAPE has a predominantly positive influence on tornado activity
during the summer months (June to August) and a secondary
(but distinct) one in February. VWSH demonstrated its strongest
positive linkage with the tornado occurrence during winter
months (December to March) and to a lesser extent in summer.
The signature of HLCY was more distinct during the spring
(March–April) and somewhat weaker in late fall and winter for
the F0–F5 and F2–F5 models, respectively. Interestingly, although
it was not included in the highest-performing model among the
combinations examined, SHEAR was characterized by fairly
similar seasonal patterns with VWSH with respect to its influence
on model predictions (see Supplementary Tables 4–15). Regard-
ing the relative importance of the different predictors, the
standardized regression coefficients suggest that VWSH is most
closely related to the variability of tornado occurrence (F0–F5 and
F2–F5) in the winter, and together with CAPE appear to shape
the tornadic activity in the summer. HLCY is more influential in
early spring, although its posterior standardized mean values are
slightly lower than those for VWSH (and SHEAR).

Our analysis revealed several identifiability issues with
interesting implications about the relative significance of the
different predictor variables, when considered collectively as
predictors in modelling frameworks of tornadic activity. For
example, the signature of VWSH was significantly compromised

after the addition of SHEAR with F2–F5 models in spring and fall
months (see posteriors in Supplementary Tables 9 and 13). On
the other hand, SHEAR is well identified with a distinct signature
across all the F2–F5 models, with September being the only
exception. The HLCY posteriors remain fairly similar with
respect to their absolute magnitude and identifiability by the
addition of VWSH (Tables 1 and 2 versus Supplementary
Tables 4 and 5), whereas the addition of SHEAR influences HLCY
more significantly during the fall and winter (Supplementary
Tables 4 and 5 versus Supplementary Tables 10 and 11). The
posteriors of CAPE are well identified for all F0–F5 models as
well as for F2–F5 models during the summer maximal activity.
The signature of CAPE remains fairly well delineated and
practically unaltered by the different permutations of the other
(wind shear-related) predictor variables.

The differences of the random effect terms, j, between the
two-predictor CAPE–HLCY and the three-predictor CAPE–
HLCY–VWSH F0–F5 (F2–F5) models for each month are shown
in Fig. 1 (Supplementary Fig. 2). Substantial differences are found
in January and February (southeast United States) and from June
to August (Eastern Atlantic Canada/United States to the Great
Lakes), where the magnitude of the autoregressive term j from
the CAPE–HLCY–VWSH model is smaller. Interestingly, these
are also the months when the impact of VWSH is more distinct,
and thus its inclusion into the model allows us to effectively
capture the variability of tornado occurrence in the winter and
summer. On the other hand, the spatiotemporal patterns of the j
term with the two models are practically identical during the
spring and autumn months.

Seasonal variability characterized the posterior values of the
population effect parameter, b. The highest values were derived
for the winter months and the lowest ones during the summer,
that is, a higher population density is needed to observe tornadoes
during the former rather than the latter months (Tables 1 and 2).
Substituting b back into equation (2) to identify the population
thresholds where nearly all tornadoes can be observed
(pi(b)Z0.995), the threshold levels ranged from 6.2 to 7.2
persons km� 2 for F0–F5 tornadoes, which is consistent with the
findings of other studies2,21, and 6.4 to 14.0 persons km� 2 for
F2–F5 tornadoes (Supplementary Figs 3 and 4). These predicted
patterns may be related to the seasonal variability in the day
length, which in turn affects the ability to observe tornadoes22.
Moreover, because of the higher proportion of nocturnal
tornadoes occurring in the winter months (10% in July to 40%
in February for F2–F5 tornadoes), the daylight effect on the
ability of observing tornadoes may be compounded22. Regarding
the higher population threshold range derived for the F2–F5

Table 2 | Posterior parameter mean and s.d. values of the highest-performing model that considers the variables CAPE, HLCY
and VWSH to predict F2–F5 tornadoes.

F2F5 a0 a1—CAPE a2—HLCY a3—VWSH b r

Model Mean s.d. Mean s.d. Mean s.d. Mean s.d. Mean s.d. Mean s.d.

January �9.84 1.38 0.17 0.22 0.19 0.39 4.59 1.44 5,980 2,882 2.92 0.38
February �9.85 1.17 0.24 0.12 0.49 0.29 4.39 1.03 163.0 128.8 2.04 0.32
March �6.12 0.62 �0.13 0.16 0.62 0.21 1.26 0.77 4.04 1.15 2.41 0.17
April �4.60 0.44 �0.02 0.17 0.78 0.16 0.06 0.62 4.57 1.00 2.12 0.15
May � 3.41 0.28 0.19 0.17 0.49 0.11 �0.40 0.32 4.65 0.61 1.93 0.11
June �4.07 0.33 0.56 0.20 0.51 0.13 0.28 0.46 3.49 0.54 2.32 0.14
July �4.43 0.33 0.52 0.23 0.24 0.15 1.04 0.31 2.72 0.50 2.21 0.22
August �4.96 0.45 0.36 0.23 0.48 0.19 0.61 0.32 3.53 0.72 2.77 0.29
September � 5.61 0.50 0.11 0.23 0.43 0.24 �0.25 0.60 5.12 1.44 2.97 0.27
October �6.11 0.62 0.04 0.18 0.25 0.22 0.69 0.67 4.30 1.32 2.93 0.28
November � 5.75 0.87 0.00 0.16 0.44 0.29 �0.45 1.13 11.07 4.72 2.69 0.21
December �9.30 1.66 �0.16 0.19 0.56 0.42 2.29 1.65 79.87 72.50 2.91 0.33
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tornadoes, we believe that it likely reflects the fact that significant
tornadoes tend to be reported in more populated areas comparing
with F0–F5 events. The latter assertion reflects the ‘damage-
related’ nature of the tornado intensity estimates in the F-scale
rating. Tornadoes are more likely to have a high F-scale rating in
populated areas, where there is more infrastructural capital in
their path23.

Assessment of tornado occurrence in North America. The
spatial distribution of the 30-year observations, Tobs, along
with the corresponding predictions, Tlatent, for F0–F5 (F2–F5)
tornadoes are shown in Fig. 2a–d and Fig. 2e–h (Fig. 3a–d and
Fig. 3e–h), respectively. Additional information related to the
results of the CAPE-HLCY F0-F5 and F2-F5 models is provided
in Supplementary Figs 5 and 6. The spatial patterns for Tobs and
Tlatent are qualitative similar, indicative of the satisfactory model
performance. In quantitative terms though, there are areas where
the predicted tornado occurrences were considerably larger than
the observed ones, primarily in the central to northern Plains and
the Canadian prairies. The discrepancies were more pronounced
during the spring and summer months (Table 3 and Fig. 2e–h
and Fig. 3e–h; see also Supplementary Figs 8 and 9 for differences
related to the CAPE-HLCY-VWSH model). Notably, the pre-
dominance of Tlatenti relative to Tobsi is more evident in Canada
than in the United States, suggesting a potentially significant

sampling bias of tornado observations in the Canadian Prairies2

(Table 3).
In springtime, the global maximum for F0–F5 and F2–F5

tornado occurrences is located in the southern to central Plains,
and extends eastward from Illinois to western Tennessee/
Kentucky. F0–F5 Tlatenti predictions extend to southern Ontario
and portions of Prairies in Canada but less so for F2–F5
tornadoes. Tornado occurrences in the summer shift northward
to the central Plains and to the Prairies, and extends eastward to
the Midwest, southern Ontario and the northeastern seaboard
states. Note that there are peaks in eastern Colorado and Florida
peninsula for F0–F5 tornadoes in the summer that are absent
for F2–F5 tornadoes. These are predominately non-supercell
tornadoes that are mostly of the lower F-scales18. It has been
hypothesized from the tornado data that a sizable fraction of
tornadoes across Canada are of the non-supercell type24. In the
fall, areas of high tornadic activity shift south of the Prairies to the
United States, east of the Rocky Mountains, characterized by a
clear local minimum in the Appalachian Mountains. In the
winter, the F0–F5 tornado maximum activity is located in the
Gulf coast states, northward to Arkansas/Kentucky and in
northern and central California coast.

The random effects terms in the seasonal models demonstrate
strong spatial covariance with the Tlatent posterior estimates in
that the positive j values typically coincide with higher Tlatent

Figure 1 | Differences in the conditional autoregressive term between the CAPE–HLCY F0–F5 and CAPE–HLCY–VWSH F0–F5 monthly models.

(a) December; (b) January; (c) February; (d) March; (e) April; (f) May; (g) June; (h) July; (i) August; (j) September; (k) October; (l) November.
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and vice versa (Fig. 2i–l and Fig. 3i–l). In other words, j tends to
compensate for the residual variability unaccounted for by the
predictors included in the current model, although there were
deviations from that pattern. For example, in the eastern United
States and southern Ontario, where the tornado activity peaks up
in the summer, jis are considerably lower than the Central
United States (Colorado maximum) and Prairies. In the winter
F0–F5 models, jis in the southwest United States have distinctly
higher values than the southeastern region, despite the lower
number of tornadoes in the west coast. While the likelihood of
addressing the structural inadequacies of our model with the
inclusion of additional predictors cannot be ruled out, we believe
that an equally effective strategy may be to relax the assumption
of common parameter values over the entire geographic domain.
For modelling purposes, the delineation of regions that
demonstrate greater homogeneity in their tornado activity and
the subsequent configuration of a hierarchical structure, under
which site-specific parameters will be used to describe the causal
relationship between tornadic activity and atmospheric/climato-
logical variables, may increase our capacity to accommodate the
observed variability in space and time2.

The expected tornado frequency, li, for the months when the
highest F0–F5 and F2–F5 tornado occurrence is experienced in
the United States (May) and Canada (July) are presented in Fig. 4
and Supplementary Fig. 7 for the CAPE-HLCY model. A wide
area extending from Central United States to Illinois and onto
western Tennessee in May is evident with high likelihood of F0–
F5 tornadoes, resembling a clockwise rotated ‘C’ shape. For F2–F5
tornadoes, high likelihood rates are predicted in an extensive area
around Oklahoma and Kansas. Relatively high F2–F5 tornado

frequency rates are also predicted for Kentucky and (to a lesser
extent) the Southern Great Lakes region. This pattern of tornadic
activity shifts northward and extends east–west in July. Note that
tornadoes predicted over the Great Lakes (that is, over water) are
based on mechanisms related to tornado environments over land.
They are not based on actual waterspout observations, but were
included to give an indication of tornado occurrences and
transition across the United States—Canada.

Discussion
North America experiences high tornado activity in the southern
Great Plains and more broadly in the central United States during
the springtime. According to our modelling analysis, CAPE,
HLCY and VWSH (or SHEAR depending on the model
examined) exert significant control and can offer a fairly accurate
depiction of the spatial patterns. Tornado activity in the summer
shifts north and Canada experiences its highest tornado
occurrences in July. CAPE and VWSH are both important
predictors in the summer. This finding reflects the transport of
moisture from the Gulf of Mexico, occurrence of the elevated
mixed layer25, and the poleward shift of jet stream, which in turn
provide sufficient CAPE, large-scale upward motion and vertical
wind shear to enhance majority of tornado activity. Non-supercell
tornadoes are also common in the summer in Florida, eastern
Colorado, northern Plains18 and may represent a substantial
fraction of the total number of occurrences in Canada26.
Reflective of the latter assertion is the importance of CAPE
(and weak HLCY and SHEAR signatures) in these regions, as
updrafts (strong vertical shear) collocated along pre-existing
vertical vortices enhance (prevent) non-supercell tornadoes27.
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Figure 2 | Results of the CAPE–HLCY–VWSH F0–F5 model. The observed tornado counts per 100 km2 � yr� 1, Tobs: (a) Spring; (b) Summer; (c) Autumn;

(d) Winter; the predictions of the total number of tornado occurrence per 100 km2 � yr� 1, Tlatent: (e) Spring; (f) Summer; (g) Autumn; (h) Winter; values

for the conditional autoregressive term, j: (i) Spring; (j) Summer; (k) Autumn; (l) Winter.
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During the fall season, the role of CAPE is minimized, while the
influence of VWSH (and SHEAR) increases and the HLCY
signature remains relatively constant. The mechanisms that
generate tornadoes in the fall are more complicated and can be
linked with different weather systems. In particular, tropical
cyclones (TC) account for over 20% of all tornadoes in September
(This number is based on the frequency of Gulf-landfalling
TC-tornadoes from 1980 to 2008 (ref. 28) and the total number
of tornado observations in this study). There are significant
differences in the relative magnitudes of moisture, instability,
shear and lift in conditions preceding TC tornadoes29. The
smaller-scale boundaries associated with TC tornadoes are
distinctly different from those of large-scale extratropical
cyclones in spring and late autumn30. TC tornadoes are also
associated with stronger lower troposheric vertical shear
compared with those on the Great Plains29, which explains the
stronger (weaker) and more (less) identifiable influence of
SHEAR (VWSH), particularly for F2–F5 tornadoes. By contrast,
almost all tornadoes in November stem from strong cold frontal
systems, resembling to those in the spring season. Overall, this
bimodal pattern may explain the change in the magnitude and/or
sign of the standardized regression coefficients between
September/October and November, reflecting a shift in the
relative role of the different atmospheric variables. In winter,
VWSH (and to a lesser extent SHEAR) is characterized by the
highest-standardized slopes. This result is on parity with existing
evidence from the literature that the influence of the subtropical

jet to tornado activity is strongest in the winter, and can be a
major factor of tornado formation and tornado outbreaks under
extratropical storms12,31. Moreover, strong vertical wind shear
(i) can play a role in organizing quasi-linear convective systems
that can include individual or multiple supercells32 and (ii) can
produce a large vertical pressure gradient when horizontal
vorticity is tilted and thus facilitates nocturnal convection to
overcome large negative buoyancy, thereby producing
tornadoes33. Thus, our finding that significant tornado
occurrences in winter are closely associated with VWSH and
SHEAR is a plausible result.

The observations bias stemming from the differences in the
population density was particularly evident in the Central/
Northern Plains and the Prairies. Population thresholds for
minimizing the likelihood of bias and observing all tornadoes
ranged from 6 to 7.25 persons km� 2 and 6 to 14 persons km� 2

for F0–F5 and F2–F5 tornadoes, respectively. The higher values
for F2–F5 may simply reflect the damage-based F-scale rating
system, which could be biased towards populated area, where
service- or infrastructure-related impacts can frequently be
experienced23. The observation bias related to population
density also appears to follow a seasonal pattern. Our
modelling study suggests that highest population thresholds are
needed to observe tornadoes during the winter months rather
than the summertime. The different proportions of nocturnal
tornadoes among the various periods of the year as well as the
daylight variability may shape this pattern and determine the
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Figure 3 | Results of the CAPE–HLCY–VWSH F2–F5 model. The observed tornado counts per 100 km2 � yr� 1, Tobs: (a) Spring; (b) Summer; (c) Autumn;

(d) Winter; the predictions of the total number of tornado occurrence per 100 km2 � yr� 1, Tlatent: (e) Spring; (f) Summer; (g) Autumn; (h) Winter; values

for the conditional autoregressive term, j: (i) Spring; (j) Summer; (k) Autumn; (l) Winter.
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Table 3 | Comparison between observed monthly numbers of tornadoes in Canada and the United States and those predicted by
the CAPE–HLCY–VWSH model.

P
Tobs

P
Tlatent Difference

Month Canada United States Total Canada United States Total Canada United States Total

F0–F5
January 0.0 25.3 25.3 0.1 26.9 27.1 0.1 1.6 1.8
February 0.0 27.5 27.5 0.1 32.2 32.4 0.1 4.7 4.8
March 0.2 71.4 71.6 0.7 77.2 77.9 0.5 5.7 6.2
April 1.0 134.7 135.7 3.5 148.1 151.6 2.5 13.4 15.9
May 7.4 246.4 253.8 17.7 288.3 306.0 10.3 41.9 52.2
June 19.0 217.6 236.6 35.9 266.6 302.5 16.9 49.0 65.9
July 23.8 116.1 139.8 44.0 140.9 184.8 20.2 24.8 45.0
August 13.2 75.4 88.6 25.0 89.7 114.7 11.8 14.2 26.0
September 2.4 60.4 62.9 5.7 67.2 72.9 3.3 6.7 10.0
October 0.3 46.2 46.4 2.2 52.9 55.1 1.9 6.8 8.7
November 0.1 49.6 49.7 2.2 54.6 56.8 2.1 5.0 7.1
December 0.0 23.0 23.0 0.2 24.6 24.8 0.2 1.6 1.8

F2–F5
January 0.0 4.6 4.6 0.3 5.8 6.0 0.3 1.2 1.4
February 0.0 5.3 5.3 0.1 5.9 6.0 0.1 0.6 0.7
March 0.0 14.8 14.8 0.3 16.0 16.3 0.3 1.1 1.4
April 0.2 22.1 22.2 1.9 23.6 25.5 1.7 1.6 3.3
May 0.9 33.3 34.2 5.7 38.9 44.6 4.8 5.6 10.4
June 1.1 19.7 20.9 4.4 23.8 28.1 3.2 4.0 7.3
July 1.9 9.4 11.3 4.6 10.9 15.5 2.7 1.6 4.2
August 1.3 5.6 7.0 3.9 6.7 10.6 2.5 1.1 3.6
September 0.2 6.0 6.2 2.3 6.8 9.1 2.1 0.7 2.8
October 0.0 6.5 6.6 0.8 7.2 8.0 0.8 0.7 1.4
November 0.0 11.2 11.2 7.3 11.8 19.1 7.3 0.6 7.9
December 0.0 4.3 4.3 0.2 4.6 4.8 0.2 0.3 0.5

May

0
0

0.
01

0.
02

2

0.
05 0.
1

0.
22 0.
5 1 2 0

0.
01

0.
02

2

0.
05 0.
1

0.
22 0.
5 1 2

0.
1

0.
25 0.
5 1 2 4 6 8 10 12 14 0

0.
1

0.
25 0.
5 1 2 4 6 8 10 12 14

May

July

July

Figure 4 | Predictions of the CAPE–HLCY–VWSH model—Peak months of tornado activity for the United Stated and Canada. (a) May (F0–F5);

(b) July (F0–F5); (c) May (F2–F5); (d) July (F2–F5) tornadoes.
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efficacy of the current monitoring systems. Overall, we showed
that some of the spatial variability found in the actual tornado
observations can be accounted for by the population density, and
that our Bayesian modelling framework can effectively
accommodate this observation bias.

Model performance is better during the spring (winter)
when HLCY (VWSH) is included, reflecting the seasonal
variability of their causal association with tornado occurrence.
Overall, the standardized regression coefficients had higher
values with the F0–F5 than F2–F5 models, although substantial
regional variability exists under the current model structure with

seasonal or even monthly parameter specifications. The posterior
estimates of the conditional autoregressive term delineated
regional features that cannot be captured due to the structural
inadequacy of a globally common parameterization and/or the
absence of regionally relevant predictors/processes during
different months of the year. Characteristic examples are the
mid-level-specific humidity gradient, representing a measure of
dry air intrusions which increases the propensity of tornadoes in
TCs, may be important for tornado activity in August and
September since a substantial number of tornadoes are related to
landfalling TC from the Gulf of Mexico28 or the strength of
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Figure 5 | Exceedance probability of one tornado event in May over the course of 5 years as predicted by the CAPE–HLCY–VWSH model.

The four selected grid cells (indicated by the red boundaries) were Sioux Fall, South Dakota (Top left), Guelph-Waterloo, Ontario (Top right), El Reno,

Oklahoma (Bottom left) and Edgefield county, South Carolina (Bottom right). The corresponding tornado events are also presented in 5-year time

intervals during the study period 1980–2009. (a) F0–F5 tornadoes; (b) F2–F5 tornadoes.
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the low-level jet in the springtime, influencing the tornado
activity in the South to Central Plains34. As recently shown35,
there is a clear spatial distribution of the tornado environment
that the current globally common parameter specification cannot
address. This facet of our modelling framework will be
investigated with a hierarchical model configuration in a
subsequent study.

In the context of tornado modelling, the adoption of a coarser
temporal resolution (seasonal/monthly averages) is a significant
distinction from the typically used predictor variables on shorter
(subdaily) timescales5. This approach effectively postulates that
atmospheric quantities varying on climate timescales can be used
to draw inference about tornadic events with lifetime of no more
than a few hours (and often only a few minutes)5,6. With this
strategy, our intent is not to develop an early warning system, but
rather to offer a modelling tool that can be used to characterize
the frequency of tornado occurrence (or exceedance of a
threshold number of tornadoes) in a particular location in
North America within a selected period of the year, for example,
probability of occurrence of more than one tornado in the
selected four locations in May (Fig. 5a,b). In this regard, the
present analysis resembles to modelling practices adopted in
other disciplines (for example, aquatic ecology), where empirical
models are in place to successfully reproduce the average
prevailing conditions in a certain period of the year (summer
growing season) and subsequently to predict the likelihood
of occurrence of episodic events (end-of-summer hypoxia
or cyanobacteria outbreaks) in a natural system. Thus, our
modelling work is founded on the assumption that the association
between average environmental conditions and ecological
processes leading to short-term ecosystem shifts bears similarity
to the connection between atmospheric quantities varying on
climate timescales and tornado activity. The former linkage may
be more evident as episodic ecosystem events are typically the
escalation of a complex interplay among physical, chemical and
biological processes that occur over a longer time period. In the
context of tornadogenesis though, the time duration of the latter
pattern with the atmospheric processes involved is distinctly
shorter, and therefore the credibility of the present probabilistic
mapping depends on the capacity of the changes in the moments
(central tendency, spread) of the distribution of the environments
occurring in the course of a month to faithfully capture the
changes in the frequency of extreme subdaily environments (tails
of the same distribution) associated with tornado occurrence.

Methods
Tornado counts and atmospheric data. Canada tornado data covering the period
1980–2009 were collected from the updated national tornado database2,24, whereas
the United States tornado data for the same period were collected from the Storm
Prediction Center36. It is worth noting that the tornado data set used does not
include tornadoes over water (that is, waterspouts) unless they made landfall;
waterspout is a common occurrence over the Great Lakes in autumn. The annual
number of tornadoes in Canada does not demonstrate any systematic long-term
patterns, whereas the United States data suggest a slight increase in tornadic
activity, stemming from an increase of F0 tornadoes (Supplementary Fig. 1). There
are no obvious trends for more intense tornadoes (F2–F5) in both countries.
Although the temporal patterns of the total number of tornadoes over the 30-year
study period are not substantially affected by non-meteorological factors, tornado
reports are still hampered by sampling biases, mainly associated with population
density, leading to underestimations in sparsely populated areas23,37,38. We
computed a gridded climatology (30-year total) of monthly and seasonal tornado
observations by counting the number of reported tornadoes for each calendar
month and season via their tornado touchdown points in a geodesic 50� 50 km
grid (Supplementary Data 1). This process was done separately for all tornadoes
(F0–F5s) and for intense tornadoes (F2–F5s). The predicted spatial patterns of
tornado occurrence, the population effects along with the corresponding
population density thresholds are generally robust to the cell size of the grid
configuration2.

A range of atmospheric variables from 1980 to 2009 were obtained from the
North American Regional Reanalysis39 and their 30-year monthly and seasonally

average values were calculated for consideration as potential predictors for our
modelling framework (Supplementary Table 22). North American Regional
Reanalysis data were provided on a 32-km Lambert conformal grid, which were
subsequently interpolated to match our grid. We selected the convective available
potential energy (m2 s� 2) or CAPE as a measure of instability through the depth of
troposphere that is related to updraft strength in thunderstorms. CAPE is widely
used to quantify the subdaily atmospheric instability leading to tornado events6.
Vertical wind shear is known to be very critical to tornadogenesis and different
wind shear variables may be important in different types of tornado development.
Thus, we explore the relative importance of three wind shear-related variables: (i)
storm relative environmental helicity (m2 s� 2) or HLCY; a measure of the
potential for cyclonic updraft rotation in right-moving supercells, it is calculated
for the lowest 3 km layers above ground level40; (ii) 0 to 6 km wind shear
magnitude (m s � 2) or SHEAR: a measure of wind shear from the surface through
the mid-troposphere41. Strong vertical shear remove precipitation from updrafts,
and induce vertical perturbation pressure gradients, so thunderstorms tend to
become more organized and persistent; (iii) vertical wind shear from surface to
tropopause (s� 1) or VWSH: a measure of the upper-level wind speed normalized
by the surface wind speed42. It is a measure of the upper-level jet strength inducing
shear and vertical motion, and is often associated with severe weather. Strong
upper-level jet streak tilts the storm as it rises vertically and has similar effects as
SHEAR. Tornadoes can occur in a wide range of CAPE and wind shear levels that
will be accommodated through systematic stratification by month/season and
subsequent examination of the residual geographic variability. The considerable
seasonality characterizing the actual values as well as the covariance patterns
among CAPE and the three wind shear-related variables renders support to the
latter strategy (Supplementary Figs 10–12). Finally, since population-sampling
bias creeps into tornado observations and may cause spurious geographical
variability23,37,38, we adopted the Cheng et al.’s correction method2 that uses
population density data to quantify the observation error.

Statistical framework. For each month/season, we used a Bayesian modelling
approach to decompose the problem of tornado occurrence into a series of
conditional models coherently linked together via Bayes’ rule2,43. We specified a
binomial model in which the observed (30-year) tornado counts in a particular
month/season t for each grid cell i, Tobsti, are conditioned on the actual
(but unobserved) tornado occurrences in the same month, Tlatentti, and the
probability of detection, pti:

Tobsti j Tlatentti; lti; pti � Binomial Tlatentti; pti½ �: ð1Þ
The probability of detection pti represents the likelihood to observe a tornado

and is associated with the population density yi by the following exponential
expression:

pti ¼ exp � bt=exp yið Þ½ � ð2Þ
where bt is the population effect parameter for month/season t and exp(yi) is the
exponential transformation of the original population density data in grid cell i.
The actual occurrence of tornadoes, Tlatentti, in the model domain is specified as a
Poisson process, conditional on the average or expected tornado occurrence rate
per grid cell lti, provided by the predictive model

Tlatentti j lti � Poisson ltið Þ: ð3Þ
We use a log-linear model for lti given by the following expression:

log(lti)¼ at0þ at1x1,tiþ at2x2,tiþ ...þ atkxk,ti þ jti, where x1,ti, . . , xk.ti is a vector
of the corresponding standardized monthly/seasonal atmospheric variables, at0 is
the model intercept, at1, . . , atk are the regression coefficients and jti is a cell-
specific random effect, capturing the residual variability of the tornado frequency
in a particular month/season t and grid cell i, stemming from other explanatory
factors/processes unaccounted for by the model. The inclusion of jti also aims to
address the possibility that the signature of the regression coefficients may not be
consistently strong in the tornado frequency records throughout the model
domain2. It is also reasonable to assume that the random effects of the unaccounted
factors have a regionalized/localized character and thus are spatially correlated. The
characterization of the spatially correlated random terms jti was based on the
Bayesian conditional autoregressive model44. The random error terms are jointly
distributed as a multivariate normal distribution with mean 0 and an unknown
covariance matrix. In particular, the model postulates that the spatial random effect
in cell i depends on the neighbouring cells of i (Ni) and that all of the neighbours
have equal influence (weight of 1) on i. The term jti is defined by the conditional
normal distribution jtiBN (mti, s2/ni), where

mti ¼
1
ni

X
i2Ni

jti ð4Þ

and ni is the number of adjacent grid cells. Because we used a first-order
neighbourhood approach and squared cells, Ni represents the eight immediately
adjacent cells. In this study, we opted for non-informative (or ‘flat’) prior
distributions, reflecting no prior knowledge of the model parameters (see model
codes in Supplementary Notes 1 and 2). A sequence of realizations from the model
posterior were obtained using Markov chain Monte Carlo simulations.
Convergence was assessed qualitatively by visually inspecting plots of the posterior
Markov chains for mixing and stationarity and by inspecting density plots of the
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pooled posterior Markov chains for unimodality. We also assessed convergence
quantitatively using the modified Gelman–Rubin convergence statistic45. The
accuracy of the posterior parameter values was inspected by assuring that the
Monte Carlo error for all parameters was less than 5% of the sample s.d.
This process is undertaken independently for each month/season to assess the
intra-annual variability of the models. We also conducted two additional exercises
related to the predictive and structural confirmation of the present modelling
framework (Supplementary Figures 13–22). The first skill assessment test was
based on splitting the 30-year data set into two subsets; namely, the calibration
(1980–1994) and predictive validation (1995–2009) data sets. The former one was
used to obtain parameter estimates through Bayesian updating and the derived
model predictive posteriors were then tested independently against the latter
(Supplementary Table 23). The second skill assessment test aimed to examine the
robustness of the inference drawn by the Binomial-Poisson model, given that the
analysed tornado data have many zeros. The alternative statistical formulation was
the zero-inflated Poisson model, based on a Zero-Inflated probability distribution
that allows for frequent zero-valued observations.

Structural confirmation of Bayesian modelling framework. The second skill
assessment test aimed to examine the robustness of the inference drawn by the
binomial-Poisson model, given that the analysed tornado data have many zeros.
The alternative statistical formulation was the zero-inflated Poisson (ZIP) model,
based on a Zero-Inflated probability distribution that allows for frequent zero-
valued observations46. This model is a statistical description of a random event,
containing excess zero-count data per unit of time/space or within a fixed interval
of a relevant covariate. The model dissects the studied event (tornado occurrence)
into two components that correspond to two zero-generating processes. The first
process reflects the sampling/observation error and is governed by a binary
distribution that generates structural zeros, while the second mechanism represents
the tornado occurrence rate and is governed by a Poisson distribution that
generates counts, some of which may be zero. In the present model, the probability
p of the former process is associated with the population density y and the mean l
of the latter process depends on the values of the causal factors (atmospheric
predictors). The two model components can be described as follows:

Tobsti j ltiðat0; atj; xtij;jtiÞ; ptiðbt ; yiÞ �
PoissonðltiÞ with probability pti

0 with probability 1-pti

�
ð5Þ

log ltið Þ ¼ at0 þ
Xk

j¼1

atjxtij þjti ð6Þ

pti ¼ exp � bt=exp yið Þ½ � ð7Þ

where Tobsti denotes the observed tornado counts in grid cell i and month/season t;
pti represents the likelihood to observe a tornado in grid cell i and month/season t;
bt is the population effect parameter for month/season t; exp(yi) is the exponential
transformation of the population density data in grid cell i; lti is average or
expected tornado occurrence rate per grid cell; xtij represents the standardized value
of the j atmospheric variable in grid cell i and month/season t; at0 and atjis the
intercept and the j regression coefficients of the log-linear model used for lti, and
jti is a cell-specific random effect, capturing the residual variability of the tornado
frequency in a particular month/season t and grid cell i, stemming from other
explanatory factors/processes unaccounted for by the model. Similar to the
Binomial-Poisson model, we opted for non-informative (or ‘flat’) prior
distributions, reflecting no prior knowledge of the model parameters (see
Supplementary Notes 1 and 2).
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The captions of Figs 2 and 3 of this Article contain typographical errors that were introduced during the production process.
In both Figs 2 and 3, the units for the tornado occurrences should be 10,000 km2 � yr� 1 rather than 100 km2 � yr� 1.
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