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What has been accomplished twenty years after the Oreskes et al. (1994)
critique? Current state and future perspectives of environmental
modeling in the Great Lakes
“…Complete [model] confirmation is logically precluded by the fallacy
of affirming the consequent and by incomplete access to natural

phenomena. Models can only be evaluated in relative terms, and their
predictive value is always open to question. The primary value of
models is heuristic…”

[Oreskes et al. (1994)]

Withwell over 1000 citations, the Oreskes et al. (1994) paper stands
out as one of the classical critiques of the veracity of the scientific
methodology of models in earth sciences, arguing that the validation
of models that deal with natural systems is inherently impossible.
Going beyond the controversy of the “technical versus philosophical”
meaning of validation, this viewpoint reflects the important notion
that model outputs should be viewed through the prism of the underly-
ing assumptions and that good model performance in one or more
settings is not evidence for general applicability, but rather the start of
a perpetual race for predictive confirmation. While the Oreskes et al.'s
(1994) critique has been a definingmoment of the broader appreciation
of the challenges surrounding a model validation exercise the docu-
mented inadequacy of many models to address important societal is-
sues reflects the fact that the field has advanced without the healthy
dose of introspection required to obtain good science. An evidence of
the latter assertion is the inconsistency that still characterizes the envi-
ronmental modeling practice with respect to the methodological steps
typically followed (Arhonditsis and Brett, 2004; Arhonditsis et al.,
2006; Stow et al., 2009; Robson, 2014; Wellen et al., submitted for
publication). After more than four decades of active modeling in the
context of environmental management and policy analysis, many of
the published aquatic ecosystem and watershed modeling studies still
fail to report the results of predictive confirmation, goodness offit statis-
tics, and uncertainty analysis in the broader sense (Fig. 1a).

Indicative of the lack of rigor characterizing the field, with respect to
model confirmation, is also the fact that themethodological consistency
does not seem to be playing any role in regard to the impact
(as expressed by their citation frequency) of the published modeling
papers (Figs. 1b–g). Althoughwatershed studies that followmore close-
ly the typical methodological protocol during the model development
tend to receive higher citations, the general appreciation is that the
recognition of a modeling paper is predominantly determined by the
questions being asked or the popularity of the topics addressed
(Arhonditsis et al., 2006). On a positive note though, there are several
excellent examples of highly cited modeling studies that offered novel
insights into the ecosystem functioning or introduced technical ad-
vancements, and thus produced knowledge that has profound influence
http://dx.doi.org/10.1016/j.jglr.2014.11.002
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to other cognitive disciplines. Two characteristic examples are the sem-
inal plankton foodwebmodel by Fashamet al. (1990) and the landmark
study by Beven and Binley (1992), that first presented the Generalized
LikelihoodUncertainty Estimationmethodology (Figs. 2a,c). The articles
citing these twopaperswere classified inmore than 30–35different dis-
ciplines. Several of these disciplines (e.g., astronomy, computer science,
software engineering, plant sciences, life sciences and biomedicine) had
no apparent association with process-based environmental modeling,
which is probably another indication that this field produces scientific
knowledge (e.g., methodological advancements for system analysis,
ecological questions addressed) that can have broader application and
assist quite different subject areas. Classified inmore than 100 scientific
disciplines, the breakdown of the second-generation of citations paints
an even more favorable picture about the potential influence of model-
ing as a scientific enterprise (Figs. 2b,d).

In the Great Lakes area, the growing appreciation of the complex
policy decisions required to restore andmaintain the ecosystem integri-
ty along with the need to address the cumulative effects of numerous
tightly intertwined stressors has triggered a shift from the historical
water quality/fisheries exploitation paradigms to the ecosystem
management paradigm (Minns and Kelso, 2000). Rather than narrowly
focusing on the loss of beneficial uses stemming from water quality
problems, the ecosystem approach aims to integrate across a wide
range of issues associated with fisheries management, sustainable
economic development, habitat conservation and restoration, exotic
species introductions, land-use planning, biodiversity, human behavior
and education. However,while the concept of a holistic ecosystemman-
agementmakes sense as a pragmaticmeans to address themultifaceted
environmental problems, skeptical viewpoints caution that this
approach entails an accommodation of the ecological complexity
through a multi-causal way of thinking which, in turn, exposes the
lack of robust methodologies for eliciting the straightforward scientific
answers required from the regulatory agencies to address the provi-
sions of the Great Lakes Water Quality Agreement. Specifically, the
2012 Great Lakes Water Quality Protocol directs Canada and the
United States to develop numerical targets or “substance objectives”
as a tool to manage pollutant inputs into the Great Lakes (Great Lakes
Water Quality Protocol, 2012). Thus, the demand for attractive and
powerful methodological tools is more pressing than ever before.

The emergence of the ecosystem approach has also shaped the con-
temporary mathematical modeling practice, increasing the demand for
more comprehensive (and thus more complex) ecosystem models. The
evolution of models should ideally follow the improvement of our
understanding of the major ecosystem processes underlying the
.V. All rights reserved.
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Fig. 1. (A) Portion of aquatic andwatershedmodeling studies that performed validation in its broader sense (Predictive confirmation), reported goodness offit (Reporting of statistics), and
conducted sensitivity and/or uncertainty analyses (Uncertainty/Sensitivity analyses). Citations frequency based on whether (or not) the original aquatic and watershed modeling studies
reported results of (B) validation, (C) goodness of fit, and (D) sensitivity/uncertainty analyses. Results adapted from Arhonditsis and Brett (2004), Arhonditsis et al. (2006), and Wellen
et al. (2014-submitted for publication).
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environmental problems in a particular system. When the necessary
data to parameterize the key causal ecological linkages are lacking, it is
unreasonable to expect that more complex (and over-parameterized)
model structures will improve the credibility of our forecasting tools
(Fig. 3). Current challenges make compelling the development of more
realistic modeling platforms: (i) to elucidate causal mechanisms, com-
plex interrelationships, direct and indirect ecological paths of the Great
Lakes basin ecosystem, (ii) to examine the interactions among the
various stressors (e.g., climate change, urbanization/land-use changes,
alternative management practices, invasion of exotic organisms), and
(iii) to assess their potential consequences on the lake ecosystem func-
tioning (e.g., foodweb dynamics, benthic–pelagic coupling, fish commu-
nities). This special issue aims to provide insights into the current state of
the field, and also highlights the major challenges and future directions
of research. Special emphasis is placed on studies that address topics,
such as novel uncertainty analysis techniques, Bayesian inference
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methods, proper representation of plankton functional types, effective
integration of physics with biology, accommodation of the interplay be-
tween inshore and offshore areas, and strategies to improvemodeling in
the context of fisheries.

How close are we to achieve reliable ecological forecasts in Lake Erie?
Lake Erie is the smallest and shallowest system of the Great Lakes;
and therefore, it is themost susceptible to nutrient-drivenwater quality
issues. Recent evidence suggests that rapid ecological changes are
occurring in the ecosystem, driven by a complex and often poorly un-
derstood interplay among many factors related to the lake's chemical,
physical and biological characteristics (Michalak et al., 2013). A variety
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of data-oriented and process-basedmodels have been in place to under-
stand ecological interactions and to predict the response of Lake Erie to
external nutrient loading changes. In this regard, Kim et al. (2014-in this
issue-a) examined the strengths and weaknesses of the different
modeling strategies, their adequacy in representing the processes un-
derlying plankton dynamics, and their ability to reproduce the spatio-
temporal variability in hypoxia or harmful algal blooms. According to
Kim et al. (2014-in this issue-a), we are still not in a position to draw
credible predictive statements and meaningfully support environmen-
tal management. The existing models have mainly offered heuristic
tools for examining different ecological hypotheses and dictating future
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data collection efforts. Given that a single “correct” strategy does not
exist, the same study advocates the standpoint that the local efforts
should strive for a synthesis of multiple modeling approaches that can
contribute to an integrative view of the functioning of the system.

Hypoxia in the deeper regions of Lake Erie is a lingering concern
after decades of remediation efforts. Rucinski et al. (2014-in this issue)
set out tomodel the relationship between external phosphorus loading,
and hypolimnetic dissolved oxygen concentrations. The authors
coupled a hydrodynamic model with a eutrophication model aiming
to reproduce the summer stratified period in the central basin of Lake
Erie. Their model accounted for temporal trends in chlorophyll a and
phosphorus concentrations, zooplankton biomass, and both temporal
and vertical trends in dissolved oxygen concentration. To assist eutro-
phicationmanagement in ameaningful way, the authors established re-
sponse curves accounting for the inter-annual variability in physical
conditions, driven by the meteorological forcing. In a similar study,
Oveisy et al. (2014) coupled an explicit three-dimensional hydrody-
namic model with a water quality model to reproduce the
eutrophication problems in Lake Erie. In particular, the authors were
concerned with the relationship between winter ice cover and the
development of hypoxia later on in the growing season. This study sug-
gested that phytoplankton biomass in winter, under conditions of low
light and low temperatures, may still be comparable to summer-time
concentrations. The authors concluded that ice cover dynamics



Fig. 3. Evolutionary progression from simple data-driven watershed and aquatic ecosystemmodels to more complex process-based models, terminating in an integrated watershed-re-
ceiving water body model.
Conceptual diagram adapted from Kim et al. (2014-in this issue-a).
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(e.g., thickness and duration) will likely influence winter algal produc-
tivity, effectively highlighting the importance of modeling ice cover in
hydrodynamic models.

Why Bayesian? Bayesian inference provides a convenient methodol-
ogy in which past knowledge alongwith present ecological information
form the basis for more accurate predictions of future ecosystem re-
sponses. The rigorous assessment of uncertainty in model predictions,
the optimization of the sampling design of monitoring programs, and
the alignment with the policy practice of adaptive management are
some of the advantages of the Bayesian approach that are particularly
useful for stakeholders and policy makers when making decisions for
sustainable environmental management (Arhonditsis et al., 2007). In
this context, Stow et al. (2014-in this issue) presented a Bayesian hier-
archical model that was used to support management decisions by
assessing the exceedance frequency and confidence of compliance
with different water quality standards. Using data from Saginaw Bay
in Lake Huron, the study illustrated the capacity of this framework to
represent spatial and temporal domains of particular interest, such as
springmean conditions in a certain area, and to allow the transfer of in-
formation in space, thereby enabling regions with sparse data and high
uncertainty to “borrow strength” from data-rich locations. The latter
feature of the Bayesian hierarchical proposition is highly relevant to
the conservation practices of countries like Canada, containing a high
number of freshwater resources for which complete datasets could
never be practically collected.

Based on the Hamilton Harbour Area of Concern (AOC),Wellen et al.
(2014-in this issue) and Kim et al. (2014-in this issue) offered two addi-
tional case studies to illustrate the benefits of Bayesian analysis in the
context of model-based environmental management. One of the chal-
lenges of the contemporary modeling practice is the development of
calibration techniques that can effectively accommodate the behavior
of watersheds during extreme events, given that the frequency of such
events is expected to increase if the current urbanization and climate
change trends continue. To achieve this objective, Wellen et al. (2014-
in this issue) introduced a novel Bayesian framework postulating two
distinct states with respect to the watershed response to precipitation;
that is, precipitation depth above a certain threshold triggers an ex-
treme state, characterized by a qualitatively different response of the
watershed to precipitation. The integration of this calibration frame-
work with the SWAT (Soil–Water Assessment Tool) model offered
promising results in that the state-specific parameters were coherently
identified, while the extreme state of the watershed was characterized
by a higher propensity for runoff generation. Along the same line of
thinking, Kim et al. (2014-in this issue-b) presented a network of
models that aims to connect the watershed processes with the dynam-
ics of the receiving waterbody in the Hamilton Harbour. The novel fea-
tures of this Bayesian framework include the development of a
downscaling algorithm that transforms the annual phosphorus loading
estimates of the SPARROW (SPAtially Referenced Regressions On Wa-
tershed attributes) model to daily inputs for the eutrophication
model; and a neural network that emulates the posterior linkages be-
tween model parameters/phosphorus loading inputs and the predicted
total phosphorus, chlorophyll a concentrations, and zooplankton abun-
dance. The same study used this network of models to gain insights into
the ecological factors that modulate the current water quality condi-
tions andmay determine the success of the on-going restoration efforts
in the area.

Other modeling advancements (surface waves, sediment transport,
phytoplankton functional groups, and oil spills): The advent of fast com-
puting and the greater data availability have fundamentally shifted
the field of environmental modeling in the last two decades. This shift
has allowed researchers to focus on larger-scale problems (e.g., three di-
mensionalmodels)withfiner ecological detail (e.g., the incorporation of
functional groups in foodwebmodels). These advancements are a great
boon to the effective management of complex ecological systems, such
as the Laurentian Great Lakes hub— vital to both shipping and industry.
In this context,McCombs et al. (2014-in this issue) presented a novel in-
tegrated modeling system, consisting of a spectral wave model coupled
to a depth averaged hydrodynamic model, which was used to simulate
thewave and flow conditions in the Kingston Basin of Lake Ontario dur-
ingwinter storm events. Flows throughout the basin showed a complex
circulation pattern that is composed of several wind-driven gyres, mag-
nified during storm events. Based on the successful reproduction of the
waves and currents in eastern Lake Ontario, the proposedmodeling tool
can be particularly useful for engineering studies, such as offshore wind
farm impact assessment. In an attempt to address the challenges
pertaining to the validation of distributed hydrodynamic sediment
transport models, Büttner et al. (2014-in this issue) introduced a new
method that relies on the linear relationship between sedimentation
and heavy metal concentrations in the topsoil of riverine floodplains.
The tracer method was tested in the heavily contaminated 45 km2

floodplains of River Mulde near Bitterfeld (Germany) where sediment
deposition during flood events was simulated using the hydrodynamic
and sediment transport model Telemac2D. The study reported a mono-
tonic increase inmedian cadmium(Cd), zinc (Zn), and arsenic (As) con-
centrations of the topsoil with increasing simulated sediment
deposition classes, which was consistent with the available empirical
evidence from the study site.

The incorporation of hydrodynamics into lake ecosystem models is
an exciting area of study, offering an increased articulation level into
the simulations of real world dynamics. Driven by this motivation,
Frassl et al. (2014-in this issue) modeled phosphate uptake by phyto-
planktonwith a spatially explicit model for Lake Constance. They exam-
ined two phytoplankton cellular strategies (i.e., static vs. dynamic
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cellular stoichiometry)within this framework and foundminor discrep-
ancies in model performance, but strong differences in spatial phos-
phate depletion. The more complex (and more realistic) depiction of
phytoplanktonwith dynamic cellular stoichiometrywas able to correct-
ly reproduce vertical nutrient distributions. With this modeling exer-
cise, Frassl et al. (2014-in this issue) effectively illustrated the
macroscopic ramifications of microscopic dynamics. To this end,
Reynolds et al. (2014-in this issue) studied the sensitivity and predictive
power in phytoplankton simulations when accommodating morpho-
logical and physiological traits. Using the PROTECH (Phytoplankton Re-
spOnses To Environmental CHange) model, they were able to
successfully reproduce the phytoplankton succession patterns across
various scenarios and delineate ecologically beneficial traits. Namely,
large cell size is a trait often associatedwith vertically migrating species
that are unpalatable for zooplankton. Reynolds et al. (2014-in this issue)
also found larger cellswith oblongmorphologies to be very competitive,
as they can maintain high surface area to volume ratios, maximizing in-
coming solar radiation and surficial nutrient dynamics. This latter trait
can also be associated with smaller algal species, which however are
highly sensitive to zooplankton grazing. Thus, the effects of overlooked
microscopic details (tradeoff between realism and model feasibility)
can permeate to the macroscopic level, and have a wide array of man-
agement implications.

While there is a considerable amount of effort being put into incorpo-
rating hydrodynamics into water quality models, Perhar and Arhonditsis
(2014-in this issue) reviewed an area, where they call for the reverse: the
incorporation of ecological dynamics into hydrodynamicmodels of petro-
leumhydrocarbon spills. The authors reviewed theoil spillmodeling liter-
ature, and found the majority of models to be driven almost exclusively
by abiotic factors, such as temperature, wind speed, water turbulence,
and evaporation rate. In the few cases where a biotic compartment was
considered, itwasmore as an afterthought than a fully integratedmodule.
Building on this idea, the authors conducted a comprehensive review of
the ecological impacts of hydrocarbon toxicity on various trophic levels.
They found a substantial wealth of knowledge that has not been incorpo-
rated into oil spill modeling efforts. As such, they proposed a framework
that aims to fill the gap of biology and ecology in contemporary oil spill
models, using data collected from high profile events, such as the Exxon
Valdez tanker spill, and the British Petroleum underwater blowout.

Topics in fish modeling (larval fish patterns, fish tumors, catch curve
models): Larval fish abundance can offer insights into early life history
dynamics and provide critical information that shapes habitat protec-
tion and restoration strategies. However, the high spatial and temporal
variability driven by stochastic environmental conditions, the time and
location of spawning as well as their larval behavior pose significant
challenges when quantifying larval fish abundance. To address some
of the problems related to sampling and data analysis, DuFour et al.
(2014-in this issue) presented a Bayesian (hierarchical and state-
spacemodeling) framework combinedwith spatiotemporally distribut-
ed sampling for ichthyoplankton which was used to partition variance
and offer abundance and mortality estimates of larval walleye (Sander
vitreus) in the Maumee River in northwestern Ohio. The DuFour et al.
(2014-in this issue) study showed thatmost of the variability is encoun-
tered in finer spatial (within site) and time (day-to-day) scales while
the Bayesian state-space modeling can offer a meaningful management
tool by improving estimates and properly accounting for the underlying
uncertainty.

Another difficult issue in fisheries is the establishment of proper
delisting criteria for the “fish tumors and other deformities” BUI
(Beneficial Use Impairment), given that the characterization of non-
impairment in a particular location requires the fish tumor incidence
rates to not exceed rates at control sites. To overcome the ambiguity sur-
rounding the selection of “unimpacted” sites, Mahmood et al. (2014-in
this issue) presented a Bayesian modeling framework that is founded
upon the explicit consideration of the sampling bias in tumor observa-
tions as well as the causal association between important covariates
(age, fork length, liver weight, and gonad weight) and tumor incidence.
The same study introduced a new criterion that stipulates the likelihood
of tumor occurrence for each individual to be lower than 10% for a certain
fraction (or greater) of the fish samples collected from a particular loca-
tion. The proposed criterion may be a more reliable way to characterize
the prevailing conditions in potentially impacted sites while avoiding
the – oftentimes – controversial delineation of reference conditions. In
the context of fisheries, Doll and Lauer (2014-in this issue) presented an
interesting comparison between frequentist and Bayesian inference ap-
proaches using catch curve modeling. Based on long term monitoring
data of yellow perch (Perca flavescens) from southern Lake Michigan,
this analysis showed that both mean estimates and
associated uncertainty bounds were similar between the two strategies.
Nonetheless, according to Doll and Lauer (2014-in this issue), the Bayes-
ian approach resulted in lower error than its frequentist counterpart with
increasing variability in the datasets, and also demonstrated greater flex-
ibility when conducting multiple comparisons.

TheGreat Lakes community has been at the forefront in the develop-
ment and application of models to guide environmental management
actions. Phosphorus targets under the 1978 Great Lakes Water Quality
Agreement were developed using an ensemble of models of differing
scope and complexity, an approach generally regarded as the “gold
standard” for addressing complex environmental problems. More re-
cently, the updated 2012 GLWQA has endorsed the Adaptive Manage-
ment concept, a framework in which models, process-based research,
and long-term monitoring are used in concert to inform decision-
making. Adopting this approach constitutes recognition that the Great
Lakes will continue evolving into the future, as they respond to a chang-
ing, often unanticipated, assemblage of stressors. Developing a coherent
strategy to operationalize the Adaptive Management concept, with the
ideas articulated by Oreskes et al. (1994) inmind, offers the opportunity
for the Great Lakes community to continue leading in this area.
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