
Journal of Hydrology 519 (2014) 3353–3368
Contents lists available at ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier .com/ locate / jhydrol
Quantifying the uncertainty of nonpoint source attribution in distributed
water quality models: A Bayesian assessment of SWAT’s sediment export
predictions
http://dx.doi.org/10.1016/j.jhydrol.2014.10.007
0022-1694/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: Watershed Hydrology Group, School of Geography
and Earth Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada. Tel.:
+1 647 239 5138; fax: +1 416 287 7279.

E-mail address: wellenc@mcmaster.ca (C. Wellen).
Christopher Wellen a,⇑, George B. Arhonditsis a, Tanya Long b, Duncan Boyd b

a Ecological Modelling Laboratory, Department of Physical & Environmental Sciences, University of Toronto, Toronto, Ontario M1C 1A4, Canada
b Great Lakes Unit, Water Monitoring & Reporting Section, Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Toronto, Ontario M9P 3V6, Canada

a r t i c l e i n f o s u m m a r y
Article history:
Received 30 June 2013
Received in revised form 2 July 2014
Accepted 1 October 2014
Available online 12 October 2014
This manuscript was handled by Andras
Bardossy, Editor-in-Chief, with the
assistance of Vazken Andréassian, Associate
Editor

Keywords:
SWAT model
Bayesian inference
Bayesian model averaging
Extreme events
Hamilton Harbour
Water quality
Spatially distributed nonpoint source watershed models are essential tools to estimate the magnitude
and sources of diffuse pollution. However, little work has been undertaken to understand the sources
and ramifications of the uncertainty involved in their use. In this study we conduct the first Bayesian
uncertainty analysis of the water quality components of the SWAT model, one of the most commonly
used distributed nonpoint source models. Working in Southern Ontario, we apply three Bayesian config-
urations for calibrating SWAT to Redhill Creek, an urban catchment, and Grindstone Creek, an agricultural
one. We answer four interrelated questions: can SWAT determine suspended sediment sources with con-
fidence when end of basin data is used for calibration? How does uncertainty propagate from the dis-
charge submodel to the suspended sediment submodels? Do the estimated sediment sources vary
when different calibration approaches are used? Can we combine the knowledge gained from different
calibration approaches? We show that: (i) despite reasonable fit at the basin outlet, the simulated sedi-
ment sources are subject to uncertainty sufficient to undermine the typical approach of reliance on a sin-
gle, best fit simulation; (ii) more than a third of the uncertainty of sediment load predictions may stem
from the discharge submodel; (iii) estimated sediment sources do vary significantly across the three sta-
tistical configurations of model calibration despite end-of-basin predictions being virtually identical; and
(iv) Bayesian model averaging is an approach that can synthesize predictions when a number of adequate
distributed models make divergent source apportionments. We conclude with recommendations for
future research to reduce the uncertainty encountered when using distributed nonpoint source models
for source apportionment.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Water quality management often relies upon spatially distrib-
uted watershed models for an estimation of nonpoint source pollu-
tant fluxes, sources and fates under current conditions and possible
future scenarios (Rode et al., 2010). In one particularly high-profile
study, the largest algal bloom in Lake Erie’s history was attributed
in large part to a nonpoint source labile phosphorus pulse event
(Michalak et al., 2013). The magnitude of this pulse event was esti-
mated with the popular Soil–Water Assessment Tool (SWAT), a dis-
tributed nonpoint source water quality model. SWAT has been
applied worldwide, including sites in Europe (Nasr et al., 2007),
Asia (Cheng et al., 2007; Talebizadeh et al., 2010), Africa (Setegn
et al., 2010), and North America (Arabi et al., 2007).

There have been a large number of studies validating the end-
of-basin predictions of the SWAT model and other nonpoint source
models for many water quality constituents (Gassman et al., 2007).
A few studies have sought to quantify the uncertainty of the dis-
charge predicted by such models (Yang et al., 2007a,b; Yang
et al., 2008). However, models such as SWAT are also used for
source attribution and scenario analysis of water quality. There is
a dearth of work which validates or quantifies the uncertainty of
the source attributions of water quality impairments made by dis-
tributed water quality models. Studies with small chains of lumped
models suggest that positive and negative errors of upstream sta-
tions can compensate for each other (Freni et al., 2009). For distrib-
uted, nonpoint source models such as SWAT, the much larger
number of potential sources may mean that many source attribu-
tions could result in a reasonable fit at the basin outlet (Beven,
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2006). If the sources of observed pollutants are highly uncertain,
this calls into question any scenario analyses based on possible
future land uses.

Little is known about how the inference drawn regarding pollu-
tant sources and fates can vary across different implementations of
the SWAT model. In an influential piece, Rykiel (1996) asserts that a
model is validated if it has been shown to be adequate for a partic-
ular task. Most literature on SWAT and other distributed models
approaches validation with this approach (Beven, 2006; Gassman
et al., 2007). However, this definition does not preclude a situation
where multiple competing models all pass a validation test, yet fail
to agree on pertinent aspects of system functioning. For instance,
both Easton et al. (2008) and White et al. (2011) achieved an
equally satisfactory fit to flow discharge measurements with two
distributed watershed models. However, these models gave very
different estimates of runoff generating areas. Clearly, what is
needed is a methodological strategy that allows achieving predic-
tive statements which integrate information from multiple models.

Recent work in statistics allows us to draw inference from such
integrative statements. A number of methods exist to synthesize
predictions across groups of models (ensembles), including
sequential data assimilation approaches, such as the ensemble Kal-
man filter and ensemble particle filters (Vrugt and Robinson, 2007;
Moradkhani et al., 2006) and post hoc ensemble integration strat-
egies, such as the Bayesian Model Averaging (BMA) commonly
used in weather forecasting (Raftery et al., 2005). While the
watershed modeling community has advanced a number of
ensemble-type approaches, there has not been a study evaluating
their ability to reduce the ambiguity of distributed predictions of
complex water quality models. Existing applications have typically
been focused on simple, heuristic flow discharge models for the
purposes of illustrating and/or evaluating methodological frame-
works (Vrugt and Robinson, 2007; Parrish et al., 2012).

Little is known about the propagation of uncertainty through
the different submodels of SWAT and other spatially distributed
watershed models of nonpoint source pollution. However, results
from integrated urban water quality models are instructive. Freni
and Mannina (2010) decomposed the total uncertainty of an inte-
grated model of an urban water system. They found that the water
quality submodels contributed more uncertainty than its water
quantity counterpart to the overall model uncertainty, though
the contribution of the water quantity submodels was not negligi-
ble. It is unknown if this is the case with non-point source models.
An understanding of the interplay of water quality and quantity
submodels is important to guide the development and application
of nonpoint source models of water quality.

We investigate these issues in the context of suspended sedi-
ment, one nonpoint source pollutant responsible for many benefi-
cial use impairments. We address four inter-related questions: Can
the SWAT model determine sediment sources with confidence
when end of basin data is used for calibration? How does uncer-
tainty propagate from the discharge submodel to the water quality
submodels? Do the estimated sediment sources vary when differ-
ent calibration approaches are used? Can we combine the knowl-
edge gained from different calibration approaches? We address
the first two questions by conducting the first Bayesian calibration
of any of the water quality components of the SWAT model. To
answer the third question, we use three SWAT model formulations
Wellen et al. (2014a) advanced for accommodating extreme
watershed states. We couple these formulations to the submodels
which simulate suspended sediment load. To answer the fourth
question, we take an ensemble approach. We adopt a post hoc
BMA approach to ensemble integration, as demonstrated in the
context of lake water quality modeling by Ramin et al. (2012). Syn-
thesis proceeds by weighting the posterior densities of the model
predictions inversely to their residual variance.
2. Case study

The study site is a pair of catchments situated in the drainage
basin of Hamilton Harbour, a large embayment at the western
end of Lake Ontario. The Harbour is designated as one of 17 Cana-
dian Areas of Concern in the Great Lakes Basin, due to its long his-
tory of eutrophication problems (Hiriart-Baer et al., 2009; Ramin
et al., 2011). Substantial uncertainty exists in regards to the projec-
tions of the future water quality conditions, due to the poorly
defined nutrient loadings from the drainage basin (Gudimov
et al., 2010, 2011).

In Fig. 1, we present a map of the two study catchments, Redhill
and Grindstone Creeks. Aside from the land use, the two Creeks are
fairly similar. The soils of the Harbour basin are mainly loams
(25%), sandy loams (28%), and silty loams (20%), while organic
soils, silty clay loams, and clay loams together make up about
10% of the basin soils (Soil Landscapes of Canada dataset v.3.2 from
Agriculture and Agri-Food Canada; http://sis.agr.gc.ca/cansis/nsdb/
slc/index.html). The slopes of the Harbour basin are mild and aver-
age 4.4%. Elevation ranges from 74 to 318 m above sea level. The
basin has a humid continental climate, with daily temperatures
ranging from �10 to �2 �C in January and 15 to 26 �C in July. The
Harbour basin receives 910 mm of precipitation annually,
146 mm of which occurs as snowfall.

2.1. Redhill Creek

Redhill Creek drains an area of approximately 63 km2, 66% of
which is urban residential area and 17% is urban greenspace. The
remaining 10% is a mixture of agriculture and forested areas. Of
the urban area, 50% is impervious and 40% of the total urban area
is directly connected to a storm sewer system.

2.2. Grindstone Creek

Grindstone Creek drains an area of approximately 87 km2, 60%
of which is agricultural land split evenly between pasture and
cropland. Of the remainder, 30% is forested and 9% is urban.

2.3. Data sets used

The meteorological data for this study come from Environment
Canada’s Hamilton Airport station (WMO ID 71263; http://www.
climate.weatheroffice.gc.ca/climateData/canada_e.html). The daily
flow information comes from the Water Survey of Canada’s gauges
at Redhill (02HA014) and Grindstone Creeks (02HB012; http://
www.ec.gc.ca/rhc-wsc/default.asp?lang=En). The suspended sedi-
ment load dataset used for calibration was gathered by the Ontario
Ministry of the Environment between July 2010 and May 2012
(Long et al., 2014). Samples were collected as level-weighted com-
posites over a 24-h period roughly once per week. High-flow events
were targeted by the sampling, although baseflow periods were
included as well. The average time between samples was about
1 week. The discharges during sampling periods spanned the 1st
to the 99th percentiles of the overall discharges for both Creeks.
3. Model description

3.1. Overview of SWAT

SWAT is a semi-distributed and semi-process based model typ-
ically used to evaluate the effects of alternative management prac-
tices on watershed functioning in agricultural landscapes (Arnold
et al., 1998; Neitsch et al., 2011). Watersheds are disaggregated
into subbasins. Subbasins are disaggregated into hydrological
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Fig. 1. Map of study site. Reproduced from Wellen et al. (2014a).
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response units (HRU) on the basis of land use, soil type, slope, and
land management. Surface runoff is computed using a version of
the United States’ National Resources Conservation Service’s Curve
Number (CN) methodology. Overland soil erosion for each HRU is
estimated using the Modified Universal Soil Loss Equation (MUSLE,
Williams, 1995):

sed ¼ 11:8ðQ surf � qpeak � areaHRUÞ0:56 � K � C � P � LS� CFRG

ð1Þ

where sed is the sediment load (metric tons day�1), Q surf is the sur-
face runoff volume (mm day�1), qpeak is the peak surface runoff rate
(m3 s�1), areaHRU is the area of the hru (ha), K is the USLE soil erodibil-
ity factor, C is the USLE crop management factor, P is the USLE support
practice factor, LS is the USLE topographic factor, and CFRG is the
coarse fragment factor. Additional details of our SWAT implementa-
tion are contained in the Electronic Supplementary Material (ESM).

3.2. Threshold configuration of SWAT

Theoretical and empirical work provides evidence that
watershed systems may be governed by threshold dynamics
(Lehmann et al., 2007; Zehe and Sivapalan, 2009; Oswald et al.,
2011; Ali et al., 2013). This means that system response can be
qualitatively different beyond a threshold level of a relevant vari-
able (e.g., precipitation or catchment storage). This kind of system
response has been investigated in aquatic systems with empirical
changepoint models, where model parameters take on different
values above and below a critical forcing value (Qian et al.,
2003,2004). We accommodate this behavior by incorporating a
precipitation threshold into the SWAT model. We assume that
above some threshold of precipitation hp, an extreme state exists
and a subset of the parameter takes on different values than in
the normal state. This essentially postulates that watersheds can
be characterized by multiple discrete states of response. For this
application, we allowed the curve number parameters to vary
between states. We averaged the precipitation over 2 days for Red-
hill Creek and 3 days for Grindstone Creek:

CN2 ðMultiplicative EffectÞt
¼ CN2low for Log10 ðn-day averaged precipitationþ 1Þ 6 hp

ð2aÞ

CN2 ðMultiplicative EffectÞt
¼ CN2high for Log10 ðn-day averaged precipitationþ 1 > hp

ð2bÞ

where CN2 (Multiplicative Effect)t refers to the value of the
multiplicative effect for the curve numbers at time t, hp refers to
the threshold between the two states, CN2low and CN2high refer
to the state-specific values of the multiplicative effects applied to
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the curve number parameters, and n is equal to 2 for Redhill Creek
and 3 for Grindstone Creek. We detail the derivation of the values of
n in the ESM.

4. Bayesian inference framework

The Bayesian approach treats statistical inference as a quantita-
tive update of prior beliefs after taking measurements into
account. Beliefs are expressed as probability distributions (i.e., ran-
dom variables), with the central tendency of these distributions
corresponding to the degree of certainty that the expected value
of the distribution is correct (Gelman et al., 2004). Mathematically,
Bayesian inference is founded upon Bayes’ Theorem, expressed as:
pðhjYÞ ¼ pðhÞLðYjhÞR
h pðhÞLðY jhÞdh

ð3Þ
where p(h) represents our prior statements regarding the probabil-
ity distribution that depicts the existing knowledge of the model
parameters (h), L(Y|h) corresponds to the likelihood of observing
the data given the different h values, and p(h|Y) is the posterior
probability that expresses our updated beliefs on the h values after
the existing data from the system are considered. The denominator
of Eq. (3) is a constant and acts as a scaling factor.

The typical practice with the SWAT model (and many other dis-
tributed watershed models) is to first calibrate the discharge com-
ponent, followed by the sediment component, and then the
nutrient components (Santhi et al., 2001). While this approach
has the advantage of accommodating the causal linkages of the
various model components, it does not allow any revision of the
discharge parameter specification when proceeding to the water
quality components. This practice is adopted despite the fact that
distributed watershed models are overparameterized, so selecting
a single parameter vector of discharge parameters for use in subse-
quent calibrations may not be optimal. Here, we demonstrate two
sequential model updates. The first update involves the hydrolog-
ical model parameters, while the second one uses the posterior
discharge parameters from an earlier calibration exercise as infor-
mative priors and calibrates the model to sediment loading data.
This sequential update has as an additional advantage that param-
eter vectors judged acceptable but sub-optimal for modeling dis-
charge are retained and tested against the sediment load data.

Eq. (3) is typically evaluated empirically using a process called
Markov chain Monte Carlo (MCMC) sampling. Rather than arriving
at analytic expressions of the joint posterior density, samples from
this distribution are generated using a (Markov) random walk
through the parameter space. In this study, we used the DiffeRen-
tial Evolution Adaptive Metropolis Algorithm-ZS (DREAM-ZS) as
presented by Laloy and Vrugt (2012). This algorithm is based on
the original DREAM algorithm presented by Vrugt et al. (2009).
DREAM adapts traditional MCMC approaches to the complex,
multi-modal likelihood surfaces typically characterizing determin-
istic watershed models. DREAM proceeds by running multiple
Markov chains and deriving the proposal distribution from the dis-
tances between chains in the parameter space. When chains are far
apart the proposal distribution is very diffuse, but if the chains con-
verge to a single region of the parameter space the proposal distri-
bution is narrowed accordingly. DREAM-ZS further adapts this
approach by sampling from an archive of past states to generate
proposal locations in the parameter space. This allows the algo-
rithm to be applied with far fewer Markov chains (Laloy and
Vrugt, 2012). We developed a MATLAB interface between
DREAM-ZS and SWAT. This interface is available from the corre-
sponding author on request. We note that MCMC software for
SWAT also exists for the R computing language (Joseph and
Guillaume, 2013). We include additional details about our MCMC
sampling in the ESM.
4.1. Discharge calibration

For the model update with the flow data, we used the classic
AR(1) residual transformation (Sorooshian and Dracup, 1980;
Yang et al., 2007a,b):
et ¼ qet�1 þ dt

dt � Nð0;r2
vÞ

dt ¼ et � qet�1;

ð4Þ
where et denotes the residuals, q the daily correlation, and dt are the
daily innovations. We used a Student’s t distribution for the likeli-
hood function, as the normal distribution typically does not have
thick enough tails (Yang et al., 2007b; Schoups and Vrugt, 2010):

LðYjhÞ ¼
ð1� q2ÞC vþ1
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where v refers to the degrees of freedom and C refers to the gamma
function. Our preliminary investigations found that 7 was an
acceptable number of degrees of freedom. Finally, we opted for a
natural logarithm transformation, Y0 = ln (Y + 1), for both measure-
ments and model predictions.

We considered three statistical configurations for discharge
parameter estimation and inference. The first statistical formula-
tion (Formulation 1) sets CN2low equal to CN2high. This can be
thought of as the ‘standard’ version of SWAT. All prior parameter
distributions were uniform over their range. The second statistical
formulation (Formulation 2) allows different values for CN2low and
CN2high. The third statistical formulation was identical to the sec-
ond one, except that informative prior distributions were used
for hp, CN2low and CN2high and other parameters where information
was available. The calibration vector and all prior parameter distri-
butions are presented in Table 1. We arrived at these subsets after
a review of the literature, including the SWAT manual and sensitiv-
ity analysis studies (van Griensven et al., 2006; Arabi et al., 2007;
Rouhani et al., 2007; Yang et al., 2007a,b; Ekstrand et al., 2010;
Neitsch et al., 2011). We employed a one-year spin-up period,
while model calibration and validation were based on daily flows
from the year ranges 1992 – 1994 and 1995 – 1998, respectively.

4.2. Updating model parameters to simulate sediment loading

Our prior distribution for the second update was the joint pos-
terior distribution obtained from the first update. This joint poster-
ior consisted of the updated discharge parameters and the priors of
the sediment parameters, as no information existed during the first
calibration to update the prior knowledge of the sediment param-
eters. In Table 2 we provide the sediment calibration vector
employed. In our Bayesian formulation, we selected four parame-
ters to take on common values between the two Creeks: the USLE
P factor for agricultural land (USLE_P), the urban washoff coeffi-
cient (URBCOEF), the average slope length (SLSUBBSN), and Man-
ning’s n for overland flow (OV_N). This reflected our assumption
that the dominant aspects of urban and agricultural land use do
not vary significantly between these two Creeks. In doing so, we
have the advantage of reducing the overall number of free param-
eters, and thus controlling the parametric uncertainty. Allowing a
site-specific calibration of the other parameters reflects our
assumption that channel processes and soil properties may vary
between the Creeks.

We pooled the calibration data by constructing a joint likeli-
hood between Redhill and Grindstone Creeks. Of the 149 samples



Table 1
SWAT model parameters of the flow discharge submodel included in the calibration vector. Reproduced from Wellen et al. (2014a).

Parameter Description Range Informative priorb Source

CN2 Curve numbers for antecedent moisture
condition two (multiplicative effect)

0.5, 1.5 N(1, 0.41) Schwab et al. (2002), p.74

ALPHA_BF Baseflow recession constant (1/days) 0.1, 0.99 B(3, 1.15) (Redhill) Streamflow measurements
N(0.64, 0.18) (Grindstone)

SOL_AWC Fraction of soil water available for plant
uptake (multiplicative effect)

0.25, 2.5 (Redhill) N(1, 0.455) Assumed minimum and maximum values
of 0.01 and 0.85

0.5, 1.5 (Grindstone) N(1, 0.455)
GW_REVAP Revap coefficient 0.02, 0.2 U(0.02, 0.2) –
ESCO Soil evaporation compensation factor 0.1, 0.99 B(3, 1.22) Expected value of 0.9, signifying a weak

ability of lower soil layers to supply
evaporative demand of the top layer

EPCO Plant transpiration compensation factor 0.1, 0.99 B(3, 1.22) Expected value of 0.9, signifying a strong
ability of lower soil layers to supply
evaporative demand of the plants

GW_DELAYa Ground water delay time (days;
multiplicative effect)

0.5, 5 U(0.5, 5) –

SOL_KSAT Soil saturated hydraulic conductivity
(mm/hr) (multiplicative effect)

0.1, 10 (Redhill) LN(0,1.15) Corresponds to a range of one order of
magnitude

0.5, 1.5 (Grindstone) LN(0, 1.15)
SNOWCOVMX Minimum snow water content

corresponding to 100% aerial snow
coverage (mm)

1, 40 LN(2.48, 0.35) Donald et al. (1995)

SMFMX Snow melt factor on June 31st (mm water/
�C above 0.5 �C)

1, 9 N(5.5, 3.1) Donald (1992), Conetta (2004), Yang et al.
(2007a,b), Hu et al. (2007)

SMFMN Snow melt factor on December 31st (mm
water/�C above 0.5 �C)

1, 5 N(3.1, 1.8) Ibid

SURLAG Lag time for surface runoff (days) 0.5, 10 LN(0, 1.0) Assumed 1 day was the most likely value
and upper end of 95% credible interval
was 1 week

q First order residual correlation coefficient
for all days

0.1, 0.99 U(0.1, 0.99) –

r Innovation standard deviation for all days 0.002, 2000 G(0.001, 0.001) –
CN2Low Curve number for moisture condition 2 on

low precipitation days (multiplicative
effect)

0.5, 1.5 N(1, 0.41) Schwab et al. (2002), p.74

CN2High Curve number for moisture condition 2 on
high precipitation days (multiplicative
effect)

0.5, 1.5 N(1, 0.41) Schwab et al. (2002), p.74

CN2 q Correlation of CN2low and CN2high �0.99, 0.99 U(�0.99, 0.99) –
hp Threshold of time averaged precipitation

switching between curve numbers
0.9, 1.4 (Redhill) N(0.94, 0.025) Streamflow and precipitation

measurements
0.6, 1.1 (Grindstone) N(0.78, 0.047)

a The base value of ground water delay time was 1.25 days for urban areas, 10 for forested areas, and 5.25 for other areas.
b N(l,r) refers to the normal distribution with mean l and standard deviation r; B(a,b) refers to the beta distribution with shape parameters a and b; U(l,u) refers to the

uniform distribution with lower bound l and upper bound u; LN(l,r) refers to the lognormal distribution with location parameter l and scale parameter r; G(a,b) refers to
the gamma distribution with shape parameter a and rate parameter b.
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used for the sediment calibration, 132 were taken from Redhill and
Grindstone Creek on the same day. We accounted for the correla-
tion of residuals of loads occurring on the same day by using a joint
normal distribution for these days. We computed the density of the
residuals of the remaining samples assuming normality and inde-
pendence, so the entire likelihood function is:Q Q Q
LðxjhÞ ¼ pðxR;GjhÞ � pðxRjhÞ � pðxGjhÞ

pðxRjhÞ ¼ 1
rR
ffiffiffiffi
2p
p exp � 1

2
e2

R
r2

R

� �
pðxGjhÞ ¼ 1

rG
ffiffiffiffi
2p
p exp � 1

2
e2

G
r2

G

� �
pðxR;GjhÞ ¼ 1

2p
ffiffiffiffi
Rj j
p exp � 1

2 e
0
R;GR

�1eR;G

� �
eR;G ¼ eR eG½ �

R ¼ r2
R qsrRrG

qsrRrG r2
G

" #
ð6Þ
where xR and eR denotes an unpaired observation and residual from
Redhill Creek, xG and eG denotes an unpaired observation and
residual from Grindstone Creek, xR,G and eR,G denote a pair of
observations and corresponding residuals from Redhill and Grind-
stone Creeks, r2

R,G refers to the residual variance at either Redhill
or Grindstone Creek, and qs refers to the between-site correlation
coefficient of the residuals. The likelihood function in Eq. (6)
assumes independence of the residuals in time, an assumption
which is reasonable given the sampling interval of our data approx-
imately 1 week. At a lag of 7 days, the correlation coefficients of
daily flows for Redhill and Grindstone Creeks were, respectively,
r = 0.06 and r = 0.23. We used informative priors for the sediment
submodel parameters, the details of which are presented in Table 2.
We used a natural log transformation of the measured and modeled
loads prior to calculating the likelihood. We updated the discharge
and sediment submodels with data from July 2010 to June 2012,
using a six-year spin-up period.
4.3. Ensemble integration of the three formulations

We adopted an ensemble approach to integrate across the dif-
ferent predictions made by the three Formulations. The basic pre-
mise of the integration scheme is that the posterior densities



Table 2
SWAT model parameters of the sediment load submodel included in the calibration vector.

Parameter Description Range Informative priora Source

Independent parameters
USLE_K USLE equation soil erodibility (K) factor (0.013

(ton m2 h) ⁄ (m3 ton cm)�1; multiplicative effect)
0.54, 1.5 N(1, 0.48) OMAFRA 2012

PRF Peak rate adjustment factor for sediment routing in the
main channel

1, 5 Ln(PRF) � LN(�1.5, 1.4) (Redhill) Streamflow measurements

Ln(PRF) � LN(�2.07, 1.01) (Grindstone)
SPCON Linear parameter for calculating the maximum amount

of sediment that can be reentrained during channel
sediment routing

0.0001, 0.01 U(0.0001, 0.01) –

CH_N Manning’s n value for the main channel (multiplicative
effect)

0.7, 3 LN(0, 0.56) Schwab et al. (2002), p.74

CH_COV1 Channel erodibility factor 0.1, 1.0 B(3.97, 2.54) Shugar et al., (2007), Kahn and
Kostaschuk (2011)

Shared parameters
USLE_P USLE equation support practice factor 0.25, 0.75 U(0.25, 0.75) OMAFRA 2012
URBCOEF Washoff coefficient for removal of constituents from

impervious area (mm�1)
0.002, 0.39 U(0.002, 0.39) –

SLSUBBSN Average slope length (m; multiplicative effect) 0.5, 5 LN(0, 1.15) Schwab et al. (2002), p.74
OV_N Manning’s n value for overland flow (multiplicative

effect)
0.25, 3 LN(0, 0.35) Schwab et al. (2002), p.74

Likelihood parameters
qs First order residual correlation coefficient between

Redhill and Grindstone Creek
0.01, 0.90 U(0.01, 0.90) –

rR, rG Residual standard deviation in Redhill and Grindstone
Creeks

0.02, 10 G(0.001, 0.001) –

a N(l,r) refers to the normal distribution with mean l and standard deviation r; B(a,b) refers to the beta distribution with shape parameters a and b; U(l,u) refers to the
uniform distribution with lower bound l and upper bound u; LN(l,r) refers to the lognormal distribution with location parameter l and scale parameter r; G(a,b) refers to
the gamma distribution with shape parameter a and rate parameter b.
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representing the model predictions can be treated as members in a
mixture of densities. Weights were assigned according to the indi-
vidual performances during the flow update:ffiffiffiffiffiffiffiffir
sij ¼
r2

ij

1�q2
ij

wi ¼
PMC

j¼1
sij

MC

Wi ¼
1

wiPl

i¼1
1

wi

Flow ¼
Xl

i¼1

WiFlowi

Sed ¼
Xl

i¼1

WiSedi

ð7Þ
where rij and qij refer to the innovation standard deviation and
residual correlation coefficient sampled from formulation i and
MCMC run j, and sij is the residual variance given the innovation
variance and correlation coefficient (Prado and West, 2010); MC
refers to the total number of MCMC runs sampled from the posteri-
ors; Y refers to the average measured flow; l refers to the number of
formulations considered in this analysis (l = 3); and Flowi and Sedi

are the predictions from the individual formulations weighted by
weights Wi to obtain the averaged predictions Flow and Sed.

4.4. Model evaluation

We assessed the performance of all models using four metrics:
the coefficient of determination (r2), Nash and Sutcliffe’s (1970)
index of model efficiency (NSE), the relative error as calculated
by Arhonditsis and Brett (RE; 2004) and the logarithm of the like-
lihood function. Following Hong et al. (2005), we assessed the
degree of updating of all informative prior distributions using an
index developed by Endres and Schindelin (2003), the so-called
delta index, which quantifies the difference in shape of two param-
eter distributions:

dhi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
pðhiÞ log

2pðhiÞ
pðhiÞ þ pðhijYÞ

þ pðhijYÞ log
2pðhijYÞ

pðhiÞ þ pðhijYÞ

� �
dh

s

ð8Þ

where p(hi) and p(hi|Y) represent the marginal prior and posterior
distributions of parameter hi, respectively. This metric is equal to
zero if there is no difference between the two distributions, and
equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log 2

p
, if there is no overlap between the two distribu-

tions. All delta index values are presented as percentages of this
maximum value. We also assessed the degree of updating by com-
puting (i) the percent difference between prior and posterior med-
ian values, and (ii) the percent change in the width of the 95%
credible interval.

5. Results

5.1. Model assessment at the basin outlet

5.1.1. Flow discharge submodel
The metrics of fit of the various statistical characterizations of

the flow discharge submodel during calibration and validation
are presented in Tables ESM1 and ESM2. For Redhill Creek, the
NSE ranged from 0.6 to 0.66 and 0.52 to 0.56 during calibration
and validation, respectively. For Grindstone Creek, the correspond-
ing NSE ranges were 0.71–0.74 and 0.44–0.56. Fig. ESM-15
presents time series predictions of the ensemble of the flow dis-
charge predictions for the two Creeks.

5.1.2. Sediment submodel
For Redhill Creek, the NSE ranged from 0.13 to 0.17, with For-

mulation 2 being characterized with the highest NSE. For Grind-
stone Creek, the NSE ranged from 0.63 to 0.69, with Formulation
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3 being characterized with the highest NSE. The NSE of the updated
flow submodel during the period 2010–2012 was fairly high (0.68–
0.70 for Redhill Creek, 0.62–0.70 for Grindstone Creek), showing
that the quality of our flow discharge estimates was maintained
during the update of the sediment submodel. Fig. 2 presents the
time series predictions of the sediment load submodel at the basin
outlets. Fig. 2 indicates no significant differences between the sed-
iment loading predictions made by the different Formulations at
the basin outlet.
Prediction (95% Credible interval)
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Fig. 2. SWAT calibration to sediment load data for Redhill (a–d) and Grindstone Creeks (
ensemble prediction (d, h), respectively.
For the events in which we have measured loads, the mean
sediment loading was 33.7 tons day�1 for Redhill Creek and
17.1 tons day�1 for Grindstone Creek, while the modeled sediment
loading for those same days was 30 ± 8.8 tons day�1 for Redhill
Creek and 18.1 ± 5.2 tons day�1. The average predictions of the
models are in agreement with the data measured from the water-
sheds under study, so we have reason to believe the long term pre-
dictions of the model are likely reasonable estimates. These NSE
values are within the range presented by Gassman et al. (2007),
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indicating that their fit is comparable to other applications which
have informed policy. To evaluate the ability of the model to
reproduce seasonal dynamics, we averaged the measured and cor-
responding ensemble simulated daily loads by month (Fig. ESM-
16). The uncertainty of the measured data was represented as
the 95% predictive interval of the mean estimated by a single omis-
sion jackknife without replacement. Months when a single event
dominated the measured average have a high degree of negative
skewness (e.g., September in Redhill Creek). The overall seasonal
pattern was represented reasonably well.

5.2. The uncertainty of source attributions

In Fig. 3, we present estimates of sediment export to streams
for the different landuses in Redhill and Grindstone Creeks across
the three formulations examined. We calculate these figures for
the entire annual cycle and for the Harbour’s growing season
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Fig. 3. Estimated sediment source areas across the three formulations by land use for the
2010–2012; e–h). Urb. Green. refers to urban greenspace.
(May–September), during which pulse nutrient input events are
most likely to result in phytoplankton blooms. The posterior uncer-
tainty of the sediment yield estimates for cropland was fairly high
(see full 95% credible intervals in Figs. ESM 13 and 14). The uncer-
tainty bounds for agricultural land presented in Fig. 3 were calcu-
lated by holding the parameters USLE_P and USLE_K constant at
their prior modes. This allowed us to draw meaningful inference
about sediment sources.

It is clear from Fig. 3 that there is significant uncertainty of the
identified sediment yield estimates. There was significant overlap
of the 95% credible intervals of the simulated sediment yield of
the different landuses in the study (a, b, e, f). With Redhill Creek
(c), it is difficult to identify the main source of sediment export
to streams even when we take into account the areas of the
landuses in the basin. This is despite the fact that the model predic-
tions for sediment export at the basin outlet were reasonably
constrained.
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The 95% credible intervals of the cropland sediment yield esti-
mates in Fig. 3(a) are non-overlapping for Redhill Creek, Formula-
tions 1 and 2. The disagreement between formulations about the
functioning of Redhill Creek becomes more evident when we
examine the growing season (Fig. 3(e)). Formulation 1 predicts a
near-cessation of surface runoff and consequent cessation of sedi-
ment supply to streams during the growing season. Formulations 2
and 3 predict a continued input of sediment to streams from all the
land uses. This is somewhat surprising, given the close agreement
of the three Formulations when judged against the basin outlet
(Fig. 2).

When we examine the predictions obtained from integrating
across the ensemble members, we are able to draw some inference
about the functioning of the Creeks. Despite the small aerial cover-
age of the agricultural areas in Redhill Creek (5%) and the urban
areas in Grindstone Creek (9%), these areas were responsible for
a disproportionate amount of overland sediment export to streams.
Cropland was estimated to contribute between 20% and 30% of
Redhill Creek’s total sediment export to streams (720–3299 tons),
while urban areas were estimated to contribute between 17%
a

c

Fig. 4. Estimated sediment yield and bed erosio
and 36% of Grindstone Creek’s total sediment export (410–
1830 tons). During the growing season, urban residential areas
are the main sources of sediment export to both streams, compris-
ing 70–99% of all sediment exported to streams in Redhill Creek
(217–1143 tons) and 60–81% of all estimated sediment exported
to Grindstone Creek (74–214 tons).

Integrating across the ensemble allows us to use the SWAT
model to pose testable hypotheses about how the simulated catch-
ments function. In Fig. 4, we present estimates of sediment yield
and streambed sediment storage status for Redhill and Grindstone
Creeks at the subbasin scale. While the sediment routing submodel
was calibrated, reliable data were simply not available on stream
bankful width and depth. In order to make meaningful predictive
statements while acknowledging this substantial uncertainty, we
took the entire posterior distribution of the sediment storage for
each subbasin (bed storage = upstream sediment in + erosional
sediment in – downstream sediment out). We assumed that if
the 95% credible interval of the bed storage distribution was
non-overlapping with zero, we could make credible statements
about whether the reach was gaining or losing sediment during
b

d

n status for Redhill and Grindstone Creeks.



3362 C. Wellen et al. / Journal of Hydrology 519 (2014) 3353–3368
the period 2010–2012. If the bed storage was positive, we catego-
rized the reach as very likely aggrading, while if the bed storage
was negative, we categorized the reach as very likely degrading.
If there was overlap with zero, we categorized the reach as likely
aggrading or degrading, depending on which side of zero the med-
ian of the distribution laid. Some reaches categorized as balanced,
as their credible intervals of absolute bed storage were less than
1 ton year�1.

The headwater areas of both Creeks were classified as balanced,
while all the reaches losing sediment from their bed are located
along the main channel. The final downstream reach was charac-
terized as gaining sediment in both Creeks, reflecting the wider
streams and gentler slopes. Note that the subbasin characterized
as having the highest class of sediment yield in Redhill Creek’s
southern end was in balance, indicating that the substantial agri-
cultural sediment mass estimated to be added to the streams in
that reach was largely propagated downstream. In Grindstone
Creek, there are few reaches which are storing sediment. In partic-
ular, the reaches containing most of the urban area towards the
mouth of the basin are either at balance or likely degrading, imply-
ing that much of the urban sediment added to Grindstone Creek is
exported downstream. Despite the substantial uncertainties in
many of the model processes, we are able to make some meaning-
ful predictive statements when taking all of these uncertainties
into account. The ensemble approach allows us to do so without
arbitrarily endorsing one single model formulation.
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5.3. Model parameter posteriors

5.3.1. Flow discharge submodel
An examination of the model parameter posteriors shows that

they are reasonably well constrained. Figs. 5 and 6 present the
95% credible intervals of the posterior parameter distributions
obtained after the update of the flow discharge model. The param-
eter posteriors were well identified for both Redhill and Grindstone
Creeks for all formulations. Using as a reference the first statistical
configuration (Formulation 1), Formulation 2 was characterized by
lower values of the innovation standard deviation r and residual
correlation q and higher values of the likelihood function for Red-
hill Creek and similar values for Grindstone Creek, showing that (at
least) for Redhill Creek there was a better overall fit when accom-
modating a threshold of runoff generation. We note that there are
significant differences of the parameter posteriors between the
three formulations.

5.3.2. Sediment submodel
The sediment parameter posteriors were significantly more

consistent across the three formulations than the flow parameters
were (Fig. 7). This suggests that the differences we present in Fig. 3
regarding the estimated sediment source areas by each Formula-
tion stem from differences in the flow submodel, not the sediment
submodel. While the model parameters were not as well identified
as those resulting from the update of the flow discharge submodel
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alone, we note that the ratios of the posterior mean values relative
to the standard deviations were still significantly lower than
one (Table ESM 5; Fig. 7). The latter result represents a proxy to
assess to what extent our knowledge about the central tendency
of the corresponding posteriors compares with the underlying
uncertainty.

The likelihood parameters rG and rR were fairly consistent
across the three Formulations, indicating that none of the formula-
tions were strongly favored in both Creeks. However, the lowest
values of the residual standard deviation for both Creeks were
achieved by Formulation 2 or 3, both of which postulate threshold
behavior regarding the runoff generation.

5.4. Propagation of uncertainty

We quantified the change in the flow and discharge parameters
after the update to the sediment data, and the results for Formula-
tion 1 are presented in Fig. 8. The results for Formulations 2 and 3
are presented in Tables ESM-3 and ESM-4. The average delta indi-
ces were 29% for Formulations 1 and 2, and 18% for Formulation 3,
indicating that the information gained about the flow parameters
during the second update was approximately similar to that
obtained about many sediment parameters (Table ESM-5; average
delta index was 31%). However, the credible intervals of the dis-
charge parameters were generally wider after the update with
the sediment data – on average by 12%, 5%, and 14% for Formula-
tions 1, 2, and 3, respectively, with maximum increases of 54%,
62%, and 40%. The expected values also shifted by an average of
17%, 25%, and 8%, suggesting that optimal regions of the parameter
space for flow discharge may not necessarily be optimal for faith-
fully reproducing the water quality. Finally, we note that the delta
indices for the flow parameters were comparable (and often
exceeded) the delta indices for the sediment parameters. This fur-
ther corroborates our assertions that conditioning flow parameters
to discharge may not be sufficient to ensure optimal water quality
simulations.

We conducted a post hoc analysis to assess the extent that the
uncertainty of the flow submodel controls the uncertainty of the
sediment model predictions. We took all the posterior MCMC sam-
ples for Formulation 2 but set all the sediment parameters constant
at their prior mode. We quantify the uncertainty of the predicted
yields as the width of the 95% credible interval divided by the med-
ian estimate. In doing so, we were able to estimate the amount of
the uncertainty of the sediment yields that stems from the flow
submodel (Fig. 9). The percentage of uncertainty in sediment yield
predictions in pervious areas stemming from the discharge param-
eters ranged from 29% to 33% in Redhill Creek and 40–68% in
Grindstone Creek. Taken together, these findings call into question
the sequential approach to updating integrated watershed models
generally practiced by the watershed modeling community (e.g.,
Santhi et al., 2001).

We also computed the parametric uncertainty of the annual dis-
charge and annual overland flow simulations from the pervious
areas of Redhill and Grindstone Creek. The uncertainty was quan-
tified as the width of the 95% credible interval divided by the med-
ian estimate. While the discharge simulations showed relatively
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low levels of this estimate of parametric uncertainty (0.04 for Red-
hill Creek and 0.08 for Grindstone Creek), the overland flow esti-
mates showed levels more than ten times as high (1.24 for
Redhill Creek and 1.32 for Grindstone Creek). Thus, well con-
strained discharge estimates can be achieved with fairly uncertain
runoff estimates, suggesting that the sole reliance on discharge
data does not necessarily constrain the overland flow estimates
and thus the derived estimates of sediment flux to streams.

6. Discussion

A handful of studies have conducted a Bayesian update of the
discharge submodel of SWAT (Yang et al., 2007a,b), but this is the
first study to apply Bayesian updating to one of the water quality
components of a process-based, distributed model of the complex-
ity typically used in watershed management. Approaching model
calibration as a series of Bayesian updates performed as informa-
tion becomes available has a number of distinct advantages: (i)
the full range of acceptable parameter vectors from previous
updates are used at each stage, instead of one well-fitting vector;
(ii) the model parameter specification from earlier stages is subject
to further refinement; and (iii) the uncertainty associated with the
model predictions and estimated runoff and pollutant source areas
can be addressed when the model informs policy.

We also applied the framework for accommodating extreme
events first advanced by Wellen et al. (2014a) to the prediction
of sediment loading, a water quality variable associated with peak
flows. We conducted an ensemble integration of three representa-
tions of the threshold which defines an extreme state: one which
ignores the extreme state entirely, one which allows the threshold
to take on any value, and one which uses measured streamflows to
constrain the value of the threshold. Rather than base model pre-
dictions on only one of these representations of the watersheds
under study, we synthesize the predictions of the entire ensemble
using a Bayesian Model Averaging scheme (Ramin et al., 2012).

6.1. Research questions revisited

6.1.1. Can the SWAT model determine sediment sources with
confidence when end of basin data is used for calibration?

As we showed in Section 5.2, the annual sediment sources gen-
erally could not be determined with confidence in either Redhill
Creek or Grindstone Creek. This is despite the fact that the end-
of-basin fluxes were reasonably well constrained. SWAT and other
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distributed models are often used to estimate the effect of land use
change on pollutant sources (including sediment) and end of basin
fluxes. If our estimates of source apportionment and predictive
uncertainty are typical, our results imply that the magnitude of
the effect of land use change would need to be fairly large to be
reliably reflected in the model outputs. While more research is
needed to determine if the uncertainty amounts we present in Sec-
tion 5 are typical, we do stress that the fit of our mean estimates of
sediment load and discharge are within acceptable and typical lim-
its (Gassman et al., 2007).

6.1.2. How does uncertainty propagate from the discharge submodel to
the water quality submodels?

The typical calibration approach advocated for SWAT and other
distributed models is sequential. The discharge components are
calibrated first, followed by the water quality components
(Santhi et al., 2001). However, we found that when the model
was updated with the sediment data, the parameters pertaining
to flow exhibited significant changes of shape. Some flow parame-
ters had wider 95% credible intervals after the update to the sedi-
ment data. We must therefore conclude that the regions of the
parameter space optimal for discharge simulation may not be opti-
mal for water quality simulation. More research is needed to deter-
mine whether a simultaneous calibration of water quantity and
water quality would yield better results than a sequential calibra-
tion. We note that a simultaneous update of sediment and flow
with a joint likelihood is technically straightforward, though care
must be taken to ensure that the correlation structure of the resid-
uals is properly addressed (Ramin and Arhonditsis, 2013).

We also found that the uncertainty of the discharge submodel
was responsible for roughly a third of the uncertainty of the sedi-
ment load predictions. It is also likely that the disagreement
between the three Formulations regarding sediment source areas
derives from the disagreement regarding overland flow source
areas. This is because the sediment parameters were quite similar
across the three Formulations, while the runoff parameters exhib-
ited some disagreement. Gains in the confidence of our ability to
predict water quality will probably come by improving our hydro-
metric simulations.

6.1.3. Do the estimated sediment sources vary when different
calibration approaches are used?

Even with slight variations of the model structure and calibra-
tion approach, the magnitudes of the estimated sediment sources
varied significantly. Fig. 3 shows that the seasonal cycle of
sediment export to streams also varied significantly across the
different statistical Formulations. However, Fig. 2 shows that the
end-of-basin estimates of sediment loading were nearly identical
across the different Formulations. Clearly, the details of model cal-
ibration can have a significant effect on the estimated pollutant
source attribution without having such an effect on the predictions
themselves.

Small variations in end-of-basin model fit can correspond to
large variations in estimated source apportionment. This under-
mines the deterministic paradigm in which SWAT and much
distributed modeling is typically conducted within. In this para-
digm, an optimal solution is sought and used in scenario analysis.
However, solutions which are trivially worse than the optimal
could result in significantly different inference regarding pollutant
source apportionment. This highlights the need for information on
pollutant sources to help constrain model predictions.

6.1.4. Can we combine the knowledge gained from different calibration
approaches?

Fig. 3 shows that there is significant disagreement regarding the
estimated sediment sources to streams between the three
Formulations. Our ensemble integration approach was able to
resolve some of this disagreement without requiring us to endorse
any one Formulation. The subsequent subsection discusses the use
of ensemble methods in the hydrological sciences in depth.

6.2. Ensemble methods and distributed modeling

The importance of including multiple representations of hydro-
logical systems under study has long been acknowledged in the lit-
erature (Beven, 2006; Vrugt and Robinson, 2007). Numerous
frameworks have been advocated for integrating predictions from
multiple models, including Ensemble Kalman Filters (Vrugt and
Robinson, 2007), Particle Filters (Parrish et al., 2012), and BMA
(Hoeting et al., 1999; Raftery et al., 2005; Vrugt and Robinson,
2007; Parrish et al., 2012; Ramin et al., 2012). This body of litera-
ture has developed promising techniques. However, the authors
tend to use relatively simple, lumped conceptual models that
mainly offer proofs of the concept rather than solutions to real
management problems. A very small number of studies have
applied ensemble methods to the SWAT model (Zhang et al.,
2011; Strauch et al., 2012). The present study offers a first ensem-
ble approach to the water quality predictions of a distributed, non-
point source watershed model.

In this paper, we have shown that an ensemble approach can be
an effective way to address critical concerns of equifinality raised
in the distributed modeling literature. Beven (2006) argues that
model structural ambiguity can lead to a situation where contra-
dictory mechanistic foundations can predict different estimates
of internal fluxes and source areas, but similar end-of-basin fluxes.
The subsequent experience of watershed modelers demonstrates
this assertion to be true. For instance, Easton et al. (2008) intro-
duced the soil topographic wetness index as an alternative way
of generating hydrological response units in SWAT. This strategy
is in contrast to the standard SWAT hydrological response unit
delineation, where land use and soil type are assumed to control
the generation of runoff. Paradoxically, while the predicted runoff
areas were quite different than those obtained with the standard
SWAT hydrological response units, the basin discharge predictions
were largely unchanged. The authors were able to conclude their
study in favor of their topographic wetness index approach by
comparing measurements against the predictions of water table
depth. However, this variable will not be available in all water-
sheds and in all scales. Barring a judgment based solely on theoret-
ical soundness, predictions from both watershed delineations
would need to be taken into account when using the models to
arrive at an understanding of watershed functioning. White et al.
(2011) present a case where the SWAT model code was altered so
that runoff was calculated with a physical water balance, instead
of the empirical curve number approach standard to SWAT model-
ing. While the water balance has presumably a better theoretical
foundation relative to the original curve numbers, it did not quan-
titatively improve discharge estimates.

Our experience is similar in that we found that different SWAT
parameter specifications led to different estimated runoff and sed-
iment generation areas, but very similar end-of-basin time series of
discharge and sediment. An encouraging result from the present
study is that when integrating across the three parameterizations,
we are able to make some meaningful predictive statements. For
instance, our work suggests that urban areas are the main source
of sediment to Redhill and Grindstone Creeks during the growing
season, despite the substantial differences among the sediment
yields estimated by the three formulations.

A critical decision when synthesizing the predictions of multi-
ple distributed models is the selection of an appropriate averaging
scheme. We chose to use a Bayesian model averaging scheme akin
to that presented by Ramin et al. (2012), where the weights of the
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Fig. 8. Delta index of flow and sediment parameters after the sediment update for
(a) Redhill and (b) Grindstone Creeks.
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individual ensemble members are calculated post hoc as functions
of the residual variance of the models. This approach allowed to
credibly integrating the predictions of the ensemble members,
while accounting for parametric and structural uncertainty. This
is philosophically similar to the approach of Fortin et al. (2006),
who advocated that the ensemble weights be estimated separately
for each ensemble member. This is in contrast to the best member
approach of Roulston and Smith (2003), where the ensemble
weights were all the same and derived from the best ensemble
member. Future work seeking to apply ensemble methods to
distributed watershed models will benefit from the innovative
methodological work being conducted with lumped models. Of
particular interest for our approach are methods which allow the
ensemble weights to vary with time. Raftery et al. (2005) used a
sliding window, which based the weights on a criterion of
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Fig. 9. Proportion of uncertainty of sediment yield due to parametric uncertainty of the
credible interval of the sediment yield of each landuse divided by the median estimate.
performance evaluated during a historical period. Likewise, Duan
et al. (2007) divided the training period into different flow inter-
vals and used separate weights for each interval. Coupling either
approach to the framework presented here could emphasize the
predictions of Formulations 2 and 3 during episodic events, while
relying on Formulation 1 for smaller events or baseflow, should
that formulation prove superior in such situations.
6.3. On the value of complex, distributed models in the hydrological
sciences

Distributed models are a key tool in watershed management
and hydrological science (Rode et al., 2010). They will likely retain
this place of importance, as no other tool is able to estimate the
impact of land use changes on water quality at daily or monthly
timescales. While this paper had presented evidence which calls
their use into question, we do not believe that models such as
SWAT are unreliable or ‘useless arithmetic.’ We simply advocate
an improvement in the common practices of distributed model
use, beginning with model validation.

The typical criterion for judging whether a model is adequate is
the degree of fit (Rykiel, 1996), despite reservations that such a test
is philosophically inconclusive (Oreskes et al., 1994). In the case of
distributed models, the degree of fit is typically judged only at the
basin outlet (Gassman et al., 2007). Skeptical voices in the
watershed modeling literature have cautioned that this may not
be sufficient to decide whether a model satisfactorily reproduces
the relationship between diffuse upland fluxes and basin outlet
fluxes (Beven, 2006). We show in this paper that even with a nearly
identical model structure, small changes in model parameteriza-
tion may lead to divergent source apportionments but nearly iden-
tical estimated end-of-basin fluxes. Despite our use of informative
priors and nearly 150 measurements, we were not able to ade-
quately constrain the sediment source apportionment. A reason-
able hypothesis as to why this is the case is that the measured
loading or concentration at the basin outlet contains too many
‘mixed signals’ to constrain the model predictions. In light of this,
we recommend that future studies consider integrating three types
of additional information: information in space, information of
additional model fluxes, and tracer information to help constrain
model sources.

Constraining simulated in-stream fluxes of water and water-
borne constituents may be improved by incorporating information
from a greater variety of locations in space. This has been the
strategy of the USGS’ SPARROW regression model (Alexander
et al., 2004). Unlike the estimated pollutant export rates we pres-
ent here, the export rates estimated by SPARROW tend to be
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reasonably well constrained (Wellen et al., 2012, 2014b). This is
most likely owing to a fairly large amount of information in space
(24 water quality monitoring stations spanning orders of magni-
tude of size) as well as a simpler model structure with far fewer
parameters (less than 10). This allows export rates to be esti-
mated from smaller watersheds where export is dominated by
one or two sources and applied to larger, ‘mixed signal’ water-
sheds. More research is needed to determine whether more infor-
mation in space can improve the source attribution of complex
models such as SWAT. We recommend future work focus on the
use of nested basin sampling structures coupled with Bayesian
hierarchical inference frameworks to accomplish this (Zhang and
Arhonditsis, 2009).

Complex models such as SWAT simulate all the major fluxes of
the hydrological cycle (e.g., evapotranspiration, groundwater flow,
overland flow, return flow), yet the common practice is to calibrate
only to their sum (streamflow). By incorporating additional hydro-
logical fluxes such as evapotranspiration into the model calibra-
tion, it might be possible to arrive at more constrained estimates
of the other hydrological fluxes, such as overland flow. This may
constrain the estimates of pollutant export. Model calibration
may be aided by incorporating empirical information about the
sources of water, sediment, and nutrients. There are a variety of
techniques developed for making such inference, including end
member mixing analysis (EMMA, Burns et al., 2001), sediment fin-
gerprinting (Davis and Fox, 2009), and isotope analysis of some
dissolved nutrients such as phosphate (McLaughlin et al., 2006).
Empirical source attributions could be used to constrain model
predictions by calibrating the model’s summary statistics to statis-
tics of source estimates (Csillery et al., 2010).

In conclusion, we conducted the first Bayesian calibration of the
water quality components of SWAT. We show that end-of-basin
information is not sufficient to constrain the source attribution of
suspended sediment. We also presented evidence that more than
a third of the uncertainty of SWAT model sediment load predictions
may stem from the discharge submodel. We presented a case
where three different conceptualizations of the watershed under
study produce fairly similar end of basin predictions but divergent
source apportionments. In such conditions, an ensemble approach
can offer meaningful statements about the watershed functioning
while accounting for the different sources of uncertainty. We con-
clude by suggesting a number of improvements to the current
practice of calibrating distributed models to fluxes at the basin out-
let. These improvements include incorporating additional informa-
tion in space, information of additional model fluxes, and tracer
information to help constrain model sources.
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ELECTRONIC SUPPLEMENTARY MATERIAL 

Table ESM-1: Model fit statistics for all model calibrations in Redhill Creek. 

Formulation NSE* RE* r
2
 

Standard (1) Flow Calibration (1992 – 1994) 0.64 54% 0.66 

 
Flow Validation (1995 – 1998) 0.52 60% 0.54 

 Flow Update (2010 – 2012) 0.68 57% 0.69 

 Sediment Calibration 0.14 81% 0.17 

Event (2) Flow Calibration (1992 – 1994) 0.66 52% 0.71 

 
Flow Validation (1995 – 1998) 0.56 58% 0.57 

 Flow Update (2010 – 2012) 0.70 58% 0.70 

 Sediment Calibration 0.17 82% 0.18 

Informative Priors (3) Flow Calibration (1992 – 1994) 0.60 72% 0.63 

 
Flow Validation (1995 – 1998) 0.56 57% 0.57 

 Flow Update (2010 – 2012) 0.68 59% 0.69 

 Sediment Calibration 0.13 79% 0.15 

Ensemble Flow Validation (1995 – 1998) 0.56 56% 0.62 

Sediment Calibration 0.15 80% 0.17 

*Nash Sutcliffe Efficiency **Relative Error 
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Table ESM-2: Model fit statistics for all model calibrations in Grindstone Creek. 

Formulation NSE RE r
2
 

Standard (1) Flow Calibration (1992 – 1994) 0.71 44% 0.72 

 
Flow Validation (1995 – 1998) 0.56 47% 0.56 

 Flow Update (2010 – 2012) 0.70 50% 0.71 

 Sediment Calibration 0.63 71% 0.71 

Event (2) Flow Calibration (1992 – 1994) 0.71 45% 0.71 

 
Flow Validation (1995 – 1998) 0.49 44% 0.52 

 Flow Update (2010 – 2012) 0.70 50% 0.71 

 Sediment Calibration 0.64 68% 0.73 

Informative Priors (3) Flow Calibration (1992 – 1994) 0.74 43% 0.75 

 
Flow Validation (1995 – 1998) 0.44 47% 0.48 

 Flow Update (2010 – 2012) 0.62 53% 0.64 

 Sediment Calibration 0.69 64% 0.71 

Ensemble Flow Validation (1995 – 1998) 0.47 49% 0.35 

 Sediment Calibration 0.68 66% 0.71 
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Table ESM-3: Posterior results of the flow discharge submodel in Redhill Creek. These results 

are posterior to the sediment update. 

 

 

*Percentage change of the most likely value between marginal prior and posterior distributions. 

**Percentage change in the width of the 95% credible interval between marginal prior and posterior distributions. 

***Delta index as presented by Hong et al. (2005), expressed as percent of maximum value. 

  

Standard (1)  Event (2)  Informative Priors (3) 

Parameter MLV
*
 CI

**
 Del

***
  MLV CI Del  MLV CI Del 

CN2 (Mult. Eff.) 1 7 17  - - -  - - - 

ALPHA_BF -3 19 23  -4 17 17  -6 20 13 

SOL_AWC (Mult. Eff.) 0 -36 39  0 -2 30  0 12 40 

GW_REVAP -5 42 21  -7 -2 14  -8 6 11 

ESCO 22 54 30  39 4 16  31 18 12 

EPCO -12 5 21  -13 -2 16  -11 1 15 

GW_DELAY (Mult. Eff.) 31 24 41  -5 8 14  -22 15 13 

SOL_KSAT (Mult. Eff.) 93 -19 66  89 -50 99  -4 21 19 

SNOWCOVMX 4 -2 23  17 23 44  -3 22 22 

SMFMX 7 12 14  -80 22 25  0 -3 16 

SMFMN -5 23 22  1 62 27  -6 40 21 

SURLAG 17 15 25  23 -22 17  1 0 14 

θp - - -  0 10 20  -1 6 17 

CN2 Low (Mult. Eff.) - - -  4 14 16  8 27 20 

CN2 High (Mult. Eff.) - - -  0 1 14  0 10 13 
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Table ESM-4: Posterior results of the flow discharge submodel in Grindstone Creek. These 

results are posterior to the sediment update. 

 

*Percentage change of the most likely value between marginal prior and posterior distributions. 

**Percentage change in the width of the 95% credible interval between marginal prior and posterior distributions. 

***Delta index as presented by Hong et al. (2005), expressed as percent of maximum value. 

Standard (1)  Event (2)  Informative Priors (3) 

Parameter MLV
*
 CI

**
 Del

***
  MLV CI Del  MLV CI Del 

CN2 (Mult. Eff.) -3 -11 28  - - -  - - - 

ALPHA_BF -4 4 17  -5 9 14  -5 22 14 

SOL_AWC (Mult. Eff.) 0 6 26  0 -13 57  0 2 14 

GW_REVAP 13 -8 17  -96 -15 16  44 24 19 

ESCO 5 22 18  97 54 23  10 3 13 

EPCO -10 4 18  3 -3 13  -26 18 18 

GW_DELAY (Mult. Eff.) -22 13 58  -64 -27 81  -6 36 43 

SOL_KSAT (Mult. Eff.) 26 -18 88  9 -34 28  5 1 10 

SNOWCOVMX 11 16 67  -3 21 40  7 10 19 

SMFMX -48 68 30  1 13 14  -22 4 18 

SMFMN 3 0 23  -4 14 24  344 -23 20 

SURLAG 1 -16 23  1 -2 16  1 10 11 

θp - - -  -19 37 54  4 20 16 

CN2 Low (Mult. Eff.) - - -  55 52 55  -6 6 17 

CN2 High (Mult. Eff.) - - -  -22 12 66  11 -7 20 
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Table ESM-5: Parameter posterior means and standard deviations for sediment parameters in Redhill and Grindstone Creeks. 

 

* Percentage change of the most likely value between marginal prior and posterior distributions. 

** Percentage change in the width of the 95% credible interval between marginal prior and posterior distributions. 

*** Delta index as presented by Hong et al. (2005), expressed as percent of maximum value. 

**** In units of ten thousandths (10
-4

) 

  

Formulation 1 Formulation 2 Formulation 3 

Mean SD MLV
*
 CI

**
 Del

***
  Mean SD MLV CI Del  Mean SD MLV CI Del 

Redhill Parameters 

USLE_K 0.99 0.39 -1 2 23 
 

0.92 0.36 -8 1 14 
 

0.86 0.36 -14 2 11 

PRF 1.11 0.10 -11 -86 35 
 

1.10 0.10 -12 -87 37 
 

1.08 0.09 -14 -89 51 

SPCON
****

 1.24 0.23 - - - 
 

1.29 0.28 - - - 
 

1.26 0.28 - - - 

CH_N 1.26 0.58 26 10 37 
 

1.00 0.22 0 -60 45 
 

0.99 0.30 -1 -28 43 

CH_COV1 0.58 0.19 -4 16 18 
 

0.53 0.20 -13 8 20 
 

0.67 0.18 9 3 18 

Grindstone Parameters 

USLE_K 0.80 0.29 -20 -10 25 
 

0.83 0.29 -17 -11 22 
 

0.70 0.31 -30 -6 29 

PRF 1.10 0.10 -3 -69 34 
 

1.20 0.19 6 -45 16 
 

1.11 0.11 -2 -69 29 

SPCON
****

 1.83 0.89 - - - 
 

1.49 0.42 - - - 
 

1.49 0.50 - - - 

CH_N 1.98 0.60 98 7 49 
 

2.06 0.45 106 -12 62 
 

2.06 0.50 106 -5 57 

CH_COV1 0.68 0.18 11 -5 25 
 

0.66 0.17 9 -5 19 
 

0.63 0.19 3 2 15 

Shared Parameters 

USLE_P 0.52 0.15 - - - 
 

0.46 0.14 - - - 
 

0.47 0.15 - - - 

URBCOEF 0.011 0.007 - - - 
 

0.016 0.01 - - - 
 

0.019 0.01 - - - 

SLSUBBSN 3.05 1.39 205 10 45 
 

1.60 1.15 60 5 17 
 

2.17 1.54 117 12 33 

OV_N 1.33 0.60 33 58 32 
 

1.43 0.58 43 51 33 
 

1.33 0.63 33 49 29 

Likelihood Parameters 

sρ  0.44 0.15 - - - 
 

0.42 0.14 - - - 
 

0.40 0.14 - - - 

Rσ  1.84 0.20 - - - 
 

1.88 0.20 - - - 
 

1.79 0.16 - - - 

Gσ  1.51 0.18 - - - 
 

1.37 0.17 - - - 
 

1.45 0.17 - - - 
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Table ESM-6: Parameter posterior means and standard deviations of the flow discharge submodel for Redhill Creek. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter Standard (1) Event (2) Informative Priors (3) 

Mean SD Mean SD Mean SD 

CN2 (Mult. Eff.) 0.564 0.038 - - - - 

ALPHA_BF 0.974 0.018 0.957 0.028 0.938 0.047 

SOL_AWC (Mult. Eff.) 2.358 0.001 1.719 0.001 1.720 0.001 

GW_REVAP 0.193 0.007 0.190 0.012 0.189 0.013 

ESCO 0.135 0.034 0.129 0.026 0.126 0.027 

EPCO 0.705 0.215 0.662 0.150 0.663 0.167 

GW_DELAY (Mult. Eff.) 0.652 0.129 0.532 0.108 0.470 0.138 

SOL_KSAT (Mult. Eff.) 0.331 0.123 0.257 0.037 0.214 0.035 

SNOWCOVMX 6.812 0.234 16.745 2.279 16.174 1.371 

SMFMX 3.387 0.213 3.566 0.237 3.646 0.258 

SMFMN 2.961 0.112 3.082 0.261 2.807 0.243 

SURLAG 3.748 3.194 0.530 0.034 0.380 0.011 

θp - - 

1.350 

(21 mm) 

0.027 

(1 mm) 

0.971 

(8.3 mm) 

0.025 

(1 mm) 

CN2 Low (Mult. Eff.) - - 0.572 0.051 0.538 0.039 

CN2 High (Mult. Eff.) - - 1.100 0.011 1.013 0.024 

σ  0.149 0.005 0.137 0.005 0.140 0.005 
ρ  0.396 0.030 0.328 0.036 0.332 0.033 

Log(Model Likelihood) 224.377 3.900 297.162 4.724 273.937 4.151 
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Table ESM-7: Parameter posterior means and standard deviations of the flow discharge submodel for Grindstone Creek. 

Parameter Standard (1) Event (2) Informative Priors (3) 

Mean SD Mean SD    

CN2 (Mult. Eff.) 0.572 0.036 - - - - 

ALPHA_BF 0.957 0.030 0.940 0.046 0.944 0.039 

SOL_AWC (Mult. Eff.) 1.430 0.001 1.407 0.008 1.430 0.001 

GW_REVAP 0.082 0.034 0.052 0.028 0.062 0.028 

ESCO 0.154 0.046 0.181 0.076 0.200 0.066 

EPCO 0.627 0.224 0.488 0.261 0.701 0.196 

GW_DELAY (Mult. Eff.) 1.161 0.108 1.747 0.274 1.219 0.135 

SOL_KSAT (Mult. Eff.) 0.532 0.033 0.553 0.069 0.538 0.041 

SNOWCOVMX 10.926 0.400 21.064 0.369 15.872 5.057 

SMFMX 2.871 0.226 2.794 0.111 4.085 0.535 

SMFMN 1.286 0.151 2.512 0.083 1.254 0.330 

SURLAG 0.509 0.007 0.511 0.012 0.373 0.005 

θp - - 

1.050 

(10.2 mm) 

0.092 

(1 mm) 

0.746 

(4.6 mm) 

0.042 

(1 mm) 

CN2 Low (Mult. Eff.) - - 0.572 0.120 1.093 0.108 

CN2 High (Mult. Eff.) - - 0.770 0.066 0.540 0.041 

σ  0.066 0.002 0.066 0.002 0.064 0.003 
ρ  0.904 0.012 0.906 0.014 0.908 0.013 

Log(Model Likelihood) 1054.631 3.436  1053.227 4.854 1074.392 5.689 
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FIGURE CAPTIONS 

Figure ESM 1: Posterior marginals of the flow discharge submodel for Redhill Creek, 

Formulation 1. 

Figure ESM 2: Posterior marginals of the flow discharge submodel for Redhill Creek, 

Formulation 2. 

Figure ESM 3: Posterior marginals of the flow discharge submodel for Redhill Creek, 

Formulation 3. 

Figure ESM 4: Posterior marginals of the flow discharge submodel for Grindstone Creek, 

Formulation 1. 

Figure ESM 5: Posterior marginals of the flow discharge submodel for Grindstone Creek, 

Formulation 2. 

Figure ESM 6: Posterior marginals of the flow discharge submodel for Grindstone Creek, 

Formulation 3. 

Figure ESM 7: Posterior marginals of the sediment load submodel, Formulation 1. 

Figure ESM 8: Posterior marginals of the sediment load submodel, Formulation 2. 

Figure ESM 9: Posterior marginals of the sediment load submodel, Formulation 3. 

Figure ESM 10: Likelihood Assessment of the flow discharge submodel for Redhill Creek. Top 

to bottom rows report on Formulations 1 to 3, respectively. The left column presents quantile-

quantile plots for the expected and actual standardized innovations, the middle column presents 

autocorrelation functions for the innovations, and the right column presents density plots of the 

expected and actual standardized innovations. As described in the methodology section, all 

likelihoods were based on a first order autocorrelation of the residuals and a Student’s t-

distribution with 7 degrees of freedom for the innovations. All standardization was performed 

with the relevant posterior estimates of the first order correlation coefficient (ρ) and the scale 

parameter (σ) for the innovations. 

Figure ESM 11: Likelihood Assessment of the flow discharge submodel for Grindstone Creek. 

Top to bottom rows report on Formulations 1 to 3, respectively. The left column presents 

quantile-quantile plots for the expected and actual standardized innovations, the middle column 

presents autocorrelation functions for the innovations, and the right column presents density 

plots of the expected and actual standardized innovations. As described in the methodology 

section, all likelihoods were based on a first order autocorrelation of the residuals and a Student’s 

t-distribution with 7 degrees of freedom for the innovations. All standardization was performed 

with the relevant posterior estimates of the first order correlation coefficient (ρ) and the scale 

parameter (σ) for the innovations.  
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Figure ESM 12: Quantile-quantile plots of the residuals pertaining to the sediment load 

submodel for both Creeks. All plots compare actual mean residuals to the residuals which would 

be expected from the normal distribution. The top row presents Redhill Creek, and the bottom 

row presents Grindstone Creek. The left column presents residuals from Formulation 1, the 

middle column residuals from Formulation 2, and the right column from Formulation 3. All lines 

indicate 1:1 relationship. The normal distribution is adequate to describe the residuals. 

Figure ESM 13: Estimated runoff and sediment source areas across the three formulations by 

land use for the entire study period (2010 – 2012). Error bars depict all sources of parametric 

uncertainty. 

Figure ESM 14: Estimated runoff and sediment source areas across the three formulations by 

land use for the growing season (May – September, 2010 – 2012). Error bars depict all sources 

of parametric uncertainty. 

Figure ESM 15: Ensemble predictions of flow discharge for the validation period. 

Figure ESM 16: Ensemble model predictions of events and measured data aggregated by month. 
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Figure ESM 1: Posterior marginal distributions of the flow discharge submodel for Redhill Creek, Formulation 1. 
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Figure ESM 2: Posterior marginal distributions of the flow discharge submodel for Redhill Creek, Formulation 2. 
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Figure ESM 3: Posterior marginal distributions of the flow discharge submodel for Redhill Creek, Formulation 3. 
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Figure ESM 4: Posterior marginal distributions of the flow discharge submodel for Grindstone Creek, Formulation 1. 
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Figure ESM 5: Posterior marginal distributions of the flow discharge submodel for Grindstone Creek, Formulation 2. 
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Figure ESM 6: Posterior marginal distributions of the flow discharge submodel for Grindstone Creek, Formulation 3. 
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Figure ESM 7: Posterior marginal distributions of the sediment load submodel, Formulation 1. 
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Figure ESM 8: Posterior marginal distributions of the sediment load submodel, Formulation 2. 
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Figure ESM 9: Posterior marginal distributions of the sediment load submodel, Formulation 3. 
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Figure ESM 10: Likelihood Assessment of the flow discharge submodel for Redhill Creek. Top 

to bottom rows report on Formulations 1 to 3, respectively. The left column presents quantile-

quantile plots for the expected and actual standardized innovations, the middle column presents 

autocorrelation functions for the innovations, and the right column presents density plots of the 

expected and actual standardized innovations. As described in the methodology section, all 

likelihoods were based on a first order autocorrelation of the residuals and a Student’s t-

distribution with 7 degrees of freedom for the innovations. All standardization was performed 

with the relevant posterior estimates of the first order correlation coefficient (ρ) and the scale 

parameter (σ) for the innovations. 



21 | P a g e  

 

Figure ESM 11: Likelihood Assessment of the flow discharge submodel for Grindstone Creek. 

Top to bottom rows report on Formulations 1 to 3, respectively. The left column presents 

quantile-quantile plots for the expected and actual standardized innovations, the middle column 

presents autocorrelation functions for the innovations, and the right column presents density 

plots of the expected and actual standardized innovations. As described in the methodology 

section, all likelihoods were based on a first order autocorrelation of the residuals and a Student’s 

t-distribution with 7 degrees of freedom for the innovations. All standardization was performed 

with the relevant posterior estimates of the first order correlation coefficient (ρ) and the scale 

parameter (σ) for the innovations.  
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Figure ESM 12: Quantile-quantile plots of the residuals pertaining to the sediment load 

submodel for both Creeks. All plots compare actual mean residuals to the residuals which would 

be expected from the normal distribution. The top row presents Redhill Creek, and the bottom 

row presents Grindstone Creek. The left column presents residuals from Formulation 1, the 

middle column residuals from Formulation 2, and the right column from Formulation 3. All lines 

indicate 1:1 relationship. The normal distribution is adequate to describe the residuals. 



23 | P a g e  

 

 

Figure ESM 13: Estimated runoff and sediment source areas across the three formulations by 

land use for the entire study period (2010 – 2012). Error bars depict all sources of parametric 

uncertainty. 

*95% credible intervals for Crop sediment yield in Redhill Creek for Formulations 2, 3, and the 

ensemble are 4.6, 5.0, and 4.5 tons ha
-1

 yr
-1

. 
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Figure ESM 14: Estimated runoff and sediment source areas across the three formulations by 

land use for the growing season (May – September, 2010 – 2012). Error bars depict all sources 

of parametric uncertainty. 

*95% credible intervals for Crop sediment yield in Redhill Creek for Formulation 2 is 1.2 tons 

ha
-1

 yr
-1

. 



25 | P a g e  

 

 

Figure ESM 15: Ensemble predictions of flow discharge for the validation period. 
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Figure ESM 16: Ensemble model predictions of events and measured data aggregated by month. 
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Threshold configuration of SWAT 

We accommodate threshold behavior by incorporating a precipitation threshold into the 

SWAT model. We assume that above some threshold of precipitation θp, an extreme state exists 

and a subset of the parameter takes on different values than in the normal state. This essentially 

postulates that watersheds can be characterized by multiple discrete states of response. For this 

application, we allowed the curve number parameters to vary between states, as they represent 

the SWAT parameters used to calculate surface runoff. We averaged the precipitation over 2 days 

for Redhill Creek and 3 days for Grindstone Creek:   

CN2 (Multiplicative Effect)t =CN2lowfor Log10 (n-day averaged precipitation + 1) ≤θp (1a) 

      CN2 (Multiplicative Effect)t =CN2highfor Log10 (n-day averaged precipitation + 1 >θp (1b) 

where CN2 (Multiplicative Effect)t  refers to the value of the multiplicative effect for the curve 

numbers at time t, θp refers to the threshold between the two states,CN2low and CN2high refer to the 

state-specific values of the multiplicative effects applied to the curve number parameters, and n 

is equal to 2 for Redhill Creek and 3 for Grindstone Creek.  

We quantified this hydrologic response time n using measured streamflows. Using the 

daily flows measured at Redhill and Grindstone Creeks between the years 1988 and 2009, we 

compute a 1-day correlation coefficient of ρ = 0.43 for Redhill Creek and ρ = 0.83 for Grindstone 

Creek. Following Yang et al. (2007a,b), we may transform these estimates of daily correlation to 

a characteristic correlation time using the equation � = exp �− ∆	

 � , where  ∆� is the time step (1 

day) and τ is the characteristic correlation time in days. This yields τ  = 1.15 days for Redhill 

Creek, which we rounded up to two days to incorporate some degree of memory in the system. 

For Grindstone Creek, this method gives us τ  = 5.37 days. We assessed the differences obtained 

when using n = 3 and n = 5 days for Grindstone Creek using a linear changepoint regression with 
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Log10 (n-day averaged precipitation + 1) as the independent variable and Log10 (daily streamflow 

+ 1) as the dependent variable. The values of the model precisions were within the 95% credible 

intervals of each other, meaning neither model fit better than the other. We used the mean values 

of the changepoints together with the respective average precipitation time series to classify each 

day into the normal or extreme state. Of all the days between 1988 and 2009 used to calibrate the 

changepoint models, only 479 of 3305 days (less than 15% of the total) were not classified into 

the same state by both the 5 day and 3 day averaging period. We admit that this is not a trivial 

difference. It is however small enough to assume that using a 5 day averaging period would not 

have resulted in a significantly different outcome for the study overall. 
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