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In this study, our primary aim is to evaluate the capacity of past and currentmodelling efforts to depict the causal
relationships between major water quality indicators (e.g., chlorophyll a, harmful algal blooms, dissolved oxy-
gen) and nutrient loading in Lake Erie.We first conduct a review of nearly all themodelling projects documented
in the pertinent literature, and then evaluate the performance of six of these models applied over the past thirty
years. We examine the strengths and weaknesses of the different modelling strategies, their adequacy in
representing the processes underlying plankton dynamics, and their ability to reproduce the spatiotemporal var-
iability in hypoxia or harmful algal blooms. Our analysis shows that these models have mainly offered heuristic
tools to examine different ecological hypotheses and dictate future data collection efforts. Our study critically
discusses the most appropriate next steps to improve the reproduction of the spatiotemporal patterns
of major phytoplankton groups, e.g., cyanobacteria, the functional role of dreissenid mussels, and the
relative importance of diagenesis processes on the manifestation of hypoxia in Lake Erie. Finally, we
advocate the standpoint that a single “correct” strategy does not exist, and therefore we should strive
for a synthesis of multiple modelling approaches which can contribute to an integrative view on the
functioning of the system.

© 2014 International Association for Great Lakes Research. Published by Elsevier B.V. All rights reserved.
Introduction

Environmental modelling has been an indispensable tool for ad-
dressing lake eutrophication. A variety of data-oriented and process-
based models have been used to examine the impact of nutrient
loads to ecosystem integrity and to set water quality goals. The data-
oriented (or empirical) models are mainly steady-state, mass-balance
approaches that predict lake total phosphorus (TP) concentrations as a
function of lake morphometric/hydraulic characteristics, such as the
areal phosphorus loading rate, mean depth, fractional phosphorus re-
tention, and areal hydraulic loading, which are then associated with
the chlorophyll a and/or hypolimnetic dissolved oxygen (DO) concen-
trations (Brett and Benjamin, 2008; Cheng et al., 2010). Despite their
successful application in predicting average whole-lake TP concentra-
tions and DO levels in smaller inland lakes on the Canadian Shield
(Dillon and Molot, 1996; Molot et al., 1992), these models have signifi-
cant drawbacks when applied to larger systems. Namely, one of their
ditsis).
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fundamental assumptions that the lake is thoroughly mixed with uni-
form concentrations throughout is profoundly violated in systems of
larger size and complex shape whilst their capacity to predict the
impact of episodic events (storm events, upwelling, climate change,
and invasive species) is very limited.

An alternative to these empirical strategies has been the develop-
ment of process-basedmodels which can be used to understand ecolog-
ical processes, to predict aquatic ecosystem responses to external
nutrient loading changes, to evaluate management alternatives, and to
support the policy making process (Jørgensen, 1997; Reckhow and
Chapra, 1999). More than 40 years ago, Chen (1970) introduced a
general model structure for addressing a broad class of water quality
problems. This modelling framework essentially proposed a general
set of ordinary or partial differential equations for describing key phys-
ical, chemical, and biological processes with site-specific parameters,
initial conditions, and forcing functions, whichwere then used to repro-
duce real-world dynamics, to gain insights into the ecosystem function-
ing and to project future system response under significantly different
external conditions (e.g., nutrient enrichment, climate change). The
philosophy and the basic set of equations proposed in these early
models still remain the core of the current generation of mechanistic
aquatic biogeochemical models although advances in scientific un-
derstanding and improvements in methods of numerical analysis have
.V. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jglr.2014.02.014&domain=pdf
http://dx.doi.org/10.1016/j.jglr.2014.02.014
mailto:georgea@utsc.utoronto.ca
http://dx.doi.org/10.1016/j.jglr.2014.02.014
http://www.sciencedirect.com/science/journal/03801330


Fig. 1. (a) Percentage of modelling studies that quantified goodness-of-fit; (b) relative
error (RE) of aquatic biogeochemical models for the study period 1990 to 2002 [number
of studies assessed for each state variable is indicated on the top of the graph]; percentage
of modelling studies that reported (c) sensitivity analysis; and (d) model validation.
These figures are modified from Arhonditsis and Brett (2004).
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brought significant progresswith regard to the accuracy and sophistica-
tion. Reckhow and Chapra (1999) interpreted the fact that all the recent
improvements in water quality modelling have built and evolved upon
the foundation provided by early studies from the mid-70s as evidence
of the strength of the original modelling propositions (Di Toro et al.,
1971; Donigian and Crawford, 1976; O'Connor et al., 1975; Thomann
et al., 1975). However, Arhonditsis et al. (2006) argued that the ab-
sence of novel ideas and creativity may also be a pathological symp-
tom of the field of aquatic ecosystem modelling, inviting one to ask
what it would take to prime the pump for significant breakthroughs
to come along.

On a similar note, Arhonditsis and Brett (2004) attempted to evalu-
ate the methodological consistency and general performance of 153
aquatic ecosystem modelling studies published in the international
peer-reviewed literature between 1990 and2002. Despite theheteroge-
neity of the selected papers with respect to model complexity, type of
ecosystem modelled, spatial and temporal scales and model develop-
ment objectives, this study reported a number of findings indicating
that aquatic ecosystem modellers do not seem to consistently apply
conventional methodological steps during the development of their
models. The first striking feature of this analysis was the absence of
systematic goodness-of-fit assessment of the original models (Fig. 1a).
In the cases inwhichmeasures-of-fit or comparison plots were present-
ed, Arhonditsis and Brett (2004) independently assessed state-variable
performance as expressed by the relative error (RE) and the coefficient
of determination (r2) (Fig. 1b). Also the performance of existing mech-
anistic aquatic biogeochemical models was declined from physical–
chemical to biological components of planktonic systems. The large
majority of the published studies in the field over the last decade
did not properly assess model sensitivity to the input vectors
(Fig. 1c) whilst aquatic ecosystem modellers are still reluctant to
embrace optimization techniques during model calibration, and as-
sess the ability of their models to support predictions in the extrap-
olation domain (Fig. 1d). Thus, the establishment of a systematic
methodological protocol for model assessment which is widely ac-
cepted by the aquatic biogeochemical modelling community should
be a top priority. The modellers should understand that the meth-
odological consistency is an analogue to the way a chemical analyst
strives to attain clean laboratory conditions, excellent standardiza-
tion curves, and faithful application of the analytical protocol.
These methodological considerations will be some of the criteria
for evaluating the rigour of eutrophication modelling in Lake Erie
although the present study will place more emphasis on the impli-
cations of the parameterization of the existing models about the
ecosystem characterization.

Eutrophication modelling in Lake Erie

Lake Erie is the smallest and shallowest system of the Great Lakes;
and therefore, it is themost susceptible to nutrient-drivenwater quality
issues. Recent evidence suggests that rapid ecological changes are in fact
occurring in the ecosystem, involving a complex and often poorly un-
derstood interplay among many factors related to the lake's chemical,
physical and biological characteristics (Michalak et al., 2013). A variety
of aquatic biogeochemical models have been developed to understand
ecological interactions and to predict the response of Lake Erie to exter-
nal nutrient loading changes. Some of the models were constructed
during the mid-1970s (e.g., Di Toro et al., 1987; Lam et al., 1987) whilst
a new generation of models has been in place more recently (e.g., Leon
et al., 2011; Zhang et al., 2008).

The evolution of eutrophication modelling should ideally follow
the advancement of our understanding of the major causal link-
ages/ecosystem processes underlying the water quality problems
in a particular system (Fig. 2). As such, the first type of models
must be simple in structure and should revolve around the elucida-
tion of the interplay among the exogenous nutrient loading,
ambient nutrient concentrations, and plankton dynamics. Whether
statistical (data-driven) or mechanistic, the basic premise of these
models is to capture effectively the direct signature of the abiotic forcing
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on the lower food web variability with minimal consideration of the
feedback loops (e.g., bacterial mineralization, internal loading) or the
top-down control (e.g., planktivory). Our thesis is that if we do not
have sufficient data to parameterize these simple causal linkages, it is
unreasonable to expect that more complex (and profoundly over-
parameterized) models will improve our predictive capacity!We should
rather focus our efforts on optimizing the data collection efforts in this
direction (e.g., error associated with the loading estimates) and solidify
our understanding of the relative strength of the fundamental mecha-
nisms of eutrophication in the study site of interest. When a narrowly
defined model cannot adequately depict the eutrophication spatio-
temporal patterns, we may then resort to the role of other poten-
tially important driving factors, such as the capacity of the domi-
nant residents of the benthic community (e.g., dreissenid mussels)
or sediment diagenesis tomodulate the dynamics of the littoral and (ulti-
mately) the pelagic zone. Any additional complexity may be determined
by the specific water quality issues (hypoxia, elevated toxin levels) of
the studied ecosystem although modellers should explicitly recog-
nize that this type of complex modelling constructs cannot be easily
constrained by the available datasets; and as such, they are subject
to considerable parametric and structural uncertainty (Denman,
2003; Pappenberger and Beven, 2006).

In this study, our primary objective is to evaluate the capacity of
existing models in Lake Erie to depict the causal linkages between
majorwater quality indicators (e.g., chlorophyll a, harmful algal blooms,
dissolved oxygen) and nutrient loading. We first conducted a review of
all the modelling efforts documented in the peer-reviewed literature
(e.g., CE-QUAL-W2, ELCOM–CAEDYM), and then evaluated the perfor-
mance of six models applied over the past thirty years (Table 1). The
six models represent a wide range of temporal (daily, seasonal) resolu-
tions and spatial scales (1-D, 2-D, 3-D). We examined the implications
of themodel parameterizations about the ecological processes underly-
ing the plankton dynamics in Lake Erie and their ability to reproduce the
spatial and temporal variability of hypoxia. Our goalwas neither to vilify
the modelling enterprise in Lake Erie nor to roundly criticize all the
models developed. We recognize that a great deal of modelling
work has been done to offer insights into the eutrophication pro-
cesses in the system. Each of the models examined has advantages
and disadvantages and our aim with the present study was to
impartially identify them. Finally, our study discusses the future
augmentations of Lake Erie modelling, i.e., which are the most ap-
propriate (and feasible) models to address questions related to
Fig. 2. Conceptual diagram illustrating the evolution of modelling across different levels of stru
problems in a studied system. The first type of models must be simple in structure, statistical
the exogenous nutrient loading, ambient nutrient concentrations, and plankton dynamics. If th
patterns,we should then resort to the role of other potentially important driving factors, such as
or sediment diagenesis to modulate the dynamics of the littoral and ultimately the pelagic zon
hypoxia and cyanobacteria dominance, and the data that necessitate
to ground-truth those models.

Lake Erie eutrophication model by Di Toro and Connolly (1980)

The Lake Erie eutrophication model by Di Toro and Connolly (1980)
represents one of the first attempts to use complex mechanistic model-
ling for guiding the decisionmaking process in theGreat Lakes area. The
model was used to estimate the reduction in phosphorus loading re-
quired to meet the International Joint Commission (IJC) objective of an-
oxia elimination in the central basin (Di Toro et al., 1987). The model
comprises a set of mass balance equations which quantify the mass
transport and kinetic interactions of five elemental cycles (phosphorus,
nitrogen, silica, carbon and oxygen) with the planktonic food web
(Electronic Supplemental Material (ESM) Fig. SI-1). In particular, the
model considers two phytoplankton (diatoms and non-diatoms) and
two zooplankton (herbivores and carnivores) functional groups. The
fifteen state variables of the model are reported in Table 1. The spatial
segmentation of the model divides Lake Erie into six compartments,
representing the epilimnia and hypolimnia of the western, central,
and eastern basins, and three underlying active sediment layers.

The original calibration of the model was based on data from the
1970 and the 1973–1974 survey years (Di Toro and Connolly, 1980).
The parameter specification of the Lake Erie model resembled those
reported for the Lake Ontario and Lake Huron/Saginaw Bay models
(Di Toro and Matystik, 1979; Thomann et al., 1975), whilst the site-
specific adjustments mainly involved the growth and kinetic constants
of the phytoplankton and zooplankton functional groups. Notably, Di
Toro and Connolly (1980) presented a detailed justification of the
parameter values assigned after a meticulous review of the available
literature at that time. The first verification (or predictive validation)
of the model was based on data from 1975; a year that was not really
suitable to examine model performance in the extrapolation domain
because the phytoplankton and nutrient concentrations in 1975 were
approximately the same as in the years 1970–1974. Nonetheless, the
central basin of Lake Erie in that year did not become anoxic; and there-
fore, it offered an excellent opportunity to examine the capacity of the
model to reproduce oxygen conditions significantly different from
those used during its calibration. The comparison between calibration
and verification error indicated that the model residuals were
approximately 50% larger for the model validation than the training
exercise (Di Toro and Connolly, 1980); a result that is frequently
ctural and functional complexity in response to our understanding of the eutrophication
or simple mechanistic, and they should focus on the elucidation of the interplay among
is narrowly defined system cannot adequately depict the eutrophication spatio-temporal
the capacity of the dominant residents of the benthic community (e.g., dreissenidmussels)
e.

image of Fig.�2


Table 1
Six eutrophication models developed to represent the causal linkages among nutrient loading, phytoplankton dynamics, and hypoxia patterns in Lake Erie.

Criteria Di Toro et al. (1987) Rucinski et al. (2010) Zhang et al. (2008) Leon et al. (2011) Stumpf et al. (2012) Zhou et al. (2013)

Short description Multiple-box model 1-D DO model coupled with
POM

2-D CE-QUAL-W2 model 3-D coupled ELCOM–CAEDYM Cyanobacterial Index (CI) —
phosphorus loading empirical
model

Universal Kriging and conditional
realizations of hypoxic extent

Spatial configuration Six (6)water segments and four (4)
sediment segments representing
the western, central and eastern
basins

48 vertical layers in central
basin

65 vertical layers at 1 m intervals
and 222 longitudinal segments
from west to east

2 km grid with 40 vertical layers Western basin Estimates of the hypoxia extent in
the central basin of Lake Erie

Temporal domain Daily resolution
Calibration (1970, 1973–1974)
Post-auditing (1970–1980)

Daily resolution
Calibration (1987–2005)

Daily resolution (May–September)
Calibration (1997)
Verification (1998 and 1999)

Hourly averages 190 days in 2002
(mid-April to mid-October)

Cyanobacterial Index against
monthly or seasonal flow
discharge/P loading
Calibration (2002–2011)

Summer DO distribution from 1987
to 2007

Model outputs/state
variables

Phytoplankton (chlorophyll a):
Diatoms, non-diatoms
Zooplankton (carbon): Herbivores,
carnivores
Nutrients: Detrital and dissolved
organic nitrogen, ammonia, nitrate,
unavailable phosphorus, soluble
reactive phosphorus, unavailable
silica, soluble reactive silica, detrital
organic carbon, dissolved inorganic
carbon, alkalinity, dissolved oxygen

Water temperature
Dissolved oxygen

Phytoplankton: Non-diatom edible
algae, non-diatom inedible algae,
diatoms
Zooplankton: Cladocerans, cope-
pods (eggs, nauplii, copepodites,
adults)
Nutrients: Nitrate, ammonium,
phosphate, carbon dioxide, soluble
reactive silica, labile dissolved or-
ganic matter, labile particulate or-
ganic matter, particulate silica,
dissolved oxygen
Dreissenid mussels are included as
external forcing (grazing and nu-
trient excretion)

Biomass of the five phytoplankton
functional groups modelled,
intracellular N and P storage, dis-
solved inorganic nutrients (PO4,
NO3, NH4, DIC, and RSi), dissolved
organic (DOC, DON, and DOP) and
particulate detrital organic matter
groups (POC, PON, and POP), inor-
ganic suspended solids size classes,
and dissolved oxygen

Cyanobacterial Index (CI) was
calculated by using the spectral
shape around the 681 nm band.
The spectral shape is determined as
a nominal second derivative
around the band of interest
(681 nm, 709 nm, and 665 nm).
Using the individual CI images, 10-
day composites were calculated by
taking the highest CI at each pixel
available from any of the daily im-
ages within a given 10-day time
period.

Hypoxic extent of Lake Erie
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reported in the modelling literature (Chapra, 1997; Jørgensen and
Bendoricchio, 2001).

A follow-up analysis by Di Toro et al. (1987) offered amore rigorous
evaluation of the predictive capacity of the model to reproduce the in-
terplay among nutrients, plankton dynamics, and dissolved oxygen
over a 10-yr period (1970–1980). Although the Di Toro et al. (1987)
study did not report goodness-of-fit statistics from the long-term simu-
lations, it was argued that the model had the capability to sufficiently
reproduce the observedwater quality improvements and decrease hyp-
oxia patterns in response to exogenous phosphorus loading reductions.
However, a careful visual inspection of the presented results suggests to
us that themodel actually failed to reproduce the intra-annual total and
soluble reactive phosphorus (SRP) variability (see their Fig. 9), to faith-
fully depict the year-to-year variability of algal dynamics (see their
Fig. 10), and to capture the long-term nitrate trends in Lake Erie (see
their Fig. 12). The authors of the study partly attributed themodelmisfit
to the inadequate characterization of certain processes (e.g., sediment
denitrification) and/or the error associatedwith observed data and forc-
ing functions (Di Toro et al., 1987). Nevertheless, we believe that the
lack of sensitivity/uncertainty analysis, and not the model error it-
self, was the major impediment of that modelling study to guide
water quality management decisions and formulate risk assess-
ment statements. From a management standpoint, our thesis is
that significantly more information is conveyed when the model
uncertainty and the potential causes for the misrepresentation of
the system are combined with the mean predictions. In doing so,
the predictive statements impartially communicate both what a
model can actually deliver and our level of confidence when basing
ecological forecasts upon it (Beven and Alcock, 2012; see also fol-
lowing discussion).

A simple one-dimensional, climate-based dissolved oxygen model for the
central basin of Lake Erie by Rucinski et al. (2010)

The Rucinski et al. (2010) study presented a one-dimensional
coupled thermal budget-dissolved oxygen model to examine the
inter-annual variability in dissolved oxygen dynamics in the central
basin of Lake Erie, and to evaluate the causal association between that
variability and climate-driven mixing and temperature regimes.
The physical model used was based on a 1-D version of the Princeton
Ocean Model (POM), which in turn is founded upon a two-equation
Mellor–Yamada turbulence model for vertical diffusivity (Mellor, 2001).
POM separated the lake into 48 vertical layers of 0.5 m each, and the
model was calibrated with temperature observations from 1994 in cen-
tral Lake Erie. The root-mean-squared-error (RMSE) values were ranging
between 0.5 and 1.7 °C whilst the highest error was associated with the
representation of the thermocline temperatures (below 17 m). Overall,
the 1-D model accurately described the onset of stratification and ther-
mocline development in summer, but it failed to reproduce the increase
in the mixed layer depth caused by storms towards the late August and
early September. The latter problemwas attributed to three dimensional
hydrodynamic processes, such as horizontal advection and internal wave
propagation, unaccounted for by the one dimensional representation of
the system.

The dissolved oxygen sub-model simulates the vertical profiles of
dissolved oxygen with a coupled set of differential mass balance
equations in the 48 model segments (ESM Fig. SI-2). The bulk oxygen
dynamics (i.e., the combined effects of photosynthesis, respiration,
decomposition) in each layer were determined by the mixing rates
between the vertical layers and a first-order, temperature-corrected de-
oxygenation rate, the so-called water column oxygen demand (WCOD)
whichwas the only calibration parameter of themodel. TheWCODwas
applied below the thermocline, where respiration is greater than photo-
synthesis, whilst the well-mixed epilimnion was predominantly im-
pacted by the prevailing boundary conditions at the lake surface–
atmosphere interface. Additionally, the model considered a temporally
constant areal flux to the bottom segment, accounting for the role of
the sediment oxygen demand (SOD). The model was calibrated for
1987–2005 by assigning year-specific WCOD values to match the ob-
served timing of the onset of hypoxia, and to subsequently examine
how oxygen demand varied among years. Although the Rucinski et al.
(2010) study did not report a rigorous goodness-of-fit for the DO
simulations, it was noted that the magnitude and timing of the oxygen
minima were captured fairly well. There were discrepancies between
modelled andobservedDO concentrations at the thermocline that likely
stemmed from the aforementioned limitations of the thermal model.
Importantly, the model results suggested that WCOD can demonstrate
significant interannual variability. Specifically, the water column oxy-
gen demand in the Central Basin of Lake Erie changed significantly be-
tween 1987 and 2005, with higher depletion rates early, declining to a
minimum in 1993, followed by an increase from 1994 to 2005. WCOD
valueswere found to have aweak relationshipwith the thermal proper-
ties, but there was a distinct pattern of covariance with soluble reactive
phosphorus loading. Namely, soluble reactive phosphorus loads
followed a similar increasing trend from 1994 to 2005, stemming from
demographic changes, altered agricultural practices (e.g., conservation
tillage) and animal density. Because the soluble reactive phosphorus
inflows directly stimulate the primary production, they are likely
to be the dominant drivers of hypoxia since the mid-1990s relative
to changes in climate. In this regard, the Rucinski et al. (2010) ther-
mal budget-dissolved oxygen model offered a much needed heuris-
tic tool to elucidate a key causal link in Lake Erie. However, the fact
that theWCODwas not treated as a model endpoint, but rather as an
adjustable input parameter, suggests that we cannot really forecast
through the model the capacity of nutrient loadings to modulate
hypoxia patterns. The model could be predictive only if an empirical
relationship among WCOD, SRP loads and/or other meaningful
covariates is established.

A two-dimensional ecological model of Lake Erie: application to estimate
dreissenid impacts on large lake plankton populations by Zhang et al. (2008)

The Zhang et al. (2008) study presented a two-dimensional ecolog-
ical model that was used to elucidate potentially important ecosystem
processes in Lake Erie, such as the algal succession, the food competition
between dreissenids and zooplankton, and the contribution of internal
relative to external phosphorus loading. The model configuration
divides Lake Erie into 65 vertical layers at 1m intervals and 222 longitu-
dinal segments from west to east. The physical component was based
on the CE-QUAL-W2, a two-dimensional, longitudinal and vertical,
hydrodynamic model that accurately depicted the variability of
water levels, water currents, and thermal stratification in the system
(Boegman et al., 2008; Cole and Buchak, 1995). The ecological model
includes three phytoplankton and two zooplankton functional
groups: non-diatom edible algae (NDEA), non-diatom inedible
algae (NDIA), diatoms, cladocerans and copepods. Interestingly,
the dreissenid mussels are not included as a state variable, but rather
their role is considered as external grazing and nutrient excretion
forcing (ESM Fig. SI-3).

The simulation of the algal growth rate (μ) was based on assumption
that the maximum growth rate (μmax) is affected by temperature, light,
and nutrient availability (Table 2):

μ ¼ μmax f Tð Þ f NIð Þ
f NIð Þ ¼ min f Nð Þ; f Pð Þ; f Ið Þ; f Sið Þ½ � ð1Þ

where f(T) is temperature rate multiplier and f(NI) is a multiplier that
accounts for the growth limitation posed by light andnutrients. Diatoms
were assumed to have the lowest optimum temperature range, whilst a
higher optimum temperature rangewas assigned to NDIA algae relative
to NDEA. Nitrogen, phosphorus and silicon (diatoms) were the limiting



Table 2
The phytoplankton characterization of two mechanistic eutrophication models in Lake Erie.

Zhang et al. (2008) Leon et al. (2011)

Phytoplankton functional groups Non-diatom edible algae (NDEA)
Non-diatom inedible algae (NDIA)
Diatoms (D)

Early diatoms (ED)
Late diatoms (LD)
Cyanophytes (C)
Flagellates (F)
Other phytoplankton (O)

Intracellular N and P Constant Dynamic

Mathematical processes
Phytoplankton growth limitation μ = μmax f(T)min[ f(N), f(P), f(I), f(Si)] μ = μmax f(T)min[ f(N),f(P),f(I),f(Si)]

Temperature limitation If T varies within optimal temperature ranges (T1 ≤ T ≤ T4):

f Tð Þ ¼ K1eγ1 T−T1ð Þ

1þ K1eγ1 T−T1ð Þ−K1

K4eγ2 T4−Tð Þ

1þ K4eγ2 T4−Tð Þ−K4

where

γ1 ¼ 1
T2−T1

ln
K2 1−K1ð Þ
K1 1−K2ð Þ

γ2 ¼ 1
T4−T3

ln
K3 1−K4ð Þ
K4 1−K3ð Þ

else: f(T) = 0

f(T) = ϑT − 20 + ϑC1(T − C2) + C3
where C1, C2 and C3 are constants
at T = TSTD, f(T) = 1
at T = TOPT, ∂f(T) / ∂t = 0
at T = TMAX, f(T) = 0

Light limitation f Ið Þ ¼ I
Ik

exp 1− I
Ik

� �
f Ið Þ ¼ 1− exp − I

Ik

� �

Phosphorus limitation or uptake f Pð Þ ¼ PO4

PO4 þ KPO4
UPO4 ¼ UPMAX

IPMAX−IPINT
IPMAX−IPMIN

PO4

PO4 þ KPO4

� �

Nitrogen limitation or uptake f Nð Þ ¼ IN
INþ KNH4

UNH4 ¼ PNUNMAX
INMAX−ININT

INMAX−INMIN

IN
INþ KNH4

� �

UNO3 ¼ 1−PNð ÞUNMAX
INMAX−ININT

INMAX−INMIN

IN
INþ KNH4

� �

Silica limitation f Sið Þ ¼ Si
Siþ KSi

f Sið Þ ¼ Si
Siþ KSi

Ammonium preference
PN¼

NH4 � NO3

NH4 þ KNH4ð Þ NO3 þ KNH4ð Þ
� �

þ
NH4 � KNH4

NH4 þ NO3ð Þ NO3 þ KNH4ð Þ
� �

PN¼
NH4 � NO3

NH4 þ KNH4ð Þ NO3 þ KNH4ð Þ
� �

þ
NH4 � KNH4

NH4 þ NO3ð Þ NO3 þ KNH4ð Þ
� �

Algal losses (respiration, excretion, mortality) R = γ1kar max + (1 − f(I))kae max + γ1kam max R = kRϑR(T − 20)
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nutrients, and their role on algal growth was accounted for by a Monod
relationship. The latter expression postulates that the nutrient composi-
tion of the algal cells remains constant and the ambient nutrient
concentrations are directly linked to the algal growth rates (Table 2).
Whilst the algal growth submodel is far from novel, we caution that
the decision to include light limitation within Liebig's Law of the Mini-
mum may be problematic, as it was essentially postulated that there is
one single factor that limits the phytoplankton growth, and thus there
is no interplay between light and nutrients. Moreover, because of the
parameter values assigned during themodel calibration, it is very likely
that the role of light availability may have been overstated as the pre-
dominant factor that shapes the competition patterns among the phyto-
plankton functional groups considered (see also following discussion).
Importantly, these model specifications appear to contradict empirical
evidence that an intricate resource competition for water temperature,
irradiance, and nutrient (nitrogen, phosphorus, silicon) availability
determines the abundance and composition of the algal assemblage in
Lake Erie (Allinger and Reavie, 2013; Millie et al., 2009). Thus, the con-
sideration of a multiplicative mathematical formulation that explicitly
accommodates the interplay between light and nutrients would have
been a more appropriate choice. In addition, given the low summer
epilimnetic phosphate levels (b5 μg/L), we believe that a two-step
algal growth submodel which first considers the nutrient uptake rate
in relation to the ambient supply and subsequently the growth rate as
a function of the internal nutrient storage is more suitable. There is
abundant evidence in the literature that the intracellular storage
strategies are likely another important factor that shapes the inter-
specific competition and consequently the dynamics of the epilimnetic
phytoplankton communities in both simulated environments and “real
world” settings (Sommer, 1991; Zhao et al., 2008).

Another interesting feature of the Zhang et al. (2008) study was the
stage-structured population model for copepod biomass (Fennel and
Neumann, 2003) and the general mass conservation model for the
population of cladocerans (Scavia et al., 1988). The former submodel
consisted of four biomass state variables for copepod eggs, nauplii,
copepodites, and adults. The representation of zooplanktonwas certain-
ly novel and ecologically more realistic, which in turn may provide
greater constraint to the parameters by enabling to draw upon empiri-
cal studies of zooplankton reported in the literature. That is, when the
model parameters are specified to resemble quantities that can bemea-
sured in the real world, i.e., group/life stage-specific (instead of generic)
physiological characteristics or biological rates, then the increased
model complexity is not necessarily an impediment to characterizing
the modelled processes. On the other hand, if the relevant information
is not available, the increased disparity between what we want to
tease out from the model and what can be pragmatically studied in
the real system could conceivably inflate the model uncertainty and
thus pose limitations on its use for predictive purposes (Denman,
2003; Reichert and Omlin, 1997).

The calibration of themodelwas based on data from1997,whilst the
(practically similar in terms of system dynamics) 1998–1999 survey
period was used for model verification. Among the 54 cases examined
(6 state variables × 3 years × 3 basins), paired t-tests showed that
modelled values and field measurements did not differ in 38 cases and
were significantly different in 16 instances. Diatom biomass was the
state variable with the highest number (8) of cases with no (statistical)
difference between observed data and modelled outputs, whilst co-
pepods and total dissolved phosphorus showed the lowest number
(5) of non-significant differences. Further, the median relative error
(MRE) values were below 50% for all six state variables in the three
years simulated.

Although the performance of the model was encouraging, the au-
thors pointed out that the model is more suitable to be considered as
a valid analytical/heuristic tool rather than a predictive device to
support ecosystem forecasts. To this end, Zhang et al. (2008) examined
two ecological hypotheses: (i) dreissenid grazing impacts on algal
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groups are highly constrained by the boundary layer above the mussel
bed, where phytoplankton biomass is low relative to the upper waters
so that even a large mussel population would not depress the phyto-
plankton community in Lake Erie; (ii) dreissenid nutrient excretion
has a greater role in algal succession than does their grazing, especially
when the mussel population is large. The model results suggested that
dreissenid grazing impacts on NDEA are weakened by the boundary
layer above the basin bottom. On the other hand, dreissenid grazing
impacts on diatoms are less affected by the boundary layer due to the
higher sinking rates of diatoms. NDIA increase rapidly with an increasing
mussel population size, given that the dreissenids excrete a large amount
of ammonia and phosphate. The authors also concluded that dreissenid
mussels haveweak direct grazing impacts on algal biomass, whilst the in-
direct effects of their nutrient excretionmay have a greater impact on the
system. Finally, we note that the 2-D spatial segmentation of the Zhang
et al. (2008) model disallows the simulation of the nearshore–offshore
gradients, whilst the fact that dreissenids are effectively treated as a
forcing function impedes the use of the model for predictive purposes.

Application of a 3D hydrodynamic–biological model for seasonal and
spatial dynamics of water quality and phytoplankton in Lake Erie by Leon
et al. (2011)

Leon et al. (2011) presented a three-dimensional (3-D) coupled hy-
drodynamic–biological model that was used to capture the temporal
and spatial variability of phytoplankton and nutrients in Lake Erie. The
Estuary, Lake and Coastal Ocean Model (ELCOM) was applied to simu-
late the physical and transport processes in the water body, whilst the
Computational Aquatic Ecosystem Dynamics Model (CAEDYM) formed
the basis to simulate the C, N, P, DO, and Si cycles, along with inorganic
suspended solids and phytoplankton. The bathymetry was set up on
a 2 km grid with 40 vertical layers, and the simulation period was
Table 3
Comparison of the parameter values assigned to the phytoplankton functional groups of the Zh

Phytoplankton functional groupsa

Settling velocity (m d−1) v
Maximum growth rates (d−1) μmax

Temperature coefficient for growth θ
Half saturation constant for PO4 (mg P L−1) KPO4

Half saturation constant for NH4 (mg N L−1) KNH4

Half saturation constant for silica (mg SiO2 L−1) KSi

Maximum internal P concentration (mg P mg Chla−1) IPMAX

Minimum internal P concentration (mg P mg Chla−1) IPMIN

Maximum internal N concentration (mg N mg Chla−1) INMAX

Minimum internal N concentration (mg N mg Chla−1) INMIN

Maximum P uptake rate (mg P mg Chla−1 d−1) UPMAX

Maximum N uptake rate (mg N mg Chla−1 d−1) UNMAX

Saturation light intensity of photosynthesis (W m−2) Ik
Standard temperature for algal growth (°C) where f(T) = 1.0 TSTD
Optimum temperature for algal growth (°C) where f(T) = maximum TOPT
Maximum temperature for algal growth (°C) where f(T) = 0 TMAX

Lower temperature for growth (°C) T1
Lower temperature for maximum growth (°C) T2
Upper temperature for maximum growth (°C) T3
Upper temperature for growth (°C) T4
Coefficient representing temperature effect on growth at T1 K1

Coefficient representing temperature effect on growth at T2 K2

Coefficient representing temperature effect on growth at T3 K3

Coefficient representing temperature effect on growth at T4 K4

Algal respiration rate (d−1) kar max (kR)
Algal excretion rate (d−1) kae max

Algal mortality rate (d−1) kam max

Temperature coefficient for respiration θR
Detritus settling rate (d−1) vDET
Detritus decay rate (d−1) Kd DET

Ammonium decay rate (d−1) Kd NH4

Nitrate decay rate (d−1) Kd NO3

a Abbreviations of phytoplankton functional groups are provided in Table 2.
190 days (mid-April to mid-October) for 2002. The ELCOM–CAEDYM
model dynamically calculated the following state variables: algal bio-
mass, the intracellular N and P storage, five dissolved inorganic nutri-
ents (PO4, NO3, NH4, DIC, and RSi), three dissolved organic (DOC, DON,
and DOP), three particulate detrital organic matter forms (POC, PON,
and POP), two inorganic suspended solid size classes (SS1 and SS2),
and dissolved oxygen (DO) (ESM Fig. SI-4).

Leon et al. (2011) aimed to reproduce the seasonal succession pat-
terns of the Lake Erie algal assemblage by considering five phytoplank-
ton functional groups: (i) the “early diatoms” group representing the
early-blooming diatom taxa with high Si requirements and rapid sink-
ing rates; (ii) the “late diatoms” group representing the diatoms with
lower Si requirements and sinking rates that occur later in the seasonal
succession (also include some of the silicified chrysophyceans); (iii) a
“cyanophyte” group mainly defined as the larger and potentially
N-fixing taxa that are often associated with warm and stable waters;
(iv) the “flagellates” corresponded to cryptophytes and other flagellates
typical of cooler waters and/or deeper strata (also include some
non-motile forms that have similar preferences and low sinking
rates, e.g. some picocyanobacteria); and (v) the “other phytoplankton”
group representing theflagellates and non-motile forms that are typical
of warmer and brighter conditions (e.g., many chlorophytes and some
dinoflagellates, chrysophyceans, and haptophytes).

Maximum potential growth rates (gross photosynthesis), losses to
respiration, excretion andmortality, and the difference between settling
and re-suspension rates were used to characterize the different phyto-
plankton groups (Table 3). Group-specific algal growth rates were
reproduced by a mathematical expression similar to Zhang et al.
(2008), determined by a maximum growth rate at reference tempera-
ture as modified by a temperature rate multiplier and Liebig's Law of
the Minimum for light, P, N and Si limitation (Eq. (1)). The authors
noted that the P half saturation constants were similar for all the
ang et al. (2008) and Leon et al. (2011) eutrophication models in Lake Erie.

Zhang et al. (2008) Leon et al. (2011)

NDEA NDIA D ED LD C F O

0.05 0.05 0.2 0.09 0.09 0.07 0.02 0.02
3.0 2.0 3.0 1.7 1.9 0.8 0.8 1.0
N/A N/A N/A 1.048 1.075 1.09 1.06 1.06
0.002 0.01 0.002 0.009 0.006 0.009 0.003 0.003
0.03 0.001 0.03 0.045 0.045 0.045 0.045 0.06
N/A N/A 0.03 0.150 0.055 N/A N/A N/A
N/A N/A N/A 1.8 1.3 1.0 1.0 2.0
N/A N/A N/A 0.18 0.13 0.1 0.1 0.3
N/A N/A N/A 4.0 4.0 4.0 9.0 4.0
N/A N/A N/A 2.0 2.0 2.0 3.0 2.0
N/A N/A N/A 0.4 1.0 1.0 0.7 2.0
N/A N/A N/A 1.5 1.5 1.5 1.5 1.5
120 50 120 13 13 29 9 22
N/A N/A N/A 7 19 24 19 24
N/A N/A N/A 9.8 23 30 21 29
N/A N/A N/A 18.5 31 39 27.5 35
4 15 4 N/A N/A N/A N/A N/A
18 22 12 N/A N/A N/A N/A N/A
25 30 16 N/A N/A N/A N/A N/A
35 35 35 N/A N/A N/A N/A N/A
0.10 0.10 0.10 N/A N/A N/A N/A N/A
0.99 0.99 0.99 N/A N/A N/A N/A N/A
0.99 0.99 0.99 N/A N/A N/A N/A N/A
0.10 0.10 0.10 N/A N/A N/A N/A N/A
0.05 0.05 0.05 0.13 0.15 0.17 0.2 0.11
0.01 0.04 0.01
0.07 0.03 0.07
N/A N/A N/A 1.09 1.035 1.06 1.08 1.08
0.5
0.08
0.12
0.05
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phytoplankton functional groups except from “cyanobacteria”, which
were associated with a higher value. However, in their Appendix C,
both “cyanobacteria” and “early diatoms” had the highest P half satura-
tion constants (0.009 mg P L−1), the “late diatoms” were assigned a
value of 0.006 mg P L−1, whilst “flagellates” and “other phytoplankton”
groups were characterized by superior P kinetics, i.e., 0.003 mg P L−1

(Table 3). Aside from the “other phytoplankton” group, the values
assigned to the group-specific N half saturation constants were similar
because the authors asserted that the N kinetics are unlikely to have a
strong influence on phytoplankton dynamics due to fairly high levels
of inorganic nitrogen (N0.2 mg N L−1) in Lake Erie.

Model predictions were compared against measurements of
epilimnetic Chla and TP by using coefficients of determination (r2).
Observations could differ markedly frommodel predictions for individ-
ual stations and dates (in log–log plots, r2=0.48 for Chla; and r2=0.40
for TP). The authors found that the major systematic bias demonstrated
by the ELCOM–CAEDYM model was a TP overestimation during the
summer stratified season in the east and central basin. According to
the authors' of the study, this result may have stemmed from incorrect
assumptions about the fraction of non-bioavailable (apatite) P in exter-
nal loading, which seems to be higher than what was assumed in the
tributary loads. The authors claimed that the model predictions of phy-
toplankton succession were reasonable, as the predicted dominance of
“early diatoms” in the spring phytoplankton maximum was on par
with existing empirical knowledge. The “cyanobacteria” groupwas pre-
dicted to remain a small fraction of the phytoplankton biomass, despite
the known occurrence of cyanobacterial outbreaks in thewestern basin.
Nonetheless, it was argued that these blooms tend to be episodic and
spatially limited events whilst the available data support the model
predictions of a normally low cyanobacterial contribution to biomass.
Regarding the performance of the ELCOM–CAEDYM model, Leon et al.
(2011) noted that the uncertainty associated with the exogenous load-
ing forcing could be an important underlying factor. However, although
oneof theirmain objectiveswas the relative contribution of the localized
nutrient inputs to the phytoplankton abundance in nearshore areas, the
study did not report a rigorous assessment of the broad range of system
dynamics that can be induced when we account for the uncertainty of
the intra- and interannual loading estimates. Also, therewas no sensitiv-
ity analysis of the ecological characterization; an essential exercise that
can identify the most influential parameters to the model outputs and
thus dictate the kind of data needed to validate the model.

The model calibration was rationalized as “a portrayal of the interac-
tions between physical processes (hydrodynamics, temperature and irradi-
ance variations) and a relatively simple, but defensible, set of assumptions
concerning the ecological processes of interest”, but the practice followed
implicitly postulated a predominance of the physical transportation
over the biological processes. The importance of themesoscale physical
processes in shaping the spatiotemporal patterns of biotic communities
is unquestionable. There are also instanceswhere the spatial structure is
necessary for the correct parameterization of a process-based model, as
a “box” configuration would produce parameters that may not be use-
able in a spatially structured model. However, the planktonic dynamics
should be reasonably reproduced prior to the integrationwith the circu-
lationmodel. That is, rather than selecting general literature values and/
or tuning some biological parameters (e.g., growth rates and kinetics)
whilst the hydrodynamicmodel is active, itwould have been interesting
to undertake an independent calibration of the ecological model and
then integrate the two models. Given that the algal seasonal succession
patterns are sensitive and are only manifested in a narrow region of the
parameter space (Zhao et al., 2008), many of the plankton patterns
presented by Leon et al. (2011) would have disappeared if the same
ecological parameter specificationwas implemented in a simpler spatial
structure. The same exercisemay also allowhandlingmore properly the
model spin-up, and thus overcoming the limitations posed by the
computationally demanding 3-D simulations. Finally, it is also interest-
ing to note that this practice has been adopted several times in the
context of Great Lakes modelling although oceanic modellers typically
follow the aforementioned two-step approach, i.e., they calibrate the
plankton models within a simple spatial (single-box) configuration
and then let the hydrodynamics accommodate the spatial variability
that is not captured by the “box model” parameters. A characteristic
example is the advancement of the original coarse resolution of the
Fasham et al. (1990) model to the spatially refined presentations of
the limiting nutrient–phytoplankton–zooplankton–detritus (NPZD)
model (Doron et al., 2011; Mattern et al., 2010; Popova et al., 2002).

Interannual variability of cyanobacterial blooms in Lake Erie by Stumpf
et al. (2012)

Stumpf et al. (2012) presented an empirical regressionmodel to pre-
dict the likelihood of cyanobacteria blooms as a function of the average
discharge (Q) of Maumee River between March and June and the total
phosphorus (TP) concentrations in June. Medium-spectral Resolution
Imaging Spectrometer (MERIS) imagery was used to quantify intensity
of the cyanobacterial blooms for each year from 2002 to 2011. The
Cyanobacterial Index (CI) was calculated by using the spectral shape
(SS) around the 681 nm band, CI = −SS (681). The spectral shape
(SS) is determined as a nominal second derivative around the band of
interest (681 nm, 709 nm, and 665 nm). Using the individual CI images,
10-day compositeswere calculated by taking thehighest CI at each pixel
available fromany of the daily imageswithin a given 10-day time period
to remove clouds and capture the areal biomass (each year has 15 CI
composites, from June 1–10 to October 19–28). The latter step
was followed because Microcystis typically aggregates at the surface
providing effective detection with remote sensing. Time series of
bloom intensity showed that the intense cyanobacteria blooms typically
last 30–40 days and sometimes can even be up to a few months. The
peaks of cyanobacteria blooms occurred in August, September, and
once in early October (2011), whilst the annual bloom severity was
determined by averaging the highest three consecutive 10-day compos-
ites. River discharge (Q)wasmonthly averaged from the daily discharge
averages ofMaumee Riverwhilst themonthly phosphorus and nitrogen
loadings were calculated from daily loads using flow-weighted concen-
trations in the USGS Maumee River gage station.

The Cyanobacterial Index was regressed against temperature, river
discharge, nitrogen, TP, and SRP loading using least squares fitting,
and the corresponding p-values along with the residual standard error
(RSE) were used to determine significance of the models. The study in-
dicated that interannual differences in summer temperatures cannot
explain the variations in bloom intensity. Nitrogen (NOx) loads also
do not exert a significant control on bloom intensity. The annual CI
demonstrated statistically significant relationships with single month
river discharges and phosphorus loading in the spring (March, April,
and May) (r2 from 0.09 to 0.55). June had a unique pattern between CI
and nutrient loads, in that it was strongly associated with TP, when
2004 and 2011 were excluded (r2 = 0.91) (Fig. 3a). The r2 value of
the linear regression model further increased when CI was regressed
against the cumulative load for sequential months, e.g., from March to
May. When June was added to the March to May totals, TP and Q
explained 89% and 97% of the CI variance in bloom years (Fig. 3d).
Among the six bloom years, spring Q produced a stronger relationship
to bloom intensity than TP or SRP loading (Figs. 3b, c). Spring TP also
showed a strong relationship (r2 = 0.89), although the RSE value was
higher (Fig. 3b). Interestingly, the exponential model for CI against Q
resulted in the same r2 = 0.97, but RSE was improved (Fig. 3d).

These empirical models are certainly essential in advancing our
understanding of the key drivers of cyanobacteria dominance, but the
relatively small sample size (n = 10) used for their derivation may be
an impediment for their forecast performance and broader application.
For example, two data points (2004 and 2011) had to be removed from
the CI vs. TPJune model in order to improve the relationship. Another
good fitting model (CI vs. QMarch–June) was solely populated by bloom



Fig. 3. The empirical relationships between cyanobacteria bloom intensity (Cyanobacterial Index) for western Lake Erie from 2002 to 2011 and phosphorus loads/river discharges of
the Maumee River. (a) linear regression based on monthly TP loads for June for bloom years (closed circles), excluding 2004 and 2011 (open circles), RSE = 0.48; (b) linear regression
based on cumulative TP for March to June for bloom years (closed circles), RSE = 1.75; (c) linear regression based on cumulative SRP for March to June for bloom years (closed circles),
RSE = 3.1; and (d) linear (RSE = 0.96) and exponential (RSE = 0.58) regressions based on averaged river discharge for March to June for bloom years. The open squares represent the
data for non-bloom years. Solid thick lines represent linear regression models and dashed thin lines indicate the 95% confidence intervals. Dashed thick line in (d) corresponds to the
exponential regression model.
These figures are reproduced from Stumpf et al. (2012).
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year data, which limits its applicability for projecting the cyanobacterial
abundance in non-bloom years. Further, despite the suitability of these
regression models for conducting rigorous predictive uncertainty anal-
ysis, Stumpf et al. (2012) did not include such an exercise in the original
work. Another issue is that their verification will be dependent on the
acquisition of new satellite imagery. This exercise will be more difficult
until 2014 when the European Space Agency plans on launching a
successor satellite to current MERIS. This new sensor would continue
the capability demonstrated by MERIS into the future for further
model development and validation. Overall, the results of Stumpf et al.
(2012) emphasized the idea that spring nutrient loading can be a rea-
sonable predictor of the cyanobacteria blooms in Lake Erie, and thus
the corresponding river discharge and TP loading levels have the capac-
ity to support seasonal forecasts.

Spatial and temporal trends in Lake Erie hypoxia, 1987–2007, by
Zhou et al. (2013)

A novel geostatistical framework was recently presented by Zhou
et al. (2013) to provide quantitative estimates of the hypoxia extent in
the central basin of Lake Erie from 1987 to 2007. The Bayesian Informa-
tion Criterion (BIC) was used to select the most parsimonious model,
consisting of a subset of auxiliary variables (e.g., latitude, longitude, ba-
thymetry, satellite-derived monthly-average sea surface temperature,
and surface chlorophyll concentrations from April to September) that
can reliably represent the spatial distribution of DO. Universal Kriging
(UK) was then implemented to assess the dissolved oxygen spatial dis-
tribution using both the available DO observations and the auxiliary
(explanatory) variables identified. Unlike the conventional regression
though, the Universal Kriging model explicitly accounts for the spatial
correlation of the DO concentrations and operates as an exact interpola-
tor in that all available observations are reproduced within their mea-
surement error. An ad-hoc feature of the Zhou et al. (2013) model was
the potential to generate realizations of processes conditional on ob-
served quantities, which was effectively obtained through a “spatially-
consistent” Monte Carlo approach aiming to provide equally-likely
alternative DO distributions. These realizations followed the spatial co-
variance of all the available DO observations. Conditional realizations
were generated for regions of the central basin with a depth greater
than 15 m, and the hypoxic area was calculated for each realization by
summing the areas with the DO concentrations below 2 mg L−1. One
thousand realizations were generated for each cruise, and the results
were subsequently used to develop probabilistic estimates of hypoxic
extent.

The time series of hypoxic extentswere derived from the conditional
realizations of the summer DO distribution from 1987 to 2007. Model
results were qualitatively on par with other hypoxic extent reports in
Lake Erie (Hawley et al., 2006; Makarewicz and Bertram, 1991). In par-
ticular, the model reproduced the decline of the hypoxic extent during
the late 1980s to early 1990s as a result of the phosphorus load reduc-
tion programmes, aswell as the subsequent increase due to the increase
in non-point source phosphorus loading or the nutrient recyclingmedi-
ated by dreissenid mussels. In regard to the robustness of the estimated
hypoxic extents, it was found that months with larger hypoxic areas or
cruises with fewer measurements were typically characterized by
greater uncertainties. Namely, the uncertainties ranged from nearly
zero when hypoxia was negligible (mid-September 2002), to nearly
6000 km2 95% confidence intervals (e.g., September 1999) when the
areas with estimated DO levels close to the 2 mg L−1 threshold are
extensive, and thus can inflate the uncertainty of the exact hypoxia
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Fig. 4. The empirical model of hypoxic extent (HE) based on averaged DO from the ten
index sampling stations in the central basin of Lake Erie. The thick black line represents
the predicted HE. The observed mean value of HE is shown as a continuous white line
and the grey areas are 95% confidence intervals.
This figure is modified from Zhou et al. (2013).
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magnitude. Further, Zhou et al. (2013) developed a simple exponential
relationship for predicting hypoxic extent, using as predictor variable
the average measured DO concentrations in ten regular sampling loca-
tions (Fig. 4). The latter exercise suggests that the ten regular sampling
locations could be used as index stations for obtaining hypoxic extent
estimates when detailed DO analyses are not done. The same study
also highlighted the importance of considering the lake thermal struc-
ture (timing of stratification onset, hypolimnion thickness) in predictive
frameworks that aim to elucidate the interannual variability of hypoxia
in Lake Erie. Finally, unlike the previous models, this study does not
provide any major insights into mechanistic linkages, but rather of-
fered an important new dataset to which mechanistic models can
be compared.

Discussion-future perspectives

In Lake Erie, a variety of statistical (data-driven) and mathematical
(process-based) models have been developed to understand ecological
interactions, to gain insights into the role of specific facets of the ecosys-
tem functioning (internal loading, dreissenids), and to predict the re-
sponse of the lake to external nutrient loading reductions. Generally,
model-based environmental management is preferred to have stronger
mechanistic foundation as this provides additional assurance that the
models can reflect the functional changes in Lake Erie induced by signif-
icantly different external conditions. Nonetheless, developing a process-
based model and invoking extra complexity raise critical questions in
regard to the existence of commensurate knowledge of themultifaceted
aspects of the system dynamics or even the capacity to depict them
mathematically. Our review suggests that the evolution of their struc-
tural and functional complexity over the past 30 years significantly
deviates from the proposed scheme in Fig. 2. Striving for the optimal
balance between models that our prior knowledge tells us “much
about little” or “little about much”, the local modelling efforts have
mainly opted for the latter option, and thus they offered mainly heuris-
tic tools to examine different ecological hypotheses and possibly
dictate future data collection efforts. The majority of the recent
process-basedmodels are profoundly over-parameterized and have lit-
tle capacity to support robust predictive statements. On a positive note
though, the same modelling studies have rigorously quantified the
goodness-of-fit or attempted to verify model performance in their ex-
trapolation domain.What seems to be missing is a rigorous uncertainty
assessment of the availablemodels alongwith efforts to base the (much
needed) ecological forecasts upon that uncertainty (Pappenberger and
Beven, 2006).
As previously mentioned, the basic premise for the use of complex
mechanistic models is tomimic the role of individual processes through
proper mathematical description and realistic parameterization which
can then collectively offer a faithful depiction of ecosystem dynamics.
However, an important finding of our review is the considerable incon-
sistency with respect to the parameterization of the existing modelling
constructs, e.g., the same biological rates can differ significantly among
the different models. A characteristic example is the phytoplankton
functional groups which have been characterized as having low
(b2 day−1) or high (3 day−1) maximum growth rates in Lake Erie,
depending on the model considered (see the comparison of the
Zhang et al. (2008) and Leon et al. (2011) models in Table 3). The
maximum growth rate is an influential parameter that aims to charac-
terize the average patterns of fairly diverse assemblages of phytoplank-
ton species (Arhonditsis and Brett, 2005). The control of this maximum
potential growth by the resource (temperature, light, and nutrient) lim-
itations determines the growth rates realized during the phytoplankton
simulations. Distinctly different phytoplankton characterizations can
have profound implications in the predictive statements derived and
may lead to significantly different projectionswhen examining lake dy-
namics under alternativemanagement scenarios (Gudimov et al., 2010;
Ramin et al., 2011). We believe that this is a troubling practice thatmay
stem from our tendency to treat the different parameters as numerical
inputs for maximizing model fit, and not as surrogates of “real-world”
processes that collectively aim to reproduce the ecosystem functioning.
In the same context, it is also important to ensure that any new at-
tempts to characterize the ecosystem functioning will not act as if
they are “reinventing the wheel” (Mooij et al., 2010), but rather they
should strive for a (reasonable) consistencywith the existingmodelling
work in Lake Erie; unless there is evidence to challenge some of their
founding assumptions.

It is also interesting to note that the reviewed eutrophicationmodels
have consistently used low half saturation constants for phosphorus
uptake (KPO4 b 10 μg P L−1). Given the fairly low epilimnetic phosphate
levels in Lake Erie, this specification downplays the likelihood of
phosphorus limitation of the algal growth which deviates from recent
empirical evidence from the system (Fitzpatrick et al., 2007; Moon
and Carrick, 2007). If we also consider that both nutrient and light lim-
itation have been included within the Liebig's Law of the Minimum, we
believe that the role of light availabilitymay have been overstated as the
predominant factor of the bottom-up forcing in the system. Further,
different mathematical expressions have been used to simulate key
phytoplankton processes, such as the algal growth rates which have
been modelled whether as a sole function of the ambient nutrient con-
centrations or as a two-pronged process that first considers the nutrient
uptake rate in relation to the dissolved-phase nutrients and subse-
quently the growth rate as a function of their internal nutrient storage.
Because the differences in the mechanistic foundation and parameteri-
zation of competingmodels can alter significantly the elicited predictive
statements, we caution that the selection of mathematical equations
and parameter values should not be based on subjective (and often
arbitrary) criteria, butmust be ecologically defensible and tightly linked
to our contemporary understanding of the system. For example, some-
one may question the credibility of projecting the phytoplankton re-
sponse to ambient nutrient variability without accounting for their
intracellular storage capacity or properly considering the control
exerted by herbivorous grazing in the current state of Lake Erie.

In the context of Lake Erie modelling, there is an increasing pressure
to explicitly treat multiple biogeochemical cycles and to increase the
functional diversity of biotic communities. In particular, all the recent
modelling studies highlighted the inclusion of multiple nutrients along
with the finer representation of phytoplankton communities, as neces-
sary model augmentations for disentangling critical aspects of the lake
dynamics, e.g., cyanobacteria dominance. Species populations are cer-
tainly more sensitive to external perturbations (nutrient enrichment,
episodic meteorological events), and key biogeochemical processes
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are more tightly linked to specific phytoplankton functional groups
(Anderson, 2005). Nonetheless, the derivation of distinct functional
groups from fairly heterogeneous algal assemblages poses challenging
problems. Because of the still poorly understood ecology, we do not
have robust group-specific parameterizations that can support pre-
dictions in a wide array of spatiotemporal domains. For example,
preliminary efforts to incorporate phytoplankton functional types
into biogeochemical models were based on speculative parameteri-
zation and — not surprisingly- resulted in unreliable predictions.
Likewise, Zhao et al. (2008) showed that the reproduction of the typical
seasonal succession phytoplankton patterns in freshwater ecosystems
is quite fragile and only occurs within a fairly narrow window of the
model parameter space. The latter study also pondered if it is “reason-
able to expect single-valued data set-specific parameter estimates of
artificially defined biotic entities to be extrapolated over a wide range
of conditions?” A great deal of research is necessary to determine the
optimal delineation of functional groups that demonstrate similar
dynamics in certain environments, and to develop robust causal rela-
tionships that can be used in a broader range of conditions. There is little
doubt that the capacity of the current generation of eutrophication
models has not been proven yet, and therefore sceptical views in the
modelling literature characterize all the efforts to simulate the dynam-
ics of individual species or genera as attempts to “run before we can
walk” (Anderson, 2005)! In this regard, we believe that the recent
shift towards simpler causal models to link the nutrient loading vari-
ability with the occurrence of harmful algal blooms, and/or the hypoxia
problems is certainly more prudent and will likely provide a solid foun-
dation for guidingmanagement decisions in the area (e.g., Stumpf et al.,
2012; Zhou et al., 2013).

The effect of dreissenids onwater quality is another critical aspect of
the ecosystem functioning that requires robust modelling. Bierman
et al. (2005) presented one of the most comprehensive models in
the literature with respect to the ecology of dreissenids that builds
upon earlier work by Schneider (1992). The model allows reproducing
dreissenid filtration of particulate material from the water column,
pseudofeces production, and excretion of dissolved-phase nutrients.
The corresponding differential equation, however, calculates the rate
of biomass change per individual in each age cohort class. Thus, if we
aim to estimate the effects of the entire dreissenid mussel population
at the ecosystem level, this model output needs to be multiplied by a
“user-specified” and (in most cases) highly uncertain estimate of the
number of individuals per age cohort class. Likewise, Kim et al. (2013)
cautioned that none of the existing dreissenid submodels operates as
a “real” population dynamics model, as they lack the ability to predict
changes in spatiotemporal densities or their distributions among differ-
ent age groups. On a similar note, the sediments represent another im-
portant controlling factor of the water quality in Lake Erie, acting as a
source (or sink) for a wide variety of chemicals.

Closer to the sediment–water interface, intensive microbiological,
geochemical, and physical processes determine the fraction of organic
matter, nutrients, and pollutants released into the overlying water. De-
tailed knowledge of the processes occurring in the top few centimetres
of the sediment is essential for the assessment of water quality, the
understanding of the manifestation of hypoxia, and the management
of surface waters. Diagenetic modelling is an indispensable tool to
investigate the interplay among the sediment processes, to verify con-
cepts, and to potentially predict system behaviours (Boudreau, 1997).
This kind of diagenetic modelling as well as the data that necessitate
to ground-truth those models (e.g., porewater analysis, phosphorus
fractionation, organic matter profiles) is still missing in Lake Erie
(Dittrich et al., 2013). Both field, experimental, and modelling work
should be designed to shed light on the mechanisms of phosphorus
mobilization in the sediments and to identify process controls under a va-
riety of conditions. The knowledge obtained will allow addressing re-
search questions, such as: Can phosphorus retention in lake sediments
be predicted based on the sedimentmineralogy, sedimentation substance
inputs, catchment type, and other characteristics? How sediment reten-
tion capacity with respect to phosphorusmay respond to changes caused
by human activities and/or climate change?

Another overlooked factor of the existing modelling work in Lake
Erie is associated with the uncertainty underlying environmental
models. Aside from the data used for their parameter specification, un-
certainty can result from the model structure and input error (Beck,
1987). Model structure error is mainly associated with (i) the selection
of the appropriate state variables for reproducing ecosystem behaviour,
(ii) the selection of the suitable equations among a variety of mathe-
matical formulations for describing the ecological processes, and
(iii) the fact that our models are based on relationships which are
derived individually in controlled laboratory environments but may
not collectively yield an accurate picture of the real world dynamics.
Recognizing the importance of the uncertainty problem, the recent
model calibration practices tend to change from seeking a single “opti-
mal” value for each model parameter, to seeking a distribution of pa-
rameter sets that all meet a pre-defined fitting criterion (Stow et al.,
2007). These acceptable parameter sets may then provide the basis for
estimating model prediction error associated with the model parame-
ters. The importance of investigating the effects of uncertainty onmath-
ematical model predictions has been extensively highlighted in the
modelling literature, and there are a number of uncertainty analysis ap-
plications with simple or intermediate complexity models (Arhonditsis
et al., 2007; Ramin et al., 2012). The three-dimensional constructs
developed for Lake Erie are admittedly cumbersome for rigorous un-
certainty analysis, but there are still ways to overcome this problem
(e.g., linear or non-linear emulators) that have been profoundly
overlooked by the local modelling community (Ratto et al., 2012).
Some of the associated benefits, such as the expression of model out-
puts as probability distributions (Liu et al., 2011), the rigorous assess-
ment of the expected consequences of different management actions
(Arhonditsis et al., 2008), the optimization of the sampling design of
monitoring programmes and the alignment with the policy practice of
adaptive management (Zhang and Arhonditsis, 2008) will be particu-
larly useful for stakeholders and policy makers when making decisions
for sustainable environmental management in Lake Erie.

On a final note, the present evaluation of wide range of mathemati-
cal/statistical models implicitly pinpoints the uncertainty pertaining to
the selection of the optimalmodel structure for a specific environmental
management problem. However, we believe that the presence of
variousmodels with different strengths andweaknesses offers a unique
opportunity for synthesis and improvement of the contemporary
modelling practice in Lake Erie. Despite their simplicity, statistical
models offer straightforward cause–effect relationships coupled with
uncertainty estimates (e.g., response curves). Because they are founded
upon the available data from the system, they offer a less risky choice to
move forward and indeed offer a pragmatic means to obtain insight
about the response of the system. Nevertheless, there are major limita-
tions in their capacity to guide predictions outside the range associated
with the dataset used. As an alternative, existing mechanistic models
have significant heuristic value and potential to be used for predictive
purposes, once rigorously evaluated. Recognizing that there is no true
model of an ecological system, but rather several adequate descriptions
of different conceptual basis and structure, model averaging is a means
for obtaining weighted averages of the forecasts from multiple models
of varying complexity (Ramin et al., 2012). Perhaps, one of the most
promising ways to overcome the problem of structural uncertainty in
aquatic ecosystem modelling may be to draw inference from this type
of integrative statements. A number of methods exist to synthesize
predictions across groups of models (ensembles), including sequen-
tial data assimilation approaches, such as the ensemble Kalman filter
and ensemble particle filters (Moradkhani et al., 2006; Vrugt and
Robinson, 2007) and post-hoc ensemble integration strategies, such
as the Bayesian model averaging commonly used in weather forecasting
(Raftery et al., 2005). In the context of ecological process-basedmodelling
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though, this approach should not be viewed solely as a framework to
improve our predictive devices, but rather as an opportunity to compare
alternative ecological structures, to challenge existing ecosystem concep-
tualizations, and to integrate across different (and often conflicting)
paradigms.
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Figures Legends 

Figure SI-1: Schematic diagram of the Lake Erie biogeochemical cycles for (a) oxygen; (b) nitrogen; (c) 

phosphorus; and (d) silica. Figures are reproduced from Di Toro and Connolly (1980). 

 

Figure SI-2: Schematic diagram of the Lake Erie Dissolved Oxygen (DO) model (WCOD: Water column 

oxygen demand, SOD: sediment oxygen demand). Figures are reproduced from Rucinski et al. (2010). 

 

Figure SI-3: Schematic diagram of the two-dimensional Lake Erie Ecological model. Figures are reproduced 

from Zhang et al. (2008). 

 

Figure SI-4: Schematic diagram of the CAEDYM state variables in water column, benthos, and sediment. 

Figures are reproduced from Leon et al. (2011). 

 

 

 



 

 

 

 

Figure SI- 1 



 

 

 

 

Figure SI- 2 



 

 

 

 

Figure SI- 3 



 

 

 

 

Figure SI- 4 
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