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Fish tumors and other deformities are a class of Beneficial Use Impairment (BUIs) established by the International
Joint Commission to identify Areas of Concern (AOC) in the Great Lakes basin. The St. Marys River has been im-
paired by fish tumors and other deformities since its designation as an AOC in 1987. In this study, we present a
Bayesianmodeling framework that is founded upon the explicit consideration of the sampling bias in tumor ob-
servations as well as the causal association between important covariates and tumor occurrence. Data from 2009
indicate that fish tumor incidence rates were generally elevated at the Bellevue Marina and Partridge Point ex-
posed locations relative to the Batchawana Bay reference site. Fish age was the single most important covariate
of the tumor incidence rates, followed by the fork length, and the liver or gonad weights. Using the Bayesian
counterpart of the two one-side tests for equivalence, the exposed sitewas practically equivalent to the reference
location in regards to the neoplasm and pre-neoplasm incidence rates. However, the mean probability of neo-
plasm incidence was predicted to be lower than 10% in 70% and 95% of the cases in the exposed and reference
sites, respectively. The predictedmean pre-neoplasm frequency never fell below 10% in all the samples collected
at the exposed site, whereas≈40% of the cases are predicted to fall below the proposed cut-off level in the ref-
erence site suggesting that the exposed site may still be impaired.

© 2014 International Association for Great Lakes Research. Published by Elsevier B.V. All rights reserved.
Introduction

Fish communities have historically been used as sentinels of change
within aquatic systems due to their capacity to integrate both natural
and anthropogenic stressors (Hodson et al., 1996; Iwanowicz et al.,
2012; Johnson et al., 2007; van der Oost et al., 2003). In particular, tu-
mors that arise in fish are useful indicators of environmental contami-
nation in both freshwater and marine environments (Baumann et al.,
1996; Pinkney et al., 2001, 2004). For example, polycyclic aromatic hy-
drocarbons (PAHs) in sediments have been connected with the devel-
opment of liver cancer in brown bullhead (Baumann et al., 1996;
Blazer et al., 2009a; Vogelbein et al., 1990). Numerous studies have
shown an association between contaminated sediments in the Great
Lakes and hepatic (liver) neoplasms in this bottom-dwelling species
(Baumann and Harshbarger, 1995, 1998; Pinkney et al., 2004). Tumor
prevalence surveys have been recommended for monitoring contami-
nated sites (Pinkney et al., 2001). Considerable discussion now revolves
around refining the methodological procedures associated with fish
ditsis).

es Research. Published by Elsevier B
neoplasm sampling and histopathology in order to ensure sound com-
parisons between impacted and unimpacted sites.

Neoplasms are generally defined as “abnormal” tissue masses that
exhibit excessive, sustained growth as compared to “normal” tissues
(Willis, 1952). In a Great Lakes Areas of Concern Conference (2003) re-
lated to fish tumors, they were defined as being “heritably altered…in-
dependent, relatively atypical tissue growths,” which could be virally,
genetically or chemically induced (Rafferty, 2003a). In a talk at the
same conference, Dr. JohnHarshbarger outlined the difference between
benign tumors (often just expanding) and cancerous tumors (“invading
and destroying host tissue”), but he underscored the need for vigilance
for both tumor forms, as cancers may also arise from the former ones
(Rafferty, 2003a). When examining neoplasms in the context of envi-
ronmental contamination in the Great Lakes area, brown bullhead
(Ameiurus nebulosus) and white sucker (Catostomus commersonii) are
frequently used as indicator species due to their benthic habitat and
wide home range (Rafferty, 2003a). In brown bullhead, the most com-
mon neoplasms associated with environmental degradation are liver
tumors (Rafferty et al., 2009), including: i) hepatocellular adenoma (be-
nign hepatic neoplasm) and carcinoma (malignant/invasive hepatic
neoplasm), and ii) bile duct neoplasms, including cholangiomas (be-
nign) and cholangiocarcinomas (malignant).White suckers also exhibit
.V. All rights reserved.
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the same tumors, although they are experienced in different propor-
tions and the histological procedures are slightly different (Hayes
et al., 1990). There is also considerable research focused on the role of
covariates, such as age and gender, in influencing the prevalence of neo-
plasms in affected fish species, with substantial evidence indicating that
liver tumor prevalence increases with the age of fish (Baumann, 1992;
Baumann et al., 1996; Pinkney et al., 2004).

Given the established links between hepatic neoplasms and contam-
inated sediments, and consequently the usefulness of tumors as indica-
tors of environmental integrity, “fish tumors and other deformities” has
been used as one of the 14 Beneficial Use Impairments set forth under
the binational Great Lakes Water Quality Agreement (GLWQA). Benefi-
cial Use Impairments (BUIs) designate areas where human activities
have severely degraded water quality and ecosystem health, known as
Areas of Concern (AOC). “Fish tumors and other deformities”was listed
as a BUI in the 1987 amendment of the agreement due to the high prev-
alence of tumors in Great Lakes fish (Rafferty et al., 2009), which
reached levels of 25% in certain Great Lakes regions (Baumann et al.,
1996). This BUI is classified as impaired when the incidence rate of
fish tumors or other deformities exceeds rates at unimpacted (control
or reference) sites, or when survey data confirm the presence of neo-
plastic or preneoplastic liver tumors in bullhead or suckers (Rafferty
et al., 2009). However, the GLWQA does not define what unimpacted
sites are, what preneoplastic liver tumors are, or how rates are to be de-
termined, causing much confusion about the specific requirements of
the AOC delisting criteria. Currently, there are 14 AOCs in which the
fish tumors and other deformities constitute a BUI, with only the Black
River (Ohio) reclassified from impaired to “in recovery” phase and the
Presque Isle Bay AOC recently taken off the list.

One of these 14 AOCs is the binational St. Marys River, a 112-kmwa-
terway that flows from Lake Superior into Lake Huron, forming an
integral part of the Great Lakes-St. Lawrence Seaway. Despite being rel-
atively less impacted compared to theNiagara River and St. Clair/Detroit
River regions, due to its more remote location (Moerke and Werner,
2011), it was designated as an AOC reflecting a variety of anthropogenic
impacts that have undermined the system functioning. The fish tumors
and other deformities BUI was initially listed as impaired for the River
due to incidences of hepatic cancers in white suckers and brown bull-
heads (FPS, 2010). Early surveys showed liver tumors in white suckers
below the power dam in the River, as well as in brown bullheads sam-
pled from Munuscong Bay, Michigan (EC/OMOE, 2011). The remedial
action plan for the St. Marys River AOC includes management actions
to address this BUI, such as improving effluent quality through the addi-
tion of secondary treatment at Essar Steel Algoma Inc. and St. Marys
Paper (EC/OMOE, 2011). However, certain monitoring actions have
yet to be implemented, including the comparisons of white sucker neo-
plasm prevalence to reference sites and revision of delisting criteria to
articulate “measurable targets.” As proposed now, the Fish Tumor BUI
delisting criteria stipulates that this beneficial use will no longer be
impaired when a survey of a locally abundant member of the sucker
family, encompassing a diverse age range, indicates a liver tumor prev-
alence rate of less than 5% – or – a rate that is not significantly different
from that of a suitable reference site.

In this paper, given the current dialogue about refining delisting
criteria, the emerging knowledge about the role of fish covariates such
as age, and the growing awareness about the need for probabilistic
management frameworks as opposed to strictly deterministic ones
(Borsuk et al., 2002; Reckhowet al., 2005),we propose a Bayesianmeth-
odological framework that incorporates these concerns and provides a
possible aid for policy decisions. The purpose of our project is to develop
a series of Bayesian statistical models that can be used to predict liver
neoplasm and pre-neoplasm occurrence in white sucker in the
St. Marys River AOC. We present three statistical formulations, Bernoulli,
Zero-Inflated Poisson, and Binomial–Poisson, founded upon the causal
linkages between the demographics/physical characteristics of the fish
samples (e.g., age, fork length, liver/gonad weight, and total fish
weight) and the likelihood of tumor incidence. In addition, the latter
two models explicitly consider the impact that the sampling frequency
may have on our capacity to quantify the tumor incidence rates in the
system. The difference between the twomodels lies in the introduction
of a latent variable, “true” fish tumor counts, with the Binomial–Poisson
model, which is used to parameterize the causal relationship between
the expected tumor incidence rates and the important covariates in-
stead of directly employing the observed data, as the Zero-Inflated
Poisson model does. We believe that these models provide a rigorous
framework to evaluate fish tumor probabilities and may play an instru-
mental role in guiding the formation of delisting criteria across all AOCs
in the Great Lakes.

Methods

Study site–data set description

The St. Marys River is a binational waterway that connects Lakes
Superior and Huron (EC/OMOE, 2011). The river contains locks that fa-
cilitate ship navigation between the two lakes and flow control mecha-
nisms and has significant economic importance for both Canada and the
United States through fisheries, tourism, electricity production, steel
manufacturing, and shipping (Moerke and Werner, 2011). The two
major cities nearby are the twin cities of Sault Ste. Marie, Michigan
(~15,000 people) and Sault Ste. Marie, Ontario (~81,000 people) (IJC,
1998). From an ecological perspective, the river and surroundingwater-
shed/wetlands provide valuable habitats for fish and wildlife species,
where some of the highest biodiversity levels in the Great Lakes basin
are recorded (EC/OMOE, 2011; Moerke and Werner, 2011). In the
past, the main industries in Sault Ste. Marie, ON are steel and paper
manufacturing as well as other light manufacturing that generally sup-
port the two main economic activities (St. Marys River RAP, 1992).
These industrial dischargers have posed serious contamination prob-
lems in the St. Marys River; for instance, discharges from the Algoma
Steel Corporation contributed polycyclic aromatic hydrocarbons
(PAHs) while six outfalls into the river introduced suspended solids
and coal tar compounds (ammonia, cyanide, oil, grease and phenols)
(Ripley et al., 2011). Sewage plants and the paper industry in the region
were also detrimental to water quality (Ripley et al., 2011). A leather
tannery operated from 1900 to 1958 on the U.S. side, which contributed
to the release of chromium, cyanide, sulfide, and mercury into the sys-
tem (Ripley et al., 2011). Previous water quality assessments have re-
ported elevated levels of PAHs, phenols, iron, cyanide, ammonia, zinc
and sulfide downstreamof Ontario sources, aswell as high phosphorous
levels in certain areas (St. Marys River RAP, 1992).

In this study, we used tumor incidence data of white suckers from
three sites: Batchawana Bay (characterized as the reference site),
Bellevue Marina (exposed site), and Partridge Point (exposed site)
(Fig. 1). A fourth site, St. Joseph Island, was identified as the near-field
site, but was not considered in the present analysis due to data scarcity.
Batchawana Bay is located in the Batchawana Bay Provincial Park, oper-
ated by the Ontario Ministry of Natural Resources. Partridge Point is lo-
cated near a sewage plant outfall, while Bellevue Marina is a public
marina in Sault Ste. Marie, Ontario. A total of 239 samples from the
year 2009 were used (Table 2; however, two samples were discarded
from Bellevue Marina due to missing covariate information); 100
samples were obtained from Batchawana Bay and 139 from the two ex-
posed sites. For each sample, we obtained information on the incidence
of four neoplasms (hepatocellular adenoma, hepatocellular carcinoma,
cholangioma and cholangiocarcinoma), five pre-neoplasms (bile duct
hyperplasia, basophilic focus, eosinophilic focus, clear cell focus, and
vacuolated focus) and eight lesions (not considered in this study), all
of which were characterized by ones (1 s) and zeroes (0 s) to indicate
presence and absence, respectively. However, many of these neoplasms
and pre-neoplasms were not found in adequate numbers in both the
reference and exposed sites, and thus only the forms presented in



Fig. 1.Map of St. Marys River white sucker sampling sites: 1) Batchawana Bay; 2) Bellevue Marina; 3) Partrige Point; 4) St. Joseph Island.
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Table 2were examined. Definitions of each of the neoplastic tumors and
pre-neoplastic forms considered are provided in Table 1,while Electron-
ic Supplementary Material (ESM) Table S1 also gives the average age,
weights and lengths of the white sucker examined.
Bayesian modeling framework

Ourfirstmodel (Bernoullimodel) postulates that the examination of
tumor incidence in a data set resembles a Bernoulli process, meaning
that the collected samples represent a sequence of independent identi-
cally distributed Bernoulli trials. Simply put, each time we collect a fish
sample the outcome of that observation, tumor occurrence or not, is
Table 1
Brief descriptions of the neoplasm and pre-neoplasms forms examined in this study.

Name Description

Neoplasms Hepatocellular adenoma Benign or noninvasive hepatic neoplasm
Hepatocellular carcinoma Malignant or invasive hepatic neoplasm
Cholangioma Benign bile duct neoplasm
Cholangiocarcinoma Malignant bile duct neoplasm

Pre-neoplasms Bile duct hyperplasia Non-neoplastic lesion often shown through an
Basophilic focus One of the foci of cellular alteration that exhib
Eosinophilic focus One of the foci of cellular alteration that exhib
Clear cell focus One of the foci of cellular alteration
Vacuolated cell focus One of the foci of cellular alteration that exhib

[1] Rafferty, S. D., Blazer, V.S., Pinkney, A.E., Grazio, J.L., Obert, E.C., and Boughton, L. 2009. A his
Great Lakes Areas of Concern. J. Great Lakes Res. 35, 496–506.
[2] Blazer, V.S., Rafferty, S.D., Baumman, P.C., Smith, S.B., andObert, E.C. 2009b. Assessment of the
nebulosus): II. Liver neoplasia. J. Great Lakes Res. 35, 527–537.
[3] Blazer, V.S., Fournie, J.W., Wolf, J.C., and Wolfe, M.J. 2006. Diagnostic criteria for proliferativ
independent from the previous samples, while the probability p that a
fish has a tumor can be determined by a series of potentially important
causal factors, such as the fish age, fork length, liver weight, gonad
weight, or total fish weight. The causal association between the proba-
bility that a fish has a tumor and its age and/ormorphological character-
istics was modeled using logistic regression (Pinkney et al., 2009;
Rutter, 2010). Thus, the first model can be summarized as follows:

Tumorobs ið Þjpi β0;β j; xij
� �

� Bernoulli pið Þ

logit pið Þ ¼ β0 þ
Xk
j¼1

β jxij

β0;β j � N 0; 10;000ð Þ j ¼ 1;…; k

ð1Þ
Organ affected Ref.

Liver 1
Liver 1
Liver 1
Liver 1

increased number of bile ducts compared to normal liver Liver 2, 3
its increased basophilic staining compared to adjacent cells Liver 2, 3
its increased eosinophilic staining compared to adjacent cells Liver 2, 3

Liver 2
its hepatocytes with clear cytoplasmic vacuoles of varying sizes Liver 2, 3

torical perspective on the “fish tumors or other deformities” beneficial use impairment at

“fish tumors or other deformities” beneficial use impairment in brownbullhead (Ameiurus

e hepatic lesions in brown bullhead (Ameiurus nebulosus). Dis. Aquat. Org. 72, 19–30.
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where Tumorobs(i) denotes the tumor occurrence (1 or 0) in the ith fish
individual; xij corresponds to the standardized value of the j covariate in
the same individual; and β0 and βj are the regression coefficients which
were assigned flat (or diffuse) normal prior distributions with mean 0
and variance 10,000 or N(0, 10,000).

Our second statistical formulation (Zero-Inflated Poisson model) is
based on a Zero-Inflated probability distribution that allows for frequent
zero-valued observations. The Zero-Inflated (ZIP) Poisson model is a
statistical description of a random event, containing excess zero-count
data per unit of time/space orwithin a fixed interval of a relevant covar-
iate. The model dissects the studied event (tumor occurrence) into two
components that correspond to two zero generating processes. The first
process reflects the adequacy of the sample size (i.e., sampling error)
and is governed by a binary distribution that generates structural
zeroes, while the second mechanism represents the tumor formation
rate and is governed by a Poisson distribution that generates counts,
some of which may be zero. In the present model, the probability p of
the former process is associated with the sampling frequency of a fixed
range of important covariates (e.g., age, fork length, weight), and the
mean λ of the latter process depends on the actual values of the same
causal factors. The two model components can be described as follows:

Tumorcounts ið Þjλi β0;β j; x̂jn
� �

; pi u; Yið Þ �
(
Poisson λið Þ with probability pi
0 with probability 1−pi

log λið Þ ¼ β0 þ
Xk
j¼1

β j x̂jn

x̂jn � U xjn−Δxj=2; xjn þ Δxj=2
� �
pi ¼ exp −u=Yið Þ

u � U 2;5ð Þ
β0;β j � N 0; 10;000ð Þ

i ¼ 1;…; I where I ¼ ∏
k

j¼1
Nj and j ¼ 1;…; k

ð2Þ

where Tumorcounts(i) denotes the tumor counts within the ith combina-
tion of the Nj classes of the k covariates; x̂jn is a random uniform draw
from the n class of the j covariate (1 b n b Nj), and thus the calculation
of the mean tumor formation rate, λi, associated with the ith combina-
tion of covariate classes is not based solely on the midpoint values xjn
of the corresponding intervalsΔxj; Yi corresponds to the number of sam-
ples within the ith combination of covariate classes; and u represents a
coefficient that shapes the likelihood to observe fish tumors as a function
of the number of samples collected. The latter parameter was assigned a
uniform distributionswith lower and upper bounds set equal to 2 and 5,
or U(2,5), to express our prior belief about the probability to observe a
tumor with different sampling intensity levels.

The third statistical formulation (Binomial–Poisson model) similarly
postulates that the sampling intensity is the primary factor that deter-
mines the accuracy of tumor observations. In this case though, we spec-
ify a binomialmodel inwhich the observed tumor counts, Tumorcounts(i),
within the ith combination of classes covariate, are conditioned upon
the actual (but unobserved) tumor occurrences, Tumorlatent(i), and the
probability of detection, pi(u,Yi):

Tumorcounts ið ÞjTumorlatent ið Þ;λi β0;β j; x̂jn
� �

; pi u;Yið Þ � Binomial Tumorlatent ið Þ; pi u;Yið Þ
h i

Tumorlatent ið Þjλi β0;β j; x̂jn
� �

� Poisson λið Þ

log λið Þ ¼ β0 þ
Xk
j¼1

β j x̂jn

x̂jn � U xjn−Δxj=2; xjn þ Δxj=2
� �
pi ¼ exp −u=Yið Þ

u � U 2;5ð Þ

i ¼ 1;…; I where I ¼ ∏
k

j¼1
Nj and j ¼ 1;…; k

β0;β j � N 0; 10;000ð Þ

ð3Þ
The actual occurrence of tumors, Tumorlatent(i), is specified as a
Poisson process, conditional on the average (or expected) tumor forma-
tion rate, λi, related to the ith combination of covariate classes, which in
turn is determined by the causal log-linear model used with the Zero-
Inflated Poisson model.

The optimal combination of covariates with each of the three model
categories was determined using the deviance information criterion
(DIC), a Bayesian measure of model fit and complexity (Spiegelhalter
et al., 2003). DIC is given by

DIC ¼ D θð Þ þ pD ð4Þ

whereD θð Þ is the posterior mean of the deviance, a measure of residual
variance in data conditional on the parameter vector θ. The deviance is
defined as −2log(likelihood) or −2log[p(y|θ)]; pD is a measure of the
“effective number of parameters” and corresponds to the trace of the
product of Fisher's information and the posterior covariance. It is speci-
fied as the posterior mean deviance of the model D θð Þ minus the point
estimate of the model deviance when using the means of the posterior
parameter distributions, i.e., pD ¼ D θð Þ−DðθÞ . Thus, this Bayesian
model comparison first assesses model fit or model “adequacy” (sensu
Spiegelhalter et al., 2003), D θð Þ, and then penalizes complexity, pD. A
smaller DIC value indicates a “better” model.

Model computations

Using Markov-chain Monte Carlo (MCMC) simulations (Gilks et al.,
1998), we obtained sequences of realizations from the model posterior
distributions. We used a general normal-proposal Metropolis algorithm
that is based on a symmetric normal proposal distribution, whose stan-
dard deviation is adjusted over the first 4000 iterations, so that the ac-
ceptance rate ranges between 20 and 40%. For each analysis, we used
three chain runs of 50,000 iterations, keeping every 10th iteration
(thin of 10) to minimize serial correlation. Samples were taken after
theMCMC simulation converged to the true posterior distribution; con-
vergence was assessed using the modified Gelman–Rubin convergence
statistic (Brooks and Gelman, 1998). The convergence of the sequences
occurred fairly quickly (~5000 iterations), and thus our summary statis-
tics reported are based on the remaining draws. Finally, to ensure the
accuracy of our posterior parameter values, we confirmed that the
Monte Carlo error for parameters (an estimate of the difference be-
tween the true posterior mean and the mean of the sampled values)
was less than 5% of the sample standard deviation (Spiegelhalter et al.,
2002).

Results

Basic statistical trends

The total neoplasm and pre-neoplasm rates were higher for the ex-
posed relative to the reference site (Table 2). For the exposed site, the
total neoplasm prevalence was 10.6% (15/141) and the pre-neoplasm
occurrence rate was 17.7% (25/141). In contrast, the reference site
displayed a neoplasm frequency of 5% (5/100) and pre-neoplasm fre-
quency of 12% (12/100). These relatively high neoplasm percentages
suggested that the Batchawana Bay is not likely themost suitable refer-
ence site for St. Marys River. The establishment of more appropriate
baseline conditions may require pooling data from several pristine
sites and thus effectively balancing the elevated tumor rates occasional-
ly experienced in a single location. For illustration purposes, we includ-
ed 100 additional samples fromMountain Bay in Lake Superior (total
n=200 white sucker samples), which is located close to a small unde-
veloped nature reserve, theGravel River Provincial Park. The pooled ref-
erence site was characterized by a 2.5% neoplastic rate (5/200), as no
neoplasmswere recorded in the 100 additional samples fromMountain
Bay (last column of Table 2). Pre-neoplasm counts in the new reference



Table 2
Neoplasm and pre-neoplasm counts in St. Marys white sucker along with the pooled ref-
erence site that includes Mountain Bay.

Exposed sites Reference site Pooled
reference site

Tumor name Count Total n Count Total n Count Total n

Hepatocellular adenoma 1 141 0 100 0 200
Hepatocellular carcinoma 3 141 4 100 4 200
Cholangioma 4 141 0 100 0 200
Cholangiocarcinoma 8 141 1 100 1 200
Total neoplasms 15 141 5 100 5 200
Bile duct hyperplasia 8 141 2 100 5 200
Basophilic focus 2 141 1 100 5 200
Eosinophilic focus 0 141 1 100 1 200
Clear cell focus 1 141 0 100 0 200
Vacuolated cell focus 17 141 9 100 14 200
Total pre-neoplasms 25 141 12 100 24 200
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pool were now 24/200, which came to the exact pre-neoplasm rate
identified in the original reference site (12%). Note that the calculations
of total neoplasms and pre-neoplasms refer to how many fish samples
were identified as having at least one neoplastic/pre-neoplastic form
from each site (a binary calculation), and thus the total numbers may
not align with the individual counts of tumor forms reported in
Table 2. As noted earlier, we only selected neoplastic/pre-neoplastic
forms that had significant numbers in each site, as there were many
forms that had very low occurrence and were thus not considered. In
the exposed sites, themost prevalent neoplastic formwas cholangiocar-
cinoma (n = 8), followed by cholangioma (n = 4) and hepatocellular
carcinoma (n=3). Themost prevalent preneoplastic formwas the vac-
uolated cell foci, which was observed 17 times. Bile duct hyperplasia
was also quite common, manifested 8 out of 141 times, or 6%. In con-
trast, the most prevalent neoplastic form in the reference site was the
hepatocellular carcinoma (n=4), with only one instance of cholangio-
carcinoma (Table 2). The pre-neoplasm patternswere similar to the ex-
posed site, with the highest number seen for vacuolated cell focus (n=
9), followed by bile duct hyperplasia. Across all sites, hepatocellular ad-
enoma was found in consistently low numbers (one in exposed and
zero in reference sites), with the pre-neoplastic forms eosinophilic
focus and clear cell focus also being negligible in terms of their total
numbers.

Having established the dominant tumor and pre-tumor forms, we
then examined potential covariates for our models by investigating
the relationships between five white sucker characteristics: age, fork
length, total weight, gonad weight, and liver weight. The average age
of white sucker was higher in the exposed sites (11.01 ± 4.11 years)
compared to the reference site (9.81 ± 3.09 years), with sampled fe-
males being older than males in both sites (Table S1). Fork lengths
were relatively comparable between the two sites (43.64 ± 3.77 cm
in exposed; 44.30 ± 3.86 cm in reference), while total weight and
gonad weight were lower in the exposed compared to the reference
site (Table S1). Finally, liver weight was slightly higher in the exposed
sites (mean 18.74 ± 8.04 g) relative to the reference site (17.20 ±
7.30 g). The marginal distributions of each of the variables can also be
seen in the diagonals of the matrices presented in Fig. 2.

According to the Spearman rank correlation coefficient values, all re-
lationships between the variables (original scale) were significant (ESM
Table S3). The strongest relationships in both sites were between fork
length and total weight (0.86 in exposed and 0.96 in reference). As ex-
pected, there were similarly strong correlations between age and fork
length (0.80 in exposed and 0.83 in reference), between total weight
and gonad weight (0.72 in exposed and 0.82 in reference) and between
total weight and liver weight (0.85 in exposed and 0.78 in reference).
Fig. 2 depicts the distribution of each variable and the bi-variate
scatterplots, again reflecting the strong relationships between fork
length and total weight. The relationships between age and each of
the other variables appears less definite, as shown by the increased
scatter in the associated plots and the presence of some outliers. The
scatterplots also indicate stronger relationships between most of the
variables in the reference site compared to the exposed sites, a pattern
which is corroborated by the Spearman coefficient values. We also ex-
amined how do these five physical characteristics vary between fish
with (“tumor fish”) and without (“non-tumor fish”) neoplasms/pre-
neoplasms (Fig. 3). It can be clearly seen that “tumor fish”was typically
characterized by higher ages and greater fork lengths, regardless of the
tumor form examined. The relationships with weights were less
straightforward, as there was a case where the “tumor fish” had lower
gonad weight (i.e., cholangioma in exposed sites) and a few instances
where the median weights were almost identical between the two
states.

Fish tumor modeling

The most parsimonious fish tumor models are presented in Table 3,
although none of the combination of covariates examined received DIC
values (N2 difference relative to the selected model) that suggest con-
siderably less support (Spiegelhalter et al., 2002). We ended up with
six models for each statistical configuration, with cholangioma, cholan-
giocarcinoma, bile duct hyperplasia and total neoplasms examined in
the exposed sites, and bile duct hyperplasia and total pre-neoplasms ex-
amined in the reference site. The absence of models for the total neo-
plasms in the exposed site and the total pre-neoplasms in the
reference site was due to the low degree of identification of the slope
parameters (βSD/βmean N 1) associated with any of the covariates con-
sidered. The latter patternmay stem from the fact that thepredictor var-
iables used are intrinsically collinear, as they represent different
manifestations of the same underlying process (i.e., fish aging). Thus,
therewere instanceswhen the posterior coefficientswere characterized
by inflated standard errors, which may have been an impediment for
identifying the relative role of important factors, even if they were
truly influential. In the models qualified, age was always an important
covariate, while the second one was fork length, gonad weight or liver
weight, depending on the tumor form examined. In the exposed site,
age and gonad weight was the covariate combination used for
cholangioma while total neoplasms were consistently based on age
and fork length. In the reference site, age and liver weight was the co-
variate combinationwith the strongest signature on thebile duct hyper-
plasia and total pre-neoplasms. The parameter posteriors for each of the
models developed are presented in ESM Table S2.

We first examined the frequency histograms of the predicted tumor
probability values for the different covariate combinations considered
with our Bernoulli model (Fig. 4). To exploit more effectively the bene-
fits of our modeling exercise for policy decisions, we include a dashed
line in Fig. 4 that signifies a probability value of 10%, as the maximum
acceptable tumor incidence risk for each specimen examined. In the
exposed sites, 94% of the mean predicted occurrence rates for
cholangiomawere below the 10% benchmark, thus indicating low over-
all likelihood of encountering this tumor form (Fig. 4a). In contrast,
cholangiocarcinoma was characterized by lower number of cases
below the cut-off point, as 81% of the values were below the 10% line
and the thicker right tail of the distribution was indicative of higher
risks for this neoplasm form (Fig. 4b). Likewise, bile duct hyperplasia
had more instances of exceedance than cholangioma, with 87% of the
values below 10% (Fig. 4c). The distribution of tumor probabilities for
total neoplasms was characterized by a thicker right tail, with only
65% of the values falling under the 10% line (Fig. 4d). In the reference
site, the patterns for bile duct hyperplasia were characterized by N90%
of the mean predicted incidence rates falling below the 10% cut-off
level (Fig. 4e). In contrast, the predicted patterns for total pre-
neoplasm indicated that about half of the cases examined fell under
the 10% benchmark, and thus the distribution of the mean predictions
suggests relatively high probabilities for total pre-neoplasms in the ref-
erence site (Fig. 4f). In a similar manner, the encircled numbers



Fig. 2. Correlation matrices for white sucker physical characteristics across a) exposed sites and b) reference site in St. Marys River. Bar graphs give frequency histograms for fish charac-
teristics at each site.
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represent the probability levels associatedwith amore stringent criteri-
on that stipulates b5% likelihood of tumor exceedance in each fish
sampled.

With both the Zero-Inflated Poisson and the Binomial–Poisson sta-
tistical formulations, we specified intervals (or bins) for each of the co-
variates considered (age, fork length, gonad weight, or liver weight),
and we present the scatterplots depicting the predicted “true” tumor
occurrences, Tumorlatent, against the increasing age (4–24 years),
gonad weight (0–160 g), fork length (32–52 cm), and liver weight (0–
45 g) for the lattermodel. In the exposed site, the predicted occurrences
of cholangiomas remained quite lowup to age-20, with an abrupt rise in
predictions for older fish (Fig. 5a, left panel). Notably, the presence of
one unusually high prediction for age-18 fish is associatedwith a similar
outlier in the gonadweight panel, which incidentally yielded a high pre-
diction of ~40 tumors (Fig. 5a, right panel). The pattern of predicted tu-
mors as we increased the gonad weight was less clear, with no overt
trend displayed between the two variables. In contrast, clearly identifi-
able patterns were seen for cholangiocarcinoma, bile duct hyperplasia
and total neoplasms in the exposed sites (Figs. 5b–d, left panels). As
the age of the white sucker increased, the predicted tumor occurrences
sharply curved upwards after age-16fish. Fork length, the second covar-
iate for each of these forms, also demonstrated increasing tumor inci-
dence rates with longer fish, while negligible tumors were predicted
for fish under 36 cm (Figs. 5b–d, right panels). Interestingly, the refer-
ence site, showed greater scatter in the bile duct hyperplasia patterns
(Fig. 5e, both panels). In a similarmanner, tumor occurrences increased
in fish after age-16, but the relationship is nowhere as clear as it was
earlier. Similarly, the relationshipwith liver weight does indicate higher
tumor counts for fish with heavier livers, but the pattern is again more
scattered. Finally, the total pre-neoplasm model for the reference site
again indicates a strong linkage between age and actual tumor occur-
rence (Fig. 5f, left panel), with total pre-neoplasm counts reaching up
to 24 for age-22 fish. The results for liver weight predicted more of a
steady increase in total pre-neoplasm occurrence as the weight of the
white sucker livers was increased, with a few instances of high tumor
rates in livers weighting between 20 and 30 g (Fig. 5f, right panel).
Discussion

Development of delisting criteria for the “fish tumors and other deformities”
BUI

The development of rigorous delisting criteria for BUIs has been the
subject of much discussion in recent years, given that the IJC leaves
much of the responsibility to individual RAP teams (IJC, 2012). Even
when guidelines are provided to instruct the individual teams, the inad-
equacy of such recommendations has often led to fundamentally differ-
ent strategies and dissimilar delisting goals for the same BUI in various
Areas of Concern (NSE, 2003). Although a certain degree of subjectivity
is inherent in any scientific venture, the suitability of selected reference
(or “unimpaired”) sites has been one of the controversial issues as the
guidelines onwhat constitutes an unimpaired site are decidedly unclear
(Blazer et al., 2009a,b). An additional challenge when designing envi-
ronmental policy is related to the growing awareness of the uncertainty
in natural systems with a recent tendency towards probabilistic strate-
gies that allow for a certain degree of violations of the targeted environ-
mental goals (Gudimov et al., 2011). It is within this context that our
Bayesian methodological framework aims to assist with the develop-
ment of delisting criteria for the “fish tumors and other deformities”
BUI. We present a series of models that provide probabilistic estimates
of tumor incidence rates in fish populations as a function of their phys-
ical covariates, while explicitly accounting for the natural uncertainty as
Fig. 3. Box-plots of neoplasms and pre-neoplasms against white sucker physical characteristics
St. Marys River. Combinations shown are those presented in the models. A zero (0) on the x-ax
well as the likelihood that the available datamay obfuscate our ability to
impartially discern the differences between impaired and reference
sites.

The “fish tumors and other deformities” BUI has been extensively
debated in regards to the progress made about the histopathological,
sampling, and statistical procedures (Rafferty, 2003a,b). The IJC suggests
that this BUI is impaired when the incidence rate of fish tumors (or
other deformities) exceeds rates at control sites or when survey data
confirm the presence of neoplastic or pre-neoplastic liver tumors in
bullhead or suckers. However, aside from the lack of delineation of the
“unimpacted” conditions, considerable confusion exists on what should
be deemed as unacceptable tumor incidence rates (Blazer et al., 2009a,b).
Attempts have been made to propose direct quantitative criteria for this
specific impairment, such as the proposition for the Canadian side of the
St. Marys River AOC to consider as delisting goal a lower than 5% prev-
alence rate of total liver neoplasms in fish data sets (e.g., white suckers)
with adequate sample size (n ≥ 100) (FPS, 2010). Similarly, Baumann
et al. (1996) suggested that intestinal or liver tumor prevalence greater
than 5% in benthic dwelling fish constitutes impairment. Other delisting
targets proposed by RAP teams are based on recording the absence of
neoplastic/pre-neoplastic tumors in certain fish species, eliminating
contaminants from industrial/ municipal discharges, and establishing
contaminant concentrations in fish/wildlife below critical levels (IJC,
2012). Hitherto, no AOC has been successfully delisted for the fish tu-
mors BUI, and only a handful have undertaken a comprehensive inves-
tigation of the ongoing status (Rafferty et al., 2009). There are fourteen
AOCswhere the fish tumors and other deformities BUI is impaired, with
Presque Isle Bay AOC and Black River (Ohio) recently listed as being “in
recovery” (Rafferty et al., 2009). This designation means that all active
remediation is complete and the focus now is on monitoring to what
extent the sites respond to the actions taken (Rafferty et al., 2009).
Fish tumor patterns in St. Marys River

Quite recently, a series of papers have examined long-term changes
in the fish community as well as fisheries assessment plans in the St.
Marys River Area of Concern (Fielder et al., 2007; Pratt and O'Connor,
2011; Schaeffer et al., 2011). The fish tumors and other deformities
BUI was initially listed as impaired in the St. Marys River AOC due to in-
cidences of hepatic cancer in white suckers and brown bullheads (FPS,
2010). The river's white suckers were also previously sampled in
1988, with results revealing a lip/body papilloma prevalence of 9.1%
(Smith, unpublished data). In the context of our study, our results reveal
liver neoplasm rates of 10.6% for white sucker from the pooled exposed
site, which is well over any of the impairment benchmarks proposed in
the literature. Clearly, the issue of fish tumors is still of concern within
the St. Marys River, and further action or timemay be necessary to des-
ignate this BUI as not impaired.

Our initial exploratory analysis of neoplasm/pre-neoplasm preva-
lence yielded a few key observations regarding the nature of our data
set. First, we treated the two exposed sites as one “exposed” pool, al-
though the site that contributed a greater percent of neoplasms was
Bellevue Marina (12 neoplasms) as compared to Partridge Point, near
amunicipal sewage plant (only 3 neoplasms). This is somewhat surpris-
ing, as the sewage plant outfall was expected to contribute a greater
share of tumor-fish. PAHs are the carcinogens of concern in the
St. Marys system, occurring in higher levels in the Bellevue sediments
(near the Algoma Steel coking facility) than in the sediments near
Partridge Point. Thus, one would expect the Bellevue sucker population
to have more tumors than the sucker population at Partridge Point (as-
suming minimal mixing). In addition, the age distributions (not pre-
sented here) indicated that Partridge Point is characterized by a more
(age, liver weight, gonad weight, and fork length), for both exposed and reference sites in
is of the plots indicates no occurrence while a one (1) indicates occurrence.
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Table 3
The most parsimonious models for different neoplasms and pre-neoplasms, based on the
use of the deviance information criterion.

Exposed site Reference site

Model one
Cholangioma Age + gonad weight N/A
Cholangiocarcinoma Age + liver weight N/A
Bile duct hyperplasia Age + fork length Age + liver weight
Total neoplasms Age + fork length N/A
Total pre-neoplasms N/A Age + liver weight

Model two
Cholangioma Age + gonad weight N/A
Cholangiocarcinoma Age + liver weight N/A
Bile duct hyperplasia Age + liver weight Age + liver weight
Total neoplasms Age + fork length N/A
Total pre-neoplasms N/A Age + liver weight

Model three
Cholangioma Age + gonad weight N/A
Cholangiocarcinoma Age + fork length N/A
Bile duct hyperplasia Age + fork length Age + liver weight
Total neoplasms Age + fork length N/A
Total pre-neoplasms N/A Age + liver weight
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uniform age distribution (and thus a greater proportion of older tumor-
prone fish), as compared to the BellevueMarina's right-skewed pattern.
This disparity may likely stem from the sample sizes collected, as the
number of samples collected for Partridge Point was less than half of
those for Bellevue Marina (Table S1). Given the recommendations for
aminimumof 100 specimens (FPS, 2010), a sample size of 41 (Partridge
Point) was likely not robust enough; and thus the two exposed sites
were pooled together. The issue of sample sizes when monitoring for
this BUI has also been raised by Blazer et al. (2009a) and later by
Rutter (2010), where the authors describe the sensitivity of calculated
neoplasm prevalence rates to both sample size and number of liver sec-
tions examined from the fish sampled (see also following discussion).
Another key finding was that the neoplasm rate for the reference site,
Batchawana Bay, was actually quite high with a total liver neoplastic
rate of 5%. According to the two delisting guidelines cited earlier, this
reference site could be classified as impaired. The pooled reference
site was thus included in aspects of our analyses, whereby the inclusion
of additional samples (n = 100) inflated the total count and dropped
the neoplastic rate to 2.5%. The nature of assessing impairment requires
setting a benchmark to compare against, and our results reiterate the
importance of selecting reliable reference sites. Nonetheless, we note
that the use of the “seemingly-impaired” reference site still indicates
an increased frequency of tumor incidence in the exposed sites, rein-
forcing our earlier assertion about the fish tumor problem in white
sucker.

A novel feature of our study was the inclusion of pre-neoplasms in
our models, which are not usually considered. Even though pre-
neoplastic lesions are not as clearly defined as neoplasms in the litera-
ture, both the foci of cellular alteration and bile duct proliferation con-
sidered here have been related to contaminant exposure in many fish
species (Blazer et al., 2009b). The pre-neoplastic rates calculated were
quite high (N10%) in both exposed and reference sites. Pre-neoplasms
are not formally addressed in delisting criteria, but the fact that they
may lead to neoplastic forms makes their monitoring important
(Rafferty, 2003a) and also stresses the need to unequivocally determine
which lesions are in fact pre-neoplastic in other indicator species, such
as brown bullheads (Blazer et al., 2009b).

From a management perspective, the importance of allowing for
some degree of violation in impaired states and the usefulness of a prob-
abilistic framework is exemplified through our “probability distribu-
tions of the exceedance probabilities” visualizations from the first
Bernoulli model (Fig. 4). Stipulating a benchmark of a 10% probability
for the neoplasm/pre-neoplasm risk in each sample collected, this ap-
proach is conceptually on par with the EPA-endorsed “confidence of
compliance” (Zhang and Arhonditsis, 2008). In doing so, our analysis
explicitly accommodates all the sources of error (structural/parametric
and data uncertainty) typically involved in any modeling exercise by
shifting the focus from the mean model predictions to the fraction of
predicted incidence rates that exceed a pre-specified critical risk level;
namely, instead of entirely basing the inference on the predicted
tumor risk for given fish characteristics, we introduce an extra dimen-
sion of uncertainty and target the probability of exceedance of an ac-
ceptable tumor risk level across all the fish sampled. In the exposed
sites, the higher risks were generally evident for total neoplasms, with
a larger mass falling at probabilities higher than 10%. Our model projec-
tions also reveal that trends in certain forms of liver neoplasia are more
worrisome than others, such as the cholangiocarcinomas as compared
to cholangiomas which in turn frequently translate to the malignant
bile duct form. Hepatocellular adenomas and carcinomas, the equiva-
lent hepatic cell forms, were not considered due to the data scarcity as-
sociated with these sites. Importantly, the assessment of the degree of
impairment in an exposed site with this approach can conceivably de-
pend on the model predictions on that site alone and thus may be dis-
connected from the challenging delineation of the baseline conditions.
We simply have to determine a universally acceptable tumor incidence
risk (5% or 10%) alongwith an allowable proportion of cases that can be
characterized by higher risk levels, regardless of the physical character-
istics of the fish sampled.

Another key finding has to do with the influence of age and other
covariates on the tumor rates. Notwithstanding the possible identification
issues arising from the use of collinear predictors, many of the neoplastic/
pre-neoplastic forms (e.g., cholangioma, cholangiocarcinoma, bile
duct hyperplasia and total neoplasms in the exposed site, total pre-
neoplasms in the reference site) depicted abrupt rises in tumor predic-
tions after either age-16 or -18fish. The importance of age in ourmodel-
ing analysis ties in well with the established literature, as there is
substantial evidence that liver tumor prevalence increases with the
age of fish (e.g., Baumann, 1992; Pinkney et al., 2004), although the
same pattern has not consistently been seen for orocutaneous tumors
(Blazer et al., 2009a; Rafferty et al., 2009). Not only are fish exposed to
more contaminants year after year, there is also a latent period between
induction and tumor development. Generally, neoplasia prevalence in
brown bullheads increases in sexually mature fish that are older than
three years and live in polluted regions; thus, field sampling procedures
usually require fish of a certain length to be captured in tumor preva-
lence surveys to ensure the accurate detection of the prevailing trends
(Rafferty and Grazio, 2006; Rafferty et al., 2009). Interestingly, the fact
that the influence of the fish weight and length was weaker is not sur-
prising, given that many studies have pointed to a stronger association
with age than with other factors. Fish length can only be used as a sur-
rogate for age in younger fish and the relationship often weakens in
older fish (Rafferty, 2003b). In any event, the role of the various covar-
iates played a key role in shaping the nature of our modeling exercise,
which also recognized that the strength of the causal relationships
may vary between exposed and reference sites.

Alternative Bayesian methodological frameworks

In the context of Bayesian inference, Rutter (2010) recently present-
ed a hierarchical logistic model to assess the likelihood of tumor inci-
dence on brown bullheads in an AOC (Presque Isle Bay, Lake Erie) in
comparisonwith several candidate control sites. While the explicit con-
sideration of the role of important covariates (e.g., age, gender, length,
weight) is a common denominator with the present study, Rutter's
(2010) hierarchical approach drew inference about the frequency of
fish tumors using the same combination of predictor variables for both
impaired and non-impaired sites rather than basing the spatial compar-
isons on themost parsimonious (and better identified) models for each
site. Relative to our modeling analysis though, the scope of the hierar-
chical framework was broader in that the intent was to accommodate



Fig. 4. Representation of tumor exceedance probabilities in St. Marys River sites, based on the Bernoulli model results. Histograms depict the likelihood of experiencing probabilities of
tumor occurrence between 0 and 50%. The dotted lines represent a tentative benchmark aim of 10% probability of tumor exceedance for St. Marys white sucker, with percentage of prob-
abilities below this line indicated to the left of each line. In a similarmanner, the encircled numbers represent theprobability levels associatedwith amore stringent criterion that stipulates
b5% likelihoodof tumor exceedance in each specimenexamined. Panels correspond to: a) cholangioma in exposed sites; b) cholangiocarcinoma inexposed sites; c) bile duct hyperplasia in
exposed sites; d) total neoplasms in exposed sites; e) bile duct hyperplasia in the reference site; and f) total pre-neoplasms in the reference site.
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sampling designs in which sites are sampled overmultiple years and/or
at multiple sublocations within each site (Rutter, 2010). Namely, the
tumor incidence rates in both exposed and reference sites were de-
scribed by a hierarchical tree, characterizing the effects of a covariate
at each sublocation and year in which the fish samples were collected,
while a hyperparameter was specified at the top of the hierarchy to de-
pict the lake-wide signature of the covariate. One important lesson
learnedwas that the hierarchical model provides more realistic (larger)
uncertainty estimates relative to non-hierarchical approaches that typ-
ically downplay site-level and/or year-to-year variability. Another inter-
esting feature of Rutter's (2010) work was the standardization of the
values of the covariates along with the application of Cauchy non-
informative priors (Gelman et al., 2008) which in turn led to the deriva-
tion of risk assessment estimates in caseswhere the existing data do not
contain any observed tumors. Further, the hierarchical modeling frame-
work represents an optimal compromise between “completely pooled”
(or cross-sectional) models that ignore the site-specific effects and ap-
proaches like ours that estimate separate models for each site with no
data pooling (Cheng et al., 2010; Gudimov et al., 2012). By employing
“partial pooling” of the available information, the hierarchical frame-
work allows sensible comparisons among multiple sites, without the
need to adjust the predictive intervals in locations with small sample
sizes, e.g., the Bonferroni correction in frequentist statistics (Gelman
et al., 2009).

To examine the robustness of the results presented herein, we im-
plemented a similar hierarchical configuration of the Bernoulli model,
under which the exposed and reference sites were linked through
hyperparameters for the slopes, while assigning site-specific intercepts
to distinguish the differences in fish tumor frequency between the two
locations (see Figs. 3 & 4 in Rutter, 2010). We used the same covariates
aswith the originalmodels for the total neoplasmand pre-neoplasmoc-
currence rates at the exposed and reference sites, respectively (Table 3).
The hierarchical approachfirst reiterated our earlier finding that none of
the existing covariates has a distinctly identifiable causal connection
with the frequency of a particular tumor form at both locations (ESM
Table S4). We then compared the likelihood of an “average” white
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Fig. 5. Scatterplots depicting the results from the Bernoulli–Poisson model. Y axes represent “true” tumor occurrence in the system (Tumorlatent), against various classes of fish covariates
(age, fork length, liver weight and gonad weight), plotted on the X axes. Panels correspond to: a) cholangioma in exposed sites; b) cholangiocarcinoma in exposed sites; c) bile duct hy-
perplasia in exposed sites; d) total neoplasms in exposed sites; e) bile duct hyperplasia in the reference site; and f) total pre-neoplasms in the reference site.
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sucker in the exposed site having a tumor relative to the corresponding
probability in the reference site over all the realizations of the parame-
ter posterior space (Rutter, 2010). For total neoplasm data, we found
that an age 10 white sucker with a fork length of 43 cm is characterized
by a (−2.64%, 8.59%) frequency interval to manifest neoplasms in the
exposed relative to the reference site. In a similar manner, the corre-
sponding frequency interval for pre-neoplasms was (−3.43%, 12.22%)
when considering an age 10 white sucker with a liver weight of
18.13 g. While the mainly positive differences between the two sites
suggest higher incidence rates at the exposed area, a minimum toler-
ance level is required to infer whether these values reflect systematic
trends or not (Berger andHsu, 1996; Lauzon andCaffo, 2009). Following
the procedure described by theRutter (2010) study (see also footnote of
Table S4), we specified a 12% tolerance level that reflects the belief that
if two sites differ in regards to the true tumor incidence by more than
5%, then evidence of non-equivalence can only be inferred when the
variability in the differences of their tumor incidence rates lies outside
the ±12% uncertainty bounds. Thus, the derived differences in both
neoplasm and pre-neoplasm incidence rates suggest that the exposed
site is practically equivalent to the reference location.

To further discern the degree of impairment of the exposed site, we
pooled the data from the two locations and used bootstrap sampling to
conduct posterior simulations with the hierarchical model. In doing so,
we compared the tumor incidence rates between the two sites, while
eliminating the potential bias thatmay have been introduced by the dif-
ferences in the demographics of the corresponding samples. When ex-
amined at each age (i.e., averaging the predictions over all the fork
lengths measured within each age class), both the median and the
95% credible intervals suggest that the neoplasm rates are consistently
higher at the exposed site compared to the reference conditions
(Fig. 6a). By contrast, the predicted pre-neoplasm rates were almost
similar between the two sites although the risk appears to be elevated
in the reference site once white suckers of age 15 or greater are being
considered (Fig. 6b). While these projections primarily reflect the
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Fig. 5 (continued).
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spatial nature of the different causal relationships as manifested in our
data set, we note that the use of the criterion that stipulates the likeli-
hood of tumor incidence to be lower than 10% for a certain fraction
(or greater) of the fish samples collected appears to paint a somewhat
different picture. Namely, when using the pooled sample, the mean
probability of neoplasm incidence was predicted to be lower than 10%
in nearly 70% and 95% of the cases in the exposed and reference sites, re-
spectively. On the other hand, the predicted mean pre-neoplasm fre-
quency never falls below 10% at the exposed site, whereas ≈40% of
the cases are predicted to fall below the proposed cut-off level in the ref-
erence location.

In conclusion, we presented a Bayesian methodological framework
that can be used to predict fish tumor incidence rates, while accommo-
dating the emerging evidence about the causal linkages with the phys-
ical characteristics of fish (age, fork length, liver and gonad weight) and
the increasing awareness on the importance of environmental policy
practices that explicitly accommodate the role of uncertainty. In white
sucker from the St. Marys River AOC, tumor incidence rates are general-
ly elevated at the pooled samples from exposed sites (Bellevue Marina
and Partridge Point) relative to the reference conditions (Batchawana
Bay). The Bayesian counterpart of the two one-side tests for equivalence
though suggests that the exposed sites are practically equivalent to the
reference location in regards to the neoplasm and pre-neoplasm inci-
dence rates. A new criterion that stipulates the likelihood of tumor inci-
dence to be lower than 10% for a certain fraction (or greater) of the fish
samples collected may be a more effective way to characterize the pre-
vailing conditions in impacted locations. In the exposed sites, the mean
probability of neoplasm incidence was predicted to be lower than 10%
in 70% of the cases examined, but the predictedmean pre-neoplasm fre-
quency never falls below the 10% cut-off level collected. The corre-
sponding values were significantly more favorable in the reference
site. We believe that the presented framework offers a rational way to
evaluate fish tumor incidence rates and could play an instrumental
role in guiding the formation of delisting criteria across all the impacted
Great Lakes Areas of Concern.
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Fig. 6. Probability of (a) neoplasm and (b) pre-neoplasm incidence by age on white
suckers in the exposed (black circles) and reference (gray triangles) sites in St. Marys
River AOC. Estimates are based on the median and the 95% credible intervals of the poste-
rior distribution. Posterior distributions of the predicted tumor incidence at each age are
based on the mean observed fork length (neoplasm) and liver weight (pre-neoplasm) at
each age and the hierarchical configuration of our Bernoulli model.
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Table S1: Summary statistics for white sucker physical characteristics across exposed and reference 

sampling sites in St. Marys River. 

 

 Exposed sites Reference site 

 

Number of samples 

 

139  

(41 from Partidge Point, 98 from 

Bellevue Marina) 

 

 

100  

(all from Batchawana Bay) 

 

Age of fish 

(mean, SD, median) 

11.01 4.11 

 

10.00 

 

9.81 3.09 10.00 

Average female age  11.72   10.16 
 

 

Average male age  9.76   9.33 
 

 

 

Fork length (cm) 

(mean, SD, median) 

43.64 3.77 43.80 44.30 3.86 

 

44.15 

 

 

Total weight (g) 

(mean, SD, median) 

1188 291 1190 1237 298 1200 

 

Gonad weight (g) 

(mean, SD, median) 

63.05 23.74 61.59 77.02 31.28 77.24 

 

Liver weight (g) 

(mean, SD, median) 

18.74 8.04 18.02 17.20 7.30 16.08 

 

 

 

 

 

 

 

 

 

 

 

 

  



Table S2: Summary of parameter posteriors for the most parsimonious models.  
 

Model version 

Parameters 

α β0 ββββ1  β2   

mean SD mean SD mean SD mean SD 

 

                MODEL ONE 

E
X

P
O

S
E

D
 

 

Cholangioma (Age + GW) 

 

 

 

 

 

N/A 

 

-6.562 1.697 2.409 0.876 -1.061 0.494 

 

Cholangiocarcinoma (Age + LW) 0.612 0.601 0.440 0.890 0.536 0.612 

 

Bile duct hyperplasia (Age + FL) -3.840 0.677 0.526 0.569 0.939 0.794 

 

Total neoplasms (Age + FL) 0.366 0.897 0.411 0.040 0.490 0.366 

R
E

F
. 

 

Bile duct hyperplasia (Age + LW) -46.24 18.90 5.804 2.720 19.59 8.192 

 

Total preneoplasms (Age + LW) -2.235 0.357 0.475 0.340 0.226 0.394 

     

               MODEL TWO 

E
X

P
O

S
E

D
 

 

Cholangioma (Age + GW) 2.343 0.327 -2.867 0.987 1.229 0.613 -0.249 0.372 

 

Cholangiocarcinoma (Age + LW) 2.586 0.474 -1.811 0.815 -0.136 0.480 1.841 1.067 

 

Bile duct hyperplasia (Age + LW) 2.665 0.516 -1.914 0.865 1.950 1.218 -0.168 1.287 

 

Total neoplasms (Age + FL) 2.225 0.218 -0.540 0.325 0.254 0.334 0.075 0.442 

R
E

F
. 

 

Bile duct hyperplasia (Age + LW) 2.530 0.502 -9.722 5.138 1.300 0.955 3.960 2.466 

 

Total preneoplasms (Age + LW) 2.229 0.211 -0.574 0.368 0.224 0.433 -0.029 0.428 

 

               MODEL THREE 

E
X

P
O

S
E

D
 

 

Cholangioma (Age + GW) 3.144 0.805 -2.796 1.230 1.980 0.658 -0.835 0.367 

 

Cholangiocarcinoma (Age + FL) 2.667 0.581 -0.983 0.503 0.817 0.536 0.205 0.647 

 

Bile duct hyperplasia (Age + FL) 4.026 0.736 -1.049 0.684 0.891 0.636 0.693 0.862 

 

Total neoplasms (Age + FL) 2.738 0.598 -0.154 0.354 0.917 0.406 -0.105 0.451 

R
E

F
. 

 

Bile duct hyperplasia (Age + LW) 3.540 0.867 -20.13 11.41 3.067 1.767 10.21 5.105 

 

Total preneoplasms (Age + LW) 3.457 0.752 0.376 0.531 0.529 0.352 0.312 0.441 



Table S3: Spearman rank correlation coefficients for white sucker physical characteristics in the St. 

Marys River exposed sites (Bellevue Marina and Partridge Point) and reference site (Batchawana Bay). 

All correlations were significant at the 5% level of significance. 

Exposed sites 

 Age Fork length Total weight Gonad weight Liver weight 

Age 1.000 0.798 0.674 0.372 0.599 

Fork length 0.798 1.000 0.855 0.565 0.768 

Total weight 0.674 0.855 1.000 0.724 0.846 

Gonad weight 0.372 0.565 0.724 1.000 0.632 

Liver weight 0.599 0.768 0.846 0.632 1.000 

 

Reference site 

 

Age 1.000 0.833 0.782 0.581 0.557 

Fork length 0.833 1.000 0.955 0.726 0.741 

Total weight 0.782 0.955 1.000 0.822 0.780 

Gonad weight 0.581 0.726 0.822 1.000 0.571 

Liver weight 0.557 0.741 0.780 0.571 1.000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S4: Summary of the posteriors from the comparative exercise between exposed and reference 

sites using the hierarchical configuration of the Bernoulli model. 

 

Neoplasms Preneoplasms 

Exposed Reference Exposed Reference 

 Mean SD  Mean SD  Mean SD  Mean SD 

β0 -2.589 0.368 β0 -3.320 0.585 β0 -1.647 0.236 β0 -2.066 0.332 

βage 0.653 0.349 βage 0.078 0.686 βage 0.269 0.223 βage 0.502 0.348 

βflength 0.242 0.445 βflength 0.443 0.589 βlvweight 0.025 0.251 βlvweight 0.192 0.334 

  

Frequency int. upper lower Frequency int. upper lower 
Difference* 8.59% -2.64% Difference 12.22% -3.43% 

Tolerance level** 10.66% -10.76% Tolerance level 12.68% -12.81% 

* Refers to the difference of the predicted tumour incidence between exposed and reference sites. 

** The tolerance level was determined by comparing the exposed site to itself, using two independent MCMC 

samples from the corresponding posterior distribution of the predicted tumour incidence. The bound of this 

interval that is greatest in absolute value can be viewed as the tolerance level required for two sites with sampling 

designs similar to the exposed one to exhibit equivalence if the true tumor incidence at the sites were identical. To 

allow sites with similar, but not exact, tumor incidences to demonstrate evidence of equivalence, 5% was added to 

the initial tolerance level estimate. 

 

 

 

 

 

 

 

 

 



WinBUGS codes (Total neoplasms) 

Bernoulli model 

model { 

 

             for (i in 1 : N) { 

                Tumor[i]~dbern(p[i]) 

                logit(p[i])<-pmu[i] 

                pmu[i]<-beta0+beta1*((Age[i]-Age_mean)/Age_sd)+beta2*((Fork_length[i]-                  

                            Fork_length_mean)/Fork_length_sd) 

                                     } 

            Age_mean<-mean(Age[]) 

            Age_sd<-sd(Age[]) 

            Fork_length_mean<-mean(Fork_length[]) 

            Fork_length_sd<-sd(Fork_length[]) 

 

             beta0 ~ dnorm(0, 0.001) 

             beta1 ~ dnorm(0, 0.001) 

             beta2 ~ dnorm(0, 0.001) 

           

          } 

 

list(N = 139, 

 

Tumor = 

c(0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,1,0,0,0,0,

0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,

0,0,0,0,0,0), 

 

Age = 

c(8,12,12,9,8,17,6,13,15,19,7,8,9,16,12,15,7,11,9,10,10,9,8,13,7,18,7,8,10,7,7,7,6,12,14,9,7,7,8,16,5,7,14,16,9,8,6,8,13,20,16

,8,12,15,6,14,23,7,11,8,17,9,7,15,10,9,7,16,11,10,13,10,8,7,8,16,12,12,15,6,15,10,11,10,7,18,12,15,16,11,8,9,9,7,11,12,6,6,1

7,13,5,13,11,7,11,19,17,15,10,8,5,17,5,7,15,13,6,12,8,9,7,6,11,14,5,6,15,14,21,12,13,10,15,19,10,17,19,18,6), 

 

Fork_length = 

c(3.728100167,3.899950424,3.828641396,3.795489189,3.706228092,3.850147602,3.706228092,3.914021008,3.817712326,

3.929862924,3.73289634,3.740047741,3.83081295,3.887730313,3.797733859,3.742420221,3.772760938,3.788724789,3.79

7733859,3.864931398,3.768152635,3.786459782,3.811097087,3.804437795,3.660994251,3.889777396,3.701301974,3.688

879454,3.817932082,3.678829118,3.691376334,3.706228092,3.713572067,3.839452313,3.891820298,3.758871826,3.6913

76334,3.686376324,3.7208625,3.779633817,3.597312261,3.756538103,3.864931398,3.703768067,3.698829785,3.7658404

95,3.610917913,3.795489189,3.841600541,3.862832761,3.90197267,3.758871826,3.871201011,3.850147602,3.698829785,

3.90197267,3.879499814,3.703768067,3.850147602,3.761200116,3.90197267,3.848017675,3.725693427,3.871201011,3.80

666249,3.747148362,3.761200116,3.850147602,3.828641396,3.784189634,3.835141961,3.737669618,3.713572067,3.7135

72067,3.772760938,3.860729711,3.772760938,3.747148362,3.772760938,3.681351188,3.83081295,3.777348102,3.784189

634,3.740047741,3.686376324,3.867025639,3.837299459,3.793239469,3.843744165,3.813307032,3.871201011,3.7424202

21,3.793239469,3.758871826,3.761200116,3.777348102,3.632309103,3.583518938,3.864931398,3.725693427,3.51154543

9,3.786459782,3.763522997,3.742420221,3.850147602,3.790984677,3.879499814,3.804437795,3.793239469,3.660994251,

3.549617387,3.860729711,3.532225644,3.645449896,3.819907717,3.742420221,3.589059119,3.845883203,3.723280881,3.

751854253,3.666122467,3.583518938,3.713572067,3.73289634,3.538056564,3.62700405,3.813307032,3.841600541,3.903

990834,3.713572067,3.826465117,3.78191432,3.852273001,3.797733859,3.839452313,3.925925911,3.912023005,3.86283

2761,3.62700405)) 

 

#Initial Conditions 1 
list(beta0 = 1, beta1 = 1, beta2 = 1)  



 

#Initial Conditions 2 
list(beta0 = 0.5, beta1 = 0.5, beta2 = 0.5)  

 

#Initial Conditions 3 
list(beta0 = 1.2, beta1 = 1.2, beta2 = 1.2) 

Zero-Inflated Poisson model 

model { 

 

            for (i in 1 : N) { 

Tumor[i] ~ dpois(mu[i]) 

mu[i]<-u[i]*(pmu[i]) 

u[i]~dbern(p[i]) 

#Fork_length_min[i]<-Fork_length[i]-0.1 

#Fork_length_max[i]<-Fork_length[i]+0.1 

#Fork_length_rand[i]~dunif(Fork_length_min[i],Fork_length_max[i]) 

               p[i]<-exp(-alpha/(Number[i])) 

               #log(pmu[i])<-beta0+beta1*((Age[i]-Age_mean)/Age_sd)+beta2*((Fork_length_rand[i]-                  

                                     Fork_length_mean)/Fork_length_sd) 

               log(pmu[i])<-beta0+beta1*((Age[i]-Age_mean)/Age_sd)+beta2*((Fork_length[i]-                  

                                     Fork_length_mean)/Fork_length_sd) 

                                   } 

            Age_mean<-mean(Age[]) 

            Age_sd<-sd(Age[]) 

            Fork_length_mean<-mean(Fork_length[]) 

            Fork_length_sd<-sd(Fork_length[]) 

 

             alpha ~ dunif(2,5) 

             beta0 ~ dnorm(0, 0.001) 

             beta1 ~ dnorm(0, 0.001) 

             beta2 ~ dnorm(0, 0.001) 

            } 

 

list(N =40, 

Number=c(3,2,7,4,1,14,4,8,6,1,3,7,1,2,7,2,1,6,2,2,5,4,2,4,2,1,4,1,7,3,1,1,5,6,3,2,2,1,1,1), 

 

Tumor = c(0,0,1,1,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,0,1,0,2,1,1,0,1,0,1,1), 

 

Age = c(5,5,6,6,7,7,7,8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,16,16,17,18,19,19,20,21,23), 

 

Fork_length = 

c(3.5,3.6,3.6,3.7,3.6,3.7,3.8,3.7,3.8,3.9,3.7,3.8,3.9,3.7,3.8,3.9,3.7,3.8,3.9,3.7,3.8,3.9,3.7,3.8,3.9,3.7,3.9,3.7,3.8,3.9,3.7,3.8,3.9,

3.9,3.9,3.8,3.9,3.9,3.9,3.9)) 

 

#Initial Conditions 1 

list(beta0 = 0.1, beta1 = 0.1, beta2 = 0.1, alpha=2.1, u = 

c(0,0,1,1,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,1,1,0,1,0,1,1)), 

 

#Initial Conditions 2 

list(beta0 = 0.5, beta1 = 0.5, beta2 = 0.5, alpha=2, u = 

c(0,0,1,1,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,1,1,0,1,0,1,1)), 

 

#Initial Conditions 3 



list(beta0 = 0.7, beta1 = 0.7, beta2 = 0.7, alpha=2, u = 

c(0,0,1,1,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,1,1,0,1,0,1,1)) 

 

Binomial-Poisson model 

model { 

 

             for (i in 1 : N) { 

                Tumor[i] ~ dbin(p[i],Tumorlatent[i]) 

                Tumorlatent[i]~dpois(lamda[i]) 

                p[i]<-exp(-alpha/(Number[i])) 

  #Fork_length_min[i]<-Fork_length[i]-0.1 

  #Fork_length_max[i]<-Fork_length[i]+0.1 

  #Fork_length_rand[i]~dunif(Fork_length_min[i],Fork_length_max[i]) 

                lamda[i] <-exp(lamdam[i]) 

                #lamdam[i] <-beta0+beta1*((Age[i]-Age_mean)/Age_sd)+beta2*((Fork_length_rand[i]-                  

                                  Fork_length_mean)/Fork_length_sd) 

                lamdam[i] <-beta0+beta1*((Age[i]-Age_mean)/Age_sd)+beta2*((Fork_length[i]-                  

                                  Fork_length_mean)/Fork_length_sd) 

                                      } 

            Age_mean<-mean(Age[]) 

            Age_sd<-sd(Age[]) 

            Fork_length_mean<-mean(Fork_length[]) 

            Fork_length_sd<-sd(Fork_length[]) 

 

             alpha ~ dunif(2,5) 

             beta0 ~ dnorm(0, 0.001) 

             beta1 ~ dnorm(0, 0.001) 

             beta2 ~ dnorm(0, 0.001) 

 

             } 

 

list(N =40, 

Number=c(3,2,7,4,1,14,4,8,6,1,3,7,1,2,7,2,1,6,2,2,5,4,2,4,2,1,4,1,7,3,1,1,5,6,3,2,2,1,1,1), 

 

Tumor = c(0,0,1,1,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,0,1,0,2,1,1,0,1,0,1,1), 

 

Age = c(5,5,6,6,7,7,7,8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13,13,14,14,15,15,15,16,16,16,17,18,19,19,20,21,23), 

 

Fork_length = 

c(3.5,3.6,3.6,3.7,3.6,3.7,3.8,3.7,3.8,3.9,3.7,3.8,3.9,3.7,3.8,3.9,3.7,3.8,3.9,3.7,3.8,3.9,3.7,3.8,3.9,3.7,3.9,3.7,3.8,3.9,3.7,3.8,3.9,

3.9,3.9,3.8,3.9,3.9,3.9,3.9)) 

 

#Initial Conditions 1 
list(beta0 = 0.1, beta1 = 0.1, beta2 = 0.1 , alpha = 2.1, 

Tumorlatent=c(3,2,7,4,1,14,4,8,6,1,3,7,1,2,7,2,1,6,2,2,5,4,2,4,2,1,4,1,7,3,1,1,5,6,3,2,2,1,1,1))  

 

#Initial Conditions 2 
list(beta0 = 0.2, beta1 = 0.2, beta2 = 0.2 , alpha = 2,  

Tumorlatent=c(3,2,7,4,1,14,4,8,6,1,3,7,1,2,7,2,1,6,2,2,5,4,2,4,2,1,4,1,7,3,1,1,5,6,3,2,2,1,1,1)) 

 

#Initial Conditions 3 
list(beta0 = 0.6, beta1 = 0.6, beta2 = 0.6 , alpha = 1.5,  

Tumorlatent=c(3,2,7,4,1,14,4,8,6,1,3,7,1,2,7,2,1,6,2,2,5,4,2,4,2,1,4,1,7,3,1,1,5,6,3,2,2,1,1,1)) 
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