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Extreme events appear to play an important role in pollutant export and the overall functioning of watershed
systems. Because they are expected to increase in frequency as urbanization and recent climate change trends
continue, the development of techniques that can effectively accommodate the behavior of watersheds during
extreme events is one of the challenges of the contemporary modeling practice. In this regard, we present a
Bayesian framework which postulates that the watershed response to precipitation occurs in distinct states.
Precipitation depth above a certain threshold triggers an extreme state, which is characterized by a qualitatively
different response of the watershed to precipitation. Our calibration framework allows us to identify these
extreme states and to characterize the different watershed behavior by allowing parameter values to vary
between states. We applied this framework to SWAT model implementations in two creeks in the Hamilton
Harbour watershed of Redhill Creek, an urban catchment, and Grindstone Creek, an agricultural one. We found
that our framework is able to coherently identify watershed states and state-specific parameters, with extreme
states being characterized by a higher propensity for runoff generation. Our framework resulted in better
model fit above the precipitation threshold, although there were not consistent improvements of model fit
overall. We demonstrate that accommodating threshold-type of behavior may improve the use of models in
locating critical source areas of non-point source pollution.

© 2014 International Association for Great Lakes Research. Published by Elsevier B.V. All rights reserved.
Introduction

Hydrology has longbeen concernedwith extremeevents in the form
of floods (Gumbel, 1954). Recent developments in the field have
suggested that extreme events may play an important role in the
overall functioning of watershed systems, despite their relatively low
frequencies of occurrence (Macrae et al., 2007; Shields et al., 2008). In
particular, extremehydrological events have been found to significantly
contribute to the overall export of nitrogen and phosphorus in agricul-
tural (Macrae et al., 2007) as well as urban systems (Duan et al., 2012;
Shields et al., 2008). There is evidence that both urbanization (Duan
et al., 2012; Shields et al., 2008) and climate change (Kunkel et al.,
2013) will make extreme hydrological and nutrient export events
more common in the future.

Watershed modeling can play a key role in advancing our under-
standing of the likely effects of an increased frequency of extreme
events on water quality (Rode et al., 2010). For instance, Michalak
et al. (2013) used the Soil-Water Assessment Tool (SWAT) to
oup, School of Geography and
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estimate the unusually high nonpoint source soluble phosphorus inputs
associated with the largest algal bloom in Lake Erie's history. However,
continuous watershed models typically focus on the processes or
variables responsible for the “average” system behavior. Due to their
infrequency, extreme events andanyprocesses (or dynamics) associated
with them will usually not be considered in the model development
process and are often relegated to the role of “outliers”. This is perhaps
why hydrological model parameter studies often find that the ideal
parameter set for modeling high flow conditions is different from that
used when modeling the entire range of flows (e.g., Cibin et al., 2010;
Zhang et al., 2011). There is empirical evidence that this is not an artifact
of mathematical models, but a genuine reflection of the thresholds
which do in fact operate in hydrological systems at the hillslope and
watershed scales. As mentioned previously, extreme events can repre-
sent a significant proportion of annual fluxes of water or materials out
of a watershed and should be better considered by continuous models.

Empirical work in hydrology has found that extreme events can
result from different flow mechanisms than more common events.
McDonnell (1990), for instance, found that flow through the soil matrix
was responsible for small runoff events, whereas macropore flow
tended to be responsible for larger events. Subsequent empirical work
has found that the initiation of macropore flow tended to occur when
the soil was close to saturation (Zehe et al., 2001). While an explicit
.V. All rights reserved.
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introduction of this two-domain conceptualization of flow into
numerical watershed models did prove to be feasible, doing so
required prohibitively extensive field data (Zehe et al., 2001). Other
environments, such as the Canadian Shield, are characterized by “fill-
and-spill” mechanisms where certain cascading storages in bedrock
depressions must be filled before the catchment as a whole is able to
export significant water volumes (Ali et al., 2013; Oswald et al., 2011).
In many watersheds of management interest, threshold behavior may
be at work in differentiating the response to extreme precipitation
events; yet, obtaining a detailed process understanding and explicitly
representing this behavior in our mathematical models is typically not
feasible. We are focused on such cases in this paper.

In a review of threshold behavior of hydrological systems, Zehe and
Sivapalan (2009) identified two strategies for accommodating thresh-
old behavior in watershed models. The first strategy is explicit through
the model equations, as done, for instance, by Zehe et al. (2001) with
their two-domain model of soil water movement. The second, less
commonly pursued, strategy is to assume that, as we do here, the sys-
tem operates in multiple states or modes of behavior, the identification
of which is a component of the model calibration process. Our novel
contribution to the study of extreme events in watershed modeling is
an example of this second strategy. We posit that extreme events may
be modeled as a different response of a system to precipitation inputs
above a threshold. That is, the system may be thought of as having
distinct states of response to precipitation. This approach to extreme
events is in agreement with empirical and theoretical developments
in the field (Ali et al., 2013; Zehe and Sivapalan, 2009; Zehe et al., 2001).

Bayesian inference provides an approach to model calibration,
which is uniquely suited to the problem of identification of latent states
(Gelman et al., 2004; Prado and West, 2010). Applications of Bayesian
inference techniques to accommodate different states of a watershed
system have typically focused on one of two techniques: mixture likeli-
hoods and time varying parameters. Employing mixture likelihood
explicitly accounts for multiple watershed states by assuming the model
residuals represent different populations with different statistical
properties. Yang et al. (2007a), for instance, showed that the residuals
from (pre-specified) dry and wet seasons have distinct variances and
temporal correlation patterns, while Schaefli et al. (2007) showed that
the class membership of particular residuals could be identified as
part of themodel training exercise. Themain advantage ofmixture like-
lihoods is to essentially weight different residuals more or less strongly,
which serves to quantitatively express an expectation that the model
would not perform consistently well throughout its temporal domain,
e.g., we expect that a model would not reproduce the high flow periods
as closely as the baseflow conditions (Yang et al., 2007a). In doing so,
we avoid both biasing the model calibration in favor of themore uncer-
tain states of the system and overestimating the residual variance of the
states which are characterized by lower uncertainty.

While useful and statistically coherent, mixture likelihoods do not
allow us to accommodate the different processes, which may be
operating in the different members of the mixture of the residuals. In
fact, Schaefli et al. (2007) found that the use of a mixture likelihood
led to a higher residual variance for large events. This would serve to
decrease the impact of these events on the overall likelihood function
value, leading to a model calibration which would tolerate very large
residuals during the extreme events instead of reducing them, precisely
the opposite of what we here aim to do. A second strategy to accommo-
date extreme events is to allow the model parameters to vary in time.
This type of approach has mainly opted for a continuous evolution of
parameter values through time, either in a manner analogous to the
Kalman filter (Kalman, 1960), where parameter values are adjusted at
each time step to allow a better correspondence of the model and the
data, or with a type of random walk, where parameter values may
change significantly at each time step. Such approaches may be station-
ary (Reichert and Mieleitner, 2009) or non-stationary (Lin and Beck,
2007). While suitable for tracking gradual changes in watershed
functioning, such approaches may not sensibly identify a number of
distinct states of watershed functioning; especially, if we consider that
using different parameters for every time step likely results in an
over-parameterization of the model.

In this study, we take a state-specific approach, founded upon a
multivariate Bayesian approach, which effectively balances the need
to relax rigid model structures but does not introduce the complexity
typically entailed by continuous parameter evolution in time
(Arhonditsis et al., 2008a,b; Wellen et al., 2012).We discuss themathe-
matical details of our approach in the methodology section, but we
essentially posit that a threshold of precipitation exists above which
the watershed is characterized by different parameter values relative
to those used to parameterize themodel below the threshold. However,
the values of a particular parameter are not independent between the
two watershed states or modes of behavior but are characterized by a
covariance structure to be identified during model calibration. Finally,
we critically discuss the prospect of the present methodological frame-
work to offer an effective means for reproducing watershed dynamics
during extreme events.

Methodology

Incorporating threshold behavior in model parameter estimation

We may think of a deterministic hydrological model as a function,
which connects a time series of environmental inputs with a time series
of streamflow outputs:

Y ¼ f γ; θð Þ ð1Þ

where Y indicates the time series ofmodel predictions (e.g., streamflow,
chloride concentration), f indicates the model, γ indicates the various
time series of environmental inputs (e.g., precipitation, temperature,
wind speed, crop rotations), and θ indicates the vector of model param-
eters. Because both the watershed model and the measurements from
the system are subject to substantial uncertainty, we typically introduce
a term to describe their mismatch, and so we re-write Eq. (1) as:

Y ¼ f γ; θð Þ þ ε; ð2Þ

where ε indicates the time series of model residuals, defined as the
difference between measurements and model predictions. The statistical
treatment of the ε time series has been the subject of considerable
work in hydrology — the emerging consensus is that it is typically
autocorrelated and non-Gaussian (Schoups and Vrugt, 2010; Sorooshian
and Dracup, 1980; Yang et al., 2007b). The error characterization can
guide us in drawing statistically sound inference, and the mismatch of
model predictions and system measurements is mainly due to the
simplifications employed when constructing models of highly complex
natural systems, such aswatersheds. Thus, reducing themodel structural
error, a significant component of the ε time series, requires creating
better models. While ultimately better models must be arrived at by
using systems of equations which more accurately represent the
environmental system in question, we contend that a significant step
in this direction can be made by relaxing the assumptions made by
the inference procedure. Namely, we relax the assumption that the
vector of model parameters (θ) is constant for all time steps.

Frameworks for relaxing this assumption have been proposed
before, but all of them tend to favor either the replacement of a subset
of the parameter vector θwith a stochastic process in time (e.g., Reichert
and Mieleitner, 2009; Wellen et al., 2012) or the relaxation of a subset
of the parameter vector θ to evolve in time (e.g., Lin and Beck, 2007).
We here postulate that rather than a gradual evolution or a continuum
of system responses to climate forcing, watersheds can be thought of as
characterized by multiple discrete states of response. We take an
approach philosophically similar to a class of models called Markov-
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switching models, which posit that the model parameters depend
on the identity of discrete, unobserved, time-dependent states (Prado
and West, 2010). We further postulate that values of precipitation
exceeding a threshold can trigger a shift to an alternative state of water-
shed response. In the future, our framework can easily be generalized to
other external forcing factors (e.g., temperature) or even internal state
variables (e.g., soil water storage). We postulate that above some
threshold of precipitation θp, a subset of the parameter vector is charac-
terized by different values than when the system forcing is below the
threshold:

θt ¼ θlow for γp;t ≤ θp
θt ¼ θhigh for γp;t N θp

ð3Þ

where γp,t refers to the value of precipitation averaged for some period
before time t, θt refers to the value of the parameter vector at time t, θp
refers to the threshold between the two states, and θlow and θhigh refer
to the state-specific values of the parameter vector θ. Extending this
framework to an arbitrary number of states is straightforward although
the rest of the manuscript will assume the presence of only two states
separated by one threshold. This assumption was made because our
case study has evidence of only two states (see Case study & model
selection section for more detail). Referring back to our original nota-
tion, we may now write the deterministic model as:

Yt ¼ f γ; θlowð Þ þ εt for γp;t ≤ θt ð4aÞ

Yt ¼ f γ; θhigh
� �

þ εt for γp;t N θt ð4bÞ

Note that our framework adds a discrete number of parameters
equal to z + 1, where z is the number of parameters assumed to vary
between states. The example which follows presents the simplest
possible implementation of our framework, where only two states
exist, and where only one parameter varies by state. This adds an
additional two parameters to the model, likely a much smaller increase
of complexity than allowing the parameters to varywith each time step.

In a final note regarding our framework, the inclusion of the thresh-
old θp as a random variable instead of a single, pre-specified quantity
implies that a) membership of each time step in one state or another
is to be inferred rather than assumed; and b) the state membership of
each time step is described probabilistically rather thandeterministically.
That is, each model iteration is characterized by a particular value of θp
and thus each day is classified into the normal or the extreme state.
When we have a number of model iterations, the probability of a day
being classified as extreme is simply the number of iterations in
which the day is classified as extreme divided by the total number of
iterations. The same is true for the normal state. Thus, the proposed
framework essentially draws inference at a given time step on model
parameters and states simultaneously.

Bayesian inference framework

Inference is founded upon Bayes' Theorem, expressed as:

π θjYð Þ ¼ π θð ÞL Yjθð Þ
∫
θ

π θð ÞL Y jθð Þdθ
ð5Þ

where π(θ) represents our prior beliefs regarding themodel parameters
(θ), L(Y|θ) corresponds to the likelihood of observing the data given the
different θ values, and π(θ|Y) is the posterior probability that expresses
our updated beliefs on the θ values after the existing data from the
system are considered. We simulated samples from the posterior
using Markov chain Monte Carlo (MCMC) sampling. In this study, we
used the DiffeRential Evolution Adaptive Metropolis Algorithm-ZS
(DREAM-ZS) as presented by Laloy and Vrugt (2012), the details of
which we include in the Electronic Supplementary Material (ESM).
Our likelihood function accounted for the correlation of the residuals
through time using an AR1 approach (Sorooshian and Dracup, 1980):

εt ¼ ρεt−1 þ δt
δt � N 0;σ2

v

� � ð6Þ

Conceptually, this approach assumes that the residuals can be
decomposed into two components — an independent one called an
innovation (δt) and a temporally correlated component (ρεt − 1),
which describes how long the effects of past innovations linger in the
time series. Our preliminary tests indicated that the distributions of
the innovations could be accounted for using Student's t-distribution
as the basis for the likelihood (Yang et al., 2007b):

L Yjθð Þ ¼
1−ρ2
� �

Γ
vþ 1
2

� �

Γ
v
2

� � ffiffiffiffiffiffi
πv

p
σv

� 1þ 1−ρ2
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� ε21
vσ2
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ð7Þ

where v refers to the degrees of freedom and Γ refers to the gamma
function. During our preliminary model runs we calculated the innova-
tions as δt = εt − ρεt − 1 and fit them to a Student's t distribution.
We found that the innovations could be described with a Student's t
distribution with 7 degrees of freedom. We accommodated the
heteroscedasticity of the residuals using a log transformation Y ′ =
ln(Y + 1).

Detailed statistical formulations

We tested three statistical formulations for parameter estimation
and inference. The first statistical formulation (Formulation 1) is a
Bayesian update of the hydrological model which does not allow any
parameters to vary when thresholds are crossed. This formulation is
intended to serve as a benchmark to compare to our other formulations.
All prior parameter distributions were uniform over their range.
The second statistical formulation (Formulation 2) implements the
deterministic model using the framework presented in Eq. (4a,4b). In
keepingwith our assumption that the two states of watershed response
are distinct but related, we treat θlow and θhigh as draws from a bivariate
normal distribution. Doing so has the advantage of removing the
component of the covariance from the marginal variances of the two
parameters, allowing better defined marginal posterior parameter
distributions and posterior predictive distributions (Bates et al., 2003;
Wellen et al., 2014).

Specifically, we postulate that the parameters θlow and θhigh are
characterized by a bivariate normal distribution:

Θ � MVN μ;∑ð Þ ð8Þ

where Θ ¼ θlow
θhigh

� �
represents the vector of state-specific parameters;

μ ¼ 0:0
0:0

� �
is the vector of prior means; and Σ denotes the covariance

matrix. We use a Wishart distribution to describe our prior knowledge
on the inverse of the covariance matrix:

∑−1 � Wish R−1
; v

� �
ð9Þ
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where v denotes the degrees of freedom (set equal to 3) and R denotes
the prior covariance matrix. We assumed fairly flat priors and near-
independence for the covariance matrix:

R ¼ 1000 0:001
0:001 1000

� �
ð10Þ

Note that we still posit the independence of the threshold θp from
the values of themultiplicative effects. All prior parameter distributions
other than Θ and Σ were uniform over their range, implying no prior
relationship between the threshold θp and the change point presented
in Fig. 2.

Our third statistical formulation (Formulation 3) uses the same
framework as our second formulation, but introduces informative
prior parameter distribution. Informative priors, one of the unique
advantages of the Bayesian approach to model calibration, allow
information about plausible model parameter values to be specified
before the model is calibrated to observed data. The informative prior
distributions are presented along with the model description in the
subsequent section. Note that Formulation 3 uses the posterior of
the change point presented in Fig. 2 as the informative prior for the
threshold θp, in effect assuming that the change point in Fig. 2 repre-
sents our best estimate of the threshold θp. Formulations 2 and 3 both
involve some inference of the state of each time step. To estimate the
probability that each time step belonged to each state, we calculated
the binary state membership of each time step for each MCMC sample
according to Eq. (4a,4b), and then calculated the mean and 5th and
95th percentiles of these binary state memberships for all the MCMC
samples.

Model evaluation

We assessed the performance of all models using four metrics: the
coefficient of determination (r2), Nash and Sutcliff's (1970) index of
model efficiency (NSE), the relative error as calculated by Arhonditsis
and Brett (2004; RE), and the logarithm of the likelihood function
(Eq. (7); LogLike). Following Hong et al. (2005), we assessed the degree
of updating of the informative prior distributions of Formulation 3,
using the delta index by Endres and Schindelin (2003), which quantifies
the difference in shape of two parameter distributions:

δθi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∫ π θið Þ log 2π θið Þ

π θið Þ þ π θijYð Þ þ π θijYð Þ log 2π θijYð Þ
π θið Þ þ π θijYð Þ

� �
dθ

s
ð11Þ

where π(θi) and π(θi|Y) represent the marginal prior and posterior
distributions of parameter θi, respectively. This metric is equal to zero
if there is no difference between the two distributions, and equal to
(2log2)1/2 if there is no overlap between the two distributions. All
delta index values are presented as percentages of this maximum
value. We also assessed the updating by computing the percent differ-
ence between the prior and posterior medians.

Case study & model selection

Case study

The study site is a pair of catchments, Redhill andGrindstone Creeks,
situated in the drainage basin of Hamilton Harbour, a large embayment
at the western end of Lake Ontario (Fig. 1). Aside from the land use
patterns, the two Creeks are quite similar. The soils of the Harbour
basin are mainly loams (25%), sandy loams (28%), and silty loams
(20%), while organic soils, silty clay loams, and clay loams together
make up about 10% of the basin soils, with most of the remainder
composed of rocky outcroppings and ravines. Soils are evenly spread
between the four Natural Resources Conservation Service's soil hydro-
logic runoff groups — groups A and B, those least likely to generate
runoff, have 23% coverage, respectively, group C has 29% coverage,
and groupD, the groupmost likely to generate runoff, has 24% coverage.
The slopes of the Harbour basin are mild, with the exception of the
Niagara Escarpment. The average slope of the entire basin is 4.4%, and
ignoring all slopes greater than 30% the average is 3.8%. Themean eleva-
tion of the basin is 130 m above sea level, with elevation ranging from
318 m above sea level to 74 m above sea level.

The meteorological data for this study come from Environment
Canada's Hamilton Airport station (WMO ID 71263; http://www.
climate.weatheroffice.gc.ca/climateData/canada_e.html), while the daily
flow information comes from the Water Survey of Canada's gauges at
Redhill (02HA014) and Grindstone Creeks (02HB012; http://www.ec.
gc.ca/rhc-wsc/default.asp?lang=En). The basin has a humid continental
climate, with daily temperatures ranging from −10 °C to −2 °C in
January and 15 °C to 26 °C in July. The Harbour basin receives
910mmof precipitation annually, 146mmof which occurs as snowfall.
To characterize the soils, we used the Soil Landscapes of Canada dataset
v.3.2 from Agriculture and Agri-Food Canada (http://sis.agr.gc.ca/
cansis/nsdb/slc/index.html).

Redhill Creek drains an area of approximately 63 km2, of which 66%
is urban residential area, 17% is urban greenspace, 12% is agricultural
area and 4% is forested. Of the urban area, 50% is impervious and 40%
of the total urban area is directly connected to a storm sewer system.
Towards the mouth in the City of Hamilton there are some connections
with the city's combined sewer system. Grindstone Creek drains an area
of approximately 87 km2, 60% of which is agricultural land evenly split
between pasture and cropland. Of the remainder, 30% is forested and
9% is urban. This urban land encompassing the town of Waterdown is
serviced by storm sewers. The flows of both Creeks are unregulated.

An examination of the daily flows of Redhill and Grindstone Creeks
supports the idea of a single threshold separating two states of response
of the two Creeks to precipitation. Fig. 2 shows scatterplots of Log10
transformed daily flows and averages of the previous 2 or 3 days of pre-
cipitation along with the fitted piecewise regressions. These periods
were chosen to implicitly include the effect of antecedent moisture.
The data used are from the period 1988–2009, representing themonths
from May through November. Redhill Creek's threshold was estimated
at 0.94 ± 0.05 transformed previous 2-day average precipitation and
represents a clear change in response above that threshold. This
threshold corresponds to a 2-day average of 7.7 ± 1.1 mm, and would
be reached by one day with 15.2 mm of precipitation or two days of
7.7 mm. Grindstone Creek's threshold, estimated at 0.78 ± 0.09 trans-
formed previous 3-day average precipitation. This threshold corre-
sponds to a 3-day average of 5.0 ± 1.2 mm. In light of these findings,
the threshold θt of watershed response to precipitation was specified

in units of Log10 1
n∑

t

t−n
Pt

� �
þ 1

� �
, where t indicates a particular day in

the time series, P refers to the precipitation on day t (mm), and n was
set equal to 2 for Redhill Creek and 3 for Grindstone Creek. Note that
the actual value of θt was subject to calibration.
Model selection

While our inference framework is applicable to any watershed
model, we used the Soil-Water Assessment Tool for this application
(SWAT; Arnold et al., 1998). SWAT is a semi-distributed model and is
typically used to evaluate the effects of alternative management
schemes on agricultural landscapes. Watersheds are disaggregated by
topography into subbasins, and then further disaggregated into hydro-
logical response units (HRU) on the basis of land use, soil type, slope,
and land management. The rationale is that all the area in a given HRU
behaves as a homogenous unit, and all aspects of the land phase of the
hydrological cycle are executed at the HRU scale and then aggregated
to the subbasin scale, where routing is executed. SWAT models the
response of a watershed to precipitation or snowmelt using a water

http://www.climate.weatheroffice.gc.ca/climateData/canada_e.html
http://www.climate.weatheroffice.gc.ca/climateData/canada_e.html
http://www.ec.gc.ca/rhc-wsc/default.asp?lang=En).The
http://www.ec.gc.ca/rhc-wsc/default.asp?lang=En).The
http://sis.agr.gc.ca/cansis/nsdb/slc/index.html
http://sis.agr.gc.ca/cansis/nsdb/slc/index.html
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balance approach. Runoff is computed using a version of the United
States' National Resources Conservation Service's Curve Number (CN)
methodology, an empirical approach where a daily CN varies non-
linearly with soil moisture. The CN for a standardized level of moisture
(referred to as moisture condition 2) is treated as a calibration parame-
ter. Readers seeking additional information about the SWATmodel may
consult Neitsch et al. (2011).

Our calibration approach proceeded by setting realistic starting
values for each HRU or subbasin and calibrating by adjusting all the
parameters at once with global multiplicative effects (e.g., all the
curve numbers were decreased by 5%). These multiplicative effects
were the calibration parameters. While this does not allow us to cali-
brate land use or soil type specific values of each parameter, it has
been shown to lead to reasonable predictions at the watershed outlet
(Cerucci and Conrad, 2003; Yang et al., 2007a,b). In Table 1, we provide
the calibration vector employed.We arrived at this vector after a review
of the literature, including the SWAT manual (Arabi et al., 2007;
Ekstrand et al., 2010; Neitsch et al., 2011; Rouhani et al., 2007; van
Griensven et al., 2006; Yang et al., 2007a,b). Also note that informative
priors were employed only in Formulation 3; Formulations 1 and 2 use
uniform priors in the range given in Table 1, with the exception of the
innovation variance, the inverse of which was given an uninformative
gamma prior for all formulations. We used a total of 12 subbasins for
Redhill Creek (median area = 4 km2, interquartile range = 5.36 km2)
and 14 subbasins for Grindstone Creek (median area = 5.58 km2, inter-
quartile range=7.03 km2).We used a total of 41HRUs for Redhill Creek
(median area = 0.57 km2, interquartile range = 1.3 km2) and a total of
64 HRUs for Grindstone Creek (median area = 1 km2, interquartile
range = 1.63 km2).

There appeared to be a threshold of time averaged precipitation
above which runoff is generated at a greater rate than below (Fig. 2).
Therefore, we allowed the curve number for moisture condition 2 to
vary between states of the watershed. Updating our notation in Eq. (3)
for this application, we get:

CN2 Multiplicative Effectð Þt
¼ CN2low for Log10 n−day average precipitationþ 1ð Þ ≤ θp ð12aÞ

CN2 Multiplicative Effectð Þt
¼ CN2high for Log10ðn−day average precipitationþ 1Þ N θp ð12bÞ
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Redhill Creek

Lower Slope = 0.174 (0.02)
Upper Slope = 1.031 (0.06)
Lower Intercept = 0.20 (0.01)
Changepoint = 0.94 (0.03) = 7.7 (0.6) mm

Lower Slope = 0.10 (0.01)
Upper Slope = 0.33 (0.03)
Lower Intercept = 0.16 (0.01)
Changepoint = 0.78 (0.05) = 5.0 (0.6) mm

Fig. 2. Piecewise regression graphs relating the 2- or 3-day average precipitation to the
daily streamflow. Scatterplots show daily flows from 1988 to 2009. Only data from the
months May–November are plotted. Statistics below graphs show the means and, in
parentheses, standard deviations of the parameters of the regressions.
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where CN2 (Multiplicative Effect)t indicates the multiplicative effect
employed on the curve numbers at time t, and n is equal to 2 for Redhill
Creek and 3 for Grindstone Creek.

We used SWAT 2009 with the Penman–Monteith submodel for
potential evapotranspiration and the variable travel time method of
stream routing, and employed a daily time step for model calculations
and fitting (likelihood calculations). For the agricultural areas, we used
SWAT's generic agricultural crop. This generic crop assumes parameters
fairly similar to corn, the second-most common crop grown in the
Hamilton Census Division in 2011 (35% of total cropped area). Our
preliminary tests indicated corn was an adequate representation of
the agricultural area, and we did not have any information about how
crops grown varied spatially. Recommended practices for growing
corn in this region entail an addition of 200 kg of N fertilizer and 20 kg
of P fertilizer per hectare in two equal inputs in the spring and soil tillage
once in the spring and once in the fall (www.omafra.gov.on.ca/english/
crops/pub811.htm);we assumed these practiceswere applied here.We
also assumed all pervious urban land cover was bluegrass, and all forest
was mixed. We obtained estimates of urban soil fertilizer additions
from Law et al. (2004). After a 1-year spin-up period, the model was
calibrated to daily flows in the years 1992–1994, and subsequently
validated with daily flows from 1995 to 1998.

Results

Assessment of MCMC update

The MCMC algorithm showed signs of convergence after 20,000 to
45,000 iterations per chain for Redhill Creek and after 25,000 to
95,000 iterations for Grindstone Creek. The values of the Gelman–
Rubin statistic were lower than 1.1 for all parameters, with most of
them below 1.05, indicating acceptable convergence. Inspections of
trace plots showed stationarity, and marginal density plots of the
parameters showed reasonably well-shaped distributions, though as can
be seen in the Electronic Supplementary Material (ESM; Figs. S1–S6)
some multi-modality is present. This pattern may partly stem from
the use of Student's t as the basis of the likelihood function, given that
this distribution is not log-concave (Vanhatalo et al., 2009). Further,
the DREAM algorithm has been shown to avoid convergence to a single
mode in the case of a multi-modal posterior space (Laloy and Vrugt,
2012; Vrugt et al., 2009), so we have cause to think about this multi-
modality neither as an artifact of our analysis nor evidence of poor
convergence, but as a genuine reflection of the posterior parameter
space. We also assessed the assumptions made in the likelihood func-
tion, namely that i) the innovations are independent with respect to
time, and ii) these innovations come from a Student's t distribution
with seven (7) degrees of freedom. We present these assessments in
the ESM, as Figs. S7 (Redhill Creek) and S8 (Grindstone Creek), and
they show acceptable adherence to the assumptions of the likelihood
function.

Model parameter posteriors

Tables 2 and 3 present the model parameter posteriors. The model
parameter posteriors were fairly well identified for both Redhill and
Grindstone Creeks for all formulations. In fact, many of the posteriors
represent a very small segment of the parameter space (e.g., SOL_AWC,
a parameter often identified as particularly sensitive; e.g., Arabi et al.,
2007; van Griensven et al., 2006), although others (e.g., EPCO) tended
to be less well constrained. Two of the parameters of our calibration
vector were multiplicative effects on measured data — SOL_AWC, the
proportion of plant available soil water, and SOL_KSAT, the saturated
hydraulic conductivity of the soil layers. It is also interesting to note
how far from the value of 1.0 these multiplicative effects are in all
formulations, suggesting that the effective values of model parameters
at the catchment scale can deviate significantly from those measured
at the scale of soil surveys.

Our framework for capturing extreme events as implemented in
Formulation 2 led to coherent parameter posteriors in both Creeks.
Formulation 2 was characterized by lower values of the innovation
standard deviation σ and residual correlation ρ and higher values of
the likelihood function for Redhill Creek, and similar values of these
quantities for Grindstone Creek in relation to Formulation 1. In both
cases, the threshold θp was well identified. In Tables 2 and 3 as well as
Fig. 2, we present the estimated 2-day or 3-day averaged precipitation
required to cause a shift to the extreme state in untransformed units
(mm). The threshold θp tended to be on the upper edge of its range
and well outside the credible interval of the change point of the piece-
wise regressions (Fig. 2). Note that the credible intervals of this change
point were 0.89–0.99 transformed units for Redhill Creek and 0.68–0.87

http://www.omafra.gov.on.ca/english/crops/pub811.htm
http://www.omafra.gov.on.ca/english/crops/pub811.htm


Table 1
SWAT model parameters included in the calibration vector.

Parameter Description Range Informative prior⁎⁎ Source

CN2 Curve numbers for antecedent moisture condition two.
(Multiplicative Effect).

0.5,1.5 N(1,0.41) Schwab et al. (2002, p. 74)

ALPHA_BF Baseflow recession constant (1/days). 0.1, 0.99 B(3,1.15)(Redhill)
N(0.64,0.18)(Grindstone)

Streamflow Measurements

SOL_AWC Fraction of soil water available for plant uptake.
(Multiplicative Effect).

0.25, 2.5 (Redhill)
0.5,1.5 (Grindstone)

N(1,0.455)
N(1,0.455)

Assumed minimum and maximum values
of 0.01 and 0.85.

GW_REVAP Revap coefficient. 0.02, 0.2 U(0.02, 0.2) –

ESCO Soil evaporation compensation factor. 0.1, 0.99 B(3,1.22) Expected value of 0.9, signifying a weak ability
of lower soil layers to supply evaporative demand
of the top layer.

EPCO Plant transpiration compensation factor. 0.1, 0.99 B(3,1.22) Expected value of 0.9, signifying a strong ability
of lower soil layers to supply evaporative demand
of the plants.

GW_DELAY Ground water delay time (days; Multiplicative Effect). 0.5, 5 U(0.5, 5) –

SOL_KSAT Soil saturated hydraulic conductivity (mm/h).
(Multiplicative Effect).

0.1, 10 (Redhill)
0.5,1.5 (Grindstone)

LN(0,1.15)
LN(0,1.15)

Corresponds to a range of one order of magnitude.

SNOWCOVMX Minimum snow water content corresponding to 100%
aerial snow coverage (mm).

1, 40 LN(2.48,0.35) Donald et al. (1995)

SMFMX Snow melt factor on June 31st (mm water/°C above
0.5 °C).

1, 9 N(5.5,3.1) Conetta (2004)1; Donald (1992); Yang et al. (2007b)

SMFMN Snowmelt factor onDecember 31st (mmwater/°C above
0.5 °C).

1, 5 N(3.1,1.8) Conetta (2004); Donald (1992); Yang et al. (2007b)

SURLAG Lag time for surface runoff (days). 0.5, 10 LN(0,1.0) Assumed one day was the most likely value and
upper end of 95% credible interval was one week.

ρ First order residual correlation coefficient for all days. 0.1, 0.99 U(0.1,0.99) –

σ Innovation standard deviation for all days. 0.002, 2000 G(0.001,0.001) –

CN2 Low Curve number for moisture condition 2 on low
precipitation days. (Multiplicative Effect).

0.5, 1.5 N(1,0.41) Schwab et al. (2002, p. 74)

CN2 High Curve number for moisture condition 2 on high
precipitation days. (Multiplicative Effect).

0.5, 1.5 N(1,0.41) Schwab et al. (2002, p. 74)

CN2 ρ Correlation of CN2 Low and CN2 High −0.99,0.99 U(−0.99,0.99) –

θp Threshold of time averaged precipitation switching
between curve numbers.

0.9, 1.4 (Redhill)
0.6, 1.1 (Grindstone)

N(0.94,0.025)
N(0.78,0.047)

Streamflow and Precipitation Measurements

⁎The base value of ground water delay time was 1.25 days for urban areas, 10 for forested areas, and 5.25 for other areas.
⁎⁎ N(μ,σ) refers to the normal distribution with mean μ and standard deviation σ; B(α,β) refers to the beta distribution with shape parameters α and β; U(l,u) refers to the uniform
distributionwith lower bound l and upper bound u; LN(μ,σ) refers to the lognormal distributionwith location parameter μ and scale parameterσ; G(α,β) refers to the gamma distribution
with shape parameter α and rate parameter β.

1 Conetta, M., Unpublished. Snow Disposal Sites, Conceptual Designs Part A — Snow Meltwater Characteristics and Treatment Technologies. Report Submitted to the City of Toronto,
October 29, 2004.
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transformed units for Grindstone Creek. Even though the change points
were well identified when using 22 years of data, it is clear that the
three years of data in the calibration period were not sufficient to locate
the change points. The multiplicative effects of the curve numbers
Table 2
Parameter posterior means and standard deviations, Redhill Creek study site.

Parameter Formulation 1 Formulation 2

Mean SD Mean SD

CN2 (Mult. Eff.) 0.564 0.038 – –

ALPHA_BF 0.974 0.018 0.957 0.028
SOL_AWC (Mult. Eff.) 2.358 0.001 1.719 0.001
GW_REVAP 0.193 0.007 0.190 0.012
ESCO 0.135 0.034 0.129 0.026
EPCO 0.705 0.215 0.662 0.150
GW_DELAY (Mult. Eff.) 0.652 0.129 0.532 0.108
SOL_KSAT (Mult. Eff.) 0.331 0.123 0.257 0.037
SNOWCOVMX 6.812 0.234 16.745 2.279
SMFMX 3.387 0.213 3.566 0.237
SMFMN 2.961 0.112 3.082 0.261
SURLAG 3.748 3.194 0.530 0.034
θp – – 1.350

(21 mm)
0.027
(1 mm)

CN2 σLow – – 22.462 5.104
CN2 ρ – – 0.036 0.395
CN2 σHigh – – 24.994 4.275
CN2 Low (Mult. Eff.) – – 0.572 0.051
CN2 High (Mult. Eff.) – – 1.100 0.011
σ 0.149 0.005 0.137 0.005
ρ 0.396 0.030 0.328 0.036
Logged Likelihood 224.377 3.900 297.162 4.724
were generally higher above the threshold θp than below (e.g., CN2
High N CN2 Low), indicating that above the threshold of precipitation
input, a greater amount of rainfall is converted into surface runoff
than below. For both Creeks, the values of the multiplicative effects on
Formulation 3 Delta index (3) Expected value shift (3)

Mean SD

– – – –

0.938 0.047 67% 2%
1.720 0.001 97% 72%
0.189 0.013 – –

0.126 0.027 98% −86%
0.663 0.167 25% −26%
0.470 0.138 – –

0.214 0.035 86% −79%
16.174 1.371 75% 1%
3.646 0.258 85% −34%
2.807 0.243 76% −9%
0.380 0.011 95% −62%
0.971
(8.3 mm)

0.025
(1 mm)

51% 3%

17.347 8.789 – –

−0.250 0.626 – –

16.551 8.276 – –

0.538 0.039 89% −46%
1.013 0.024 87% 1%
0.140 0.005 – –

0.332 0.033 – –

273.937 4.151 – –



Table 3
Parameter posterior means and standard deviations, Grindstone Creek study site.

Parameter Formulation 1 Formulation 2 Formulation 3 Delta index (3) Expected value shift (3)

Mean SD Mean SD Mean SD

CN2 (Mult. Eff.) 0.572 0.036 – – – – – –

ALPHA_BF 0.957 0.030 0.940 0.046 0.944 0.039 87% 47%
SOL_AWC (Mult. Eff.) 1.430 0.001 1.407 0.008 1.430 0.001 99% 41%
GW_REVAP 0.082 0.034 0.052 0.028 0.062 0.028 –

ESCO 0.154 0.046 0.181 0.076 0.200 0.066 92% −80%
EPCO 0.627 0.224 0.488 0.261 0.701 0.196 12% −46%
GW_DELAY (Mult. Eff.) 1.161 0.108 1.747 0.274 1.219 0.135 –

SOL_KSAT (Mult. Eff.) 0.532 0.033 0.553 0.069 0.538 0.041 77% −45%
SNOWCOVMX 10.926 0.400 21.064 0.369 15.872 5.057 65% 76%
SMFMX 2.871 0.226 2.794 0.111 4.085 0.535 70% −49%
SMFMN 1.286 0.151 2.512 0.083 1.254 0.330 81% −20%
SURLAG 0.509 0.007 0.511 0.012 0.373 0.005 97% −49%
θp – – 1.050

(10.2 mm)
0.092
(1 mm)

0.746
(4.6 mm)

0.042
(1 mm)

34% 35%

CN2 σLow – – 25.016 4.850 17.134 7.783 –

CN2 ρ – – −0.026 0.393 0.061 0.641 –

CN2 σHigh – – 25.102 4.740 15.703 9.135 –

CN2 Low (Mult. Eff.) – – 0.572 0.120 1.093 0.108 61% −43%
CN2 High (Mult. Eff.) – – 0.770 0.066 0.540 0.041 87% −23%
σ 0.066 0.002 0.066 0.002 0.064 0.003 – –

ρ 0.904 0.012 0.906 0.014 0.908 0.013 – –

Logged Likelihood 1054.631 3.436 1053.227 4.854 1074.392 5.689 – –
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the soil parameters SOL_AWC and SOL_KSAT were closer to 1.0 for
Formulation 2 than for Formulation 1, providing evidence that when a
threshold of catchment response is explicitly considered we are able
to use more physically realistic values of soil parameters in order to
reach an acceptable model fit at the basin outlet. Taken together, these
results show that Formulation 2 resulted in coherent results in both
Creeks, and a significantly better fit andmore realistic parameterization
in Redhill Creek.

With Formulation 3, we sought to incorporate informative priors
into the model calibration process in order to arrive at a more realistic
and better constrained parameterization of Formulation 2. Doing so
allowed us to provide information about the location of the change
point which the calibration data alone may not have been able to
provide. The most obvious difference between Formulations 2 and 3
lies in the values of the parameters associated with the threshold of
runoff generation. Formulation 3 used as informative priors the values
of the change points from the regressions presented in Fig. 2, and the
posteriors of θp lie within the 95% credible interval of the change points.
With Redhill Creek, the latter result was also associated with a decrease
of both curve number parameters relative to Formulation 2, and thus
more days were characterized as extreme when using a lower thresh-
old. The rest of the parameters were characterized by generally high
delta index values and significant shifts of the most likely values,
suggesting a significant update of thepriors. Interestingly, the posteriors
of Formulation 3were generally fairly close to those of Formulation 2 for
both Creeks, suggesting that Formulation 2 did converge to a realistic
parameterization. In Grindstone Creek, four parameters did appear to
be better constrained or in better agreement with empirical data as a
result of the informative priors. The parameter EPCO controls the extent
towhich lower soil layersmay supply water in demand by plants which
cannot be supplied by the upper soil layers. Values closer to 1 indicate
more water may be supplied by lower layers. For vascular plants, we
would expect a value close to 1 except in the case of very deep soils.
Formulation 3 had a significantly higher and better constrained value
of EPCO than the other formulations. The parameter SNOWCOVMX
has been measured empirically elsewhere in Southern Ontario. The
posterior estimate of SNOWCOVMX for Grindstone Creek obtained
with Formulation 2 is high for this area and land cover, while the
value obtained with Formulation 3 is more realistic (Donald et al.,
1995).
Watershed scale model predictions

The models were characterized by respectable performances, as
depicted by the NSE application on their mean predictions. [Themetrics
of fit of the models during calibration and validation are presented in
the ESM as Tables S1 and S2.] The optimal model formulation varied
by case study. For Redhill Creek, the NSE ranged from 0.6 to 0.66 during
calibration and from 0.52 to 0.56 during validation. During both calibra-
tion and validation, Formulation 2 resulted in the best overall fit.

The results differed somewhat for Grindstone Creek, where the NSE
ranged from0.71 to 0.74 during calibration and from 0.44 to 0.56 during
validation. Formulation 3 had the highest NSE during the calibration
phase but the lowest during the validation; a result that is typically
perceived as “model overfitting”. During the validation, Formulation 1
resulted in the best overall fit. Figs. 3 and 4 present the time series
predictions of the various statistical formulations.

The mathematical framework introduced for accommodating
extreme events allows us to estimate the number of events which can
be classified as extreme. Figs. 3 and 4 present in dark black bars the
precipitation on days having a 5% or greater probability of belonging to
the extreme state. For Redhill Creek's validation period (1461 days),
when using Formulation 2, 1436 days had less than 5% probability of
belonging to the extreme state, 7 days had greater than 99% probability
of belonging to the extreme state, and 10 days had between 5% and 99%
chance of belonging to the extreme state.With Formulation 3, 1347days
had less than 5% probability of belonging to the extreme state, 35 days
had greater than 99% probability of belonging to the extreme state,
and 79 days had between 5% and 99% chance of belonging to the
extreme state. We quantified the Root Mean Squared Error (RMSE) of
the mean model predictions on the days with at least a 5% chance of
being classified as extreme. With Formulation 2, the RMSE on these
days was 8.25, compared to 9.99 for the corresponding days simulated
with Formulation 1. With Formulation 3, the RMSE on the days with at
least a 5% chance of being classified as extreme was 4.09, and on the
corresponding days for Formulation 1 it was 4.92. From this finding,
we can conclude that Formulations 2 and 3 were both improvements
over the standard calibration technique regarding the estimation of
daily flows on extreme days for Redhill Creek.

For Grindstone Creek's validation period (1461 days), when using
Formulation 2, 1305 days had less than 5% probability of belonging to
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Fig. 3. Flowvalidation, Redhill Creek study site. Black precipitation bars indicate dayswith at least a 5% chance of exceeding the threshold for extremeevents. Note that the remainder of the
validation period (1995–1996) is included in the Electronic Supplementary Material (Fig. S9).
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the extreme state, 63 days had greater than 99% probability of belonging
to the extreme state, and 80 days had between 5% and 99% chance of
belonging to the extreme state. With Formulation 3, 1065 days had
less than 5% probability of belonging to the extreme state, 133 days
had greater than 99% probability of belonging to the extreme state,
and 182 days had between 5% and 99% chance of belonging to the
extreme state. With Formulation 2, the RMSE on the days with at least
a 5% chance of being classified as extreme was 2.14, compared to
2.39 for the corresponding days simulated with Formulation 1. With
Formulation 3, the RMSE on the days with at least a 5% chance of
being classified as extreme was 1.87, and on the corresponding days
simulated with Formulation 1 it was 1.95. Thus, Formulations 2 and 3
were both improvements over the standard calibration technique
regarding the estimation of daily flows on extreme days for Grindstone
and Redhill Creeks, despite the fact that these formulations were not
always characterized as having a better overall fit.

Runoff areas and water balance

A distributed model, such as SWAT, allows insights into the magni-
tudes and uncertainties of various water flow pathways as well as the
sources of runoff within the catchment. We present here an overall
water balance of the two catchments and then estimate the sources of
surface runoff by land use, soil type, and subbasin. We also note that
although these estimates are based on only one rain gauge, averaging
predictions across space and time, as we do here, has been shown to
considerably reduce the error associated with a sparse rain gauge net-
work (Chaplot et al., 2005). Table 4 presents an annual water balance
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Fig. 4. Flow validation, Grindstone Creek study site. Black precipitation bars indicate dayswith at least a 5% chance of exceeding the threshold for extreme events. Note that the remainder
of the validation period (1995–1996) is included in the Electronic Supplementary Material (Fig. S10).
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for Redhill and Grindstone Creeks for the validation period, 1995–1998.
The various fluxes in Table 4 represent surface runoff due to overland
flow; shallow groundwater flow to streams; evapotranspiration to the
atmosphere; and deep drainage out of the catchment to aquifers or
lake beds. [Note that streamflow is generated by a combination of
surface runoff and groundwater flow, but in this paper we refer to
overland flow as surface runoff or simply runoff.] Both Creeks received
about 850mmof precipitation with substantial inter-annual variability.
Redhill Creek overall shows a much greater rate of surface runoff
generation (21% to 25% of precipitation) than Grindstone Creek (3% to
5% of precipitation), largely due to the predominantly urban land
cover of the former site. This higher rate of surface runoff came at the
cost of both evapotranspiration and groundwater discharge to streams.
Evapotranspiration ranged from 48% to 52% of precipitation in Redhill
Creek and from61% to 62% inGrindstoneCreek. Groundwater discharge
to streams was estimated at between 21% and 23% of precipitation for
Redhill Creek, and between 27% and 28% for Grindstone Creek. The
estimates of the various pathways throughwhichwater exits the catch-
ment are also fairly similar across the three formulations.

Surface runoff is the primarypathway throughwhichmanypollutants
(including phosphorus) enter waterways, and so identifying sources
of surface runoff can aid in locating possible pollutant source areas
(McDowell and Srinivasan, 2009). We locate surface runoff source
areas by land use and soil type. In Fig. 5, we present estimates of surface
runoff generation for the different land uses in Redhill and Grindstone
Creeks across the three formulations. We distinguish between runoff
generated during the entire year and runoff generated during the
growing season of Hamilton Harbour, the receiving waterbody (May–
September), as this is the period when the receiving waterbody is most
sensitive to eutrophication. In both Creeks, urban land use generated



Table 4
Annual water balance from the three statistical formulations for Redhill and Grindstone
Creeks, during the validation period.

Validation Period (1995–1998) Formulation 1
Depth (mm)

Formulation 2
Depth (mm)

Formulation 3
Depth (mm)

Redhill Creek
Precipitation 853.0 ±188.0 853.0 ±188.0 853.0 ±188.0
Surface Runoff 176.1 ±6.0 203.9 ±5.0 216.9 ±6.2
GroundWater 193.4 ±2.3 196.0 ±4.6 182.2 ±5.5
Evapotranspiration 446.0 ±1.3 409.4 ±1.2 410.7 ±1.2
Deep Drainage 9.7 ±0.1 9.8 ±0.2 9.1 ±0.3

Grindstone Creek
Precipitation 853.0 ±188.0 853.0 ±188.0 853.0 ±188.0
Surface Runoff 35.4 ±1.9 44.7 ±7.0 25.0 ±3.3
GroundWater 226.8 ±5.8 224.1 ±7.3 237.3 ±8.7
Evapotranspiration 532.0 ±4.3 527.1 ±6.9 533.6 ±6.7
Deep Drainage 11.3 ±0.3 11.2 ±0.4 11.9 ±0.4
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the greatest depth of runoff; 245–262 mm for Redhill Creek and
202–240 mm for Grindstone Creek. For Redhill Creek, this compares
to 51–183mm for crops, 26–76mm for forest, 34–149mm for pasture,
and 34–106 mm for urban greenspace. For Grindstone Creek, our esti-
mate for the urban runoff compares to 11–45 mm for crops, 3–16 mm
for forest, and 3–21 mm for pasture. During the growing season, this
disparity becamemore acute, particularly in Grindstone Creek. Between
May and September, runoff generation in Redhill Creek ranged from
8–51 mm for crops, 4–16 mm for forest, 6–37 mm for pasture, and
6–29 mm for urban greenspace. For Grindstone Creek, this compares
to 1 mm for crops, b1 mm for forest, and b1 mm for pasture. Urban
areas effectively bypass catchment storage, as nearly all the precipita-
tion falling on them becomes surface runoff and reaches the stream in
less than one day, leaving little time for evapotranspiration. While the
importance of urban areas as a surface runoff source increased slightly
during the growing season in Redhill Creek, it is somewhat surprising
that themodel predicts that almost no surface runoff reaches the stream
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Fig. 5. Surface runoff depths generated in Redhill and Grindstone Creek
from any of the pervious surfaces in Grindstone Creek from May to
September. While it is likely that the contribution of runoff for
Grindstone Creek is somewhat underestimated, the posterior multipli-
cative effects for the curve number parameters were not close to the
maximum of their allowable range, indicating that model solutions
with higher rates of runoff generation did not result in a better fit at
the basin outlet. This suggests that there may be important differences
in soil type and/or vegetation cover between the two catchments
whichmaybe responsible for generating themarkedly different amounts
of runoff during the growing season. There were also noteworthy
differences between statistical formulations. Formulations 2 and 3
both accommodated differences in response of the catchments to
extreme events, and both generated more runoff than Formulation 1.

Accounting for the different proportions of the various land uses in
each watershed, we can estimate how much water volume originated
from various land uses. This piece of information allows us to assess
the overall importance of each type of land use with respect to the
generation of runoff reaching Hamilton Harbour (Fig. 6). The results
for Redhill Creek are not surprising and underscore the large proportion
of urban area in that watershed, i.e., 1040–1115 m3 of 1115–1333 m3

total runoff originated from urban residential areas. However, the
results from Grindstone Creek indicate that i) the volume of runoff
generated therein is a small fraction of that generated in Redhill Creek
(21%–29%), and ii) despite their small areal coverage (~10%), urban
areas in Grindstone generate a disproportionate amount of total runoff
(157–187 m3 of 233–388 m3). When examining the growing season
virtually all (N98%) of the surface runoff reaching Grindstone Creek is
estimated to originate from urban areas. During the entire annual
cycle, urban areas in Grindstone Creek generated between 37 and 74%
of surface runoff as estimated with Formulation 2. We also quantified
runoff depths generated by soil type (Fig. 7). Soil types refer to the SLC
Polygon Identifier of the Soil Landscapes of Canada dataset version 3.2.
[Note that we exclude any urban areas from the summaries presented
in Fig. 7.] It is interesting to note that the most common soils in Redhill
Creek appear to be more prone to runoff generation than the most
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Fig. 6. Surface runoff volumes generated in Redhill and Grindstone Creeks during the validation period (1995–1998) by different land uses.
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common ones in Grindstone Creek. Depending on which of these
soil types undergoes urban development, it is reasonable to sur-
mise that a greater increase in runoff is likely to occur in Grind-
stone Creek than in Redhill Creek, per unit addition of urban
area.
Discussion

We have presented a framework to accommodate the effect of
extreme precipitation events on watershed response in hydrological
models by identifying distinct states of a system and allowing some
parameters to vary between states. Relative to strategies that opt for
time-varying parameters (e.g., Reichert and Mieleitner, 2009), our
intent was to offer a parsimonious means to augment model capacity
to reproduce system response in ways which mixture-likelihood type
approaches cannot (Schaefli et al., 2007). Our framework allowed us
to better reproduce the flows of the days identified as extreme, though
the overall model fit was not consistently improved when compared to
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Soil Landscapes of Canada dataset version 3.2. Percentages indicate the percent coverage of the
a model calibration consisting of only one state. The remainder of the
discussion is structured to assess our framework relative to other
modeling strategies, to examine the role of parametric uncertainty in
SWAT model, and to delve into what can actually be learned about the
system studied.
An assessment of our framework for accommodating extreme events

There is evidence that extreme events will become more common
and more dominant in watershed systems as a result of climate change
and urbanization (Duan et al., 2012; Kunkel et al., 2013; Shields et al.,
2008). Accommodating the role of extreme events will become critical
to assessing future land use and climate change scenarios (Rode et al.,
2010). A logical first step is to analyze catchment-scale data to arrive at
an empirical understanding of how the watershed of interest responds
to extreme events and then to incorporate this behavior in the model.
The approach presented here has two specific advantages over calibra-
tion schemes, which ignore any state-specific parameter variability.
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First, using state-specific parameters allowed us to reduce the RMSE of
days classified as extreme by roughly 17%, although there were not im-
provements in overall fit noted across all case studies. Applications of
hydrological models primarily concerned with peak flows, either due
to their importance as hazards, their importance to habitat quality, or
their importance in the downstream transport of a number of water-
borne constituents may find our approach useful. Second, our approach
also classifies days into normal or extreme on the basis of their response
to precipitation. This could also be of interest as a metric of the “flashi-
ness” of the system.

Note that for both piecewise regressions presented in Fig. 2, there is
no overlap of the 95% credible intervals of the two slopes, indicating that
there was a significantly different response of the watershed to precip-
itation above the change point. However, there was also no overlap of
the 95% credible intervals of the change points from the piecewise
regressions with the posteriors of the thresholds θp. It is possible that
the calibration period (1992–1994) had a different effective change
point than the period from 1988 to 2009. We calibrated piecewise
regressions for Redhill and Grindstone Creeks for the period from
1992 to 1994 and obtained change points with 95% credible intervals
of 0.99–1.11 for Redhill Creek and 1.04–1.21 for Grindstone Creek. We
found that the discrepancy between the change point and θp was
reduced for Redhill Creek and was practically eliminated for Grindstone
Creek. Thisfindingmaybe evidence of substantial year-to-year variability,
or simply highlights the lack of reliability in determining thresholds of
watershed behavior with only three years of data.

While it would have been simpler to postulate prior independence
between the state-specific model parameters, our statistical framework
explicitly considered the parameter covariance between the twowater-
shed states. We evaluated the benefits gained through our bivariate
normal approach by calibrating a version of the Grindstone Creek
model which was identical to Formulation 2 except that the curve
number parameters below and above the threshold had independent
priors (Table S3). While the inference drawn when postulating prior
independence was fairly similar for most parameters, the assumption
of prior independence significantly increased the posterior uncertainty
of the threshold θp (0.17 relative to 0.09 in Table 3) and CN2 Low
(Mult. Eff.) (0.20 relative to 0.12 in Table 3). The mean value of the
threshold θp was also reduced to 0.87 (1.05 in Table 3), which in turn
increased the number of days identified as having at least a 5% chance
of being extreme during the validation phase from 123 to 547. Of
these potentially extreme days, only 1 had a 100% chance of being
extreme, with the rest having an average of 35% chance of being ex-
treme. Clearly, our approach resulted in a reduced posterior parametric
uncertainty (diagonal elements of Σ), thereby providing a much better
separation of the estimated states of the watershed, but we also note
that the covariance estimates (off-diagonal elements of Σ) were poorly
identified; a result frequently reported in the literature (Bates et al.,
2003; Wellen et al., 2014).

Zehe and Sivapalan (2009) highlighted the need to understand the
reason for thresholds of catchment response. The existence of thresholds
at the process scale is a necessary but not sufficient condition for the ex-
istence of thresholds at the catchment scale. Process thresholds include
the classical mechanisms of overland flow generation — infiltration
excess (Horton, 1933) and saturation excess (Dunne and Black, 1970).
However, in order for excess water to contribute to streamflow, some
degree of hydrological connection to the stream must be established.
This often involves the (over)filling of various catchment storages (Ali
et al., 2013; Lehmann et al., 2007; Oswald et al., 2011). Fig. 2 suggests
that a storage threshold controls the generation of discharge in Redhill
Creek, as the 2-day average precipitation controls the catchment
response. The threshold response presented in Fig. 2 for Redhill Creek
was also observed at an upstream monitoring station on Redhill Creek
(Fig. S11), which drains about 40% of the catchment (Albion Falls
station, Water Survey of Canada station 02HA023, drainage area
23.5 km2) and at a monitoring station on Indian Creek, a nearby urban
catchment monitored by the Ontario Ministry of Environment (drain-
age area 23 km2, 72% urban residential and urban greenspace). The
Albion Falls drainage is dominated by urban area (~80% including
greenspace), but its later construction throughout the 1980s means
that the sanitary and combined sewers are separated. Likewise, Indian
Creek's urban area was constructed during roughly the same time
frame, and it is also served by separated sewer systems. Thus, it is
reasonable to hypothesize that the commondenominator of the thresh-
old behavior is a set of processes associated with urbanization. It is pos-
sible that this threshold corresponds to the storage capacity of the soils
in the pervious areas within the urban matrix. When this capacity is
exceeded, additional precipitation runs off directly into streets and
other areas drained by sewers. In the absence of these interruptions of
the natural drainage network, this runoff would be forced to flow
overland to a channel and risk infiltration or evaporation en route.
Despite significant attention given to anthropogenic effects on catch-
ment thresholds in agricultural areas, Zehe and Sivapalan (2009)
reported very little work in urban systems. More research is needed to
understand the cause of the threshold behavior identified herein, as
the hypothesis we advanced describes a clear pathway by which
contaminants applied to urban pervious areas (e.g., phosphorus fertilizer,
pesticides) may be entering waterways. Whatever the cause of this
threshold behavior is, our framework for accommodating extreme
events in model calibrationwas able to capture it better than the math-
ematics of the SWAT model alone.

This framework should not be considered solely as a manner of
accommodating the functioning of urban areas in the SWAT model, as
non-urbanwatershedsmay also be characterized by threshold behavior
in their response to extreme events (Oswald et al., 2011; Zehe and
Sivapalan, 2009). For example, there is some increase of the variability
of streamflow above a threshold of 3-day average precipitation for
Grindstone Creek, and Formulations 2 and 3 both led to improvements
in the prediction of extreme events for the same creek.

While our work has focused on the variability of runoff generation
between response states, it is possible to allow any parameters to vary
between states. In a parameter sensitivity and identifiability analysis,
Cibin et al. (2010) found that the curve numbers dominated the model
predictions in the twowatersheds considered. Cibin et al. (2010) divided
the period of record into days with low, medium, and high flow and
found that the optimum region of the curve number parameters varied
with flow regime. Low and high flow periods were better modeled
with low and high curve numbers, respectively. Their result strongly
bolsters our decision to include the curve number parameters in the
threshold configuration.
On the value of informative priors

Informative priors are an advantage of the Bayesian approach to
model calibration, as they allow the results of previous investigations
to be included in the model calibration and inference process (Gelman
et al., 2004). This can ensure that model calibration is not simply a data
fitting exercise, but an update of prior knowledge. Informative priors
decrease parametric uncertainty and can avoid misleading model
calibrations (Arhonditsis et al., 2007, 2008a,b, 2011; Wellen et al.,
2014). Despite these advantages, very seldom are informative priors
used in watershed modeling. We found that the calibration data gener-
ally played a greater role in deciding the posteriors than the priors did.
This conclusion is based on the consistently large values of the delta
index (Tables 3 and 4) as well as the relative similarity of the inference
drawn between Formulations 2 and 3 in both Creeks. Therewas enough
information in only three years of continuous streamflow records to
overcome any differences due to informative priors. However, future
research may conclude that informative priors are valuable when
streamflow records are of lower quality, e.g. consisting of a handful of
spot flow records.
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What can we learn about the watersheds under study?

To substantiate our estimates of water balance partitioning, we
compared our estimates of surface runoff to those estimated by Parkin
et al.'s (1999) water balance model. Parkin et al. (1999) estimated the
water balance for corn crop grown in Guelph, Ontario, roughly 40 km
from the study sites presented in this paper. They estimated 81 ±
64 mm of annual runoff, 25% of which occurred in the spring (April
and May). Our estimates of annual agricultural runoff are consistent
with this figure (33–183 mm in Redhill Creek and 5–64 mm in
Grindstone Creek), although our estimates of growing season agricul-
tural runoff for Grindstone Creek (b4 mm) are lower than the Parkin
et al.'s (1999) findings (20.25 ± 16 for April and May). It is possible
that we underestimate surface runoff during the growing season for
Grindstone Creek. To examine the robustness of the latter results, we
considered an alternative approach that postulates the ratio of growing
season runoff depth to annual runoff depth estimated in Redhill Creek
applies in Grindstone Creek as well. Adjusting the growing season
runoff estimates, we estimate agricultural areas in Grindstone Creek
generate between 4 and 18 mm of runoff, with a median estimate of
12 mm. These estimates are within the range obtained by Parkin et al.
(1999) and are still considerably less than those estimated for Redhill
Creek.

The most obvious conclusion of the differences in watershed
functioning between the urban and agricultural creek pertains to the
disproportionate role of the urban impervious surfaces in generating
surface runoff. For Redhill Creek, between 81% and 93% of all surface
runoff volume was estimated to be generated in urban residential
areas over the entire annual cycle, whereas this proportion varied
between 90% and 98% during the growing season (May–September).
For Grindstone Creek, an approximate fraction between 45% and 80%
of all surface runoff was estimated to be generated in urban residential
areas over the entire annual cycle, and 95% and 99% during the growing
season (May–September). The latter result is surprising given the low
coverage of urban area in Grindstone Creek (~9%), and arises largely
as a consequence of a near cessation of surface runoff generation in
non-urban areas in Grindstone Creek during the growing season. If we
use our alternative estimates of growing season runoff, urban residen-
tial areas still generate between 47% and 82% of the total runoff volume.

The impervious surfaces were not the sole factor responsible for the
differences in functioning between the two Creeks. When we compare
the pervious land covers of both Creeks, we see dramatic seasonal
differences. While Redhill Creek generates about one half of its surface
runoff volume during the growing season, Grindstone Creek generates
a significantly lower fraction (15–29%). Despite the larger size,
Grindstone Creek generates about 10% of the surface runoff volume
Redhill Creek generates during the growing season. This difference
cannot entirely be explained with reference to the greater urban area
of Redhill Creek, as similar land uses appear to behave differently
between the two Creeks. Agricultural land uses, for instance, generated
between 33 and 183 mm of runoff annually in Redhill Creek and
between 5 and 64mm in Grindstone Creek. During the growing season,
agricultural areas in Redhill Creek generated between 4 and 72 mm of
runoff, whereas during this same period agricultural land uses in
Grindstone Creek were estimated to generate between 0 and 3 mm.
Even using our upwardly revised estimates of Grindstone Creek's
growing season runoff (4–18 mm), this is significantly lower than the
agricultural area in Redhill Creek during the growing season. The
relative disconnect between the pervious areas of Grindstone Creek
and the receivingwaterbody during the growing season can be partially
explainedwith reference to soil properties. Themost common soil types
in Redhill Creek tend to be more runoff prone than those in Grindstone
Creek. The soils in Redhill Creek had base (prior) values of hydraulic
conductivity nearly an order of magnitude lower than those in
Grindstone Creek (1.7–3.4 mm/h for Redhill Creek; 16–27 mm/h for
Grindstone); the lower posterior estimates of SOL_KSAT (Mult. Eff.) for
Redhill and Grindstone Creeks exacerbated this difference. Clearly, the
soils in Redhill Creek are not able to drain to field capacity after a signif-
icant wetting event as fast as those in Grindstone Creek. This built-up of
moisture would lead to higher daily curve numbers being estimated by
SWAT. Further, the Natural Resources Conservation Service Hydrologic
Runoff Group values for the soils in Grindstone Creek were typically B,
while those in Redhill Creek were typically C. This led to the selection
of higher base value curve numbers in Redhill Creek, while the posterior
values of CN2 (Mult. Eff.) were typically higher in Redhill Creek. These
factors have the combined effect of making similar land uses more run-
off prone in Redhill Creek than in Grindstone Creek. The effect of future
development on runoff production thus depends partially on which soil
type is developed and in which creek.

In conclusion, we presented a framework to accommodate the effect
of extremeevents onwatershed response to precipitation by identifying
distinct states of a system and allowing some parameters to vary
between states. As climate and land use changes together are likely to
make extreme events more common, it will become necessary to
evaluate their impact on watershed functioning and downstream
water quality (Zehe and Sivapalan, 2009). Our framework improved
the reproduction of flow conditions in days identified as extreme,
though the overall model fit was not improved. Accommodating the
extreme event behavior resulted in significantly different runoff source
apportionments, as the runoff generated by pervious areas tended to be
greater. The Bayesian nature of our approach allows a probabilistic
estimation of critical runoff generating areas that may be responsible
for greater pollutant export to receiving waterbodies (McDowell and
Srinivasan, 2009) while accounting for the different sources of uncer-
tainty (model structure imperfection, model input uncertainty) as
well as natural system variability. Our future work will couple the
framework presented here with a water quality model to evaluate its
efficiency in predicting the impact of non-point source pollution to the
eutrophication patterns of the receiving water body.
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ELECTRONIC SUPPLEMENTARY MATERIAL (ESM) 

Details of the MCMC sampling algorithm: 

We simulated samples from the posterior using Markov chain Monte Carlo (MCMC) 

sampling. In this study, we used the DiffeRential Evolution Adaptive Metropolis Algorithm-ZS 

(DREAM-ZS) as presented by Laloy and Vrugt (2011), the details of which we include in the 

ESM. This algorithm is based on the original DREAM algorithm presented in Vrugt et al. (2008, 

2009). DREAM adapts more traditional MCMC approaches to the complex, multi-modal 

likelihood surfaces characterizing deterministic watershed models by running multiple Markov 

chains and basing the proposal distribution on the distances between chains in the parameter 

space. DREAM-ZS further adapts this approach by sampling from an archive of past states to 

generate proposal locations in the parameter space. We used a total of 5 chains for each model 

realization and collected between 32,000 and 64,000 samples per chain. Convergence was 

assessed qualitatively by visually inspecting plots of the posterior Markov chains for mixing and 

stationarity and by inspecting density plots of the pooled posterior Markov chains for 

unimodality. We also assessed convergence quantitatively using the modified Gelman–Rubin 

convergence statistic (Brooks and Gelman, 1998). The first half of our posterior samples was 

discarded to ensure no significant effect of initial conditions and imposed a thin of 10 to 

minimize the effect of sample autocorrelation. 
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Table S-1: Fit statistics for the SWAT application in Redhill Creek. 

Formulation NSE RE r
2
 

Formulation 1 Calibration 0.64 0.54 0.66 

 
Validation 0.52 0.60 0.54 

Formulation 2 Calibration 0.66 0.52 0.71 

 
Validation 0.56 0.58 0.57 

Formulation 3 Calibration 0.60 0.72 0.63 

 
Validation 0.56 0.57 0.57 
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Table S-2: Fit statistics for the SWAT application in Grindstone Creek. 

Formulation NSE RE r
2
 

Formulation 1 Calibration 0.71 0.44 0.72 

 
Validation 0.56 0.47 0.56 

Formulation 2 Calibration 0.71 0.45 0.71 

 
Validation 0.49 0.44 0.52 

Formulation 3 Calibration 0.74 0.43 0.75 

 
Validation 0.44 0.47 0.48 
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Table S-3: Comparison of Formulation 2 posteriors with those obtained when postulating prior 

independence of CN2 Low (Mult. Eff.) and CN2 High (Mult. Eff.) in Grindstone Creek. 

Parameter Formulation 2 
 

Formulation 2, 

prior independence 

 
Mean SD 

 
Mean SD 

ALPHA_BF 0.94 0.05 
 

0.94 0.04 

SOL_AWC (Mult. Eff.) 1.41 0.01 
 

1.40 0.01 

GW_REVAP 0.05 0.03 
 

0.04 0.02 

ESCO 0.18 0.08 
 

0.15 0.04 

EPCO 0.49 0.26 
 

0.47 0.23 

GW_DELAY (Mult. Eff.) 1.75 0.27 
 

1.55 0.14 

SOL_KSAT (Mult. Eff.) 0.55 0.07 
 

0.54 0.05 

SNOWCOVMX 21.06 0.37 
 

23.93 0.83 

SMFMX 2.79 0.11 
 

5.09 0.83 

SMFMN 2.51 0.08 
 

2.68 0.32 

SURLAG 0.51 0.01 
 

0.51 0.01 

θp 1.05 0.09 
 

0.83 0.17 

CN2 Low (Mult. Eff.) 0.57 0.12 
 

0.76 0.20 

CN2 High (Mult. Eff.) 0.77 0.07 
 

0.64 0.07 

σ  0.07 0.00 
 

0.066 0.002 

ρ  0.91 0.01 
 

0.918 0.011 

Logged Likelihood 1053.23 4.85 
 

1038.51 4.62 
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Figure S-1: Posterior marginals for Redhill Creek Formulation 1. 

Figure S-2: Posterior marginals for Redhill Creek Formulation 2. 
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Figure S-7: Likelihood Assessment for Redhill Creek. The top row reports on Formulation 1, the 

middle row on Formulation 2, and the bottom on Formulation 3. The left column presents 

quantile-quantile plots for the expected and actual standardized innovations, the middle column 

presents autocorrelation functions for the innovations, and the right column presents density 

plots of the expected and actual standardized innovations. As described in the methodology 

section, all likelihoods were based on a first-order autocorrelation of the residuals and a 

Student’s t-distribution with 7 degrees of freedom for the innovations. All standardization was 

performed with the relevant posterior estimates of the first order correlation coefficient (ρ) and 

the scale parameter (σ) for the innovations. 

Figure S-8: Likelihood Assessment for Grindstone Creek. The top row reports on Formulation 

1, the middle row on Formulation 2, and the bottom on Formulation 3. The left column presents 

quantile-quantile plots for the expected and actual standardized innovations, the middle column 

presents autocorrelation functions for the innovations, and the right column presents density 

plots of the expected and actual standardized innovations. As described in the methodology 

section, all likelihoods were based on a first-order autocorrelation of the residuals and a 

Student’s t-distribution with 7 degrees of freedom for the innovations. All standardization was 

performed with the relevant posterior estimates of the first order correlation coefficient (ρ) and 

the scale parameter (σ) for the innovations. 

Figure S-9: Flow validation for Redhill Creek for (1995 – 1996). Black precipitation bars 

indicate days with at least a 5% chance of exceeding the threshold for extreme events.  

Figure S-10: Flow validation for Grindstone Creek for (1995 – 1996). Black precipitation bars 

indicate days with at least a 5% chance of exceeding the threshold for extreme events.  

Figure S-11: Scatterplot relating 2-day average precipitation with daily streamflow at the Albion 

Falls station on Redhill Creek (Water Survey of Canada Station 02HA023, drainage area 23.5 

km
2
) and below the Hagar-Rambo diversion of Indian Creek (Ontario Ministry of Environment, 
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drainage area 23 km
2
). Redhill Creek scatterplots show daily flows between 1989 – 2003. Indian 

Creek scatterplot shows flows from the period August 2010 – June 2012. For all graphs, only 

data from the months May – November are plotted.
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Figure S-1: Posterior marginals for Redhill Creek Formulation 1. 
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Figure S-2: Posterior marginals for Redhill Creek Formulation 2. 



10 | P a g e  

 

 

 

Figure S-3: Posterior marginals for Redhill Creek Formulation 3. 
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Figure S-4: Posterior marginals for Grindstone Creek Formulation 1. 
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Figure S-5: Posterior marginals for Grindstone Creek Formulation 2. 
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Figure S-6: Posterior marginals for Grindstone Creek Formulation 3. 
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Figure S-7: Likelihood Assessment for Redhill Creek. The top row reports on Formulation 1, the 

middle row on Formulation 2, and the bottom on Formulation 3. The left column presents 

quantile-quantile plots for the expected and actual standardized innovations, the middle column 

presents autocorrelation functions for the innovations, and the right column presents density 

plots of the expected and actual standardized innovations. As described in the methodology 

section, all likelihoods were based on a first-order autocorrelation of the residuals and a 

Student’s t-distribution with 7 degrees of freedom for the innovations. All standardization was 

performed with the relevant posterior estimates of the first order correlation coefficient (ρ) and 

the scale parameter (σ) for the innovations. 
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Figure S-8: Likelihood Assessment for Grindstone Creek. The top row reports on Formulation 

1, the middle row on Formulation 2, and the bottom on Formulation 3. The left column presents 

quantile-quantile plots for the expected and actual standardized innovations, the middle column 

presents autocorrelation functions for the innovations, and the right column presents density 

plots of the expected and actual standardized innovations. As described in the methodology 

section, all likelihoods were based on a first-order autocorrelation of the residuals and a 

Student’s t-distribution with 7 degrees of freedom for the innovations. All standardization was 

performed with the relevant posterior estimates of the first order correlation coefficient (ρ) and 

the scale parameter (σ) for the innovations. 
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Figure S-9: Flow validation for Redhill Creek for (1995 – 1996). Black precipitation bars 

indicate days with at least a 5% chance of exceeding the threshold for extreme events.  
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Figure S-10: Flow validation for Grindstone Creek for (1995 – 1996). Black precipitation bars 

indicate days with at least a 5% chance of exceeding the threshold for extreme events.  
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Figure S-11: Scatterplot relating 2 day averaged precipitation with daily streamflow at the 

Albion Falls station on Redhill Creek (Water Survey of Canada Station 02HA023, drainage area 

23.5 km
2
) and below the Hagar-Rambo diversion of Indian Creek (Ontario Ministry of 

Environment, drainage area 23 km
2
). Redhill Creek scatterplots show daily flows between 1989 

– 2003. Indian Creek scatterplot shows flows from the period August 2010 – June 2012. For all 

graphs, only data from the months May – November are plotted. 
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