
Continuous Bayesian Network for Studying the Causal Links between
Phosphorus Loading and Plankton Patterns in Lake Simcoe, Ontario,
Canada
Alexey Gudimov,† Eavan O’Connor,‡ Maria Dittrich,† Hamdi Jarjanazi,§ Michelle E. Palmer,§

Eleanor Stainsby,§ Jennifer G. Winter,§ Joelle D. Young,§ and George B. Arhonditsis*,†

†Ecological Modeling Laboratory, Department of Physical and Environmental Sciences, University of Toronto, Toronto, Ontario,
Canada, M1C 1A4
‡Lake Simcoe Region Conservation Authority, Newmarket, Ontario, Canada, L3Y 4X1
§Great Lakes Water Monitoring and Reporting Section, Ontario Ministry of the Environment, Environmental Monitoring and
Reporting Branch, Toronto, Ontario, Canada, M9P 3V6

*S Supporting Information

ABSTRACT: An ecosystem perspective to restoring beneficial uses in
Areas of Concern can be interpreted as a shift from the traditional
elucidation of simple cause−effect relationships to a multicausal way of
thinking that more effectively accommodates ecosystem complexity. This
holistic management paradigm has also pervaded the contemporary
ecological modeling practice, making compelling the adoption of more
sophisticated ecosystem modeling tools. In this study, our primary
objective is to develop a Bayesian hierarchical network of simple
ecological models for Lake Simcoe, Ontario, Canada, aiming to establish a
realistic representation of the causal connections among exogenous
nutrient loading, ambient nutrient conditions, and epilimnetic plankton
dynamics. In particular, we used a spatially explicit simple mass-balance
model forced with idealized sinusoidal loading to predict total phosphorus
concentrations. A structural equation model was then used to delineate the interplay among nutrients, ambient light conditions,
phytoplankton, and herbivorous biomass. Our analysis highlights the strength of the causal linkages between total phosphorus
and water clarity with phytoplankton as well as the capacity of zooplankton grazing to modulate the algal standing crop. Our
Bayesian network is also used to examine the exceedance frequency of threshold values for total phosphorus (15 μg/L) and
chlorophyll a (4 μg/L) concentrations under scenarios of phosphorus loading reduction. Our study suggests that a 15%
phosphorus loading decrease will still result in >25% violations of the 4 μg chla/L value in the two embayments of Lake Simcoe
(Cook’s Bay and Kempenfelt Bay). The TP levels will decrease in response to the exogenous loading reductions and this
improvement will be primarily manifested in the northcentral segments of the system.

1. INTRODUCTION
Addressing environmental management problems often involves
complex policy decisions that aim to maintain ecosystem
functional integrity while accommodating social values and
economic concerns. The growing appreciation of the challenges
of aquatic ecosystem restoration and the need to address a wide
array of tightly intertwined stressors have triggered a shift from
the historical water quality/fisheries exploitation paradigms to
the ecosystem management paradigm.1 Rather than narrowly
focusing on water quality problems, the ecosystem approach
simultaneously addresses problems related to fisheries manage-
ment, exotic species invasions, biodiversity, habitat conservation
and restoration, sustainable economic development, or even
human behavior and education.2 Although the concept of holistic
ecosystem management makes sense as a pragmatic means to
address multifaceted environmental problems, there is concern
that this approach has been accompanied by a shift from the

traditional elucidation of simple cause−effect relationships to a
multicausal way of thinking to accommodate ecosystem
complexity.1 This shift can be a major impediment to deriving
the straightforward scientific answers required by the regulatory
agencies tasked with implementing environmental protection
policies.3

The ecosystem approach has not only pervaded environmental
thinking but also contemporary modeling practices. Complex
ecosystem models have been developed for a number of
purposes, including the illumination of causal mechanisms,
complex interrelationships, and direct and indirect ecological
paths; examination of the interplay among a suite of external
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Figure 1. (A) Basic principle and spatial segmentation of the Continuously-Stirred-Tank Reactor (CSTR) model, forced with idealized sinusoidal
loading, to predict epilimnetic total phosphorus concentrations in Lake Simcoe, Ontario, Canada. (B) Hierarchical configuration of the Lake Simcoe
Bayesian network. The spatial heterogeneity is accommodated by viewing the problem of parameter estimation as a hierarchy. At the bottom of the
hierarchy are the parameters for individual segments j; qj∼N(mj, sj). In the upper level, the segment-specific parameters are specified probabilistically in
terms of lakewide parameters or hyper-parameters; q∼N(m, s). (C) Structural equation model used to elucidate the interplay among nutrients, ambient
light conditions, phytoplankton, and herbivore biomass.
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stressors (e.g., climate change, urbanization/land-use changes,
invasion of exotic organisms); and assessment of the potential
ramifications of various stressors on ecosystem functioning (e.g.,
food web dynamics, benthic−pelagic coupling, fish commun-
ities).4,5 While the development of more holistic modeling
constructs is certainly the way forward, skeptics question the
ability to mathematically depict many biotic relationships and
their interactions with the abiotic environment.6,7 The current
generation of mathematical models cannot offer robust
predictions in a wide range of spatiotemporal domains, and
our experience is that model performance declines as we move
from physical−chemical to biological components of aquatic
ecosystems.6 The tendency to invoke complexity as a means for
improving the learning capacity of our models also entails an
increase in the disparity between what ideally we want to learn
(internal description of the system and model end points) and
what can realistically be observed. Thus, our ability to properly
constrain model parameters from observations is reduced, and
the resulting poor identifiability undermines model credibility
when used to support environmental management decisions.8

In this study, our thesis is that while the emergence of the
holistic environmental management paradigm reinforces the
need for more sophisticated modeling tools, the critical
evaluation of the inference drawn and the impartial differ-
entiation between real knowledge gained and existing knowledge
gaps can be the thrusts for coping with the uncertainty of any
modeling exercise. We also advocate the use of simple models as
adequate first-order approximations until simplicity can be
gradually traded for increased explanatory power. In this regard,
our primary objective is to develop a continuous Bayesian
hierarchical network of simple ecological models for Lake
Simcoe, Ontario, Canada, that establish a realistic representation
of the causal connections among exogenous nutrient loading,
ambient nutrient conditions, and epilimnetic plankton dynamics.
We use a spatially explicit simple mass-balance model forced with
idealized sinusoidal loading to predict total phosphorus
concentrations. A structural equation model is then used to
delineate the interplay among nutrients, ambient light
conditions, phytoplankton, and herbivorous zooplankton
biomass. Our study also pinpoints directions of future model
augmentation, where extra ecological complexity and finer spatial
segmentation will improve our understanding of the system.
Finally, we illustrate how our Bayesian network of models can be
used to examine the exceedance frequency of threshold values for
total phosphorus (15 μg/L) and chlorophyll a (4 μg/L)
concentrations under scenarios of phosphorus loading reduction.

2. METHODS
2.1. Study Site. Lake Simcoe is the sixth largest inland lake in

the province of Ontario, Canada, with a surface area of 722 km2, a
mean depth of 14 m, and a maximum depth of 42 m (Figure 1a).
It is a dimictic system that completely freezes over in most
winters. Lake Simcoe consists of a large main basin (mean depth
14 m, maximum depth 33 m) and two large bays: the narrow and
deep Kempenfelt Bay on the west side of the lake (area 34 km2,
mean depth 20 m) and the shallow Cook’s Bay at the south end
of the lake (area 44 km2, mean depth 13 m).9 The lake drains
through a single outflow at Atherley Narrows and has a flushing
time of approximately 11 years.10 Due to the limestone bedrock
underlying its catchment, Lake Simcoe is a hard-water lake with
mean calcium concentration of 41 mg/L, mean alkalinity of 116
mg/L, and mean sulfate concentration of 20 mg/L.10 The lake
supports a year-round sport fish industry (>1 million angler

hours per year) as well as recreational activities that generate over
$200 million per year. Lake Simcoe is also a drinking water
source for several communities within its 2899 km2 watershed.9

Agriculture and increasing urbanization activities have
impacted the ecological health of the system. In particular,
Lake Simcoe currently receives wastewater from 14 municipal
wastewater treatment plants, which constitute sources of
phosphorus loading (6 ± 1 tonnes/yr between 2004 and
2007).10 Substantial phosphorus loads are also deposited from
the atmosphere (18± 4 tonnes/yr) or stem from other nonpoint
sources, including runoff from agricultural, urban, and natural
areas (43 ± 5 tonnes/yr) and rural septic systems (4.4 ± 0.1
tonnes/yr).10 The exogenous phosphorus inputs modulate the
ambient total phosphorus (TP) levels and subsequently trigger
phytoplankton production,11 while the decomposition of the
excessive organic material in the sediments likely contributes to
hypolimnetic dissolved oxygen (DO) depletion. Prior to the
mid-1990s, end-of-summer hypolimnetic DO values reached
nearly lethal levels for many coldwater fish species (<3 mg/L).12

As a result, fish biomass declined for several commercially or
recreationally important fish species, such as lake trout
(Salvelinus namaycush), lake whitefish (Coregonus clupeaformis),
and lake herring (Coregonus artedi).12 To alleviate the problem of
hypoxia and thus allow for the restoration of a self-sustaining
coldwater fishery, the target for the end-of-summer minimum
volume-weighted hypolimnetic dissolved oxygen (MVWHDO)
was originally established at 5 mg/L and recently revised to 7
mg/L.9,12 A combination of empirical knowledge and modeling
indicates a phosphorus loading rate of 44 tonnes/yr is needed to
meet the 7 mg/L MVWHDO target.9 Between 2004 and 2007,
total phosphorus loading into the lake was 74 ± 3 tonnes/yr, a
significant reduction from over 100 tonnes/yr during the 1980s
and early 1990s.12

2.2. Model Description. 2.2.1. Spatial Segmentation. Our
continuous Bayesian network consists of two models: (i) a
spatially explicit simple mass-balance model forced with idealized
sinusoidal loading to predict epilimnetic total phosphorus; and
(ii) a structural equation model to depict the causal links among
nutrients, light availability, temperature variability, phytoplank-
ton, and herbivorous zooplankton biomass in the Lake Simcoe
epilimnion. Data for the model parameterization were obtained
from the monitoring program conducted by the Ontario
Ministry of the Environment in partnership with the Lake
Simcoe Region Conservation Authority. Nine stations (C1, C6,
C9, K39, K42, K45, S15, E51, and ATH) have been historically
used to monitor the water quality in Lake Simcoe and these
stations were also used to delineate the spatial segmentation of
the model (Figure 1a). Loading estimates from all the major
point and nonpoint sources during the study period (1999−
2007) were provided by the Lake Simcoe Region Conservation
Authority.13 (More information about the data used in the
present study is provided in the Supporting Information). Our
modeling analysis is based on a hierarchical structure,14 which
allowed us to obtain segment-specific estimates of the causal
relationships considered to accommodate the spatial variability
in the system (Figure 1b).

2.2.2. Total Phosphorus Model. Our TP model is founded
upon a representation of the Lake Simcoe epilimnion as a
feedforward system of completely mixed reactors (Figure 1a).15

A central feature of the feedforward configuration is the
postulation of a net unidirectional flow within the framework
of serial reactors considered. This approach seems conceptually
more suitable to model horizontal mass exchanges in a chain of
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lakes or a stream,15 and thus its validity and limitations to
accommodate the spatial heterogeneity of a single lake is critically
examined in the Supporting Information (Section D). The TP
balance in each segment is determined by the exogenous loading
sources and three sinks (outflow, reaction, and settling) that
deplete the ambient phosphorus levels in the system:
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in which Wavg is the mean loading entering the system (tonnes
day−1),Wamp is the amplitude around the mean loading (tonnes
day−1), θ = phase shift of the loading from the standard wave
(radians), φ(ω) is an additional phase shift related to the
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are the angular frequency and period of the loading oscillation.
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where TPitj corresponds to the average TP concentration at
segment j, year t, and month i; τ2 denotes the structural error
variance of our TP model; κ1tj is the net outflow rate from
segment j at year t; the κ1j and σκ1j correspondingly denote the
segment-specific average flushing rates and the associated

interannual variability, as calculated from the respective water
balance budgets; κ2tj is the net TP loss rate in segment j at year t;
κ2 represents the hyperparameter or the lakewide TP loss rate;
σκ2j

2 is the segment-specific variance; and κ2 μ and σκ2
2 are the

mean and variance of the global parameter distribution,
respectively. The normal distribution assigned to the parameter
κ2 μ was based on a literature review (κ2 μlit, σκ2lit

2),14 while the
inverse gamma distributions assigned to the parameters σκ2

2 and
σκ2j

2 were constructed such that their mean was equal to the
variance σκ2lit

2. The uncertainty of the same distributions
reflected our high level of confidence to that mean variance
estimate (i.e., coefficient of variation <10%). The mean (Wavgtj),
amplitude (Wamptj), and phase shift (θtj) values of the phosphorus
loading at segment j, year t, and month iwere drawn from normal
distributions in which the mean values (WavgMLtj,WampMLtj, θMLtj)
and error variances (σWavgtj

2, σamptj
2, σθtj

2) were the maximum
likelihood estimators obtained from fitting sinusoidal functions
to the corresponding monthly loading data. The normal
distributions of the mean annual loading (Wavgtj) also considered
the estimates of model error variance (σWtj

2) obtained from the
maximum likelihood fitting exercise.

2.2.3. Structural Equation Model. We used structural
equation modeling (SEM) to elucidate the key causal relation-
ships underlying the interplay among the physical environment,
nutrients, and plankton dynamics in Lake Simcoe. SEM is a
multivariate statistical method that encompasses both factor and
path analysis, which allows decomposing multiple causal
pathways and quantifying direct and indirect relationships
among variables.16 Another advantage of SEM is that it can
explicitly incorporate uncertainty due to measurement error
and/or accommodate the discrepancy between conceptual
ecosystem properties and observed variables that can be directly
measured. SEM is also an a priori statistical method whereby a
hypothetical structure of the system studied, reflecting the best
knowledge available, is tested against the observed covariance
structure.16 A Bayesian approach to SEM was also adopted
because it offers several advantages over the classical methods
(e.g., maximum likelihood, generalized and weighted least-
squares). A Bayesian SEM can incorporate prior knowledge
about the parameters and more effectively treat unidentified
models. Moreover, the modeling process does not rely on
asymptotic theory, a feature that is particularly important when
the sample size is small and the classical estimation methods are
not robust. Markov Chain Monte Carlo (MCMC) samples are
taken from the posterior distribution, and consequently the
procedure works for all sample sizes and various sources of non-
normality.17,18

In this study, our starting point is a “conceptual/mental”
model that considers the effects of four latent variables (i.e.,
phosphorus, nitrogen, light, and herbivorous zooplankton
grazing) on phytoplankton dynamics (Supporting Information
Figure SI-1). Each of these conceptual factors (or latent
variables) can be linked with observed data (rectangular boxes
in Figure 1c), while explicitly acknowledging that none of the
selected surrogate variables can perfectly represent the under-
lying property (measurement errors ε in Figure 1c). Specifically,
we established a connection between the TP mass-balance and
structural equation models by considering the causal association
between total phosphorus and phytoplankton biomass. We also
used the latent variable nitrogen and two indicator variables:
dissolved inorganic nitrogen (DIN) and total nitrogen
concentrations. The role of light availability (light limitations
on algal growth) was described solely by the existing Secchi disk
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depth values, while chlorophyll a concentrations were used to
represent the latent variable “phytoplankton”. The trophic
interactions between phytoplankton community and herbivo-
rous zooplankton were assumed to have a nonrecursive nature,
i.e., bottom-up and top-down forcing. The role of temperature as
a regulatory factor of zooplankton biomass was also considered.
The Bayesian hierarchical configuration of the Lake Simcoe SEM
is provided in Supporting Information, Section D.

3. RESULTS
The application of the TP model provided satisfactory fit to the
measured TP concentrations in seven out of the nine segments
considered, resulting in root-mean-square-error (RMSE) values
lower than 5 μg TP/L (Figure SI-2). The main exceptions were
the two inner segments of Cook’s Bay, C1 (RMSE = 26.47 μg
TP/L) and C6 (RMSE = 10.77 μg TP/L), which are also
consistently characterized by the highest TP levels in the system.
In particular, we note that the fairly high error in segment C1
predominantly stems from a few extreme TP values that occurred
distinctly out of the phase shifts, φ(ωjt), postulated by our model
to account for the system response. Further, one of the
fundamental model assumptions is that the segment-specific
TP seasonal patterns are mainly driven by the intra-annual
variability of the exogenous loading. In this regard, our model
predicts that the inflowing TP loads alone can induce oscillatory
behavior in Cook’s Bay, although the agreement between actual
and predicted amplitudes cannot be rigorously verified as the
typical sampling intensity (biweekly) and timing (mid-May) may
not always coincide with the observed TP peaks in Lake Simcoe
(Figure SI-2). On the other hand, the predicted TP dynamics in
larger and/or offshore segments were significantly muted,
indicative of a more complex interplay among exogenous
loading, hydrodynamics, and biological productivity that most
likely modulates in-lake TP variability.
In the majority of the modeled sites, the net TP loss rates were

well-identified and independent from the corresponding
posterior estimates of the segment-specific flushing (or net
exchange) rates (Figure SI-3). They demonstrated low year-to-
year variability within each segment, spanning a range between
0.8 and 1.0 year−1 or 0.002−0.003 day−1 (Figure SI-4 and Table
SI-1). Notable exceptions were the segments C6 and K39,
characterized by 2- to 10-fold increase in their posterior κ2
estimates with considerable interannual variability. Given that
both sites are located in the vicinity of major tributary outlets,
there are three plausible explanations for this substantial
discrepancy: (i) the excessive macrophyte growth in the
favorable environment of Cook’s Bay (i.e., shallower depths,
elevated nutrient levels, increased water clarity, and fine-grained
sediments) that act as a net sink of the ambient TP;19 (ii) the
presence of dreissenids that have the capacity to filter suspended
particles from the water column and thus modulate the TP
concentrations;20 and/or (iii) the fact that both segments
constitute transitional zones to the deeper parts of the lake. It is
conceivable that a substantial portion of the inflowing TP loads
may be directly allotted to the hypolimnion, representing a
permanent sink for the epilimnetic phosphorus budget (see also
following discussion). Generally, the posterior estimates of the
sedimentation and outflow rates suggest that a significant portion
of the annual TP inputs from the Holland River in the
southernmost segment (C1) are flushed into the middle area
(C6) of Cook’s Bay, i.e., 1140 out of 1201 mg/m2/yr (Figure 2
and Figure SI-5). As previously mentioned, a substantial net
amount of phosphorus is lost (976 mg/m2/yr) in the sediments

of this zone or in the hypolimnion of the next segment (C9),
while a lower fraction (311 mg/m2/yr) is transported
horizontally to the epilimnion of the outer Bay and subsequently
to the Main Basin (106 mg/m2/yr). In a similar manner, more
than half of the TP loads (or 491 mg/m2/yr out of 903 mg/m2/
yr) in the innermost segment of Kempenfelt Bay are being
subjected to sedimentation and the remaining amount of
phosphorus (415 mg/m2/yr) is being transferred to the outer
segment (K42), ultimately reaching the central area of the lake
(113 mg/m2/yr). Notably, the net areal sedimentation rates in
the mouths of the two embayments were comparable with those
predicted in the Main Basin, ranging from 45 to 90 mg/m2/yr.
The annual TP outflows from Atherley Narrows were estimated
at an average level of 329 mg/m2/yr (or 9.6 tonnes/yr), and the
TP retention fraction varied from 85% to 93%; both values are on
par with existing estimates independently calculated from TP
mass balance budgets for Lake Simcoe.10,20

The comparison between measured and predicted chlorophyll
a concentrations is presented in Figure SI-6, in which it can be
seen that our SEM approach sufficiently describes the observed
chlorophyll a patterns as nearly all the data were included within
the 95% credible intervals. The RMSE values were generally
lower than 2 μg chla/L, except in the southernmost segment in
Cook’s Bay (C1 ≈ 4.8 μg chla/L). In a similar manner, the
observed variability of the herbivorous zooplankton biomass is
adequately depicted by our model (RMSE < 60 μg C/L). The
largest discrepancy was found in the outer part of Cook’s Bay
(C6, C9) and the southern Main Basin (S15), where the error
was greater than 70 μg C/L and mainly reflected the influence of
several outlying observations. Our SEM analysis primarily
highlights the importance of a positive causal link between
epilimnetic TP and phytoplankton biomass (chlorophyll a);
especially, in Kempenfelt Bay and Eastern Basin (Figure 3 and
Table SI-2). Interestingly, our model predicts a significant path
from nitrogen to phytoplankton in several segments of the lake
(C6, C9, K42, K45), and the negative nature of this relationship
stems from the inclusion of dissolved phase inorganic nitrogen in
the latent variable “nitrogen”.17,18 However, we do not believe
the statistically significant signature implies nitrogen limitation in

Figure 2. Predicted annual phosphorus mass balance at the different
segments of Lake Simcoe during the study period (1999−2007).
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the system. Ambient dissolved phase nutrient concentrations
partly reflect the residual nutrients from phytoplankton activity,
but there are several other potentially influential factors that are
not accounted for in our approach (e.g., intracellular storage). A
strongly negative relationship exists between Secchi disk
transparency and phytoplankton biomass throughout the lake.
The capacity of zooplankton grazing to modulate the algal
standing crop (zooplankton→phytoplankton) is consistently
manifested in the lake, although this trophic linkage was
somewhat weaker and poorly identified (or highly uncertain)
in the segments associated with the highest predictive error for
zooplankton biomass (C6, S15). The causal path from
phytoplankton to zooplankton (bottom-up forcing) was
consistently weak. Water temperature variability appears to be
a significant driver of zooplankton abundance in the system
(Figure 3).
The MCMC posterior samples were used to update the two

models and subsequently integrate them into one coherent
framework for examining the exceedance frequency of different
water quality standards. Namely, the updated mass-balance
model was used to derive the predictive TP distributions,
stemming from both input uncertainty and model error, which
were then propagated through the SEM. To predict the effect of a

substantial reduction in phosphorus inputs, the corresponding
marginal TP loading distributions were reduced by 15% and 30%.
All other functions and marginal nodes in the models were left
unchanged, and new distributions were computed for the
ecological variables of interest. For illustration purposes, we
selected two threshold levels for TP (15 μg/L) and chlorophyll a
(4 μg/L) concentration, representing themidpoint and the lower
bound of the corresponding classification ranges suggested for
the characterization of mesotrophic states.15 If we consider the
present exogenous loading conditions, we infer that the
exceedance frequency of 15 TP μg/L is currently greater than
30−35% during the summer period in nearly all segments
modeled (Figure 4 and Figure SI-7). In particular, the mean TP
levels in Cook’s Bay are higher than 20 μg/L and the
corresponding frequency of violations of 15 TP μg/L is greater
than 50%. Similarly, the average chlorophyll a concentrations
exceed the level of 5 μg chla/L in the inner parts of both Cook’s
Bay and Kempenfelt Bay, and the value of 4 μg chla/L is
exceeded more than 25% of the time in the southwestern part of
the lake. Our Bayesian network predicts that a 15% phosphorus
loading reduction will still result in >25% violations in the inner
segments of the two embayments, while the rest of the lake will
experience <20% violations. Interestingly, the exceedance

Figure 3. Structural paths underlying plankton patterns in the nine segments of Lake Simcoe. The direction and color of the arrows represent the
magnitude and sign of the posterior medians of the standardized path coefficients. The standardized coefficients correspond to the shift in standard
deviation units of the dependent variable that is induced by shifts of one standard deviation units in the explanatory variables, and thus provide a means
to assess the relative importance of the various model paths.
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frequency of the value of 4 μg chla/L remained practically
unaltered under the scenario of 30% phosphorus loading
reduction. The TP levels will decrease in response to the
exogenous loading reductions and this improvement will be
primarily manifested in the northcentral segments of the system.
Our integrated model also predicts that the mean TP values will
be lower than 20 μg/L in Cook’s Bay, but the exceedance
frequency of the TP level of 15 μg/L will remain >25%, even if
the loading is reduced by 30%.

4. DISCUSSION

A major challenge when developing modeling tools aiming to
accommodate ecosystem complexity is the ability to combine
quantitative descriptions of ecological processes at multiple
scales and in a variety of forms (intermediate complexity
mathematical models, empirical equations, expert judgments).21

Bayesian networks offer an effective means for integrating various
models into one coherent framework, while rigorously assessing
how uncertainties in each component translate to uncertainty in
the final predictions. Recent research has shown that this
modeling strategy can effectively alleviate problems of
spatiotemporal resolution mismatch among different submodels
of integrated environmental modeling systems; overcome the
conceptual or scale misalignment between processes of interest
and supporting information; exploit disparate sources of data
that differ with regards to the measurement error and resolution;
and accommodate tightly intertwined environmental processes
operating at different spatiotemporal scales.21 Here, we present

two models that translate the processes underlying planktonic
patterns into an articulated sequence of conditional relationships
(TP loading→epilimnetic TP→phytoplankton biomass). This
work is relevant to policy and management decisions because it
attempts to quantitatively predict ecological changes in Lake
Simcoe in response to various phosphorus reduction scenarios.
Young et al. recently re-examined the capacity of an empirical

equation historically developed for Lake Simcoe to predict TP
concentrations from TP loading rates in the postdreissenid
period.20 Counter to the contemporary paradigm on the impact
of dreissenid mussels, the successful application of the model in
predicting average, ice-free, whole-lake phosphorus concen-
trations was interpreted as evidence that their invasion has not
fundamentally altered the existing relationship between TP
loading and TP concentrations. In this study, our hierarchical
spatially explicit model forced with idealized sinusoidal loading
relaxes two features of the existing empirical modeling work in
Lake Simcoe: (i) the system is no longer assumed thoroughly
mixed with uniform concentrations throughout; and (ii) rather
than drawing inference upon seasonal average TP values, the
ambient TP levels are predicted at finer (monthly, daily) time
scales that may be more relevant for addressing the current
management issues in Lake Simcoe. In this regard, the plausibility
of our estimates of the TP loss rates and the projected differences
between the two embayments and the main basin are critical for
evaluating the validity of the parametrization obtained. Hiriart-
Baer et al. recently reported post-1970 estimates of the gross TP
accumulation rates in Cook’s Bay and Kempenfelt Bay sediments

Figure 4. Predictions of the Bayesian network for the exceedance frequencies of total phosphorus and chlorophyll a thresholds concentrations in Lake
Simcoe under the present conditions and two scenarios of phosphorus loading reduction.
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at the level of 250−750 mg P/m2/yr and 300 mg P/m2/yr,
respectively.23 Although Hiriart-Baer et al.’s gross TP sed-
imentation rates are proxies that may not be suitable for
deterministic comparisons, our corresponding areal weighted
average estimates of the net areal TP loss rates were
approximately 300 mg P/m2/yr (C1, C6, C9) and 150 mg P/
m2/yr (K39, K42). Further, the likelihood of the unidirectional
flow patterns postulated by our model to misrepresent the
dilution effects of the water masses from the outer lake suggests
that our estimates probably reflect the upper levels of net
sedimentation in the two embayments (see Supporting
Information Section D). One possible implication of the 2-fold
difference between gross and net TP sedimentation rates is that
several ecological mechanisms, such as macrophyte growth,
transport to the hypolimnion, sediment resuspension and P
release, can significantly modulate TP dynamics in the two
embayments. Another plausible explanation for the substantial
discrepancy between the two studies may simply be the fact that
our work spans a shorter time period with improved water quality
and significantly lower TP concentrations.24

A second regulatory factor of the segment-specific TP budgets
is related to our posterior estimates of the flushing times in the
bays, which in turnmay influence the quantification of the net TP
export into the main basin. The hydraulic retention times of the
bays can vary significantly on a seasonal basis and are regulated by
a suite of factors, such as the wind-induced momentum, the
spring freshet, thermocline development, and water temperature
gradients.24 Hydrodynamic modeling calculations based on
acoustic Doppler current profiles indicated short retention times
between 1 and 2 weeks in the two embayments,25 or flushing
rates that correspond to an equivalent of κ1 ≈ 0.06−0.07 days−1.
Although the same values formed the basis for the year-specific κ1
priors used in this analysis (eq 3), the derived posterior estimates
(0.009−0.012 days−1) differed significantly suggesting that they
indeed represent the annual net exchange of water in terms of
nutrient loadings. Importantly, the relative mismatch between
the reported empirical TP accumulation rates of 80−300 mg P/
m2/yr in the deeper segments of Lake Simcoe23 and our
predicted net epilimnetic TP loss of 45−85 mg P/m2/yr was
fairly similar, and thus the hydrodynamic forcing of the model
and consequently our TP mass balance budgets do not seem to
introduce systematic bias among the different segments.
Our SEM reinforces earlier empirical modeling work that

showed TP is a reliable predictor of the phytoplankton biomass
in Lake Simcoe,20,26 with the robustness of the chlorophyll a−TP
relationship during the postdreissenid period being verified at
nearly all sites of the lake.20 The only exception was at C1, the
shallowest segment in Cook’s Bay, where the historical empirical
equation overpredicted the standing algal biomass possibly due
to increased dreissenid filtering activity. Our SEM results appear
to differ somewhat in that this relationship was fairly strong in the
C1 segment (0.30 ± 0.11), but weak and poorly identified (C6:
−0.02 ± 0.11) in the middle part of Cook’s Bay. Yet, this
discrepancy should be interpreted with caution as the inclusion
of additional covariates in our model along with the use of
contemporaneous measurements from individual samplings for
all the water quality variables (i.e., no temporal-averaging or
lagged relationships were considered) largely determines the
relative magnitudes and signs (e.g., negative DIN-phytoplank-
ton) of the various ecological paths derived.17,18 In Cook’s Bay,
TP concentrations generally decline moving northward fromC1,
suggesting that a significant fraction of the TP load entering
Cook’s Bay from the Holland River is retained in sediment,

which was predicted by our model. However, the interesting
finding of the present analysis is the substantial interannual
variability of the corresponding estimates in segment C6 (Figure
SI-4), along with the weak (i.e., highly uncertain) causal links
associated with bottom-up (TP→chla) and top-down (herbiv-
orous grazing→chla) factors (Figure 3). The uncertainty
characterizing both our models in the middle area of Cook’s
Bay may be indicative of a dynamic/intermittent environment
that could conceivably mask important cause−effect relation-
ships when analyzing daily snapshots from the system. Aside
from all the structural and functional changes occurring in this
shallow embayment over the last two decades,9 it is plausible that
this uncertainty may also stem from sediment resuspension
events, triggered by wind forcing and episodic runoff events,
which in turn can have profound influence on local and lakewide
biogeochemistry and trophic functioning.27

Our analysis highlights the lakewide strength of the relation-
ship between Secchi disk depth values and chlorophyll a
concentrations. However, it should be noted that while this
causal link was originally designed to account for the positive
effects of the illumination of the water column on phytoplankton
growth (i.e., greater Secchi disk depth suggests adequate light
availability, which in turn stimulates algal growth), its negative
nature is indicative of an opposite direction path in a strict causal
sense, i.e., chlorophyll a→Secchi disk depth. The nature of the
water clarity−phytoplankton relationship during the period
modeled (1999−2007) could have been partly shaped by the
colonization of dreissenid mussels.22 Dreissenids can increase
water clarity by reducing algae and other suspended solids
through their filtering activity, as well as by reducing whiting
events.12 The improved illumination of the water column has
given rise to a dramatic proliferation of submerged aquatic
vegetation in the shallow Cook’s Bay, and the mean macrophyte
biomass along with the areal coverage of submerged aquatic
vegetation have increased by approximately 260% and 65%,
respectively.19 The increases in macrophyte biomass and
abundance may in turn have induced changes in the local
phytoplankton community through a complex array of direct and
indirect effects (e.g., enhanced grazing pressure from pelagic
zooplankton, changes in nutrient cycling, increased sedimenta-
tion, shading, and allelopathy), with a notable example the
increase in the abundance of the small flagellate Cryptomonas.26

Another factor that can affect phytoplankton community
structure is the control exerted by herbivorous grazing, and our
SEM analysis pinpoints the importance of this causal path
throughout the lake (Figure 3). Triggered by the decline of
planktivorous fish (smelt and lake herring), the density of large
Daphnia species (e.g., Daphnia longiremis) increased in Lake
Simcoe in the late 1980s and may have temporarily contributed
to the decrease of phytoplankton biomass.20 Invasion by the
zooplanktivore Bythotrephes longimanus may also be indirectly
affecting phytoplankton abundance as Bythotrephes is known to
significantly decrease cladoceran species richness and alter
zooplankton behavioral patterns.26 Our analysis clearly illustrates
that future work on the impact of Bythotrephes and our
understanding of plankton dynamics in Lake Simcoe should be
sought in the context of a combined bottom-up and top-down
forcing. While not explicitly considered in our analysis, climate
warming in the region has been suggested to be responsible for
recent trends in the Lake Simcoe thermal structure, such as an
increase in the thermal stability of the water column during the
ice-free season, an earlier onset of thermal stratification, and
delayed fall overturn.28 The impacts of these changes on lake
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chemistry and biota are currently being investigated and there is
evidence that the multitude of stressors (invasive species, climate
change) along with the contemporary changes in the nutrient
loading regime have induced discernible changes in the
phytoplankton biomass and community composition. Namely,
the chlorophytes and cyanobacteria abundance decreased
throughout the lake, while the diatom community composition
patterns suggest shifts toward species (e.g., Fragilaria crotonensis)
that may gain competitive advantage in conditions of increased
water column stability and reduced mixing.26

One of the benefits of the probabilistic assessment of Lake
Simcoe water quality conditions is the ability to optimize water
quality monitoring programs and to identify specific areas that
require further research efforts. For example, our analysis
delineated an area in Cook’s Bay where the interplay among
exogenous nutrient inputs, hydrodynamics, autotrophic and
benthic communities obfuscates the signals of critical relation-
ships between water quality variables of management interest.
Our inability to detect significant causal linkages is also reflected
in the high model uncertainty in these locations, which in turn
explains the predicted moderate response of Cook’s Bay to the
nutrient loading reductions examined. In this regard, we believe
that this finding highlights a critical future research question
involving the capacity of wind-driven physical forcing to produce
localized “hotspots” of biological productivity in near-shore
regions27 that could conceivably shape the broader impact of
dreissenids in Lake Simcoe.9

We conclude by reiterating that the present modeling analysis
was based on two simple models, which were used because of
their ability to remain within the bounds of empirical parameter
estimation and therefore accommodate error analysis. In general,
however, model-based environmental management is preferred
to have stronger mechanistic foundation, as this provides
additional assurance that the model will reflect the functional
changes in the lake ecosystem induced by the nutrient loading
reductions. Yet, adopting a process-based model and invoking
extra complexity raises critical questions in regards to the
existence of commensurate knowledge of the multifaceted
aspects of the Lake Simcoe dynamics or even the capacity to
depict them mathematically. Until we can give definitive positive
answers to these questions, we believe that the gradual
incorporation of complexity, whenever possible and relevant, is
the most prudent strategy. Any such model development should
be tightly coupled with rigorous assessment of the underlying
uncertainty and the Bayesian inference can be an invaluable tool
for this purpose.8
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A) DATA SET DESCRIPTION 

Exogenous nutrient loading values during the 1999-2004 period were obtained by the Ministry of 

the Environment of the Province of Ontario (OMOE), while loading estimates from 2004 to 2007 were 

provided by the Lake Simcoe Regional Conservation Authority (LSRCA). Non-point sources included 

tributary loads, polders, and air deposition. Point sources included loadings from septics, Water Control 

Pollution Stations (WCPC), and urban runoff. Phosphorus inputs from precipitation were assumed 

proportional to segment areas. The air deposition fluxes were based on both monthly (1999-2004) and daily 

(2004-2007) estimates. Chlorophyll α, TP, TN, NO3, and DIN concentrations were based on samples 

collected twice a month during the ice-free period
1
. Composite samples from the euphotic zone were 

collected from nine (9) stations (Fig. 1a): ATH (Atherley Narrows segment), E51 (Eastern Segment), K45 

and S15 (Central Segment), K42 and K39 (Kempenfelt Bay segment), C1, C6 and C9 (Cook’s Bay 

segment). Missing data were imputed by linear interpolation between adjacent dates. In cases where the 

monitoring of a particular variable was discontinued, the data were imputed by linear regressions, in which 

past information from neighbouring stations was used as predictor variable. 

 Number of animals and average lengths of identified zooplankton species were used to derive 

biomass estimates with dry weight-length regression models (Table A1): 

         lnW = lna + bln L                                                                       (1) 

where lnW is the natural logarithm of the dry weight (µg), and ln L is the mean of the natural log-

transformed lengths (mm) of all the individuals of the same species in a particular sample. Zooplankton 

biomass estimates in the original scale were obtained by back-transformation and correction for the 

retransformation bias
2
:   

W=a L bexp(0.5
 
SEE2)                                                                  (2) 

where SEE is the standard error of the model. When the standard error was not provided for a specific 

regression model, the global mean error from all the regression models was used to fill the missing value. In 

addition, we accounted for the reduction of dry weight from the chemical preservation of organisms
3
 by 

classifying zooplankton length measurements into two size fractions (large>0.25mm, small<0.25mm). The 



derived dry weight estimates from equation (2) were then reduced by 37% and 43% for large and small size 

animals, respectively.  

Based on their feeding patterns, identified species were classified into herbivorous and 

omnivorous/carnivorous zooplankton. The classification “herbivorous” comprised species that feed upon a 

variety of small particles including bacteria, algae, ciliates, small rotifers and copepod nauplii as large as 

100 µm
4
. With this categorization, meiobenthic cladocerans, such as Disparalona hamata and 

Pseudochydorus globosus, were specified as herbivores. Major zooplankton taxonomic groups during the 

study period (1997-2007) are shown in Fig. SI-8. Daphnia galeata mendotae had the largest contribution to 

the total zooplankton biomass. Calanoid and cyclopoid copepodids also consistently appeared in all 

sampling stations. These three major groups accounted for approximately 50% of the total zooplankton 

biomass. Other major species included Eubosmina longispina, Eubosmina coregoni, Leptodiaptomus 

minutes, Skistodiaptomus oregonensis, and Daphnia longiremis. Large zooplankton species, such as 

Bythotrephes longimanus and Leptodora kindtii, contribute about 3-4% to the total zooplankton biomass in 

Lake Simcoe, although some large species are not adequately represented in the routine zooplankton 

collections due to the size of the net used. 

. 

 

 

 

 



Table A1. Zooplankton biomass estimation based on dry weight-length regression models collected from the literature. Counts (N), average 

length (L̅), and associated length ranges of the different species in Lake Simcoe.  

Species  Category N L̅ Range ln a b SEE Reference 

CLADOCERA         

Daphnia ambigua Herbivorous 29 0.91 0.53-1.48 1.54 2.29 0.0312 
5 

Daphnia parvula Herbivorous 33 0.85 0.46-1.24 1.08 2.16 0.0312 
6 

Daphnia pulicaria Herbivorous 1 1.04 N/A 1.3585 3.14 0.0312 
7 

Daphnia retrocurva Herbivorous 915 0.97 0.46-1.81 0.8637 3.1262 0.0441 
8 

Daphnia galeata mendotae Herbivorous 12631 0.97 0.25-4.00 1.0797 2.7188 0.0352 
9 

Daphnia longiremis Herbivorous 1294 0.87 0.34-1.48 1.6274 3.3367 0.0136 
9 

Daphnia sp. Herbivorous 1 0.65 N/A 1.0797 2.7188 0.0352 
9 

Ceriodaphnia sp. Herbivorous 89 0.48 0.26-0.75 2.7286 3.337 0.0617 
8 

Simocephalus serrulatus Carnivorous/Omnivorous 3 0.83 0.76-0.91 1.3863 3.81 0.0312 
5 

Bosmina freyi, liederi or longispina Herbivorous 3102 0.36 0.16-0.72 3.5274 3.5859 0.0936 
10 

Bosmina longirostris Herbivorous 6569 0.37 0.21-1.15 2.4751 3.3614 0.0083 
8 

Eubosmina coregoni Herbivorous 5089 0.47 0.24-1.19 3.0871 2.3371 0.0046 
11 

Eubosmina longispina Herbivorous 7339 0.44 0.15-0.89 3.5274 3.5859 0.0936 
10 

Alona affinis Herbivorous 2 0.70 0.48-0.91 2.7676 3.84 0.0312 
5 

Alona guttata Herbivorous 1 0.34 N/A 2.2367 2.7418 0.0231 
8 

Alona sp. Herbivorous 12 0.48 0.29-0.78 2.2367 2.7418 0.0231 
8 

Disparalona hamata Herbivorous 1 0.25 N/A 3.5276 3.264 0.0312 
12 

Camptocercus sp. Herbivorous 3 0.76 0.69-0.81 Log(a)=9.05 0.85 0.0312 
5 

Chydorus sphaericus Herbivorous 155 0.28 0.15-0.51 3.127 3.3678 0.0011 
8 

Pseudochydorus globosus Herbivorous 53 0.53 0.37-0.75 3.127 3.3678 0.0312 
8 

Diaphanosoma birgei Herbivorous 575 0.37 0.005-1.12 1.072 2.9054 0.0378 
8 

Diaphanosoma brachyurum Herbivorous 75 0.76 0.38-1.08 1.6242 3.0468 0.1370 
10 

Sida crystallina Herbivorous 6 0.89 0.75-1.08 2.0539 2.189 0.0312 
12 

Holopedium sp. Carnivorous/Omnivorous 43 0.80 0.43-1.16 2.788 3.2102 0.0515 
8 

Polyphemus pediculus Carnivorous/Omnivorous 12 0.75 0.35-1.13 2.7792 2.152 0.0312 
12 

Bythotrephes longimanus Carnivorous/Omnivorous 348 2.91 0.74-5.76 Log(a)=1.23 2.09 0.0312 
13 

Leptodora kindtii Carnivorous/Omnivorous 124 4.99 0.96-12* 0.445 1.873 0.0037 
11 



Species Observed Diet Category N L̅ Range ln a b SEE Reference 

COPEPODA         

Calanoid copepodids Herbivorous 22755 0.66 0.21-1.84 0.9799 2.7765 0.0093 
8 

Calanoid nauplius Herbivorous 17321 0.20 0.06-1.11 0.9926 2.0997 0.0172 
8 

Leptodiaptomus minutus Herbivorous 13506 0.82 0.15-1.31 1.0377 2.8255 0.0157 
8 

Leptodiaptomus sicilis Herbivorous 450 1.23 0.88-1.52 0.9311 3.036 0.0026 
8 

Skistodiaptomus oregonensis Herbivorous 4115 1.13 0.70-1.59 0.9717 2.7323 0.0071 
8 

Epischura lacustris Carnivorous/Omnivorous 1264 1.51 0.91-2.02 1.2702 2.485 0.0116 
8 

Epischura lacustris (copepodids) Carnivorous/Omnivorous 2112 0.82 0.29-1.61 0.8655 2.9373 0.0086 
8 

Cyclopoid copepodids Carnivorous/Omnivorous 30878 0.50 0.15-1.20 1.03 2.505 0.0479 
8 

Cyclopoid nauplius Herbivorous 25848 0.16 0.06-0.44 1.6388 2.4474 0.0196 
8 

Acanthocyclops robustus Carnivorous/Omnivorous 12 0.74 0.63-1.01 1.2177 3.4934 0.0199 
8 

Acanthocyclops vernalis Carnivorous/Omnivorous 28 0.91 0.7-1.23 1.2177 3.4934 0.0199 
8 

Cyclops scutifer Carnivorous/Omnivorous 2 0.92 0.53-1.31 1.2286 2.6398 0.0782 
10 

Diacyclops bicuspidatus thomasi Carnivorous/Omnivorous 12108 0.80 0.52-1.20 0.8066 4.0823 0.0173 
8 

Eucyclops neomacruroides Carnivorous/Omnivorous 1 1.02 N/A 1.1615 2.9559 0.0263 
8 

Eucyclops serrulatus Carnivorous/Omnivorous 13 0.70 0.6-0.89 1.1615 2.9559 0.0263 
8 

Macrocyclops albidus Carnivorous/Omnivorous 1 0.65 N/A 1.3169 2.7917 0.0254 
8 

Mesocyclops americanus Carnivorous/Omnivorous 2 1.16 1.12-1.19 1.3169 2.7917 0.0254 
8 

Mesocyclops edax Carnivorous/Omnivorous 4072 0.90 0.58-1.44 1.3169 2.7917 0.0254 
8 

Tropocyclops extensus Herbivorous 3003 0.49 0.35-0.69 1.1615 2.9559 0.0263 
8 

Tropocyclops prasinus  Herbivorous 3735 0.48 0.35-1.01 1.1615 2.9559 0.0263 
8 

Harpacticoid sp. Herbivorous 16 0.47 0.21**-0.62 -5.32 13.95 0.0312 
14 

         

* The maximum length was set equal to 12 mm to correct the measurement error 

** The minimum length was set equal to 0.21 mm to avoid negative values 
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B) FIGURES LEGENDS 

 

Figure SI-1: Conceptual model of the epilimnetic plankton dynamics in Lake Simcoe. 

 

Figure SI-2: Comparison of the observed and mean predicted (along with 95% credible intervals) total 

phosphorus concentrations in the nine segments of the continuously-stirred-talk reactor (CSTR) model, 

forced with idealized sinusoidal loading. 

 

Figure SI-3: Scatter plots of the segment-specific sedimentation rates against the residence times for the 

year 2007.    

 

Figure SI-4: Posterior estimates of the total phosphorus sedimentation rates (year
-1

) at the different 

segments of Lake Simcoe. 

 

Figure SI-5: Predicted annual phosphorus mass balance and net exchange rates at the different segments 

of Lake Simcoe during the study period (1999-2007). 

 

Figure SI-6: Comparison of the observed and mean predicted (along with 95% credible intervals) 

chlorophyll a and zooplankton biomass values in the nine segments of the Lake Simcoe structural 

equation model. 

 

Figure SI-7: Predictions of the Bayesian network for the average total phosphorus and chlorophyll a 

concentrations in Lake Simcoe under the present conditions and two scenarios of phosphorus 

loading reduction. 

 

Figure SI-8: Zooplankton composition by biomass in Lake Simcoe during the study period (1997-2007). 
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Figure SI-4 

 

 



 

 
Figure SI-5 
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Figure SI-7 
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Figure SI-8 

 

           

 

 

 

 

 

 

 

 

 



C) TABLES 

Table SI-1: Continuously Stirred Tank Reactor Model: Summary statistics of the posterior parameter distributions for the nine 

segments in Lake Simcoe. 

  Cook’s Bay Kempenfelt Bay Main Basin East End  Outflow 

 C1 C6 C9 K39 K42 S15 K45 E51 ATH 

Stochastic Nodes Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

κ2 1999j 0.91 0.37 8.42 1.78 0.92 0.27 7.40 1.68 1.04 0.30 0.77 0.19 1.03 0.20 1.39 0.25 0.89 0.35 

κ2 2000j 0.90 0.36 8.81 1.72 0.99 0.27 6.04 1.66 0.89 0.29 0.72 0.17 1.00 0.19 1.15 0.21 0.99 0.37 

κ2 2001j 0.92 0.37 7.02 1.60 0.82 0.28 2.60 1.13 0.74 0.28 0.23 0.10 0.66 0.16 0.65 0.16 0.91 0.35 

κ2 2002j 0.91 0.37 3.67 0.98 0.79 0.27 2.84 1.16 0.73 0.29 0.21 0.09 0.60 0.15 0.63 0.15 0.91 0.35 

κ2 2003j 0.92 0.36 8.02 1.93 0.85 0.27 2.98 1.20 0.75 0.28 0.43 0.14 0.78 0.17 0.96 0.24 0.96 0.36 

κ2 2004j 0.92 0.36 6.46 1.48 0.88 0.27 2.30 0.97 0.81 0.27 0.44 0.13 0.78 0.16 0.68 0.15 0.93 0.35 

κ2 2005j 0.93 0.37 13.14 2.29 1.03 0.29 6.30 1.56 0.93 0.29 0.53 0.14 1.12 0.19 1.03 0.19 1.02 0.37 

κ2 2006j 0.93 0.36 10.68 2.47 0.94 0.28 6.11 1.59 0.87 0.29 0.48 0.13 1.00 0.18 0.89 0.17 1.00 0.36 

κ2 2007j 0.92 0.36 10.77 2.34 0.91 0.28 4.59 1.46 0.83 0.29 0.41 0.13 0.76 0.17 1.10 0.24 0.94 0.36 

σκ2j 0.36 0.09 6.31 1.33 0.32 0.07 3.29 0.79 0.33 0.08 0.42 0.09 0.31 0.06 0.34 0.08 0.36 0.10 

τ 0.39, 0.01 

κ2 0.86, 0.07 

κ2µ 0.78, 0.27 

σκ2 0.36, 0.10 



Table SI-2: Structural Equation Model: Summary statistics of the posterior parameter distributions for the nine segments in Lake Simcoe. 

 C1 C6 C9 K39 K42 S15 K45 E51 ATH 

Parameters Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

γ(Nitrogen)j 0.13 0.16 -0.22 0.15 -0.36 0.15 -0.08 0.18 -0.36 0.16 0.00 0.14 -0.34 0.17 -0.20 0.12 0.08 0.14 

γ(Phosphorus)j 0.30 0.11 -0.02 0.11 0.27 0.09 0.27 0.11 0.29 0.10 0.17 0.10 0.20 0.10 0.46 0.10 0.10 0.10 

γ(Light)j -0.42 0.11 -0.38 0.11 -0.38 0.11 -0.18 0.13 -0.26 0.11 -0.37 0.13 -0.28 0.11 -0.32 0.10 -0.47 0.12 

γ(Temperature)j 0.42 0.10 0.43 0.11 0.47 0.11 0.46 0.11 0.46 0.11 0.48 0.10 0.50 0.10 0.49 0.10 0.50 0.11 

β(Zooplankton)j -0.18 0.10 -0.12 0.10 -0.20 0.09 -0.23 0.10 -0.20 0.09 -0.10 0.10 -0.19 0.09 -0.20 0.09 -0.23 0.10 

β(Chlorophyll)j 0.06 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.05 0.04 0.03 0.03 0.04 0.03 0.03 0.03 

λ(TN)j 0.88 0.20 0.32 0.12 0.15 0.10 0.10 0.08 0.25 0.12 0.45 0.15 0.28 0.13 0.55 0.12 0.16 0.10 

var(δDIN) j 0.44 0.19 0.31 0.15 0.31 0.16 0.38 0.17 0.29 0.15 0.35 0.17 0.42 0.18 0.29 0.15 0.36 0.18 

var(δTN) j 0.65 0.16 0.99 0.07 1.03 0.07 1.05 0.08 0.99 0.07 0.94 0.07 0.99 0.07 0.88 0.06 0.90 0.07 

var(δTP) j 0.32 0.16 0.28 0.15 0.31 0.15 0.34 0.16 0.32 0.16 0.33 0.17 0.33 0.15 0.21 0.11 0.26 0.14 

var(δLight) j 0.29 0.16 0.29 0.14 0.32 0.16 0.35 0.16 0.36 0.16 0.25 0.13 0.27 0.15 0.27 0.14 0.23 0.11 

var(δTemperature) j 0.31 0.15 0.31 0.14 0.31 0.15 0.29 0.15 0.31 0.15 0.29 0.15 0.30 0.15 0.28 0.15 0.23 0.11 

var(εphytoplankton) j 0.20 0.10 0.39 0.16 0.19 0.09 0.47 0.17 0.28 0.13 0.43 0.16 0.30 0.15 0.22 0.11 0.33 0.16 

var(εzooplankton) j 0.25 0.13 0.31 0.14 0.34 0.14 0.29 0.14 0.34 0.15 0.26 0.14 0.29 0.14 0.28 0.13 0.22 0.12 

φ(Nitrogen) j 0.84, 0.08 

φ(TP) 0.90, 0.06 

φ(Light) 0.85, 0.06 

φ(Temp) 0.89, 0.06 

ψ1 0.65, 0.06 

ψ2 0.70, 0.06 

 

 

 



D) FEEDFORWARD SYSTEM OF CONTINUOUSLY-STIRRED TANK REACTORS WITH 

SINUSOIDAL LOADING FORCING 

D1) Model assumptions and limitations: The feedforward series of completely mixed reactors is a 

pragmatic approach to accommodate the spatial variability in Lake Simcoe, given the lack of hydrodynamic 

information from the system to support a more sophisticated modeling construct, e.g., lack of chloride 

concentrations to properly constrain the intersegment mixing processes during the study period. Relative to 

the feedback framework (i.e., bidirectional mass exchange among the spatial compartments), the feedforward 

setup is founded upon the assumption of a net unidirectional flow, thereby simplifying both steady-state and 

time-variable solutions. Yet, while this approach is conceptually suitable to model horizontal mass exchanges 

in a chain of lakes or a stream, its validity to accommodate the spatial heterogeneity of a single lake holds 

true only under certain conditions. In particular, the net mass of phosphorus transported from segment A to 

segment B is:  

A

A

NET

A

BBAA C
V

Q

V

CQCQ −
=

+−
                                                    (Eq. D1) 

 or      0>−=
A

B
BANET

C

C
QQQ                                                         (Eq. D2)   

where QA is the flow from segment A to segment B; QB is the flow from segment B to A; QNET is the net flow 

exchange among the two segments; V represents the volume of a particular segment; and C is the TP 

concentration in any segment.  

In Lake Simcoe, the feedforward spatial configuration postulates three chains of reactors that connect Cook’s 

Bay (C1→C6→C9→S15→K45), Kempenfelt Bay (K39→K42→K45), and the eastern segment (E51→K45) 

with the main basin of the lake, which subsequently discharges to Atherley Narrows (K45→ATH).  

 



Depending on the magnitude of the net outflows relative to the volume of a specific spatial compartment, Eq. 

D1 distinguishes between two cases: 

1) The net outflows are non-negligible relative to the compartment volume or 0>
A

NET

V

Q
. This condition 

refers to small and moderate sized compartments, such as C1, C6, C9, K39, K42, and ATH (Table D1). First, 

because the observed TP concentrations suggest that the scenario CB>CA rarely holds true (Table D1), the 

validity of Eq. D2 could be examined in the following conditions: 

a) QA>QB: This scenario is related to the impact of the spring freshet and/or extreme precipitation events 

that result in high hydraulic loading into the two embayments. Under these conditions, the mass 

exchanges are indeed predominantly unidirectional from the nearshore areas to the outer lake. 

 b) QA≈QB: When the water volume exchanges among adjacent segments are approximately equal, then 

the validity of Eq. D2 depends on the corresponding TP concentrations.  

i) CA≈CB: If the two concentrations are also equal, then the two segments are approximately on a 

steady state. This scenario may represent the conditions frequently experienced in Kempenfelt Bay 

(K39→K42) or the outer area of Cook’s Bay and the main basin (C9→S15).  

ii) CA>CB: This scenario reproduces the concentration gradient established at the inner segments of 

Cook’s Bay (C1→C6→C9) or the interface between the main basin and Atherley Narrows 

(K45→ATH). Thus, both areas can be assumed to be on par with the patterns postulated by the 

feedforward model. 

c)  QA<QB: This condition mainly refers to wind-induced circulation patterns that predominantly drive 

water masses to south- or westward directions. In this case, Eq. D2 is violated and the model used in this 

analysis cannot describe the day-to-day TP variability. In particular, because of the spatial TP trends 

typically experienced in the system, the model fails to account for the dilution effects of the water 

masses from the outer lake on the two embayments. The latter likelihood also suggests that the net TP 

loss rates presented in the study may overestimate the actual net sedimentation occurring in the 

nearshore sites. 



2) The net outflows are negligible relative to the compartment volume or 0→
A

NET

V

Q
. This condition refers to 

large compartments, such as S15, K45, and E51 (Table D1). In this scenario, the main implication of the 

feedforward model is that the largest fraction of the inflowing TP loads from the watershed and/or antecedent 

lake segments is being subjected to sedimentation within those compartments, rather than carried forward to 

the subsequent segments. Notably, this simplification could have led to an overestimation of the 

sedimentation rates in the eastern basin, if there were substantial exogenous loads and a distinct gradient of 

TP concentrations. 



D2) Analytical solutions of the continuously stirred tank reactor model with sinusoidal loading: 

Wavg(i) = mean loading entering segment i (tonnes/day) 

Wamp(i) = amplitude around the mean loading Wavg(i) (tonnes/day) 

λ(i) = total loss rate (day
-1

), where )(2)(1)( iii κκλ += ; 
)(

)(

)(1

i

i

i V

Q
=κ ;

  )(

)(

)()(2

i

i

ii
H

v
k +=κ  

Q(i) = the volumetric outflow rate for segment i (m3
/day)  

V(i) = volume of segment i (m3
) 

k(i) = segment-specific first-order decay rate (day
-1

) 

ν(i) = segment-specific settling velocity (m/day) 

H(i) = mean depth of segment i (m) 

θ(i) = phase shift of the loading from the standard wave (radians),  

φ(i) = an additional phase shift related to the segment-specific response,  

ω(i) = angular frequency of the loading oscillation (radians/day) 
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B-level segments that receive mass from the A-level segments K39 and C1: sites K42, C6 
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C-level segment that receives mass from the A-level segment C1 and the B-level segment C6: site C9 
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 D-level segment that receives mass from the A-level segment C1, the B-level segment C6, and the C-level segment C9: site S15 
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E-level segment that receives mass from the A-level segment E51, and the series of reactors from Kempenfelt Bay and Cook’s Bay: site K45 
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F-level segment that receives mass from the E-level segment K45: site ATH 
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E) STRUCTURAL EQUATION MODEL FOR LAKE SIMCOE  

In the SEM practice, the important issue of extracting inference from model results can be 

classified into three categories: (i) strictly confirmatory: a single model is formulated and tested against 

datasets, ideally after model specification. In this case, the model can be accepted or rejected, (ii) 

alternative models: several prespecified models are tested against single set of data. In this case, one of 

the models should be selected, and (iii) model generating: the analysis starts with a tentative model, 

which is subjected to evaluation and modification. These respecifications should provide meaningful 

interpretations and the final model needs further confirmation (Bollen, 1989). Our analysis falls under 

the third category. In particular, we conducted an exploratory analysis that derived the present structural 

equation model (Fig. 1c) from an original one that involved more observed variables associated with the 

planktonic food web dynamics in Lake Simcoe (phosphate, total ammonia, algal biovolume, Daphnia 

sp.). The evaluation of the different model modifications was based on the Deviance Information 

Criterion (Spiegelhalter et al., 2002) and thus our SEM analysis is founded upon the most parsimonious 

construct, i.e., the model that more effectively balances between performance and complexity. 

Using the classical SEM notation, we present the matrices’ forms and the specific assumptions 

made for the non-recursive structural equation model for Lake Simcoe (Fig. 1b & Fig. 1-SI). The 

exogenous latent variable measurement model consists of four matrices; i.e. X is a q x 1 vector of 

observable indicators of the independent latent variables ξ; Λx is a q x n matrix of coefficients relating X 

to ξ; ξ is a n x 1 vector of independent (exogenous) latent variables; and, δ is a q x 1 vector of 

measurement errors for X. In the present model, we included four (n = 4) exogenous latent variables ξ 

which were described from five (q = 5) indicator variables; i.e., TN and DIN were used for the latent 

variable “Nitrogen”; Secchi Disc Depth for the latent variable “Light”; TP for the latent variable 

“Phosphorus” and Temperature for the respective latent variable. Thus,   
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The endogenous latent variable measurement model also consists of four matrices; i.e., Y is a p x 1 

vector of observable indicators of the dependent latent variables η; Λy is a p x m matrix of coefficients 

relating Y to η; η is a m x 1 vector of dependent (endogenous) latent variables; ε is a p x 1 vector of 

measurement errors for Y; For our model, two indicator variables (p = 2) were used for the 

representation of two (m = 2) endogenous latent variables; i.e., Chlorophyll a and Zooplankton biomass 

were used as indicators for the latent variables “Phytoplankton” and “Herbivorous Grazing”. Thus, the 

exogenous latent variable measurement model can be described by the four matrices:   
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The additional three matrices for the latent variable model are: 
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where Γ and Β are the matrices of coefficients for the latent exogenous and endogenous variables, 

respectively; ζ is the vector of latent (structural) errors. As inferred from the path diagram, the associated 

covariance matrices of the model, Cov(ξ) = Φ(n x n): lake-wide covariances between the independent 

variables ξ; Cov(ε) =  Θε(p x p): segment-specific covariances between the measurement errors in Y; 

Cov(δ) = Θδ(q x q): segment-specific covariances between the measurement errors in X;  

Cov(ζ) = Ψ(m x m): lake-wide covariances between the structural errors ζ,  have the off-diagonal 

elements equal to zero:   
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The metric of the latent variables was set by fixing one loading in each column of ΛX  and ΛY to 1.0. In 

this particular case, we assumed that λ2 = λ3 = λ4 = λ5 = λ6 = λ7 = 1.0. The hierarchical Bayesian 

configuration of the Lake Simcoe SEM for an arbitrary observation i at segment j can be specified as 

follows: 

X1ij = λ1jξ1ij + δ1j, X2ij =ξ1ij + δ2ij  

X3ij = ξ2ij + δ3ij 

X4ij = ξ3ij + δ4ij 

X5ij = ξ4ij + δ5ij 

δ.j  ~ N(0,Θδj), ξ. ~ N(0,Φ) 

Y1ij = η1ij + ε1ij 

Y2ij = η2ij + ε2ij 

ε.j  ~ N(0,Θεj) 

η1ij = γ1jξ1ij + γ2jξ2ij + γ3jξ3ij + β1jη2ij + ζ1ij 

η2ij = γ4jξ4ij + β2jη1ij + ζ2ij 

ζ. ~ N(0,Ψ)                                                               

We used independent non-informative conjugate gamma priors (0.001, 0.001) for the elements of the 

matrices Θδj
-1

, Θεj
-1

, Φ-1
 and Ψ-1

. Effectively “flat” normal prior distributions with means equal to 0 and 

precisions equal to 0.0001 along with diffuse gamma priors were used for the hierarchical treatment of 

the structural parameters and the factor loading λ1 or λTN. MCMC simulation was used as the 

computation tool implemented in the WinBUGS software (Lunn et al., 2000). We used two chain runs 

of 50,000 iterations and convergence was assessed using the modified Gelman-Rubin convergence 

statistic (Brooks and Gelman, 1998). Generally, the sequences converged rapidly (≈ 2,000 iterations), 

while the summary statistics reported in this study were based on the last 40,000 draws. We also 

examined the robustness of the parameter statistics in different levels of subsampling of the posterior 

space (e.g., thin=1, 2, 5, 10, 20, 40). In this case, we found that a thin of 20 is the optimal sampling 

intensity to maintain the characterization derived from the model updating exercise, while minimizing 



the serial correlation of the MCMC samples used. The accuracy of the posterior estimates was inspected 

by assuring that the Monte Carlo error (an estimate of the difference between the mean of the sampled 

values and the true posterior mean; see Lunn et al., 2000) for all the parameters was less than 5% of the 

sample standard deviation. In the context of aquatic ecology, a simple illustration of a Bayesian SEM 

configuration can be found in Arhonditsis et al. (2006). Finally, we note that the present formulation 

differs from the spatially-explicit Bayesian SEM developed for the Neuse River Estuary (Arhonditsis et 

al., 2007a,b) in that (i) none of the latent variables is treated as perfectly measured, i.e., all the 

measurement errors were explicitly considered; (ii) the covariance matrices of the exogenous latent 

variables and the structural errors were common over the entire lake rather than segment-specific.  
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