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ABSTRACT: The temporal trends of total mercury (THg) in four fish species in Lake Erie were evaluated based on 35 years of fish
contaminant data. Our Bayesian statistical approach consists of three steps aiming to address different questions. First, we used the
exponential and mixed-order decay models to assess the declining rates in four intensively sampled fish species, i.e., walleye
(Stizostedion vitreum), yellow perch (Perca flavescens), smallmouth bass (Micropterus dolomieui), and white bass (Morone chrysops).
Because the two models postulate monotonic decrease of the THg levels, we included first- and second-order random walk terms in
our statistical formulations to accommodate nonmonotonic patterns in the data time series. Our analysis identified a recent increase
in the THg concentrations, particularly after the mid-1990s. In the second step, we used double exponential models to quantify the
relative magnitude of the THg trends depending on the type of data used (skinless-boneless fillet versus whole fish data) and the fish
species examined. The observed THg concentrations were significantly higher in skinless boneless fillet than in whole fish portions,
while the whole fish portions of walleye exhibited faster decline rates and slower rates of increase relative to the skinless boneless fillet
data. Our analysis also shows lower decline rates and higher rates of increase in walleye relative to the other three fish species
examined. The food web structural shifts induced by the invasive species (dreissenid mussels and round goby) may be associated
with the recent THg trends in Lake Erie fish.

’ INTRODUCTION

The elevated concentrations of toxic, persistent, and bioaccu-
mulative contaminants were first detected in the Great Lakes
sediments and fish in the late 1960s/early 1970s.1 Subsequently,
the toxic effects of these chemicals were reported in wildlife2 and
humans.3 In response to increased public pressure and advocacy
for virtual elimination of persistent toxic pollutants from the
Great Lakes, various regulatory actions were undertaken at
different government levels, such as the Great Lakes Water
Quality Agreement (GLWQA) in 1972 and its subsequent
revision in 1978. The agreement also included a call for monitor-
ing and research programs to identify the spatiotemporal trends
of these toxic substances in sediments and biota.4 Implementa-
tion of these regulatory actions resulted in decreased levels of
most contaminants in the Great Lakes environment through the
1980s. However, from themid-1990s, the decline rates have been
reported to be slower, stagnant, or even to have switched to
increasing rates in recent years.5-7 The reasons for these
unexpected trends are not fully known but existing hypotheses
suggest a direct causal association with the food web alterations
induced from invasive species in the Great Lakes8,9 and also
indirect links with global warming.10 The reported contaminant
trends could have also been influenced by many factors such as

the type of statistical analysis performed, data pooling across the
locations, type of samples (whole fish versus fillet portions),
seasonality, and lack of explicit consideration of important
covariates such as the fish size, feeding habits, behavioral
patterns, reproductive status, growth, and lipid content. Inap-
propriate data analysis and interpretation of statistical trends
derived from incomplete information can conceivably provide
misleading results. Therefore, a holistic approach that explicitly
accounts for all the potential causal factors is essential to discern
the actual fish contaminant trends and to elucidate the under-
lying ecological mechanisms.

Among the persistent, bioaccumulative, and toxic contami-
nants, mercury (Hg) is a particular concern in aquatic environments
because of its microbial transformation into methylmercury
(MeHg) in water and sediments11 and its subsequent transfer
to the higher trophic levels. This organic form of Hg can bio-
magnify by approximately 106 times in top predators, thereby
resulting in significantly higher total mercury (THg) concentrations
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relative to the source water, even in areas remote from industrial
sources.12 Generally, existing evidence suggests the rate of
mercury bioaccumulation in individual fish depends on its
trophic level in the food chain, dietary patterns, age, and size.
The scattered and contradictory information on the temporal
trends of contaminants in the Great Lakes fish sparked a hot
debate.13 Namely, while the health benefits of eating fish are
widely advocated, there was a growing concern that individuals
who eat considerable amounts of fish from the Great Lakes have
greater exposure to toxic chemicals and therefore are subject to
health risks.13 Fish consumption can be amajor exposure route of
MeHg in food for many human populations.14,15 Elevated expo-
sure to mercury can affect the nervous system, kidney, liver, and
reproductive organs of human body. Some notable indices for
neurotoxicity in humans include neuronal loss, ataxia, visual
disturbances, impaired hearing, and death.14 In this regard, based
on the mercury concentrations in fish reported from the ongoing
Sport Fish Contaminant Monitoring Program (SFCMP), fish
consumption advisories are published in Province of Ontario
(Canada) with recommendations for limited fish consumption,
ranging from zero to 8 meals per month depending on the
vulnerability of the human population.16

In this study, a systematic and rigorous trend analysis was
undertaken based on a 35-year fish mercury data set for Lake
Erie. Our statistical analysis consisted of several models founded
upon Bayesian formulations that aim to address different ques-
tions. First, we used the exponential and mixed-order decay
models to assess the declining rates in four intensively studied
fish species, i.e., walleye (Stizostedion vitreum), yellow perch
(Perca flavescens), smallmouth bass (Micropterus dolomieui),
and white bass (Morone chrysops). Because the two models
postulate monotonic decrease of the Hg levels, we included
random-walk error terms to accommodate nonmonotonic pat-
terns in the time series data. In the second step, we used double
exponential models to quantify the relative magnitude of the Hg
trends depending on the type of data used (skinless-boneless
fillet versus whole fish data) and the fish species exa-
mined. Finally, using skinless boneless fillet data, we introduced
a hierarchical configuration of the double exponential model to
examine to what extent the Hg temporal trends differ among
different locations in Lake Erie.

’METHODS

Data Set Description. The present study is based on the
provincial (Ontario Ministry of the Environment; OMOE,
Canada) skin-off dorsal fillet measurements used for fish con-
sumption advisories, and the federal (Environment Canada; EC)
whole fish measurements used to assess overall environmental
contamination and risk to fish and fish-consuming wildlife. The
fish species considered in our analysis were selected on the basis
of data availability and commercial importance. We examined

four intensively sampled species viz., walleye (Stizostedion
vitreum), yellow perch (Perca flavescens), smallmouth bass
(Micropterus dolomieui), and white bass (Morone chrysops), while
the number of observations in each species is given in Table 1.
The detection of the mercury trends was based on whole fish
(WF) and skinless-boneless fillet (SBF) samples for walleye and
only SBF samples for the remaining fish species. The whole-fish
samples were collected from Pelee Island in the western part
of Lake Erie, while the fillet samples were collected from
four different regions on the Canadian side of Lake Erie viz.,
1: Western Basin, 2: Central Basin, 3: Long Point Bay, and
4: Eastern Basin (Figure 1 in the Supporting Information or
Figure 1-ESM). The Eastern Basin of the Lake Erie is relatively
deep with an average depth of 25 m and is characterized by
relatively limited interactions between the water column and the
sediments.17 By contrast, the Western Basin of Lake Erie is
shallow, with a mean depth of 7.3 m and therefore allows
significant contaminant transfer from the sediment to the water
column; especially during episodic sediment resuspension
events. The latter basin also receives a significant amount of
chemical contaminants from the Detroit River.17

Mercury Analysis. Total mercury analysis for the OMOE
samples was conducted at the OMOE laboratory in Toronto
according to the OMOE method HGBIO-E3057. The EC samp-
les were analyzed at the National Laboratory for Environmental
Testing (NLET) using NLET method 2801. Both methods are
briefly described in the Supporting Information.
Modeling Framework. Our approach comprises three steps

that aim to detect the presence of statistically significant non-
monotonic trends associated with the fish Hg concentrations
(step I), to quantify the relative magnitude of these decreasing
and/or increasing trends among the different fish species exam-
ined (step II), and to assess if the temporal trends vary among the
different locations in Lake Erie (step III). Bayesian inference was
used as a means for estimatingmodel parameters due to its ability
to include prior information in the modeling exercise and to
explicitly handle the model structure and parameter uncer-
tainty.18 Bayesian inference treats each parameter θ as random
variable and uses the likelihood function to express the relative
plausibility of obtaining different values of this parameter when
particular data have been observed

πðθjdataÞ ¼ πðθÞLðdatajθÞR
θ
πðθÞLðdatajθÞdθ ð1Þ

where π(θ) represents our prior statements regarding the
probability distribution that more objectively depicts the existing
knowledge on the θ values, L(data|θ) corresponds to the likeli-
hood of observing the data given the different θ values, and π(θ|
data) is the posterior probability that expresses our updated
beliefs on the θ values after the existing data from the system are

Table 1. Basic Statistics of Mercury Concentrations (μg/g Wet Weight) in Whole Fish (WF) Samples for Walleye and Skinless-
Boneless Fillet (SBF) Samples for Walleye and Three Other Fish Species in Lake Erie

species N mean SD median lower quart. upper quart. skewness kurtosis

Walleye (WF) Stizostedion vitreum 757 0.122 0.072 0.107 0.080 0.150 2.526 10.538

Walleye (SBF) Stizostedion vitreum 1839 0.199 0.132 0.160 0.110 0.250 2.549 10.914

Yellow Perch Perca flavescens 1242 0.102 0.103 0.070 0.050 0.110 4.420 28.304

Smallmouth Bass Micropterus dolomieui 714 0.173 0.123 0.140 0.090 0.210 2.375 7.824

White Bass Morone chrysops 1651 0.146 0.103 0.120 0.080 0.180 3.146 18.84
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considered. The denominator in eq 1 is the expected value of the
likelihood function and acts as a scaling constant that normalizes
the integral of the area under the posterior probability
distribution.
Step I-Exponential Decay Models with Random Walk

Terms. The first step of the analysis was based on the exponen-
tial decay and mixed-order models5

Hgt ¼ Hg0e
kt þ δt þ ε ð2Þ

Hgt ¼ fHg01-j-ktð1-jÞgð1=1-jÞ þ δt þ ε ð3Þ
where Hgt is the mercury concentration in year t; Hg0 is the
mercury concentration at t = 0; k is the decay coefficient; andj is
the order of the reaction. A fundamental weakness of the two
models is the postulation of a monotonic decrease of the Hg
levels and therefore their inability to capture systematic devia-
tions from this trend. To accommodate possible nonmonotonic
patterns in the time series data, we included (zero mean) random
error terms δt representing the annual deviations from the
trajectory delineated by the two equations. To reflect the prior
belief that these annual discrepancies are correlated, we assumed
a first-order random walk prior specified as19,20

pðδtjδ-t ,ω
2Þ ∼

Nðδt þ 1,ω2Þfor t ¼ 1

N
δt - 1 þ δt þ 1

2
,
ω2

2

 !
for t ¼ 2, :::,T - 1

Nðδt - 1,ω2Þfor t ¼ T

8>>>>><
>>>>>:

ð4Þ
where δ-t denotes all elements of δt except from the error
associated with a particular year t, ω2 is the conditional variance,
and the prior densities p(ω2) were based on conjugate inverse-
gamma (0.001, 0.001) distributions. This statistical approach
implies that the first-order differences of the annualHg levels are
smooth and that the probability of sudden jumps between con-
secutive years is unlikely. Alternatively, we examined a second-
order random walk prior for δt representing prior beliefs that the
rate of change (gradient) of the contaminant concentrations over
the study period was smooth

pðδtjδ-t ,ω
2Þ

∼

Nð2δt þ 1 - δt þ 2,ω2Þfor t ¼ 1

N
2δt - 1 þ 4δt þ 1 - δt þ 2

5
,
ω2
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for t ¼ 2

N
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ð5Þ
Finally, the ε term represents the measurement error and follows
a Gaussian distribution,N(0, σε

2), where the prior density p(σε
2)

was again based on conjugate inverse-gamma (0.001, 0.001)
distribution.
Step II-Double Exponential Decay Models. The second

phase of our analysis uses double exponential decay models to

quantify the relative magnitude of the Hg trends depending on
the fish species examined and the type of data used (skinless-
boneless fillet versus whole fish data)

Hgt ¼ Hg01e
k1 þHg02e

k2 þ ε ð6Þ
This model typically suggests that the temporal variability of the
Hg concentrations is driven by two different factors/sources with
distinct initial mercury concentrations, Hg01 and Hg02, and rates
of change, k1 and k2. In our analysis, k1 and k2 were designed to
correspondingly assess the magnitude of potential decreasing
and increasing trends during the study period. Implicit in this
statistical configuration is the idea that there are two effectiveHg
sources supplying the individual fish species, one of which dec-
lines and the other is increasing through time. In this case, the ε
term represents the typical model error and follows a Gaussian
distribution, N(0, σ2), with a prior density p(σ2) based on the
conjugate inverse-gamma (0.001, 0.001) distribution.
Step III-Bayesian Hierarchical Models. The next phase of

our analysis examines to what extent the Hg temporal trends
differ among different locations in Lake Erie using the walleye
skinless boneless fillet data. To account for site-specific differences,
a hierarchical model was developed to predict the posterior proba-
bilities of the site-specific k1 and k2 coefficients. The hierarchical
formulation used in this analysis is summarized as follows21

logðyijtÞ ∼ Nðf ðθj, tÞ, τ2Þ
θj ∼ Nðθ, σ2

j Þ
θ ∼ Nðμ, σ2Þ

μ ∼ Nð0, 10000Þ
1=τ2, 1=σ2 ∼ gammað0:001, 0:001Þ

ð7Þ

where yijt denotes the i THg value observed in the site j and year t;
f(θj,t) is the double exponential model; τ2 is the model error
variance; θj represents the site-specific parameter sets; θ corre-
sponds to the global parameters; μ and σ2 are the mean and
variance of the hyperparameters, respectively; and σj

2 is the group-
specific variance;N(0, 10000) is the normal distribution withmean
0 and variance 10000, and gamma(0.001, 0.001) is the gamma
distribution with shape and scale parameters of 0.001. The prior
distributions for 1/τ2, 1/σ2, andμ are considered “noninformative”
or vague. We also examined the impact of the latter prior vis-�a-vis
the following three alternative distributions: (i) a gamma prior with
shape and scale parameters of 0.1; (ii) a uniform prior distribution
on the standard deviation scale in the range (0,100); and (iii) a half
normal distribution truncated at zero and placed on the standard
deviation scale. We found that the results presented herein are
pretty robust to the selection of this prior and the inference drawn
practically remained unaltered.
Sensitivity Analysis. The Bayesian configuration of the

single exponential models and the mixed-order models was
based on informative Hg0 priors following normal distributions
with the mean and standard deviation values derived from the
first year when observed values for each fish species exist (called
Prior 1 herein). To determine the robustness of the reported
results, the first-order exponential decay model was run using
four different Hg0 priors. Specifically, we used noninformative
uniform/flat parameter distributions (Prior 2), normal (Prior 3)
and log-normal (Prior 4) Hg0 distributions parametrized such
that 99% of the respective values were lying within the minimum
andmaximummercury concentrations in the first year examined,
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and a multivariate normal prior that accounts for the covariance
between the parameters Hg0 and k (Prior 5).
Model Computations. Sequence of realizations from the

model posterior distributions were obtained using Markov chain
Monte Carlo (MCMC) simulations. Specifically, we used the
general normal-proposal Metropolis algorithm as implemented
in theWinBUGS software;22 this algorithm is based on a symmetric
normal proposal distribution, whose standard deviation is adjusted
over the first 4000 iterations such as the acceptance rate ranges
between 20% and 40%. We used three chain runs of 80,000 itera-
tions, and samples were taken after the MCMC simulation conver-
ged to the true posterior distribution. Convergence was assessed
using the modified Gelman-Rubin convergence statistic. Generally,
we noticed that the sequences converged very rapidly (≈1000
iterations), and the summary statistics reported in this study were
based on the last 75,000 draws by keeping every 20th iteration
(thin=20) to avoid serial correlation. The accuracy of the posterior
parameter values was inspected by assuring that the Monte Carlo
error for all parameters was less than 5% of the sample standard
deviation. The models presented in this analysis were compared
using the deviance information criterion (DIC), a Bayesianmeasure
of model fit and complexity.23

’RESULTS

The summary statistics of the total mercury (THg) concen-
trations in the fish species examined are shown in Table 1. For

walleye, the THg concentrations were more than 60% higher in
skinless boneless fillet relative to whole fish portions, although we
caution that these concentrations were not derived from con-
current samples and therefore may partly reflect the different
philosophies (and associated sampling practices) of the two data
sets used. Further, higher concentrations were recorded in
walleye (mean 0.199 and median 0.160 μg/g wet weight),
followed by smallmouth bass (0.173 and 0.140 μg/g wet weight)
and white bass (0.146 and 0.120 μg/g wet weight), while yellow
perch (0.102 and 0.070 μg/g wet weight) was characterized by
relatively lower concentrations. The high standard deviation and
interquartile range values reflect the substantial inter- and intra-
annual variability associated with the mercury levels of the indi-
vidual fish species. The high positive values of skewness and
kurtosis are indicative of right skewed and leptokurtic distribu-
tions, and therefore the logarithmic transformation was imple-
mented for the subsequent analysis.

The posterior estimates for the models used to describe the
temporal mercury trends in walleye WF and SBF portions are
shown in Table 2. The exponential decay model, expressing
continuously decreasing trends inTHg concentrations at an ever-
slowing rate toward a zero concentration, suggests higher decay
rates in the walleye SBF (k=-0.049( 0.025 yr-1 and k=-0.050(
0.028 yr-1) relative to the WF (k=-0.017 ( 0.025 yr-1 and
k=-0.039( 0.042 yr-1) data. The higher values of the coefficient
of variation (standard deviation/mean value) associated with

Table 2. Posterior Estimates (Mean Values ( Standard Deviations) for the Models Used To Describe the Temporal Trends of
Mercury Concentrations in Walleye (WF and SBF Portions), Yellow Perch (SBF), Smallmouth Bass (SBF), and White Bass (SBF)

models parameters walleye WF walleye SBF yellow perch smallmouth bass white bass

exponential model with 1st order smoothing DIC 1057 2516 2084 1084 2516

Hg0 0.151 ( 0.061 0.375 ( 0.136 0.468 ( 0.284 0.293 ( 0.157 0.141 ( 0.058

k -0.017 ( 0.025 -0.049 ( 0.025 -0.084 ( 0.038 -0.037 ( 0.038 -0.002 ( 0.031

ω 0.146 ( 0.037 0.252 ( 0.041 0.365 ( 0.071 0.323 ( 0.062 0.396 ( 0.058

σε 0.487 ( 0.013 0.481 ( 0.008 0.590 ( 0.012 0.528 ( 0.014 0.523 ( 0.009

exponential model with 2nd order smoothing DIC 1020 2486 2188 1026 2436

Hg0 0.222 ( 0.099 0.389 ( 0.171 0.509 ( 0.225 0.303 ( 0.181 0.136 ( 0.065

k -0.039 ( 0.042 -0.050 ( 0.028 -0.095 ( 0.030 -0.033 ( 0.051 0.004 ( 0.041

ω 0.051 ( 0.025 0.345 ( 0.067 0.408 ( 0.099 0.296 ( 0.075 0.604 ( 0.094

σε 0.492 ( 0.013 0.481 ( 0.008 0.591 ( 0.012 0.537 ( 0.015 0.523 ( 0.009

mixed model with 1st order smoothing DIC 940 1662 1839 880 2102

Hg0 0.142 ( 0.054 0.275 ( 0.129 0.376 ( 0.226 0.223 ( 0.106 0.171 ( 0.084

k 0.240 ( 0.285 0.276 ( 0.276 0.514 ( 0.283 0.242 ( 0.268 0.203 ( 0.256

j 2.450 ( 0.508 2.44 ( 0.52 1.95 ( 0.38 2.423 ( 0.520 2.452 ( 0.529

ω 0.136 ( 0.034 0.243 ( 0.040 0.341 ( 0.069 0.316 ( 0.062 0.397 ( 0.058

σε 0.487 ( 0.013 0.481 ( 0.008 0.590 ( 0.012 0.528 ( 0.014 0.523 ( 0.009

mixed model with 2nd order smoothing DIC 735 1481 1073 850 2508

Hg0 0.171 ( 0.085 0.297 ( 0.148 0.315 ( 0.219 0.228 ( 0.120 0.141 ( 0.028

k 0.300 ( 0.301 0.281 ( 0.275 0.423 ( 0.290 0.237 ( 0.270 0.143 ( 0.211

j 2.385 ( 0.491 2.39 ( 0.52 1.98 ( 0.46 2.440 ( 0.514 2.533 ( 0.535

ω 0.048 ( 0.024 0.346 ( 0.067 0.405 ( 0.100 0.360 ( 0.092 0.604 ( 0.093

σε 0.492 ( 0.013 0.481 ( 0.008 0.591 ( 0.012 0.531 ( 0.0145 0.523 ( 0.009

double exponential model DIC 1120 2754 2381 1265 3027

Hg01 0.099 ( 0.018 0.230 ( 0.010 0.173 ( 0.015 0.164 ( 0.021 0.041 ( 0.015

Hg02 0.071 ( 0.013 0.041 ( 0.009 0.034 ( 0.006 0.071 ( 0.012 0.110 ( 0.008

k1 -0.422 ( 0.202 -0.133 ( 0.018 -0.195 ( 0.027 -0.216 ( 0.050 -0.442 ( 0.148

k2 0.022 ( 0.008 0.056 ( 0.008 0.026 ( 0.006 0.032 ( 0.007 0.005 ( 0.003

σ 0.062 ( 0.006 0.067 ( 0.004 0.152 ( 0.012 0.110 ( 0.012 0.123 ( 0.009
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the WF data indicate that the latter estimates are not well
determined. We also note that the lower DIC values render
support to the second-order temporal smoothing relative to the
first order approach with both WF and SBF walleye data. The
predicted THg concentrations in the WF portions decreased
until the early 1980s and then remained more or less constant
through 1994, after which continually increased at a relatively
slow rate until the recent years (Figure 1a). The δt (random
walk) terms were used to detect the systematic errors resulting
from the structural inadequacies of the single exponential model.
In particular, the positive values of the structural error terms
during the second half of the survey period represent the
inadequacy of the exponential decay model to capture the con-
current increasing trends (Figure 1b). Notably, the rate of
increase in the WF portions was slower in recent years as
compared to the rate in SBF portions (Figure 1d). In particular,
the THg concentrations in SBF portions declined gradually from
the 1970s until 1986, thereafter they began to increase at a slower
rate through 1992. Then, a sharp decline was noticed until 1997,
after which the concentrations increased rapidly until the last
sampling year 2007 (Figure 1c). Importantly, our sensitivity ana-

lysis of the exponential decay model showed that the conclusions
drawn upon the general THg temporal patterns are robust,
although that actual parameter estimates can differ depending
on the prior assumptions made about the relative plausibility of
their values (Table 1-ESM and Figure 2-ESM).

The parameter estimates of the exponential decay models for the
other three fish species are also presented in Table 2, while the
corresponding predictions and δt terms can be found in the
Supporting Information (Figure 3-ESM). Similar to the walleye
patterns, smallmouth bass and yellow perch show increasing (but
weaker) trends approximately after the mid-1990s, whereas the
structural error terms of the white bass model revolved around the
zero value throughout the study period. The model with the first
order temporal smoothing correction resulted in higher initial THg
concentrations and decay rates for yellow perch (Hg0 = 0.468 (
0.284 μg THg/g, k=-0.084 ( 0.038 yr-1) followed by smallmouth
bass (Hg0 = 0.293( 0.157 μg THg/g, k=-0.037( 0.038 yr-1) and
white bass (Hg0=0.141( 0.058μgTHg/g, k=-0.002( 0.031 yr-1).
With the second-order temporal smoothing, the DICs decreased
from 1084 to 1026 for smallmouth bass and from 2516 to 2436 for
white bass but increased from 2084 to 2188 for yellow perch. Thus,

Figure 1. Walleye mercury concentrations over time (1976-2007) using the exponential decay model with (a, b) whole fish, and (c, d) skinless-
boneless fillet data for Lake Erie. The circles indicate the observed values, while the solid and dashed lines correspond to themedian and the 95% credible
intervals of the posterior predictive distributions, respectively. The δ annual values correspond to the first-order random walk terms introduced to
account for the structural deficiencies of the single exponential model.
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although the results are not always consistent, the present analysis
indicates that the second-order smoothing is more favorably sup-
ported when we consider both model performance and complexity.
It is also interesting to note that the predicted initial THg concentra-
tions and decay coefficients were fairly similar between the two
statistical configurations examined.

The mixed order model, accommodating declines toward zero
but at rates that slow more rapidly than rates in an exponential
model would, had lower DIC values relative to both single and
double exponential decay models (Table 2). The decay rates
were slightly higher in SBF than in WF walleye data for the first
order, and the opposite was true for the second-order temporal
smoothing formulations. However, both statistical configura-
tions predicted significantly higher initial Hg concentrations in
SBF than in WF portion data. We also found relatively similar
estimates of the reaction order (j) between the two types of
data. The trends of the THg concentrations in both walleyeWF
and SBF portions throughout the study period were fairly similar
to the exponential decay model (Figure 4a,c in the SI), although
the credible intervals for the structural error terms δ were some-
what narrower (Figure 4b,d in the SI). The relative values of the k
posterior estimates were similar to those derived from the expo-
nential decaymodels, i.e., yellow perch >walleye > smallmouth bass
> white bass (see also Figure 5-ESM). However, the predicted
decay coefficients were accompanied by substantial standard
deviations (coefficients of variation ≈70-114%), which may
counterbalance the support provided by the lower DIC values.

After establishing the presence of nonmonotonic temporal pat-
terns in the mercury concentrations, the rationale behind the use of
the double exponential model was to explicitly quantify the rates of
decrease (k1) and increase (k2). We primarily highlight that the
absolute values of the decay coefficients (k1) were at least twice as
high relative to the k values derived from the single exponential
models (Table 2). This finding suggests that the predictions of the
latter equation coupled with a random walk term can only be
compared qualitatively with those derived from the double expo-
nential model. Notably, the same model results in fairly well
determined parameter estimates relative to those reported in the
first phase of our analysis. According to the double exponential
model, the walleye WF portions exhibited three times higher
decrease in mercury concentrations (k1= -0.422 ( 0.202 yr-1)
than the SBF data (k1=-0.133 ( 0.018 yr-1). By contrast, the WF
portions had 2.5 times lower rate of increase (k2= 0.022( 0.008 yr-
1) as compared to the ones derived from the SBF data (k2= 0.056(
0.008 yr-1). The shift from decreasing to increasing trends became
evident in 1986 for theWF (Figure 6a in the SI) and in 1990 for the
SBF data (Figure 6b in the SI). Unlike the single exponential decay
model, the highest decay rates were recorded in white bass (k1=-
0.442 ( 0.148 yr-1) followed by smallmouth bass (k1=-0.216 (
0.050 yr-1), yellow perch (k1=-0.195 ( 0.027 yr-1) and walleye
(k1=-0.133(0.018 yr-1) (Table 2). Yet, the highest rates of increase
inTHg concentrations were recorded in walleye (k2= 0.056( 0.008
yr-1) followed by smallmouth bass (k2 = 0.032 ( 0.007 yr-1),
yellowperch (k2=0.026( 0.006 yr-1) andwhite bass (k2=0.005(
0.003 yr-1), respectively. Notably, the recent rates of increase were
significantly lower than the decrease rates until the late 1980s for all
four species examined (Figure 6-ESM).

’DISCUSSION

Heavy metal accumulation in fish mainly involves the biolo-
gical sequestering of substances that enter the body through

epidermal contact with the substance, respiration, and food
intake. In particular, the dietary intake can contribute up to
90% of the methyl mercury (MeHg) concentrations in fish
tissues.24 The level at which a given substance is bioaccumulated
depends on the rate of uptake, the path through which the
substance is transferred (e.g., gills, skin contact, ingested with
food), the elimination rate of the substance from the organism,
transformation of the substance by metabolic processes, the lipid
content of the organism, the hydrophobicity of the substance,
and other environmental factors. Generally, bioaccumulation
occurs at each step of the food chain, resulting in top predators
amassing high concentrations of contaminants, while THg
accumulation rate in top predators also increases with increasing
age and size.25 Among the four fish species examined in the
present study, the top predators walleye and smallmouth bass
had indeed the highest observed body THg concentrations, while
the THg levels in walleye were higher in skinless boneless fillet
than in whole fish portions.

Relating the latter pattern with the fact that MeHg is typically
the predominant fraction (>90%) of THg in edible fish tissue
samples,9,26 we can infer that MeHg should also constitute a
substantial part of our recorded fish mercury levels which in turn
may be associated with the two major predictions of our double
exponential models regarding the temporal trends of mercury
contamination in Lake Erie fish communities: (i) the walleye
THg concentrations appear to have been subjected to rapid
decrease rates during the earlier years and (more recently) to
slower increase rates in whole fish portions than in fillet tissues;
and (ii) top predators with relatively higher mercury concentra-
tions were generally characterized by lower decline and/or
higher increase rates. MeHg is an intracellular organo-metallic
contaminant that has high affinity to the sulfite group of host
proteins, and thus is efficiently transported into the muscle
tissues and excreted slower than any other inorganic form of
metals.26 Existing evidence suggests that several important phy-
sical (e.g., lake area, epilimnetic temperature), chemical (e.g.,
organic matter, pH,Hg aging, iron levels, balance between sulfate
and sulfide), and biological (e.g., type and activity of bacteria,
food web structure, fish population age and growth rates) factors
can potentially control MeHg bioaccumulation and dramatically
affect the transfer of Hg load intoMeHg in fish.26,27 In Lake Erie,
there are several reasons (e.g., extent of the nearshore zone,
anoxic conditions) to believe thatMeHg accumulation occurs in
the sediments and regularly contributes MeHg pulses to the
overlying waters. Yet, Hogan et al. 9 reported ratios of MeHg to
THg equal to 0.2% for sediments, 30% for dreissenids, 65% for
round gobies, and 93% for smallmouth bass. Thus, the fact that
smallmouth bassMeHg concentrations are estimated to be 1000
times higher than in the Lake Erie sediments underscores, more
than anything else, the MeHg capacity to immensely biomagnify
and therefore to modulate the imprint of restoration actions on
aquatic biota.

Consistent with Bhavsar et al.'s28 recent findings, our analysis
suggests that the declines in THg concentrations appears to have
slowed down in almost all fish species (or even to have increased)
after the invasion of dreissenids and round gobies in the late
1980s. These temporal patterns may be explained by Hogan
et al.9 conceptual model which suggests that the invasion of
exotic species has shifted the food web from a pelagic-based to a
benthic-based one, thereby creating new trophodynamics for
contaminant transfer to top predators. First, the introduction of
zebra and quagga mussels has likely inducedmajor changes in the
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fluxes of heavy metals within the Lake Erie food web, because of
their ability to bioaccumulate through profuse filtering of con-
taminated water and scavenging of phytoplankton and particulate
matter.29 While the precise quantification of the bioaccumu-
lation of contaminants in aquatic animals is not a trivial exercise
and is determined by the complex interplay among uptake
efficiencies from food and water pathways (physiological assim-
ilation and absorption efficiencies), filtration, ingestion, growth,
and depuration rates of contaminants from the animals, dreisse-
nid contaminant levels appear to covary with the corresponding
sediment concentrations; especially in the shallow littoral areas
of the western basin of Lake Erie where large sediment con-
taminant loads are experienced.29 Dreissenids are good sentinels
of the bioavailability of contaminants and can potentially elevate
the likelihood of trophic transfer.30 Further, their capacity to
selectively remove particulate organic matter from the water
column increases the dissolved-phase fraction of contaminants,
which in turn can increase the body burdens of many aquatic
organisms.8 Concomitant to the spread of dreissenid mussels,
round goby invaded the Great Lakes and became extremely
abundant in Lake Erie in 1996, causing major shift in diets and
increased growth rates of top predators.31 As a benthic fish with
diet mainly composed of dreissenids, round goby has the poten-
tial to accumulate contaminants and transfer them to the higher
trophic levels through the food web.32 Consequently, the pro-
spect of an increased reliance upon benthivorous round goby can
possibly explain the increase THg rates of the top predators
during the second half of our study period, despite the substantial
decrease of the contemporaneous THg levels in the Lake Erie
sediments.33 The recent increase in THg concentrations in fish
might also be linked to the global warming and other climatic
variability. Elevated temperatures can increase THg concentra-
tions in fish by increasingmercurymethylation rates in sediments
andHg release from the watershed.26 Global warming could also
influence trophodynamics of the contaminants by altering lake
phenologies and biotic community structures.34

The Eastern Basin of Lake Erie is characterized by higher
observed mean and median THg concentrations in walleye fish
fillet (0.227 and 0.202 μg/g ww, respectively) as compared to the
Western Basin (0.205 and 0.186 μg/g ww), despite the fact that
the latter area receives substantial inputs from the Detroit River
and other tributaries.17 Notably, the same basin was also char-
acterized by greater rates of change (both decrease and increase)
relative to the other three areas of the lake (Figure 7-ESM). The
reasons for the somewhat counterintuitive trends are uncertain
and might be related to the source and degree of Hg contamina-
tion, length and composition of food webs, tissue turnover rates
of biota, biogeochemistry of the different locations, and home
range of the fish species examined.35 Although Western Basin is
historically more polluted, its shallow depth, high productivity,
and warmwater might enhance the growth of walleye resulting in
increased contaminant dilution.26 Notably, the samples from the
Eastern Basin were characterized from greater mean length
(53.29 ( 10.04 cm) and weight (1704 ( 868 g) relative to
those collected from the Western Basin (44.58 ( 8.44 cm and
973 ( 568 g). The latter finding may suggest a systematic bias
introduced by the local sampling practices, which in turn invites
the explicit consideration of all the possible covariates (e.g.,
length, gender, lipid content) that can potentially impede the
detection of the actual temporal trends of fish contaminants and
thus may misinform consumption advisories. Finally, another
possible reason might be the lake-wide movement of walleye for

better food availability and/or environmental conditions. There-
fore, this type of analysis may be more appropriate for localized/
sedentary species (e.g., spottail shiners) and not for species with
wider “home range” like walleye. To this end, we examined the
observed THg levels in relatively localized yellow perch and
found that the contaminant concentration was higher in fish
collected from the Western Basin (0.136 μg THg/g ww) than in
fish from the Eastern Basin (0.108 μg THg/g ww); that is,
opposite to the walleye trends.

The addition of the temporally variant random error term δ in
the statistical formulation examined has enabled the detection of
nonmonotonic trends in our data set and therefore can con-
ceivably overcome the structural inadequacies of models that
have been traditionally used in the context of fish contaminant
trend analysis.5,36,37 While admittedly the statistical formulation
introduced is prone to data overfitting (e.g., the relatively similar
values of the structural error covariance ω between the single
exponential and mixed order models) and can weaken somewhat
the signal/trend typically captured by the k coefficient (i.e., the
random walk parameter estimates may sometimes be con-
founded with the exponential decay term), we believe that the
proposed framework can be a useful exploratory tool to elucidate
idiosyncratic cases typically encountered in fish contaminant data
sets, such as the white bass temporal variability (Figure 3e in the
Supporting Information). Namely, a careful inspection of the
observed THg trends suggests a wax and wane pattern through-
out the survey period which cannot be captured by any of the
rigid model structure used so far (e.g., single or double expo-
nential, mixed-order, nonzero asymptote). For example, the
double exponential model resulted in a misleadingly high decay
rate (-0.442( 0.148) and a nearly nonexistent increasing trend
(0.005 ( 0.003), whereas the same pattern was quite faithfully
depicted by the random error terms (Figures 3 and 5f in the
Supporting Information).We also addressed one of the historical
criticisms of the Bayesian approach regarding the use of sub-
jective prior beliefs on the relative plausibility of different para-
meter values,38 and our sensitivity analysis demonstrated that the
inference drawn is quite robust on the different prior parameter
specifications. Generally, our analysis identified as the most
parsimonious approach the mixed order model combined with
the second-order temporal smoothing, although we caution that
the posterior estimates of the decay rates were almost consis-
tently poorly determined.

Acknowledging the weaknesses of all the models used for
detecting fish contaminant trends in time and space, one of the
key messages that the present study aims to convey is the impor-
tance of adopting conceptually integrative modeling frameworks.
For example, rather than picking the “best” of the five modeling
configurations examined and then basing the delineation of the
trajectories on that single “best-fit” model, we propose the
Bayesian model averaging as a means for providing a weighted
average description from all five approaches.5 In particular, the
MCMC samples can be used to calculate the posterior prob-
abilities for each model, which then provide the weights to com-
bine the predictions from all models (Figure 2). The averaged
predictions reinforce the U-shape pattern characterizing the
walleye SBF (Figure 2a), and the weakly increasing trends
recently followed by the walleye WF portions, the smallmouth
bass and yellow perch SBF data (Figure 2b-d). Finally, it should
also be noted that a follow-up dynamic linear modeling analysis
(Sadraddini et al., submitted manuscript) has verified these
temporal trends, even when we explicitly account for the fact
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that the fish length covaries with theTHg concentrations and that
different sized fish may have been sampled over time.

In conclusion, we used a Bayesian modeling framework that
identified an increasing trend of THg concentrations in Lake Erie
fish becoming particularly evident after the mid-90s. The ob-
served THg concentrations were significantly higher in skinless

boneless fillet than in whole fish portions, while the whole fish
data of walleye exhibited faster decline rates and slower rates of
increase relative to the skinless boneless fillet samples. Our
analysis also shows lower decline rate and higher rate of increase
in walleye relative to smallmouth bass, yellow perch, and white
bass, which underscores the importance of considering more

Figure 2. Mercury concentrations over time (1970-2007) using Bayesian Model Averaging (BMA) with (a) walleye whole fish, (b) walleye skinless-
boneless fillet, (c) yellow perch skinless-boneless fillet, (d) smallmouth bass skinless-boneless fillet, and (e) white bass skinless-boneless fillet data for
Lake Erie. The solid and dashed lines correspond to the mean concentrations and the 95% credible intervals, respectively.
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than one fish species for proper spatial/temporal trend assess-
ments. Finally, we suggest that the recent increase in fish THg
may be explained by structural shifts of the Lake Erie food web
due to invasive species (dreissenid mussels and round goby). A
logical next step would be the examination of a broader range of
fish species along with the explicit consideration of all the possible
factors (age, weight, sex, lipid content, class size) that can poten-
tially obfuscate the detection of the real temporal THg trends.
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1) SAMPLE EXTRACTIO� A�D A�ALYSIS.   

 The OMOE samples were analyzed for mercury concentrations using the OMOE method HGBIO-

E3057 [1].  Briefly, mercury in a skinless, boneless fillet of the dorsal muscle of each fish was oxidized to 

its divalent ion form by an acid digestion as follows. Frozen fish tissue samples were thawed and then 

0.2-0.4 g of tissue were transferred into Folin-Wu digestion tubes using a spatula.  Five ml of a 4:1 

sulphuric:nitric acid mixture were added to each tube, which were placed in aluminium blocks on hot 

plates and digested overnight at a temperature of  215-235°C.  The samples were cooled and brought up 

to 25 ml with pure water. A blank and four mercury calibration standards, made from a stock solution 

traceable to the National Institute of Standards and Technology (NIST), were taken through the same 

digestion procedure. The calibration was checked with a NIST traceable solution (NIST991304). The 

correlation coefficient of the regression slope was between 0.99-1.00. The calibration standards were re-

analyzed at the end of the run. There was no more than a 10% change in the sensitivity throughout the 

run. The digestion efficiency was checked against two in-house reference materials. One sample and one 

in-house reference material were analyzed in duplicates. Recoveries were monitored by spiking both the 

sample and reference material. After cooling, the sample, calibration, and reference solutions were placed 

in an automated sampler. The solutions were transferred to a cold vapour flameless atomic aborption 

spectroscopy (CV-FAAS) system by a peristaltic pump. The mercury was then reduced by a stannous 

chloride solution (stannous chloride, sodium chloride, hydroxylamine sulphate and concentrated 

hydrochloric acid) to its elemental form. An air stream carries the mercury vapour through a gas-liquid 

separator and an impinger containing sulphuric acid into a flow-through elemental mercury detector 

(Milton Roy) with a light source, set at 253.7 nm wavelength. The detector was heated to remove water. 

The amount of light absorption was proportional to the concentration of mercury. Signals were processed 

using a computer with analog-digital converter and appropriate software (Labtronics DP1000) to allow 

for calculation and reporting. 



EC samples were analyzed at the National Laboratory for Environmental Testing using the NLET 

method 2801 [2].  Mercury concentration in biota is determined by employing the cold vapour absorption 

spectrometry procedure (VVAAS). First, one gram of wet biota is placed in a 120 mL TFM digestion 

vessel. Nitric acid and hydrogen peroxide (8:1 mL) are added and mixed with the sample. The vessel is 

assembled, sealed and fitted into a microwave rotor which is placed in a high pressure microwave oven. 

The sample is digested and the temperature is maintained at 200 °C for 15 minutes. Mercury (II) in the 

digest is reduced to elemental mercury in an automated continuous flow system by the action of stannous 

chloride. The mercury is sparged from the solution with a stream of purified air and passed through an 

absorption cell, which is situated in the pathway of a mercury lamp. The absorption is measured at 253.7 

nm.   
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2) SE�SIVITY A�ALYSIS OF THE EXPO�E�TIAL DECAY MODEL 

The robustness of the results derived from the exponential decay model when different prior 

distributions are assigned to the initial mercury concentrations was further examined with the walleye 

SBF data (Table 1-ESM). Priors 1, 4 and 5 resulted in relatively similar posterior Hg0 estimates (around 

0.3 µg THg/g wet weight), while Priors 2 and 3 predicted substantially higher values (0.748±1.586 µg 

THg/g and 0.587±0.218 µg THg/g). We also highlight that the use of flat Hg0 prior (Prior 2) led to a 

poorly determined posterior estimate. Interestingly, despite the use of similar flat prior distributions for 

the decay rates (k), the corresponding posteriors were higher with the Priors 2 (-0.070±0.050 yr
-1

) and 3 (-

0.077±0.028 yr
-1

), followed by the Prior 1 (-0.049±0.025 yr
-1

) and then the Priors 5 (-0.037±0.029 yr
-1

) 

and 4 (-0.029±0.035 yr
-1

). Thus, whilst the measurement error σε as well as the conditional standard 

deviations of the δt terms (ω) associated with the different specifications were very similar, the posterior 

parameter values appear to be somewhat sensitive to the assumptions made regarding the Hg0 prior 

values. We also note that the Hg0 and k values suggest positive covariance, although the explicit 

consideration of such term (σkHg0) did not unequivocally resolve the strength of their relationship 

(0.019±8.077). Importantly, the comparison of the δt terms derived from the five prior assumptions 

consistently reveals an increasingly positive structural error after the mid-90s, indicative of the structural 

deficiency of the single exponential model to describe the recently increasing Hg trends (Fig. 2-ESM). 

Generally, our sensitivity analysis suggests that the conclusions drawn upon the general THg temporal 

patterns are robust, although that actual parameter estimates can differ depending on the prior 

assumptions made about the relative plausibility of their values.   

 

 

 

 

 



3) HIERARCHICAL SPATIAL MODEL 

The outcomes of the hierarchical spatial model developed using the walleye SBF data for the four 

locations in Lake Erie (Western Basin, Central Basin, Long Point Bay and Eastern Basin) are shown in 

Fig. 7-ESM. The parameter estimates for k1 and k2 derived from the double exponential model (-

0.133±0.018 and 0.056±0.008 yr
-1

) with all the data pooled were quite close to the hyperparameter 

estimates of the hierarchical model (-0.162±0.097 and 0.044±0.109 yr
-1

). The rates of mercury decline in 

walleye were predicted to be higher in the Central Basin (k1=-0.184±0.024 yr
-1

; Fig. 7b-ESM) and Eastern 

Basin (k1=-0.177±0.032 yr
-1

; Fig. 7d-ESM) followed by Western Basin (k1=-0.141±0.017 yr
-1

; Fig. 7a-

ESM) and the Long Point Bay (k1=-0.078±0.020 yr
-1

; Fig. 7c-ESM). Yet, the latter k1 estimate should be 

interpreted with caution, as we completely lack data from Long Point Bay before 1989. By contrast, the 

walleye samples collected from the Eastern Basin exhibited relatively higher rate of increase in THg 

concentrations (k2=0.056±0.006 yr
-1

; Fig. 7d-ESM) than those collected from other locations (k2=0.037-

0.044 yr
-1

). The decline in THg concentrations continued until 1992 in the Western Basin, and until 1986 

in both Central and Eastern Basins after which they started to increase again (Fig. 7a to c-ESM).    

 



4) TABLES 

Table 1-ESM: Sensitivity analysis of the SBF walleye mercury exponential decay model with 1
st
 order 

random walk using different prior specifications. Prior 1 denotes an informative normal Hg0 prior derived 

from the mercury concentrations measured in 1976; Prior 2 denotes non-informative prior parameter 

distributions; Prior 3 and Prior 4 denote normally and log-normally distributed Hg0 priors, parameterized 

such that 99% of the respective values were lying within the minimum and maximum mercury concentrations 

measured in 1976; and Prior 5 denotes multivariate normal priors that account for the covariance between the 

parameters Hg0 and k.  

 Prior 1 Prior 2 Prior 3 Prior 4 Prior 5 

 Mean SD Mean SD Mean SD Mean SD Mean SD 

Hg0 0.375 0.136 0.748 1.586 0.587 0.218 0.297 0.182 0.326 0.196 

k -0.049 0.025 -0.070 0.050 -0.077 0.028 -0.029 0.035 -0.037 0.029 

ω 0.252 0.041 0.263 0.049 0.264 0.043 0.250 0.041 0.249 0.041 

σε 0.481 0.008 0.481 0.008 0.481 0.008 0.481 0.008 0.481 0.008 

σk         0.392 0.497 

σHg0         0.569 0.913 

σkHg0         0.019 8.077 

 

 

 

 

 



5) FIGURES  

Figure 1-ESM: Map of Lake Erie with the four sampling sites: 1: Western Basin, 2: Central Basin, 3: 

Long Point Bay, and 4: Eastern Basin. 

Figure 2-ESM: Sensitivity of the first-order random walk terms (δt) of the SBF walleye mercury 

exponential decay model using different prior specifications. Prior 1 denotes an informative normal Hg0 

prior derived from the mercury concentrations measured in 1976; Prior 2 denotes non-informative prior 

parameter distributions; Prior 3 and Prior 4 denote normally and log-normally distributed Hg0 priors, 

parameterized such that 99% of the respective values were lying within the minimum and maximum 

mercury concentrations in 1976; and Prior 5 denotes multivariate normal priors that account for the 

covariance between the parameters Hg0 and k.  

Figure 3-ESM: Mercury concentrations over time (1970-2007) using the exponential decay model with 

(a ,b) yellow perch skinless-boneless fillet, (c, d) smallmouth bass skinless-boneless fillet and (e, f) white 

bass skinless-boneless fillet data from Lake Erie. The circles indicate the observed values, while the solid 

and dashed lines correspond to the median and the 95% credible intervals of the posterior predictive 

distributions, respectively. The δ annual values correspond tο the first-order random walk terms 

introduced to account for the structural deficiencies of the single exponential model. 

Figure 4-ESM: Walleye mercury concentrations over time (1976-2007) using the mixed-order model 

with (a, b) whole fish, and (c, d) skinless-boneless fillet data for Lake Erie. The circles indicate the 

observed values, while the solid and dashed lines correspond to the median, and the 95% credible 

intervals of the posterior predictive distributions, respectively. The δt annual values correspond tο the first-

order random walk terms introduced to account for the structural deficiencies of the single exponential 

model. 



Figure 5-ESM: Mercury concentrations over time (1970-2007) using the mixed-order model with (a ,b) 

yellow perch skinless-boneless fillet, (c, d) smallmouth bass skinless-boneless fillet and (e, f) white bass 

skinless-boneless fillet data from Lake Erie. The circles indicate the observed values, while the solid and 

dashed lines correspond to the median and the 95% credible intervals of the posterior predictive 

distributions, respectively. The δ annual values correspond tο the first-order random walk terms 

introduced to account for the structural deficiencies of the mixed-order model. 

Figure 6-ESM: Mercury concentrations over time (1976-2007) using the double exponential model with 

(a) whole fish walleye, (b) skinless-boneless fillet walleye, (c) skinless-boneless fillet yellow perch, (d) 

skinless-boneless fillet smallmouth bass, and (e) skinless-boneless fillet white bass for Lake Erie. The 

circles indicate the observed values, while the solid and dashed lines correspond to the median and the 

95% credible intervals of the posterior predictive distributions, respectively.  

Figure 7-ESM: Observed (circles) versus predicted median (solid line) mercury concentrations (µg/g
 
wet 

weight) in walleye SBF data for four regions in Lake Erie (a: Western Basin, b: Central Basin, c: Long 

Point Bay, and d: Eastern Basin) using the hierarchical double exponential model. Dashed lines 

correspond to the 95% credible intervals.  
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