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a b s t r a c t

The credibility of the scientific methodology of mathematical models and their adequacy to form the
basis of public policy decisions has frequently been challenged. We believe that the development of novel
methods for rigorously assessing model uncertainty should be a top priority of the modeling community.
In this regard, we introduce the Bayesian calibration of process-based models as a methodological
advancement that warrants consideration in aquatic ecosystem research. This modeling framework
combines the advantageous features of both mechanistic and statistical approaches, i.e., mechanistic
understanding that remains within the bounds of data-based parameter estimation. Other advantages of
the Bayesian approach are the ability to sequentially update “beliefs” as new knowledge is available, the
consistency with the scientific process of progressive learning and the policy practice of adaptive
management. In this study, the Bayesian calibration framework is used to guide the water quality criteria
setting process in Hamilton Harbour, Ontario, Canada. First, we present the results of the Bayesian
calibration exercise and examine the ability of the model to adequately reproduce the average observed
patterns along with the major causeeeffect relationships underlying the Harbour water quality condi-
tions. We then address the following critical questions regarding the future response of the system: How
possible is it to meet the objective of delisting the study system as an Area of Concern, if the nutrient
loading reductions proposed by the Hamilton Harbour Remedial Action Plan are actually implemented?
What additional remedial actions are needed to increase the likelihood of meeting the water quality
targets? In this regard, the present modeling study undertakes an estimation of the critical nutrient loads
in the Harbour based on acceptable exceedance frequencies and confidence of compliance levels with
different water quality criteria, e.g., chlorophyll a, total phosphorus (TP). Our analysis suggests that the
water quality goals for TP (17 mg L�1) and chlorophyll a concentrations (5e10 mg L�1) will likely be met, if
the recommendation for phosphorus loading at the level of 142 kg day�1 is achieved. We also provide
evidence that the anticipated structural shifts of the zooplankton community will determine the
restoration rate of the Harbour. Finally, we pinpoint two critical aspects of the system dynamics that
invite further investigation and will likely modulate the stability of the new trophic state, i.e., the
coupling between the benthic and pelagic habitat and the relative importance of the allochthonous
organic matter in sustaining the secondary production in the system.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Water quality management relies upon the establishment of
criteria used as measurable surrogates for the beneficial uses of
waterbodies. Because violation of these criteria is typically the basis
for regulatory enforcement and listing of the systems as Areas of

Concern (Borsuk et al., 2002), Reckhow et al. (2005) argued that the
first critical decision in the criteria selection process is the identi-
fication of a measurable water quality characteristic that is a reli-
able predictor of the attainment of the beneficial (or designated)
use. The next step usually involves the identification of the optimal
numerical value of the water quality variable selected (i.e., the
criterion level) that allows the discrimination between impaired
and non-impaired conditions, while accounting for the inevitable
tradeoffs between environmental protection and socioeconomic
concerns (Barnett and O’Hagan, 1997). Beyond that, another key
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feature of a water quality criterion is the selection of an adequate
resolution in space (e.g., spatial averages throughout the system
or water quality trends of an offshore site) and time (e.g.,
annual/summer averages or samples from individual samplings)
that will objectively reflect the ecosystem state. In particular, if we
opt for a finer spatiotemporal resolution, then the water quality
criteria setting process should also accommodate the natural
variability or the uncertainty in forecasting aquatic ecosystem
dynamics by explicitly acknowledging that the expectation of 100%
attainment of the criterion level at all locations in a waterbody and
at all times is unrealistic (Borsuk et al., 2002; Reckhow et al., 2005;
Zhang and Arhonditsis, 2008). Finally, once the water quality
criterion is set, the evaluation of the current and future compliance
of the waterbody requires an operational procedure that is usually
founded upon the collection of a sufficient number of samples
together with a statistical test and/or a process-based model that
should effectively link management actions with the system
response (Borsuk et al., 2002; Arhonditsis et al., 2007).

In the context of water quality assessment, the application of
process-based (or mechanistic) models typically has a determin-
istic character in that single-value predictions at each point in time
and space are derived from uniquely determined model inputs,
whilemost of the existing calibration efforts aim at reproducing the
average ecological dynamics but fail to capture the entire range of
conditions experienced in the system (Pace, 2001). The credibility
of this practice and its adequacy in addressing environmental
management problems has recently been questioned for two main
reasons (Clark et al., 2001; Borsuk et al., 2002; Arhonditsis and
Brett, 2004; Stow et al., 2009). First, regardless of its complexity
and supporting information, the application of any modeling
construct involves substantial uncertainty contributed by model
structure, parameters, and other associated inputs (inaccurate
boundary or initial conditions). All models, by definition, are drastic
simplifications of reality that merely approximate the actual
processes, i.e., all parameters are essentially spatially and tempo-
rally averaged values unlikely to be represented by fixed constants,
and therefore the strict determinism that disregards the uncer-
tainty in aquatic ecosystem modeling misleadingly omits the risks
associatedwith different remedial actions (Arhonditsis et al., 2006).
Second, some models developed to depict the average ecosystem
behavior are inadequate in addressing the type of percentile-based
standards needed to accommodate the natural spatiotemporal
variability and may bias (underestimate) the predictions of the
frequency of standard violations under various management
options (Borsuk et al., 2002). For better model-based decision
analysis that can effectively support the development of environ-
mental standards and the policy making process, the uncertainty in
model predictions as well as the full range of the expected system
responses must be rigorously quantified and reported in
a straightforward way (Arhonditsis et al., 2007).

Hamilton Harbour, a large eutrophic embayment located at the
western tip of Lake Ontario (Fig. 1), has water quality goals that
encompass the complex interplay among abiotic and biotic
components pertinent to its beneficial uses (Hiriart-Baer et al.,
2009). Specifically, local stakeholders have selected the warm
water fishery as a priority use for the Harbour which was then
related to a critical total phosphorus (TP) level following a concep-
tual model that dissected the eutrophication problem in the
Harbour into a sequence of causal associations, i.e., fish need
aquatic plants for shelter and reproduction, aquatic plants need
light to grow, light will only penetrate the water column if chlo-
rophyll a levels are sufficiently low, low chlorophyll a levels are
achieved through sufficiently low TP concentrations. The next step
involved the selection of critical thresholds for the management-
relevant water quality variables that aimed to effectively integrate

environmental concerns with local socioeconomic values (Hall
et al., 2006). In particular, based on a framework that involved
data analysis, expert judgment, andmodeling, the TP concentration
target was set at 17 mg L�1, while the environmental goals related to
chlorophyll a concentrations (5e10 mg L�1) and Secchi disc depth
(3.0 m) emerged through a consensus on what were desirable
and/or achievable targets for the Harbour (Charlton, 2001).
Following this analytical approach, the maximum allowable exog-
enous TP loadings in the Harbourwere set at 142 kg day�1, based on
predictions that these loads would achieve compliance with the
water quality goals. However, the development of the stres-
soreeffect relationships (exogenous nutrient loading-system
responses) that provided the basis of the management actions in
the Harbour has neither accommodated the uncertainty underlying
model predictions along with natural ecosystemvariability, nor has
it considered the pragmatic need of adopting percentile-based
standards (Zhang and Arhonditsis, 2008).

In this study, we present a modeling exercise that aims to revisit
the robustness of the existing total maximum daily loading deci-
sions and to guide a water quality criteria setting process that
explicitly acknowledges the likelihood of standard violations in
Hamilton Harbour. The basis of our work is a Bayesian calibration
framework founded upon a statistical formulation that explicitly
accommodates measurement error, parameter uncertainty, and
model structure imperfection (Arhonditsis et al., 2007). This
Bayesian approach has been shown to provide realistic uncertainty
estimates of ecological predictions; to alleviate the problem of
model identifiability; to sequentially update model para-
merization; to effectively support probabilistic inference on
significant causeeeffect relationships pertaining to water quality
management as well as to maximize the value of information
gained from environmental monitoring programs; and to simul-
taneously calibrate biogeochemical models at multiple systems,
thereby allowing the effective modeling of sites with limited
information (Arhonditsis et al., 2007, 2008a,b; Zhang and
Arhonditsis, 2008; 2009). Our intent here is the illustration of
a Bayesian methodological framework suitable to the decision
making process by estimating the critical nutrient loads that can
potentially result in acceptable probabilities of compliance with
different water quality criteria. The analysis begins with the
presentation of the model calibration exercise and examines the
ability of the model to adequately reproduce the average observed
patterns along with the major causeeeffect relationships under-
lying the Harbour water quality conditions. We then address
several critical questions regarding the present status and the
future response of the system, such as: Is it possible to meet the
objective of delisting the study system as an Area of Concern, if
the nutrient loading reductions proposed by the Hamilton Harbour
Remedial Action Plan are actually implemented? How frequently
would the existing water quality criteria be violated and how
confident are we that the exceedance frequency of these standards
will remain lower than the U.S. EPA endorsed 10% level (Office of
Water, 1997)? What additional remedial actions are needed to
increase the likelihood of meeting the water quality targets?

2. Methods

2.1. Model description

This section provides a description of the basic conceptual design of the model.
The flow diagrams of the nitrogen and phosphorus cycles of the model are depicted
in Figs. 2 and 3, the definitions of the model parameters are given in Table 1, while
the mathematical equations can be found in the Electronic Supplementary Material.

2.1.1. Model spatial structure and forcing functions
We considered a two-compartment vertical segmentation representing the

epilimnion and hypolimnion of the Harbour. The depths of the two boxes varied
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with time and were explicitly defined based on extensive field measurements for
the study period 1987e2007 (Dermott et al., 2007; Hiriart-Baer et al., 2009).
During the stratified period, the epilimnion was defined as the maximum depth
where the water temperature varied �1 �C relative to the temperature at 0.5 m;
otherwise, we assumed a box depth of 13 m and the mass exchanges between the
two compartments were computed using Fick’s Law (Klapwijk and Snodgrass,
1985; Hamblin and He, 2003). Other external forcing functions include the solar
radiation, day length, precipitation, evaporation based on meteorological data from
Environment Canada; namely, the Canadian Daily Climate Data (1996e2002) and
the Canadian Climate Normals (1971e2000) (http://www.climate.weatheroffice.ec.
gc.ca/prods_servs/index_e.html). Loads of inorganic nutrients and organic matter
enter Hamilton Harbour from the following main sources: Red Hill and Grindstone
creeks, combined sewer overflows (CSOs), ArcelorMittal Dofasco and U.S. Steel
Canada steel mills, Woodward and Skyway wastewater treatment plants (WWTPs),
and Cootes Paradise (Fig. 1). Estimates of flow and nutrient loadings are based on
available data from the Water Survey of Canada (http://www.wsc.ec.gc.ca/) and the
RAP loading report (Hamilton Harbour Technical Team: 1996e2002 Contaminant
Loadings and Concentrations to Hamilton Harbour or HHTT-CLR, 2004). Similar to
the practice presented by Arhonditsis and Brett (2005), the model was forced with
the mean hydrological and nutrient loading seasonal cycle over the 1996e2002
period. Notably, to overcome the lack of data regarding the within-year variability
of the external loading, it was assumed that the nutrient loading rates follow the
precipitation month-to-month variability as calculated from the regional climate
normal. Another critical assumption of our modeling exercise involves the dataset
used to guide model calibration; in particular, we examined the capacity of the
model to reproduce the post-2000 average observed patterns in the Harbour
(Hiriart-Baer et al., 2009). The influence of the assumptions made regarding the
nutrient loading estimates as well as the specification of the present water quality
conditions in the Harbour on the projected trends will be further examined in
subsequent work.

The exchanges between Hamilton Harbour and the relatively high quality
waters of Lake Ontario through the Burlington Ship Canal are another major regu-
latory factor of the Harbour water quality associated with the dilution of the
pollutant concentrations, the decrease of Harbour’s residence time, and the
oxygenation of the hypolimnetic waters (Barica, 1989; Hamblin and He, 2003).
Winter exchanges are primarily driven by short-term oscillations due to water level
differences at the two ends of the canal, while the exchanges during the summer
stratified period are mediated by slowly fluctuating density gradients, i.e., warm
Harbour water flowing into the lake from the top layer and colder lake water flowing
into the Harbour in the bottom layer (see Figs. 1 and 2 in Barica, 1989). Existing
evidence also suggests that the Hamilton Harbour-Lake Ontario interplay during the
stratified conditions is much stronger and steadier than in winter (Hamblin and He,
2003). In this study, following the Klapwijk and Snodgrass (1985; see their Fig. 3)
conceptual model, we assumed that 10% of the Lake Ontario inflows are directly
discharged to the epilimnion, whereas 90% of the fresher oxygenated lake water
replaces the hypolimnetic masses in the Harbour. The model considers an average
hydraulic loading of 81.45 � 106 m3 from fluvial and aerial sources during the
summer stratified period. The total (gross) inflows from Lake Ontario are
468 � 106 m3 corresponding to an average inflow rate of 45 m3 s�1. After correcting
for evaporative losses at the Harbour surface, these inputs represent an average
residence time of 62 days during the stratified season, whereas the assumption that
nearly all the Lake Ontario water enters the hypolimnion of the Harbour results in
a hypolimnetic residence time of 31 days; both values are very close to those
calculated by Hamblin and He (2003).

2.1.2. Equations
We developed an ecological model that considers the interactions among the

eight state variables: nitrate (NO3), ammonium (NH4), phosphate (PO4), (non-cya-
nobacteria) phytoplankton, cyanobacteria, zooplankton, organic nitrogen (ON) and
organic phosphorus (OP).

Fig. 1. Map of Hamilton Harbour, western end of Lake Ontario, and the major point and non-point loading sources in this system. The Red Hill Creek watershed includes the
Woodward Avenue WWTP sewershed.
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2.1.3. Phytoplankton
The ecological submodel simulates two phytoplankton functional groups,

labelled as “cyanobacteria” and “phytoplankton”, that differ with regards to their
strategies for resource competition (nitrogen, phosphorus, light, and temperature)
and metabolic rates as well as their settling velocities. The cyanobacteria-like group
is modeled as K-strategist with lowmaximum growth and metabolic rates, slower P
and faster N kinetics, low settling velocities, and high temperature optima. By
contrast, the more generic “phytoplankton” group has attributes of r-selected

organisms with high maximum growth rates and higher metabolic losses, relatively
fast phosphorus and slow nitrogen kinetics, low temperature optima, high sinking
velocities and is considered to represent the average characteristics of the remaining
phytoplankton community.

The governing equation for phytoplankton biomass accounts for phytoplankton
production and losses due to mortality, settling, dreissenid filtration, and herbivo-
rous zooplankton grazing. The phytoplankton growth is adjusted for water
temperature conditions, nutrient and light availability. Phytoplankton growth
temperature dependence has an optimum level (Topt) and is modeled by a function
similar to the Gaussian probability curve (Cerco and Cole, 1994; Arhonditsis and
Brett, 2005). Phosphorus dynamics within the phytoplankton cells account for
luxury uptake, i.e., phytoplankton nutrient uptake depends on both internal and
external concentrations and is confined by upper and lower internal storage capacity
(Hamilton and Schladow, 1997; Arhonditsis et al., 2002). Our model explicitly
considers the role of new and regenerated production using separate formulations
that relate phytoplankton uptake to the ambient nitrate and ammonium concen-
trations (EppleyePeterson f-ratio paradigm; Eppley and Peterson, 1979). Regarding
the dependence of photosynthesis on solar radiation, we used Steele’s equation
coupled with Beer’s law to scale photosynthetically active radiation to depth. The
extinction coefficient is determined as the sum of an assigned background light
attenuation and attenuation due to chlorophyll a (Jassby and Platt, 1976). The
phytoplankton mortality includes all internal processes that decrease algal biomass
(respiration, excretion) as well as natural mortality and is assumed to increase
exponentially with temperature. Phytoplankton settling considers the net change in
biomass due to settling between adjacent compartments. We also incorporated
a first-order loss rate representing the filtration from the zebra (Dreissena poly-
morpha) and quagga (Dreissena bugensis) mussels, which is a potentially important
factor for phytoplankton biomass loss; especially in nearshore areas (Bastviken et al.,
1998; Bierman et al., 2005).

2.1.4. Zooplankton
Zooplankton grazing and losses due to natural mortality/consumption by higher

predators is the main two terms in the zooplankton biomass equation. Zooplankton
has three food sources (the two phytoplankton groups and biogenic particulate
matter or detritus) grazed with preference that changes dynamically as a function of
their relative abundance (Fasham et al., 1990) [It should also be noted that the
present model parameterization postulates a selective zooplankton preference for
phytoplankton and detritus over cyanobacteria]. Zooplankton grazing was modeled
using a MichaeliseMenten equation and the assimilated fraction of the grazed
material fuels growth. In the absence of information to support more complex
forms, we selected a linear closure term that represents the effects of a seasonally
invariant predator biomass (see Edwards and Yool, 2000).

2.1.5. Nitrogen cycle
There are three nitrogen forms considered in the model: nitrate (NO3), ammo-

nium (NH4), and organic nitrogen (ON) (Fig. 2). The ammonium equation considers
the phytoplankton uptake and the proportion of phytoplankton and zooplankton
mortality that is returned back to the water as ammonium. Ammonium is also
oxidized to nitrate through nitrification and the kinetics of this process are modeled
as a function of the ammonium, and the externally-forced dissolved oxygen,
temperature, and light availability (Cerco and Cole, 1994; Tian et al., 2001). We used
Wroblewski’s model (1977) to describe ammonium inhibition of nitrate uptake. The
nitrate equation also takes into account ammonium oxidized to nitrate through
nitrification and nitrate lost as nitrogen gas through denitrification. The latter
process is modeled as a function of dissolved oxygen, temperature and the nitrate
concentrations (Arhonditsis and Brett, 2005). The organic nitrogen equation
considers the contribution of phytoplankton and zooplankton mortality to the
organic nitrogen pool and the temperature-dependent mineralization that trans-
forms organic nitrogen to ammonium. External nitrogen loads to the system and
losses via the exchanges with Lake Ontario are also included.

2.1.6. Phosphorus cycle
Two state variables of the phosphorus cycle are considered in the model:

phosphate (PO4) and organic phosphorus (OP) (Fig. 3). The phosphate equation
considers the phytoplankton uptake, the proportion of phytoplankton and
zooplankton mortality/higher predation that is directly supplied into the system in
inorganic form, the bacteria-mediated mineralization of organic phosphorus, and
the net diffusive fluxes between adjacent compartments. We also accounted for
phosphorus precipitation and subsequent sedimentation due to the iron loadings
from two steel mills, based on an empirical equation originally implemented to
correct for the observed Hamilton Harbour phosphorus concentrations (Hamilton
Harbour Technical Team-Water Quality or HHTT-WQ, 2007). The effects of the
uncertainty associated with this empirical relationship on the predicted outcomes
will be considered in our analysis. The organic phosphorus equation also considers
the amount of organic phosphorus that is redistributed through phytoplankton and
zooplankton basal metabolism. A fraction of organic phosphorus settles to the
sediment and another fraction is mineralized to phosphate through a first-order
reaction. We also consider external phosphorus loads to the system and losses via
the exchanges with Lake Ontario.

Fig. 3. The phosphorus biogeochemical cycle of the model: (1) external forcing to
phytoplankton growth (temperature, solar radiation); (2) zooplankton grazing; (3)
phytoplankton basal metabolism excreted as PO4 and OP; (4) zooplankton basal
metabolism excreted as PO4 and OP; (5) OP mineralization; (6) water sediment PO4

and OP exchanges; (7) settling of particles; (8) exogenous inflows of PO4 and OP; (9)
outflows of PO4 and OP; (10) phytoplankton uptake; and (11) phytoplankton settling.

Fig. 2. The nitrogen biogeochemical cycle of the model: (1) external forcing for
phytoplankton growth (temperature, solar radiation); (2) zooplankton grazing; (3)
phytoplankton basal metabolism excreted as NH4 and ON; (4) zooplankton basal
metabolism excreted as NH4 and ON; (5) settling of particles; (6) water sediment NO3,
NH4, and ON exchanges; (7) exogenous inflows of NO3, NH4, and ON; (8) outflows of
NO3, NH4, and ON; (9) NO3 sinks due to denitrification; (10) ON mineralization; (11)
nitrification; (12) phytoplankton uptake; and (13) phytoplankton settling.
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2.1.7. Fluxes from the sediment
As a first approximation to model the role of the sediments, we followed

a simple dynamic approach that relates the fluxes of nitrogen and phosphorus from
the sediment with the algal and particulate matter sedimentation and burial rates,
while also accounting for the role of temperature and dissolved oxygen (Arhonditsis
and Brett, 2005). The relative magnitudes of ammonium and nitrate fluxes were also
determined by nitrification and denitrification occurring at the sediment surface.

2.2. Bayesian framework

2.2.1. Statistical formulation
Our presentation examines a statistical formulation founded upon the as-

sumption that the eutrophication model is an imperfect simulator of the environ-
mental system but the model error is invariant with the input conditions, i.e., the
difference between model and system dynamics was assumed to be constant over
the annual cycle for each state variable. Our aim was to combine field observations
with simulation model outputs to update the uncertainty of model parameters, and
then use the calibratedmodel to give predictions (along with uncertainty bounds) of
the natural system dynamics. An observation i for the state variable j, yij, can be
described as:

yij ¼ f ðq; xi; y0Þ þ dj i ¼ 1;2;3; . n and j ¼ 1; .; m (1)

where f(q, xi, y0) denotes the eutrophication model, xi is a vector of time dependent
control variables (e.g., boundary conditions, forcing functions) describing the envi-
ronmental conditions, the vector q is a time-independent set of the calibration model
parameters, y0 corresponds to the vector of the concentrations of the sixteen state
variables at the initial time t0 (initial conditions), and dj is the stochastic term that
accounts for the discrepancy between the model and the natural system. Under the
normality and conditional independence assumptions, the likelihood functionwill be:

pðyjf ðq; x; y0ÞÞ ¼
Ym
j¼ 1

ð2pÞ�n=2
����X dj

�����1=2
exp

�
� 1
2

h
yj � fjðq; x; y0Þ

iTX�1
dj

h
yj � fjðq; x; y0Þ

i�
ð2Þ

where m corresponds to the number of state variables of our model for which data
are available (m ¼ 16); n is the number of observations in time used to calibrate the
model (n ¼ 12 average monthly values); yj ¼ [y1j,.,ynj]T and fj(q, x, y0) ¼ [f1j(q, x1,
y0),., fnj(q, xn, y0)]T correspond to the vectors of the field observations and model
predictions for the state variable j;Sdj¼ In� sj

2 denotes themodel structural error; In
denotes the identity or unit matrix of size n; and sj

2 represents the time-indepen-
dent, variable-specific error terms. In the context of the Bayesian statistical infer-
ence, the posterior density of the parameters q and the initial conditions of the
sixteen state variables y0 given the observed data y is defined as:

p
�
q; y0; s

2
����y� ¼

p
�
y
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p(q) is the prior density of the model parameters q and p(y0) is the prior density
of the initial conditions of the sixteen state variables y0. The characterization of the
prior density p(y0) was based on the assumption of a Gaussian distribution with
a mean value derived from the mid-winter monthly averages during the study
period and standard deviation that was 25% of themean value for each state variable
j (Van Oijen et al., 2005); the prior densities p(sj2) were based on the conjugate
inverse-gamma distribution (Gelman et al., 1995). Thus, the resulting posterior
distribution for q, y0, and s2 is:

p
�
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(4)

where l is the number of the model parameters q used for the model calibration
(l ¼ 33); q0 indicates the vector of the mean values of q in logarithmic scale;
Sq ¼ Il � sq

T � sq and sq ¼ [sq1,., sql]T corresponds to the vector of the shape
parameters of the l lognormal distributions (standard deviation of log q); the vector

Table 1
Sensitivity of the posterior parameter distributions on the prior specifications.

Parameters Description Units Priors Posteriors

Loguniform Lognormal

Min Max Mean SD Mean SD

AH(cy) Half saturation constant for ammonium uptake by cyanobacteria mg N L�1 30 80 58.72 14.18 55.67 10.56
AH(phyt) Half saturation constant for ammonium uptake by phytoplankton mg N L�1 80 150 146.1 3.595 154.4 10.21
Denitrifmax Maximum denitrification rate mg N L�1 day�1 1 10 2.459 1.637 2.811 1.194
filter(cy) Filtering rate of cyanobacteria by dreissenids day�1 0.0045 0.0245 0.0066 0.0015 0.0065 0.0013
filter(phyt) Filtering rate of phytoplankton by dreissenids day�1 0.010 0.050 0.0106 0.0063 0.0080 0.0015
growthmax(cy) Cyanobacteria maximum growth rate day�1 1.0 1.8 1.315 0.157 1.245 0.081
growthmax(phyt) Phytoplankton maximum growth rate day�1 2.2 3.0 2.571 0.163 2.714 0.126
Ik(cy) Half saturation light intensity for cyanobacteria MJ/m2day�1 100 250 202.8 30.13 182.6 19.82
Ik(phyt) Half saturation light intensity for phytoplankton MJ/m2day�1 100 250 145.2 16.67 160.6 12.71
kbackground Background light extinction coefficient m�1 0.15 0.30 0.2646 0.0265 0.2392 0.0225
kchl a(cy) Self-shading effect for cyanobacteria L (mg chlam)�1 0.01 0.08 0.0338 0.0164 0.0289 0.0098
kchl a(phyt) Self-shading effect for phytoplankton L (mg chla m)�1 0.01 0.06 0.0579 0.0019 0.0633 0.0041
KCrefmineral Organic carbon mineralization rate day�1 0.0043 0.0243 0.0060 0.0010 0.0068 0.0016
KNrefmineral Nitrogen mineralization rate day�1 0.0043 0.0243 0.0065 0.0013 0.0083 0.0018
KPrefmineral Phosphorus mineralization rate day�1 0.0043 0.0243 0.0128 0.0014 0.0099 0.0015
KZ Half saturation constant for zooplankton grazing mg C/L 80 120 107.5 6.098 102.8 5.436
max grazing Zooplankton maximum grazing rate day�1 0.40 0.60 0.465 0.011 0.470 0.009
mp(cy) Cyanobacteria mortality rate day�1 0.01 0.05 0.013 0.002 0.015 0.001
mp(phyt) Phytoplankton mortality rate day�1 0.01 0.05 0.015 0.003 0.021 0.003
mz Zooplankton mortality rate day�1 0.14 0.19 0.158 0.004 0.160 0.004
NH(cy) Half saturation constant for nitrate uptake by cyanobacteria mg N/L 30 80 52.37 14.58 49.48 9.356
NH(phyt) Half saturation constant for nitrate uptake by phytoplankton mg N/L 80 150 112.4 19.79 110.9 13.41
Nitrifmax Maximum nitrification rate mg N/L�1 day�1 10 30 12.14 1.557 13.82 1.528
PH(cy) Half saturation constant for phosphorus uptake by cyanobacteria mg P/L 18 30 24.85 3.632 23.09 1.998
PH(phyt) Half saturation constant for phosphorus uptake by phytoplankton mg P/L 5 15 10.55 3.016 10.22 1.732
Pmaxuptake(cy) Maximum phosphorus uptake rate for cyanobacteria mg P/L�1 day�1 0.005 0.025 0.010 0.002 0.010 0.001
Pmaxuptake(phyt) Maximum phytoplankton uptake rate for phytoplankton mg P/L�1 day�1 0.01 0.05 0.021 0.004 0.021 0.003
Vsettling Autochthonous particle settling velocity m day�1 0.50 1.50 0.627 0.013 0.645 0.014
Vsettling(biogenic) Biogenic particle settling velocity m day�1 0.35 1.75 0.481 0.110 0.591 0.140
Vsettling(cy) Cyanobacteria settling velocity m day�1 0.01 0.05 0.036 0.007 0.030 0.007
Vsettling(phyt) Phytoplankton settling velocity m day�1 0.12 0.25 0.212 0.108 0.199 0.164
bN Fraction of refractory nitrogen buried into deeper sediment 0.30 0.60 0.36 0.036 0.37 0.038
bP Fraction of refractory phosphorus buried into deeper sediment 0.80 0.95 0.93 0.011 0.92 0.013
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y0m ¼ [y1,1,., y1,16]T corresponds to the mid-winter values of the sixteen state
variables; Sy0 ¼ Im� (0.25)2 � y0m

T� y0m; aj (¼0.001) and bj (¼0.001) correspond to
the shape and scale parameters of the m non-informative inverse-gamma distri-
butions used in this analysis. Following the methodological protocol presented in
our earlier modeling work (Arhonditsis et al., 2007, 2008a,b; Zhang and Arhonditsis,
2008), sequence of realizations from the posterior distribution of the model were
obtained using Markov chain Monte Carlo (MCMC) simulations (Gilks et al., 1998;
see also the relevant section in the Electronic Supplementary Material).

2.2.2. Prior parameter distributions
The calibration vector consists of the 33 most influential parameters as identified

from an earlier sensitivity analysis of the model. The present analysis examines two
different sets of priors aiming to assess the sensitivity of the posterior patterns on the
assumptions made during the prior parameter specification, which has been an
historical criticism of the Bayesian inference in the literature (Dennis, 1996; Ellison,
2004). The prior parameter distributions reflected the existing knowledge (field
observations, laboratory studies, literature information and expert judgment) on the
relative plausibility of their values. Specifically, the characterization of the parameter
distributions was similar to the protocol used in Steinberg et al. (1997), i.e., we iden-
tified the minimum and maximum values for each parameter and then we assigned
lognormal and loguniform distributions parameterized such that 99% (equal mass the
two tail areas) and 100% of the respective values lay within the identified ranges. The
delineation of the parameter spaces of the two phytoplankton functional groups was
based on the framework presented in Zhang and Arhonditsis (2008). The prior distri-
butions of all the parameters of the model calibration vector are presented in Table 1.

2.2.3. Model updating and loading scenarios
The MCMC estimates of the mean and standard deviation of the parameter

values along with the covariance structure were used to update the model (Gelman
et al., 1995). Under the multinormality assumption for the log transformed param-
eters, the mean values and the dispersion matrices of the conditional distributions
were formulated as follows:

bqijj ¼ bqi þ h
qj � bqjiS�1

j Si;j (5)

Sijj ¼ Si � Sj;i S
�1
j Si;j j˛ fiþ 1; . ng (6)

where bqijj and Sijj correspond to the mean value and the dispersion matrix of the
parameter i conditional on the parameter vector j; the values of the elements Si Si,j

and Sj correspond to the variance and covariance of the two subsets of parameters;
and bqi; bqj , qj correspond to the posterior mean and random values of the parameters
i and j, respectively. The updated model provided the basis for a series of posterior
simulations that aimed to reproduce the broad range of dynamics currently experi-
enced in Hamilton Harbour or to determine the optimal nutrient loading reductions
for achieving compliance with the targeted water quality standards.

In this study, we formulated probability distributions to accommodate the
uncertainty as well as the interannual variability associated with the different
exogenous nutrient loading sources in the Harbour (Fig. 4). Aside from the present
loading conditions,wealso examined threenutrient loading reduction strategies that
all assumed a substantial reduction (z15%) of the non-point discharges into the
system (Red hill Creek, Grindstone Creek, and Cootes Paradise). The three scenarios
also differed with regards to the point loadings examined, reflecting a gradual
improvement in the performance of the Skyway and Woodward WWTPs. In partic-
ular, being the primary TP source in the area, the average loading from theWoodward
WWTP was set equal to 194.2 kg day�1, stemming from an approximate flow of
343ML day�1 and a concentration of 0.568mg TP L�1. The 2.5% and 97.5% uncertainty
bounds of the TP loadings examinedwere 127.2 and 278.8 kgday�1. The TPdischarges
from the same WWTP were reduced by 20% (to 155 kg day�1) and 38% (to
120 kg day�1) in scenarios 1 and 2, until set to the final goal of 60 kg day�1 or 70%
reduction as per the Hamilton Harbour RAP recommendations (HHTT-CLR, 2004).
Similarly, the NH4eN loadings from this source were reduced by 40% (to
1800 kg day�1), 70% (to 900 kg day�1), and 82% (to 530 kg day�1) relative to the
present levels (3023 kg day�1), while the assumption of an equivalent NO3 loading
increase aims to represent the hypothetical scenario of enhanced nitrification in the
WWTP. Cootes Paradise, a largewetland at thewestern end of the system, is another
major nutrient loading source to theHamiltonHarbour. Beginning froman average of
40.8 kg day�1, the TP loadings from Cootes were assumed to be reduced by 17% (to
34 kg TP day�1) at the final HH RAP scenario. The role of the Burlington Skyway
WWTP was examined assuming average loadings of 20.4 kg TP day�1 and 155.9 kg
NH4eN day�1 (present conditions), and ending up with 12 kg TP day�1 and 115 kg
NH4eN day�1 under the HH RAP proposition. The average TP loadings from Redhill
andGrindstoneCreeks varied from22.2 to15 kgTPday�1 to 18.5 and 12.5 kg TPday�1,
respectively. Following the calculations of the HHTT-CLR (2004) report, we assumed
anaverage loadingof52.7 kgTPday�1 and135.4 kgNH4eNday�1 (present conditions)
from the combined seweroverflows,whichwas reducedby91% (to5kgTPday�1) and
85% (to 20 kgNH4eN day�1) in the final scenario [Specific details about the different
nutrient loading scenarios are provided in the Electronic Supplementary Material].

Based on the previous probabilistic characterization of the external nutrient
loading, we conducted 3000 posterior simulations to examine the exceedance

Fig. 4. Analysis of scenarios: Distributions of the total exogenous nutrient loadings used to force the Hamilton Harbour eutrophication model. Our analysis considers an average
total loading of 8368 kg TN day�1 and 351 kg TP day�1 to represent the current conditions of the Harbour. The Hamilton Harbour RAP scenario implies a total loading of 7376 kg
TN day�1 and 142 kg TP day�1. Scenarios 1 (7782 kg TN day�1 and 260 kg TP day�1) and scenario 2 (7552 kg TN day�1 and 225 kg TP day�1) depict two intermediate states that aim
to assess the restoration rate of the system.
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frequency of the Hamilton Harbour water quality standards (10 mg chl a L�1 and
17 mg TP L�1) under the present conditions and the three nutrient loading scenarios
designed. For each iteration, we collected the weekly predicted values and the
corresponding probabilities of exceeding the two water quality criteria (Zhang and
Arhonditsis, 2008). The weekly predicted values along with the exceedance
frequencies were then averaged over the summer stratified period (JuneeSep-
tember). The distribution of these statistics across the posterior space was used to
assess the expected exceedance frequency and the confidence of compliance with
the two numerical criteria, while accounting for the uncertainty that stems from the
model parameter uncertainty and the model error. We also note that the present
analysis focuses on the average summer patterns and does not fully accommodate
the day-to-day variability associated with the weather conditions and the interplay
with Lake Ontario, which should be considered to improve the realism of our risk
assessment statements.

3. Results

The two MCMC sequences of the model applications with the
two sets of priors converged rapidly (z5000 iterations) and the
statistics reported were based on the last 35,000 draws by keeping
every 20th iteration (thin ¼ 20). The uncertainty underlying the
values of the 33 model parameters after the MCMC sampling is
depicted on the respective marginal posterior distributions (Table 1
and Fig. 5). Generally, the summary statistics of the posterior

parameter distributions indicate that substantial amount of
knowledge was gained for the 33 parameters after the updating of
the eutrophication model. Namely, several of the posteriors were
characterized by significant shifts of their central tendency relative
to the prior assigned values (e.g., AH(phyt), filter(phyt), filter(cy), kchl
a(phyt), bP, growthmax(cy), Vsettling), whereas the posterior standard
deviations of the majority of the parameters were significantly
lower than those specified prior to the calibration. Nonetheless,
there were also model parameters with unaltered (e.g., AH(cy), kchl
a(cy), NH(cy), NH(phyt), PH(cy)) or uninformative (e.g., bi/multimodal)
posterior distributions (KZ, PH(phyt), Pmaxuptake(phyt)). We also
highlight the robustness of the posterior patterns on the prior
parameter specifications, as the discrepancy between the posterior
means derived from the two sets of priors was lower than 20%
for the vast majority of the parameters. Notable exceptions were
the posterior standard deviations of the half saturation constant
for phytoplankton ammonium uptake (AH(phyt)), the dreissenids
filtering rate for phytoplankton (filter(phyt)), the cyanobacteria
maximum growth rate (growthmax(cy)), the self-shading effects of
the two phytoplankton groups (kchl a(cy), kchl a(phyt)), the half
saturation constant for nitrate cyanobacteria uptake (NH(cy)), and
the two half saturation constants for phosphorus (PH(cy), PH(phyt)).

Fig. 5. Comparison between the prior (Lognormal) and posterior parameter distributions of the calibration vector of the Hamilton Harbour eutrophication model.
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The seasonally invariant (model structure) error terms (sj) delineate
constant zones around the model predictions for the 16 state vari-
ables (Table 2). Themajority of the error termswere also remarkably
similar between the two experiments with the different priors. The
only notable relative differences were the somewhat higher error
terms for the organic phosphorus and nitrate concentrations
derived from the loguniform distributions.

The posterior medians along with the 95% credible intervals
were fairly close to the observed values for phosphate, total phos-
phorus, ammonium, nitrate, total nitrogen, chlorophyll a and total
zooplankton biomass in Hamilton Harbour (Fig. 6). In particular, the
model accurately predicts the winter maxima (z11.5 mg L�1) and
the summer minima (z2.2e4.7 mg L�1) of the epilimnetic phos-
phate levels as well as its hypolimnetic accumulation during the
summer stratified period (z4.2e7.3 mg L�1). The model under-
predicts somewhat the epilimnetic total phosphorus concentra-
tions in autumn, which stems from the assumptions made
regarding the intra-annual variability of the exogenous loading. The
model closely reproduces the winter (z4.5 mg chl a L�1) and the
summer (z14 mg chl a L�1) chlorophyll a levels, while the spring
phytoplankton bloom is predicted to exceed the level of 20 mg chl
a L�1. Our model also predicts two major peaks of the zooplankton
biomass; the first peak follows the spring phytoplankton bloom
(z160 mg C L�1) while the second one is predicted to occur at the
end of summer-mid fall (z200 mg C L�1). These predictions match
closely the observed patterns reported by Dermott et al. (2007),
e.g., Figs. 8 and 9; pages 62e63, if we assume an average wet to dry
biomass ratio equal to 10 along with 0.4 mg C per mg of dry weight of
zooplankton biomass (Downing and Rigler, 1984). The model
performance was evaluated by three measures of fit: root mean
squared error (RMSE), relative error (RE) and average error (AE)
(Table 3). These comparisons aimed to assess the goodness-of-fit
between the means of the predictive distributions and the
observed values. The highest RE values were found for the volume
weighted zooplankton biomass (45.40%), the epilimnetic phos-
phate (32.80%), and the epilimnetic chlorophyll a concentrations
(27.25%). We also highlight the fairly low RE values for nitrate
(3.05%), total nitrogen (4.60%), and both the epilimnetic (9.71%)
and hypolimnetic (6.95%) total phosphorus concentrations. The
average error is a measure of aggregate model bias, though values
near zero can be misleading because negative and positive
discrepancies can cancel each other. In most cases, we found
that the means of the predictive distributions do not introduce
systematic bias, although two notable exceptions were the

overestimation of the zooplankton biomass and epilimnetic chlo-
rophyll a concentrations with AE values of 8.41 mg C L�1, and 1.58 mg
chl a L�1, respectively. The root mean square error is another
measure of the model prediction accuracy that overcomes the
shortcoming of the average error by considering the magnitude
rather than the direction of each difference. The RMSE for the
zooplankton and phytoplankton biomass were 54.77 mg C L�1 and
3.95 mg chl a L�1, respectively. We also note the approximately 4.00
and 3.14 mg TP L�1 mean discrepancy between the predictive means
and the observed epilimnetic and hypolimnetic total phosphorus
concentrations.

The model predicts that the current average TP and chlorophyll
a concentrations are 28.62 � 3.15 mg L�1 and 14.85 � 1.44 mg chl
a L�1 during the summer stratified period, while the associated
distributions lie well above the existing water quality criteria of
17 mg TP L�1 and 10 mg chl a L�1 (Fig. 7). The reduction of the total TP
loading by approximately 25% (260 � 40 kg day�1) does substan-
tially improve the water quality conditions but does not result in an
attainment of the targeted goals. Specifically, the average summer
TP and chlorophyll a concentrations were 22.73 � 2.59 mg L�1 and
12.89 � 1.14 mg chl a L�1. Likewise, an additional reduction to the
level of 225 � 35 kg TP day�1, will primarily decrease the summer
TP concentration (20.42 � 2.27 mg L�1) and secondarily the chlo-
rophyll a levels (12.25 �1.04 mg chl a L�1), although the systemwill
still not comply with the water quality standards. The imple-
mentation of the HH RAP loading propositions suggests that the
projected average summer 10% concentrations (14.38� 1.86 mg L�1)
will fall below the 17 mg TP L�1 threshold value, while the corre-
sponding exceedance frequency will be about 13.8%. If we follow
strictly the RAP guidelines (i.e., TP < 17 mg L�1 throughout the
JuneeSeptember period), the latter prediction is still reflective of
non-compliance of the system. However, the adoption of a TP
criterion that permits a prespecified level of violations (e.g., �10%
exceedance in space and time), may be a more realistic assessment
of the anticipated water quality conditions as it accommodates
both natural variability and measurement/sampling error. For
example, the proportion of the exceedance frequency distribution
that lies below the 10% cutoff point (or confidence of compliance
with the TP standard) is more than 75%, suggesting that this water
quality criterion is likely to be met if the HH RAP recommendations
are adopted (Fig. 8). By contrast, the average chlorophyll a concen-
tration is predicted to be 10.38 � 0.88 mg L�1 with>50% probability
of exceeding the 10 mg chl a L�1 value. Consequently, our confidence
of compliance with the same threshold level is less than 10%, and
therefore it is nearly impossible to comply with the 10% EPA
guideline. Yet, despite the fact that chlorophyll a is not predicted to
meet the 10 mg L�1 target, the conditions in the Harbour are still
expected to improve the water clarity or to decrease the biogenic
sedimentation which in turn could potentially improve hypo-
limnetic DO levels.

4. Discussion

We used a Bayesian modeling framework to obtain a good
representation of several key water quality variables (chlorophyll a,
total zooplankton biomass, phosphate, and total phosphorus) in
Hamilton Harbour. This framework was also used to estimate the
critical nutrient loads that will ultimately result in acceptable
exceedance frequencies and appropriate margins of safety with the
existingwater quality criteria.While none of thewater quality goals
is currently accomplished, our analysis suggests that the epi-
limnetic TP concentrations will decrease in response to a reduction
in external nutrient loadings and that the water quality goal of
17 mg TP L�1 will likely be met (confidence of compliancez80%), if
the Hamilton Harbour RAP proposition for phosphorus loading at

Table 2
Markov Chain Monte Carlo posterior estimates of the mean values and standard
deviations of the model structure error terms.

Parameters Loguniform Lognormal

Mean Std. Dev. Mean Std. Dev.

sPO4epi 0.396 0.131 0.389 0.131
sOPepi 1.301 0.315 1.148 0.271
sNH4epi 52.23 12.26 50.02 11.99
sNO3epi 172.3 40.48 159.4 38.64
sONepi 7.503 1.921 7.654 1.864
sCYAepi 1.277 0.449 1.244 0.469
sPHYTepi 25.28 7.728 22.82 7.363
sZOOPepi 5.601 1.792 5.709 1.922
sPO4hypo 0.625 0.169 0.742 0.198
sOPhypo 1.515 0.374 1.231 0.323
sNH4hypo 29.76 8.886 29.14 8.943
sNO3hypo 196.8 47.08 180.9 44.99
sONhypo 12.28 3.049 11.99 2.845
sCYAhypo 3.157 0.767 3.363 0.824
sPHYThypo 45.15 11.48 49.07 12.16
sZOOPhypo 6.128 1.393 6.205 1.449
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the level of 142 kg day�1 is achieved. The attainment of the water
quality goal related to the summer chlorophyll a concentrations
(5e10 mg L�1) though has not been unequivocally demonstrated, as
the central tendency of our predictions indicates a marginal
exceedance of the 10 mg L�1 threshold level, even when the exog-
enous loading conforms to the most extreme reduction guidelines.
The projected disconnect between the TP and chlorophyll a
standards invites critical reassessment of the stressoreeffect

relationships historically used in the Harbour as well as identifi-
cation of the factors unaccounted for by our modeling exercise that
can potentially modulate the anticipated system responses to the
exogenous nutrient loading reductions designed.

The relationship of the epilimnetic summer TP with the total TP
loading to the Harbour is characterized by an increase in the slope
between the present conditions (TPHarbour ¼ 0.055 � TPLoading þ 7.343)
and the HH RAP scenario (TPHarbour ¼ 0.064 � TPLoading þ 5.272), which

Fig. 6. Comparison between the observed data (black dots) and the mean predictions for total phosphorus, total nitrogen, chlorophyll a, phosphate, ammonium, nitrate, and total
zooplankton biomass in the Hamilton Harbour epilimnion and hypolimnion. The credible intervals represent the uncertainty pertaining to the model parameters and structure
along with the variability characterizing the exogenous nutrient loading.
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Table 3
Goodness-of-fit statistics for the epilimnetic and hypolimnetic model predictions.a

State variables Epilimnion Hypolimnion

RMSE RE AE RMSE RE AE

Chlorophyll a biomass (mg chl a/L) 3.948 27.25% 1.581 2.607 24.47% �0.077
Ammonium (mg N/L) 0.102 15.79% 0.025 0.099 17.85% 0.010
Nitrate (mg N/L) 0.059 3.05% �0.016 0.226 11.44% �0.130
Phosphate (mg P/L) 2.484 32.80% 0.841 2.496 26.04% 1.558
Total Nitrogen (mg N/L) 0.126 4.60% 0.039 0.346 12.52% �0.254
Total Phosphorus (mg P/L) 4.000 9.71% 2.650 3.145 6.95% 1.201
Total Zooplankton biomass (mg C/L) 54.77 45.40% 8.408

a RMSE e Root Mean Square Error; RE e Relative Error; AE e Average Error.

Fig. 7. Marginal predictive distributions of total phosphorus and chlorophyll a during the summer stratified period in Hamilton Harbour under the four nutrient loading scenarios
examined.
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suggests a somewhat tighter coupling between the ambient Harbour
conditions and the exogenous nutrient loadings (Fig. 9a). The TPHarbour
predictions of our linear regression equations are lower than those sup-
ported by the iron-modified JanuseVollenweider relationship used for
setting the TP numerical criterion in Hamilton Harbour (Charlton, 2001).
Namely, our analysis suggests ambient TP concentrations lower than
20 mg L�1 at a critical loading level of 200 kg TP day�1, while the
JanuseVollenweider empirical approach supported predictions of 23 mg
TP L�1. A plausible explanation for this discrepancy is that, while both
models account for iron-induced phosphorus precipitation to the bottom
sediments, they do not share the same application domain as our equa-
tions refer to the summer TP average instead of the annual TP levels. The

chl aHarbour�TPLoading regression equations derived from ourMonte Carlo
analysis (Present conditions: chl aHarbour¼ 0.013� TPLoadingþ 9.688; HH
RAP: chlaHarbour¼ 0.024� TPLoadingþ 6.795) supportpredictionsof lower
average summer chlorophyll a concentrations, and therefore appear to
correct the systematic bias found from the applications of the Chapra and
Dobson (1981) andDillon and Rigler (1974)models in Hamilton Harbour
(Fig. 9b). Specifically, our analysis suggests an approximate value of 13 mg
chl a L�1 at a loading level of 200 kg day�1, whereas the corresponding
predictions of the two empiricalmodels are 18 mg chl a L�1 and 28 mg chl
a L�1 [The latter prediction stems from the Dillon and Rigler,1974model
and refers to themaximum summer chlorophyll a concentrations]. Thus,
relative to the existing chlaHarbour or TPHarbour�TPLoading relationships, our

Fig. 8. Exceedance frequency of the total phosphorus (17 mg L�1) and chlorophyll a (10 mg L�1) water quality standards during the summer stratified period in Hamilton Harbour.
These distributions represent the probabilities of the predicted exceedance frequencies, and assess the degree of confidence that the true value of the violation frequency is below
a specified value. The area below the 10% cutoff point is termed the confidence of compliance, showing the probability that the true exceedance frequency is below the 10% EPA
guideline.
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analysis predicts amore abrupt decline in the TPand chl a concentrations
withaconcomitantdecrease inTPloading.Bearing inmindthoughthatall
the earlier empirical models were founded upon a systematic underesti-
mation of the loadings from theWoodwardWWTP up to the year 2000,
we emphasize that the accuracyof ourprojections is contingent upon the
credibilityof the contemporarynutrient loadingestimates in theHarbour.
In particular, the piecewise monotonically increasing approach to the
nutrientconcentrationsversusflowpatternstypicallyusedtoestimatethe
nutrient loadings from episodic precipitation events is not substantiated
by the recent data (HHTT-CLR, 2004; Gudimov et al., 2010). Another key
assumption made to derive the nutrient loading estimates from Cootes
Paradise is that the flows into the system equal the outflows into the
Harbour. The validity of this practice has been challenged as it may
underestimate the discharges due to diffusive mixing driven by the
gradients in the water quality characteristics and/or the lake seiches
(HHTT-CLR, 2004). TheCootesParadise is ahighlyproductive systemwith
high chl a (>30mg L�1) andTP (>50mg L�1) concentrations (Chow-Fraser
et al., 1998). Ourmodel does not explicitly consider either the amount or
thecomposition (relativecyanobacteriaabundance)of thephytoplankton
biomassexported fromCootes,postulating that the impact to theHarbour
is minimal (Hiriart-Baer et al., 2009); the implications of this assumption
will be investigated in subsequent analysis.

The chl aeTP relationships derived from our analysis suggest
a stronger association between the two water quality variables
as we shift from the present loading conditions (chl
a ¼ 0.290 � TP þ 6.505) to the HH RAP propositions (chl

a ¼ 0.407 � TP þ 4.360) (Fig. 9c). Furthermore, given that other
factors beyond nutrients can limit primary production, we char-
acterized the phosphorus limitation status of the simulated envi-
ronments using as a proxy the chl a: particulate phosphorus (PP)
ratio. Following Hiriart-Baer et al.’s (2009) approach, Monte Carlo
samples with chl a:PP ratios <0.8 were categorized as phosphorus
sufficient and those with ratios �0.8 were categorized as phos-
phorus limited. Themodel predicts that P-limited algae occur in the
system under the present loading conditions, but the frequency of
the P-limited runs was lower than 5% of the total MC samples
generated. Our analysis also shows that an average TP loading of
142 kg day�1 will establish a strongly phosphorus-limiting envi-
ronment (>90% of the model runs sampled), although the predic-
tion of our regression equation (z11.2 mg chl a L�1) at an average TP
level of 17 mg L�1 is higher than the targeted value of 10 mg chl a L�1.
Among the existing chl aeTP relationships reported in the litera-
ture, our results are relatively close to the trajectory delineated by
Hiriart-Baer et al. (2009) using data classified as P-limited (see their
Fig. 6). However, the similarities drawn from this comparison
should be interpreted with caution for two basic reasons: (i) the
Hiriart-Baer et al. (2009) study is based on data from individual
samplings (snapshots) rather than seasonal means; and (ii) the
targeted chl a (<10 mg L�1) vs TP (<17 mg L�1) region represents the
lower end of the application domain of their relationship. Our
results also differ from the Burley (2007) projection, which
suggests that the summer chlorophyll a averages will be lower than

Fig. 9. Analysis of scenarios: Relationships between chlorophyll a, total phosphorus and TP loading in Hamilton Harbour based on the present nutrient loading conditions and the
HH RAP propositions. The fourth panel illustrates the mean summer total phosphorus versus chlorophyll a concentrations for Hamilton Harbour and the Bay of Quinte
(2002e2004), as adapted from the Dermott et al. (2007) study.
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10 mg L�1 with summer TP levels below the 20 mg L�1 level (see
adapted graph in Fig. 9d). Notably, the form of this line (slope and
intercept) is driven by three potentially influential points (i.e., high
leverage values) corresponding to seasonal means from the Bay of
Quinte; a Z-shaped system on the northeastern shore of Lake
Ontario (Millard and Sager, 1994). Hence, an important question
that arises is to what extent we can put the present projections into
perspective by drawing parallels between the two Areas of
Concern? A direct comparison of the two systems with regards to
their circulation patterns, nutrient dynamics, and food web struc-
turemay offermeaningful insights into the anticipated responses of
the Harbour.

Given the lack of reliable information to assess the plausibility of
our projections, we believe that it is also critical to invoke the role
of other potentially important factors in modulating the phyto-
plankton response to the variability of the ambient TP levels, such
as the control exerted from the zooplankton community, internal
loading, and filtration from the invasive zebra and quagga mussels.
The strong connection between algal concentrations and zoo-
plankton biomass in Hamilton Harbour was observed especially in
1997, when the prolonged and unusually high zooplankton abun-
dance resulted in Secchi depth measurements of greater than 5 m
(Charlton, 2001). The zooplankton community in its present state
still indicates that Hamilton Harbour is eutrophic, being dominated
by cladocerans and cyclopoids (Diacyclops thomasi, Cyclops vernalis)
compared to calanoids (Leptodiaptomus siciloides) (Gerlofsma et al.,
2007). Cladocerans mainly include the Bosmina longirostris, species
from the Daphnia and Ceriodaphnia genera, and the carnivorous
species Leptodora kindtii and Cercopagis pengoi. While the present
model structure does not explicitly consider the functional role of
the different taxonomic groups, the parameterization of our generic
“zooplankton” variable can offer insights into the optimal features
of the mean zooplankton community to effectively advance the
transition of the Harbour from the present eutrophic to a meso-
trophic state. For example, the examination of different
zooplankton configurations (maximum grazing rates, half satura-
tion constant for grazing, zooplanktivory levels) vis-à-vis nutrient
loading conditions with the updated model suggests a non-linear
response of the chl aeTP levels to the zooplankton biomass vari-
ability (Fig. 10a). Specifically, the chlorophyll a concentrations
as well as the slope of the chl aeTP relationship increase dramat-
ically when the mean summer zooplankton abundance drops
below an approximate level of 100 mg C L�1 (or 2500 mg wet
weight L�1). Although this threshold value is somewhat lower than
the current average summer levels in the system, it does highlight
the critical role of herbivory in attaining the chl a criterion and also
invites further investigation of the factors that could potentially
control the trajectory of the zooplankton community as we
gradually shift to a reduced nutrient loading regime (Gudimov
et al., 2010).

Given the absence of an explicit third trophic level from the
model, the zooplankton mortality parameter effectively acts as
surrogate term for the topedown control in the system and our
analysis shows that the so-called closure term can significantly
alter the standing phytoplankton biomass, e.g., 5e12 mg chl a L�1 at
17 mg TP L�1 (Fig. 10b). In particular, our calibration exercise
approximately allocates 16% of the herbivorous zooplankton
biomass to support the upper trophic levels on a daily basis, i.e., the
posterior probability of the parameter mz extends over the
0.15e0.17 day�1 range. Consistent with our model parameteriza-
tion, empirical evidence stresses the relatively high intensity of
zooplanktivory in the system. For example, Gerlofsma et al. (2007)
reported relatively high chlorophyll a/total phosphorus ratios
(0.41e0.62) in the Harbour, which were interpreted as evidence of
an odd-link system characterized by strong predation of

zooplankton by fish (Mazumder, 1994). Supportive of the latter
assertion was also deemed the smaller mean length of cladocerans
(320e425 mm) in the Harbour relative to the Bay of Quinte
(Gerlofsma et al., 2007; see their Fig. 7 in pg 88), considering that
fish preferentially consume larger zooplankton individuals and the
mean zooplankton community length can reflect the balance
between piscivores and planktivores within the fish community
(Mills et al., 1987). The current fish community is mainly dominated
by benthivores such as brown bullhead (Ameiurus nebulosus), carp
(Cyprinus carpio), and white perch (Morone americana), and
planktivores such as alewife (Alosa pseudoharengus), and gizzard
shad (Dorosoma cepedianum). These species thrive under low dis-
solved oxygen conditions and high suspended solid concentrations,
while their feeding and spawning activities uproot vegetation and
stir up bottom sediments (Scheffer and van Nes, 2004). The
predominance of these pollution-tolerant species has consequently
keptmany desirable fish species at low levels, such as northern pike
(Esox lucius), largemouth bass (Micropterus salmoides), and walleye
(Sander vitreus), while the role of the dominant piscivore in the
system has been assumed by the (more adaptable in polluted
habitats) channel catfish (Ictalurus punctatus). Acknowledging the
dire repercussions of the fish community structural shifts on the
ecosystem integrity (including the degradation of zooplankton),
the Hamilton Harbour RAP (1992) outlined multiple remedial
actions (restoration of destroyed or preservation of existing habi-
tats, control of undesirable and introduction of desired species)
aiming to restore the piscivorous populations and bring the fish
community as close as possible to the historical norms. While the
success of the fish restoration efforts has been traditionally
perceived as being dependent upon the water quality improve-
ments, we argue that the two management actions at this stage
should rather be viewed as having a recursive relationship that will
likely modulate the restoration rate as well as the stability of the
new trophic state in the Harbour. A characteristic example of the
latter point is the Lake Washington case, where an unexpected
event (the elimination of the shrimp Neomysis mercedis from
a thriving longfin smelt population) allowed the resurgence of
Daphnia and subsequently stabilized the mesotrophic state in the
system (Edmondson, 1994; Arhonditsis et al., 2004).

Aside from the critical role of planktivory, our analysis also
predicts that a fast growing zooplankton community characterized
by grazing rate greater than 0.6 day�1 and half saturation constant
lower than 100 mg C L�1 should minimize the exceedances of the
10 mg chl a L�1 criterion when the 17 mg TP L�1 level is achieved
(Fig. 10c, d). Following Gerlofsma et al.’s (2007) proposition, the
feeding kinetics derived from this exercise could be potentially
associated with the size or length of the zooplankters to determine
the optimum zooplankton composition in the Harbour (Johannsson
et al., 2000). We also emphasize one more unresolved issue with
regards to the zooplankton feeding patterns. In our model, because
of the absence of reliable estimates of exogenous particulate carbon
loadings, we did not explicitly consider the carbon cycle and
therefore the zooplankton diet exclusively depends on endogenous
sources (algae and detritus). While recent studies render support to
our approach downplaying the role of allochthony (Brett et al.,
2009), this feature of the model should be revisited in future
refinements as it may unrealistically strengthen the coupling of the
phytoplanktonezooplankton relationship in the Harbour. For
example, Munawar and Fitzpatrick (2007) argued that the high
proportion of secondary to primary producers observed in Hamil-
ton Harbour is evidence that the autochthonous production may
not likely be sufficient to sustain the food web. Consequently, the
same study hypothesized that other sources of autochthonous
(benthic algae and macrophytes) and allochthonous energy may be
equally important. The quantification of the relative support of
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consumers by autochthonous vis-à-vis allochthonous resources
may be pivotal in projecting the response of planktonic commu-
nities to the expected changes of the ambient nutrient levels
(Gudimov et al., 2010). Given that the gradual decrease of the
biogenic material should likely induce shifts in zooplankton’s diet,
the question that arises is to what extent the increased reliance
upon exogenous sources can pose threats to the integrity of the
zooplankton community in the system?

Another important regulatory factor of the phytoplankton
biomass response to the reduction of the exogenous nutrient
loadings could have been the abundance of the invasive zebra and
quagga mussels. Several field studies in the Great Lakes have
reported changes in phytoplankton community structure after

zebra mussel invasions (e.g., Smith et al., 1998; Budd et al., 2001;
Nicholls et al., 2002). Zebra mussels can affect phytoplankton
biomass, productivity and community structure through non-
selective filtration and removal of suspended particles from the
water column (MacIsaac et al., 1992; Fahnenstiel et al., 1995; James
et al., 1997), selective rejection of certain types of ingested algae
(Makarewicz et al., 1999; Vanderploeg et al., 2001), and excretion of
soluble forms of nutrients bymussels (Effler et al., 1997; Canale and
Chapra, 2002; Bierman et al., 2005). In this study, consistent with
existing evidence from the system, the posterior distributions of
the corresponding parameters filteri, downplay the role of dreis-
senids in the Harbour. Aside from the nearshore zones, Hamilton
Harbour is one of the few shallow Great Lakes systems where

Fig. 10. Examination of the topedown control in attaining the chlorophyll a water quality goals.
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dreissenids are not abundant, and the unsuitable, soft bottomed
habitat beyond 8 m has limited the average biomass to about one-
tenth of the densities experienced in Lake Erie and the Bay of
Quinte (Dermott and Bonnell, 2007). Other factors that may
constrain their proliferation include the summer anoxia of the
hypolimnion that does not allow the dreissenids to survive in the
middle of the Harbour, and the elevated Cr, Cu, Hg, Pb, and Zn
sediment concentrations that can reduce survival and induce
strong genotoxic responses (Munawar et al., 1999; Marvin et al.,
2000). While some improvement in surficial sediment quality is
expected following the wastewater and storm drain management
actions, the continuing anoxic conditions and the re-suspension of
historically-contaminated sediment from shipping and storm
disturbance will likely preclude major dreissenid-induced plank-
tonic food web alterations in the central part of the Harbour
(Rukavina and Versteeg, 1996).

Hamilton Harbour also experiences a significant hypolimnetic
dissolved oxygen deficit during the stratification period, and its
severity is primarily determined by the thickness of the hypolim-
nion along with the hydraulic exchanges with Lake Ontario (Barica,
1989; Hiriart-Baer et al., 2009). Aside from these natural factors, the
anthropogenic nutrient inputs exacerbate the problem by
increasing the chemical (nitrification) and biological (organic
matter decomposition) oxygen-demanding processes in the
Harbour. In our analysis, the posterior values obtained for the
parameter bP imply phosphorus release rates from the sediment
within the range of 1.2e1.6 mg m�2 day�1, suggesting that the
internal loading can conceivably be another factor to influence
the duration of the transient phase and the recovery resilience of
the Harbour (Jeppesen et al., 2005; Dittrich et al., 2009). Yet, there is
a surprising absence of studies to have rigorously quantified the
release of phosphorus from the sediments of the Harbour, while
the relevant fluxes have been historically assumed minimal (Mayer
and Manning, 1990). In this context, if we also consider that the
hypoxia in the Harbour waters will continue to be an issue (HHTT-
WQ, 2007), we believe that the discrepancy between our predic-
tions and the lower estimates reported from other empirical (or
modeling) studies invites further examination of the likelihood that
the internal loadingmay exert control on the summer hypolimnetic
phosphorus accumulation (>25 mg TP L�1).

In conclusion, we presented a Bayesian modeling framework
that evaluates the outcome of alternative management scenarios
(i.e., critical nutrient loads) based on acceptable confidence of
compliance levels with different water quality criteria in Hamilton
Harbour. Our analysis suggests that the water quality goal for TP
(17 mg L�1) will likely be met with a reasonably low violation
frequency (<15%), if the recommendation for phosphorus loading
at the level of 142 kg day�1 is accomplished. Yet, the attainment of
the water quality goal related to the summer chlorophyll
a concentrations has not been clearly demonstrated, and the
central tendency of our predictions indicates a marginal exceed-
ance of the 10 mg L�1 threshold value, even when the exogenous TP
loading complies with the most extreme reduction propositions.
Our study also provides evidence that the anticipated structural
shifts of the zooplankton community will determine the restora-
tion rate of the Harbour, while two critical aspects of the food web
dynamics will likely modulate the stability of the new trophic state,
i.e., the coupling between the benthic and pelagic habitat and the
relative importance of the allochthonous organic matter in
sustaining the secondary production in the system. We also argue
that the bottomeup approach historically followed in the Harbour
was sufficient to bring the system in its present state, but any
further improvements should be viewed in the context of
a combined bottomeup and topedown control. Finally, we
emphasize that our results are conditional upon the assumptions

made regarding the contemporary nutrient loading estimates along
with what was perceived as present water quality conditions in the
Harbour. Futurework should revisit some of these assumptions and
further examine the robustness of the projected trajectories of the
major causeeeffect relationships pertaining to water quality
management.

A little more than three decades ago, Vollenweider (1976) stated
that “If further progress should be possible, then more complex models
are needed. It seems to be particularly important to obtain a better
hold on parameters which also exert an influence on loading tolerance,
such as length of stratification, mixing cycles, depth of thermocline,
hypolimnetic entrainment, water discharge and loading cycles, etc.
Also, the trophicedynamic interrelationships in the sense of Lindeman
(1942) require much more sophisticated analyses.” While Vollen-
weider’s plea still reflects one of the challenges of the current
modeling practice, we believe that equally important are the
development of techniques that rigorously assess the reliability of
the critical planning information generated by the models. This
statement should not be viewed as an excuse to hide behind the
model uncertainty but rather an attempt to differentiate the
predictable from the unpredictable patterns and critically evaluate
the model outputs. Modeling is a complementary tool that should
be part of any adaptive management implementation effort. It can
verify the plausibility of hypotheses, identify unanticipated system
responses, generate research questions, and provide predictions
conditional on the assumptions made. If the assumptions are
incorrect or uncertain, then our task is to revisit them to further
improve our projections.
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Numerical approximations for posterior distributions

Following the methodological protocol presented in several recent studies (Arhonditsis et al.,

2007; 2008a,b; Zhang and Arhonditsis, 2008), sequence of realizations from the posterior

distribution of the model were obtained using Markov chain Monte Carlo (MCMC) simulations

(Gilks et al., 1998). We used the general normal-proposal Metropolis algorithm coupled with an

ordered over-relaxation to control the serial correlation of the MCMC samples (Neal, 1998). In this

study, we are testing two parallel chains with starting points: (i) a vector that consists of the mean

values of the prior parameter distributions, and (ii) a vector based on a preliminary calibration of the

model. The model was run for 40,000 iterations and convergence was assessed with the modified

Gelman–Rubin convergence statistic (Brooks and Gelman, 1998). The accuracy of the posterior

estimates was inspected by assuring that the Monte Carlo error (an estimate of the difference

between the mean of the sampled values and the true posterior mean; see Spiegelhalter et al., 2003)

for all the parameters is less than 5% of the sample standard deviation. Our framework is

implemented in the WinBUGS Differential Interface (WBDiff); an interface that allows numerical

solution of systems of ordinary differential equations within the WinBUGS software.
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Table 1-ESM: Mathematical description of the model. The i and x indices refer to the phytoplankton,

cyanobacteria and epilimnion, hypolimnion, respectively.

No. State Variable Term Equation

1 Phytoplankton
biomass dt

x,idPHYT = growth i,x × PHYTi,x - mp i × ekt(Tx-Tempref)× PHYTi,x - Vsettlingi ×
PHYTi,x/zx - filteri × ektfilt(Tx-Tempref) × PHYTi,x –
Grazing i,x × ftemperaturex×ZOOPx ± ExchangesPHYT i Vertical

± ExchangesPHYT i Lake Ontario

Growh rate growth i,x =growthmaxi × fnutrienti,x × flighti,x × ftemperaturei,x

Nutrient limitation fnutrient i,x =min{φNAi,x, φPO4i,x}

Nitrogen limitation φNAi,x =φNO3i,x +φNH4i,x

Nitrate limitation φNO3i,x = (NO3 x e -ψNH4x)/(NO3x +NHi)

Ammonium
limitation

φNH4i,x =NH4x/(NH4x+AHi)

Phosphate limitation φPO4i,x = (Pinti,x – Pmini)/(Pmaxi- Pmin i)

Intracellular
phosphorus content

dt

intdP x,i
=Pupi,x× Pfbi,x −growth i,x× Pinti,x , where

Phosphorus uptake Pupi,x =Pmaxuptakei× (PO4x /( PO4x + PHi))

Feedback control Pfbi,x = (Pmaxi – Pinti,x)/(Pmaxi- Pmini)

Light limitation flighti,x =2.718×(FD /(kextx × zx))(e- a1-e- a0); where

a0 i = (I/Ik i)e- kextx× Hx , a1i= (I/Ik i)e-kextx (zx+Hx)

Light attenuation kextx
=kchla i 

i

PHYT i,x × ChlαCi+ kbackground

Temperature
limitation

ftemperaturei,x =exp(-KTgri(Tx-Topt i
2))

FD =the fractional day length (0≤FD≤1)

2 Zooplankton
biomass dt

dZOOPx =[
i

Grazing i,x× ftemperaturex × asfood i+ Grazingdet,x× ftemperaturex

× asfood det ]× ZOOP x - mz × ekt(Tx-Tempref)× ZOOP x ±
ExchangesZOOPVertical ± ExchangesZOOPLakeOntario

Grazing rate for
phytoplankton

Grazing i,x =maxgrazing ×(Pref i,x × PHYTi,x ) / (KZ + Food x)

Grazing rate for
detritus

Grazing det, x =maxgrazing ×(Prefdet,x × Detritusx) / (KZ + Food x)

Abundance of food
in layer x

Food x =
i

Pref i,x × PHYTi,x + Pref det,x × Detritusx

Preference of
zooplankton for
phytoplankton i

Pref i,x = (Pref i × PHYTi,x) / (
i

Pref i × PHYTi,x + Pref det × Detritusx)

Preference of
zooplankton for
detritus

Pref det,x = (Prefdet × Detritusx) / (
i

Pref i × PHYTi,x + Pref det × Detritusx)

Temperature
limitation for

ftemperature x =exp(-KTgrzoop(Tx-Topt)2)



No. State Variable Term Equation

growth

3 Detritus
concentration dt

dDetritus x =
i

[(1- αDOC i) × mpi × ekt(Tx-Tempref)× PHYTi,x]+ [(1-αDOCzoop ) × mz×

ekt(Tx- Tempref)× ZOOP x]– [ (maxgrazing × Pref det, x × Detritusx) / (KZ +
Food x)]× ftemperature x × ZOOP x – Vsettling(biogenic) × Detritusx/zx −
KCmineralx × Detritusx

Carbon
mineralization rate

KCmineralx = ftemperature_minx × KCrefmineral; where

Temperature
limitation for
mineralization

ftemperature_minx =exp(-KTFmin × (Tx - Toptmin)2)

4 Phosphate
concentration dt

dPO x4 = -
i

Pupi,x×Pfbi,x ×PHYTi,x+
i

αPO4 i× mpi× ekt(Tx -Tempref) ×

×Pinti,x×PHYTi,x + αPO4zoop × mz × ekt(Tx - Tempref)× P/Czoop × ZOOP x +
KPmineralx × OPx – FePrecipitation ± ExchangesPO4Vertical ±
ExchangesPO4 Lake Ontario +PO4EXOGEPI + PO4ENDOGx , where

Phosphorus
mineralization rate

KPmineralx = ftemperature_minx × KPrefmineral; where

Iron-induced
precipitation due to
Steel Mills
discharge

FePrecipitation = (1-(9.4× [ FeSteel Mills +1400]-0.31)) × PO4x

5 Organic
phosphorus
concentration dt

dOPx =DetritusPx −DetritusGrazingPx × ftemperaturex × ZOOPx –
SettlingPx× OPx/zx−KPmineralx × OPx ± ExchangesOPVertical

± ExchangesOPLake Ontario + OPEXOGEPI + OPENDOGx

Biogenic organic
phosphorus
accumulation

DetritusPx =
i

(1- αPO4 i ) × mp i × ekt(Tx - Tempref)× Pinti,x × PHYTi,x

+ (1- αPO4 zoop) ×mz× ekt(Tx - Tempref)× P/Czoop×ZOOPx

Loss due to
zooplankton grazing
upon detritus

DetritusGrazingPx = (maxgrazing ×Prefdet,x × DetritusPx)/ (KZ + Foodx)

Loss due to
particulate
phosphorus settling

SettlingPx = (DetritusPx/ OPx) × Vsettling(biogenic) +
(1-(DetritusPx/ OPx)) × Vsettling

6 Ammonium
concentration dt

dNH x4 = - 
i

φNH4i,x × growthmaxi × flighti,x× ftemperaturei,x × N/Ci, x

×PHYTi,x + 
i

αNH4i ×mpi × ekt(Tx - Tempref)× N/Ci,x ×PHYTi,x

+ aNH4zoop × mz × ekt(Tx - Tempref)× N/Czoop× ZOOPx

+ KNmineralx × ONx – Nitrification x ± ExchangesNH4Vertical

± Exchanges NH4Lake Ontario + NH4EXOGEPI + NH4ENDOGx

Mineralization rate KNmineral x =KNrefmineral × ftemperature_min x

Nitrification rate Nitrification x =Nitrifmax × flightnitr x ×(DO x / (DO x + KHdonit))
× (NH4x / KHnh4nit + NH4x) × ftempnitr x

Light limitation flightnitrx =1 when Ix≤0.1×I , else flightnitrx= 0

Temperature
limitation

ftempnitrx =exp(-KTgrnitr(Tx-Toptnitr)2)

Intensity of light in Ix =I/(kextx × zx)(e-kextx ×Hx - e-kextx(zx+Hx))



No. State Variable Term Equation

compartment x

Nitrogen-to-carbon
ratio of the
phytoplankton cells

N/C i, x =16 × Pinti,x

7 Nitrate
concentration dt

dNO x3 = - 
i

φNO3i,x × growthmaxi × flighti,x × ftemperaturei,x × N/Ci, x

× PHYTi,x + Nitrificationx - Denitrificationx ± ExchangesNO3Vertical

± ExchangesNO3Lake Ontario + NO3EXOGEPI + NO3ENDOGx

Denitrification rate Denitrificationx = Denitrifmax × (KHdodenit / (DOx + KHdodenit))
× (NO3x / KHno3nit+ NO3x) × ftempdenitrx

Temperature
limitation

ftempdenitrx =exp(-KTgrdenitr(Tx-Toptdenitr)2)

8 Organic nitrogen
concentration dt

dONx =Detritus Nx −DetritusGrazing N x × ftemperaturex × ZOOPx

– [Detritus Nx/ ONx × Vsettling(biogenic) + (1-Detritus Nx/ ONx)
× Vsettling] × ONx/zx −KNmineralx × ONx ± ExchangesONVertical

± ExchangesONLakeOntario + ONEXOGEPI+ ONENDOGx

Biogenic organic
nitrogen
accumulation

Detritus Nx
=

i

(1- aNH4i) × mpi × ekt(Tx -Tempref)× N/C i, x× PHYTi,x,

+ (1- aNH4zoop) × mz × ekt(Tx -Tempref)× N/Czoop× ZOOPx

Loss due to
zooplankton grazing
upon detritus

DetritusGrazingNx = maxgrazing × Prefdet,x × Detritus Nx / (KZ + Foodx)

9 Sediment submodel

9.1 Phosphate
sediment release

dt
dPO

xsed4 = (1 – βP) ×Pdeposition–(αsPO4 × PO4sed x× ektsed(Tsedx-Temprefsed))

Organic phosphorus
sedimentation

Pdeposition = (
i

Vsettling i × Pinti,x × PHYTi,x + SettlingPx × OPx)

9.2 Ammonium
sediment release

dt
dNH

xsed4
=(1 –βN) × Ndeposition-(αsNH4×NH4sed× ektsed (Tsed x- Temprefsed))
- Nitrifmaxsed × (DOx / (DOx + KHdonitsed))
× (NH4 sed,x / (KHnh4nitsed+ NH4 sed x)) × ftempnitrsed x

Loss due to
particulate nitrogen
settling

Ndeposition =
i

Vsettling i × N/Ci,x × PHYTi,x + VsettlingNx×ONx

Temperature
limitation for
nitrification in the
sediments

ftempnitrsed x = exp(-KTgrnitrsed (Tx-Toptnitrsed)2)

9.3 Nitrate sediment
release

dt
dNO

xsed3
=Nitrifmaxsed ×(DOx /(DOx +KHdonit))×(NH4sed x /(KHnh4nit+NH4sed x))
× ftempnitrx – (αsNO3 × NO3sed x × ektsed(Tsedx-Temprefsed) )
– Denitrifmaxsed × (KHdodenitsed / (DOx + KHdodenitsed))
× (NO3sed x / (KHno3denitsed + NO3 sed x)) × ftempdenitrsed x

Temperature
limitation for
denitrification in the
sediments

ftempdenitrsed x =exp(-KTgrdenitrsed (Tx- Toptdenitrsed)2)



No. State Variable Term Equation

Rate of sediment
release of organic
nitrogen

ONSEDx = ONosed × ektsed(Tsedx - Temprefsed)

Rate of sediment
release of organic
phosphorus

OPSEDx =OPosed × ektsed(Tsedx - Temprefsed)

OPosed = 0.1 mg m−2 day−1

ONosed = OPosed ×TN/TP

Total nitrogen to
total phosphorus
ratio

TN/TP = 21



Table 2-ESM: Description and values of the parameters that were not considered during the Bayesian

calibration of the eutrophication model.

Symbol Description Values Units

αDOC zoop
Fraction of zooplankton mortality becoming
dissolved organic carbon 0.5 -

αDOC PHYT
Fraction of phytoplankton mortality becoming
dissolved organic carbon 0.5 -

αDOC CY
Fraction of cyanobacteria mortality becoming
dissolved organic carbon 0.5 -

αNH4 zoop
Fraction of zooplankton mortality becoming
ammonium 0.5 -

αNH4 PHYT
Fraction of phytoplankton mortality becoming
ammonium 0.5 -

αNH4 CY
Fraction of cyanobacteria mortality becoming
ammonium 0.5 -

αsNO3 Sediment nitrate release rate 0.5 day-1

αsPO4 Sediment phosphate release rate 0.5 day-1

αsNH4 Sediment ammonium release rate 0.5 day-1

αPO4 zoop
Fraction of zooplankton mortality becoming
phosphate 0.8 -

αPO4 PHYT
Fraction of phytoplankton mortality becoming
phosphate 0.8 -

αPO4 CY
Fraction of cyanobacteria mortality becoming
phosphate 0.8 -

asfood det Zooplankton assimilation efficiency for detritus 0.45 -

asfood PHYT
Zooplankton assimilation efficiency for
phytoplankton 0.5 -

asfood CY
Zooplankton assimilation efficiency for
cyanobacteria 0.15 -

ChlαCPHYT Chlorophyll to carbon ratio in phytoplankton 0.02 -

ChlαCCY Chlorophyll to carbon ratio in cyanobacteria 0.02 -

Denitrifmaxsed Maximum denitrification rate in the sediments 25 mg N m-2 day-1

Hepilimnion
Distance from water surface to top of the
epilimnion segment layer 0 m

Hhypolimnion
Distance from water surface to top of the
hypolimnion segment F(t) m

KHdodenit Half saturation concentration of DO deficit
required for nitrification 0.5 mg O2 m- 3

KHdodenitsed
Half saturation concentration of DO deficit
required for denitrification in the sediments 1 mg O2 m−3

KHdonit Half saturation concentration of DO required for
nitrification 1 mg O2 m−3

KHdonitsed Half saturation concentration of DO required for 2 mg O2 m−3



Symbol Description Values Units

nitrification in the sediments

KHnh4nit Half saturation concentration of ammonium
required for nitrification 1 mg N m−3

KHnh4nitsed
Half saturation concentration of ammonium
required for nitrification in the sediments 75 mg N m−3

KHno3denit Half saturation concentration of nitrate required
for denitrification 15 mg N m−3

KHno3denitsed
Half saturation concentration of DO deficit
required for denitrification in the sediments 15 mg O2 m-3

kt Effects of temperature on plankton mortality 0.069 oC−1

ktfilt Effects of temperature on phytoplankton filtration 0.069 oC−1

KTFmin Effects of temperature on mineralization 0.004 oC−2

KTgrdenitr Effect of temperature on denitrification 0.004 oC−2

KTgrdenitrsed Effect of temperature on sediment denitrification 0.004 oC−2

KTgrzoop Effect of temperature on zooplankton 0.005 oC−2

KTgrnitr Effect of temperature on nitrification 0.004 oC−2

KTgrnitrsed Effect of temperature on sediment nitrification 0.004
oC−2

KTgrPHYT Effect of temperature on phytoplankton 0.005 oC−2

KTgrCY Effect of temperature on cyanobacteria 0.005 oC−2

ktsed Effects of temperature on sedimentation 0.004 oC−1

N/Czoop Nitrogen to carbon ratio for zooplankton 0.2 mg N mg C-1

Nitrifmaxsed Maximum nitrification rate in the sediments 50 mg N m- 2 day-1

P/Czoop Phosphorus to carbon ratio for zooplankton 0.025 mg P mg C-1

PmaxPHYT Maximum phytoplankton internal phosphorus 0.025 mg P mg C-1

PmaxCY Maximum cyanobacteria internal phosphorus 0.025 mg P mg C-1

PminPHYT Minimum phytoplankton internal phosphorus 0.008 mg P mg C-1

PminCY Minimum cyanobacteria internal phosphorus 0.008 mg P mg C-1

Pref det Preference of zooplankton for detritus 1 -

Pref PHYT Preference of zooplankton for phytoplankton 1.5 -

Pref CY Preference of zooplankton for cyanobacteria 0.5 -

Tempref Reference temperature in the water column 20 oC

Temprefsed Reference temperature in the sediments 20 oC

Toptdenitr Optimal temperature for denitrification 20 oC

Toptdenitrsed
Optimal temperature for denitrification in the
sediments 20

oC

Topt Reference temperature for zooplankton 20 oC



Symbol Description Values Units

Toptmin Optimal temperature for mineralization 20 oC

Toptnitr Optimal temperature for nitrification 20 oC

Toptnitrsed
Optimal temperature for denitrification in the
sediments 20

oC

ToptPHYT
Reference temperature for phytoplankton
metabolism 20

oC

ToptCY
Reference temperature for cyanobacteria
metabolism 24

oC

ψ Strength of the ammonium inhibition for nitrate
uptake 0.05 (μg N/L)−1

ExchangesYVertical
Diffusive exchanges between the two spatial
compartments

= Kdiffusion xΔy/Δz

x [Epilimnion-Hypolimnion
Interface]

ExchangesYLake Ontario
Mass exchanges between Hamilton Harbour and
Lake Ontario F(t)

YEXOGEPI External loading F(t)

YENDOGx Internal loading F(t)

FeSteel Mills Iron loading from the local steel mills F(t) kg day-1

Kdiffusion Diffusion coefficient F(t) m2 day-1

zepilimnion Depth of epilimnion compartment F(t) m

zhypolimnion Depth of hypolimnion compartment F(t) m

F(t)=time-variant based on observed data from the system

Y= state variable



Table 3-ESM. Summary statistics of the exogenous flows and nutrient loadings used to reproduce

the present conditions in the Hamilton Harbour.

Source Flow
(m3/sec)

TP
(kg/day)

PO4
(kg/day)

OP
(kg/day)

TN
(kg/day)

NO3

(kg/day)
NH4

(kg/day)
ON

(kg/day)

Cootes Paradise
Average 2.569 37.8 9.5 28.3 410 111 11 288
Median 2.158 31.7 7.9 23.6 342 93 9 241

2.50% 0.817 11.9 2.9 8.9 128 35 3 89
97.50% 6.368 94.5 23.6 70.8 1029 278 28 727

CSO
Average 0.297 53.9 10.7 43.1 686 412 138 136
Median 0.298 53.8 10.7 43.1 686 411 138 136

2.50% 0.235 46.4 9.0 36.2 606 345 116 114
97.50% 0.359 61.6 12.5 50.2 769 480 161 158

Grindstone &
Urban Runoff

Average 0.724 14.1 2.8 11.3 349 257 26 66
Median 0.620 12.2 2.4 9.8 299 219 22 57

2.50% 0.260 5.1 1.0 4.0 124 89 9 23
97.50% 1.693 33.1 6.6 26.4 822 605 62 156

Redhill & Urban
Runoff

Average 0.634 21.0 4.2 16.9 215 158 16 40
Median 0.548 18.1 3.6 14.5 185 136 14 35

2.50% 0.231 7.5 1.5 6.0 78 57 6 14
97.50% 1.443 48.3 9.5 39.2 495 366 38 94

Skyway WWTP
Average 1.235 20.2 6.0 14.2 416 119 154 143
Median 1.223 20.0 5.9 14.0 412 117 152 142

2.50% 0.936 14.6 4.2 10.0 311 85 110 103
97.50% 1.596 26.9 8.2 19.2 544 160 210 193

Steels Mills
Average 6.0 1.2 4.8 135 74 60
Median 6.0 1.2 4.8 134 74 60

2.50% 5.1 1.0 4.1 116 64 52
97.50% 6.9 1.4 5.5 154 85 69

Woodward WWTP
Average 3.930 192.2 57.8 134.5 6038 2280 2997 761
Median 3.855 188.0 56.2 131.7 5916 2236 2926 743

2.50% 2.643 127.2 37.0 86.5 4019 1470 1940 488
97.50% 5.592 278.8 85.8 197.7 8684 3346 4428 1122

Total
Average 344.9 92.5 252.5 8246 3410 3403 1433
Median 341.2 91.1 249.8 8139 3372 3333 1404

2.50% 259.6 68.1 189.0 6114 2534 2358 1035
97.50% 447.3 123.6 328.4 10970 4516 4823 1991



Table 4-ESM. Scenario 1: Summary statistics of the exogenous flows and nutrient loadings used to

force the Hamilton Harbour model.

Source Flow
(m3/sec)

TP
(kg/day)

PO4
(kg/day)

OP
(kg/day)

TN
(kg/day)

NO3

(kg/day)
NH4

(kg/day)
ON

(kg/day)

Cootes Paradise
Average 2.535 31.1 6.2 24.8 325 120 5 199
Median 2.100 25.5 5.1 20.5 266 99 5 163

2.50% 0.804 9.7 2.0 7.7 103 37 2 62
97.50% 6.460 80.6 16.2 64.9 833 309 14 512

CSO
Average 0.297 25.8 5.15 20.6 627 497 67.8 62.3
Median 0.297 25.7 5.16 20.7 627 497 67.8 62.2

2.50% 0.236 22.1 4.31 17.3 543 416 56.8 52.3
97.50% 0.359 29.4 5.98 24 710 576 78.8 72.6

Grindstone &
Urban Runoff

Average 0.719 11.7 2.4 9.3 329 256 26 46
Median 0.617 10.1 2.0 8.0 282 220 22 39

2.50% 0.265 4.2 0.8 3.3 118 91 9 16
97.50% 1.690 27.1 5.5 21.7 770 602 62 109

Redhill & Urban
Runoff

Average 0.635 17.7 3.5 14.2 203 158 16 28
Median 0.550 15.4 3.0 12.3 175 137 14 24

2.50% 0.232 6.4 1.2 5.1 74 57 6 10
97.50% 1.439 40.4 8.1 32.5 467 366 37 65

Skyway WWTP
Average 1.245 15.0 3.0 12.0 337 160 115 62
Median 1.233 14.8 2.9 11.8 334 158 113 61

2.50% 0.936 10.8 2.1 8.5 248 113 81 44
97.50% 1.612 20.1 4.1 16.3 446 219 156 85

Steels Mills
Average 0 0 0 0 0 0 0
Median 0 0 0 0 0 0 0

2.50% 0 0 0 0 0 0 0
97.50% 0 0 0 0 0 0 0

Woodward WWTP
Average 3.919 152.5 30.5 122.0 5733 3487 1790 456
Median 3.823 148.8 29.8 118.8 5603 3400 1750 444

2.50% 2.647 98.9 19.7 78.3 3788 2260 1155 294
97.50% 5.570 222.8 44.7 180.5 8277 5124 2655 674

Total
Average 252.4 51.0 201.4 7646 4776 2017 853
Median 249.3 50.1 199.0 7521 4691 1979 833

2.50% 185.6 37.0 146.8 5640 3516 1385 594
97.50% 338.3 68.0 271.1 10200 6427 2880 1222



Table 5-ESM. Scenario 2: Summary statistics of the exogenous flows and nutrient loadings used to

force the Hamilton Harbour model.

Source Flow
(m3/sec)

TP
(kg/day)

PO4
(kg/day)

OP
(kg/day)

TN
(kg/day)

NO3

(kg/day)
NH4

(kg/day)
ON

(kg/day)

Cootes Paradise
Average 2.549 31.2 6.3 25.0 327 121 5 201
Median 2.122 26.0 5.3 20.7 273 102 5 167

2.50% 0.796 9.8 1.9 7.7 102 37 2 62
97.50% 6.423 79.4 16.1 63.0 831 307 14 507

CSO
Average 0.298 25.8 5.2 20.6 627 497 68 62
Median 0.299 25.7 5.2 20.7 627 497 68 62

2.50% 0.235 22.2 4.3 17.3 543 417 57 52
97.50% 0.360 29.4 6.0 24.0 710 577 79 73

Grindstone &
Urban Runoff

Average 0.734 12.0 2.4 9.5 335 261 27 47
Median 0.640 10.4 2.1 8.3 293 227 23 41

2.50% 0.265 4.2 0.8 3.4 119 91 9 17
97.50% 1.721 27.7 5.7 22.2 778 609 62 109

Redhill & Urban
Runoff

Average 0.642 17.9 3.6 14.3 205 160 16 29
Median 0.561 15.7 3.1 12.5 179 139 14 25

2.50% 0.235 6.4 1.3 5.1 74 57 6 10
97.50% 1.453 40.4 8.0 32.8 465 364 37 65

Skyway WWTP
Average 1.240 14.9 3.0 12.0 336 159 115 62
Median 1.227 14.7 2.9 11.8 331 157 113 61

2.50% 0.937 10.8 2.1 8.5 246 113 81 44
97.50% 1.609 20.1 4.0 16.3 444 218 157 84

Steels Mills
Average 0 0 0 0 0 0 0
Median 0 0 0 0 0 0 0

2.50% 0 0 0 0 0 0 0
97.50% 0 0 0 0 0 0 0

Woodward WWTP
Average 3.910 118.6 23.6 95.0 5480 4359 893 228
Median 3.833 115.5 23.1 92.3 5355 4251 873 222

2.50% 2.627 77.1 15.1 60.6 3617 2824 580 147
97.50% 5.545 173.7 34.5 140.5 7900 6401 1326 337

Total
Average 219.2 44.2 175.1 7396 5632 1128 637
Median 216.5 43.6 173.1 7252 5508 1104 610

2.50% 160.6 32.3 127.3 5458 4091 812 431
97.50% 294.7 59.3 237.0 9833 7616 1567 977



Table 6-ESM. Summary statistics of the exogenous flows and nutrient loadings reflecting the

Hamilton Harbour RAP recommendations.

Source Flow
(m3/sec)

TP
(kg/day)

PO4
(kg/day)

OP
(kg/day)

TN
(kg/day)

NO3

(kg/day)
NH4

(kg/day)
ON

(kg/day)

Cootes Paradise
Average 2.587 31.7 6.4 25.4 332 123 6 204
Median 2.157 26.4 5.3 21.0 275 102 5 168

2.50% 0.805 9.8 2.0 7.8 102 37 2 62
97.50% 6.448 79.1 15.8 63.6 835 310 14 512

CSO
Average 0.297 4.9 1.0 4.0 573 543 21 8
Median 0.297 4.9 1.0 4.0 573 543 21 8

2.50% 0.235 4.2 0.8 3.3 485 455 18 7
97.50% 0.359 5.6 1.1 4.6 660 630 25 10

Grindstone &
Urban Runoff

Average 0.716 11.6 2.3 9.3 327 255 26 46
Median 0.619 10.1 2.0 8.1 282 220 23 40

2.50% 0.263 4.2 0.8 3.3 118 92 9 16
97.50% 1.633 26.3 5.4 21.0 742 582 60 105

Redhill & Urban
Runoff

Average 0.628 17.5 3.5 14.0 200 156 16 28
Median 0.536 15.0 3.0 12.0 171 133 14 24

2.50% 0.232 6.4 1.3 5.1 73 57 6 10
97.50% 1.436 40.2 8.1 32.4 462 362 37 65

Skyway WWTP
Average 1.242 11.9 2.4 9.5 336 160 115 62
Median 1.226 11.8 2.3 9.5 332 157 114 61

2.50% 0.937 8.6 1.7 6.8 250 115 82 44
97.50% 1.609 16.0 3.2 13.0 447 218 158 84

Steels Mills
Average 0 0 0 0 0 0 0
Median 0 0 0 0 0 0 0

2.50% 0 0 0 0 0 0 0
97.50% 0 0 0 0 0 0 0

Woodward WWTP
Average 3.943 59.3 12.2 47.1 5421 4774 540 107
Median 3.867 58.3 11.9 46.3 5305 4669 528 105

2.50% 2.674 38.7 7.9 30.3 3542 3079 349 69
97.50% 5.547 86.0 17.8 69.4 7893 7009 796 157

Total
Average 136.5 27.9 108.6 7268 6075 727 466
Median 133.2 27.3 106.1 7158 5978 716 434

2.50% 93.3 19.0 73.9 5295 4362 527 288
97.50% 196.9 40.1 157.4 9781 8289 984 795
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