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Abstract:

There is an increasing pressure for development of integrated water quality models that effectively couple catchment and
in-stream biogeochemical processes. This need stems from increasing legislative requirements and emerging demands related
to contemporary climate and land use changes. Modelling water quality and nutrient transport is challenging due a number of
serious constraints associated with the input data as well as existing knowledge gaps related to the mathematical description of
landscape and in-stream biogeochemical processes. The present paper summarizes the discussions held during the workshop on
‘Integrated water quality modelling: future demands and perspectives’ (Magdeburg, Germany, 23-24 June 2008). Our primary
focus is placed on the current limitations and future challenges in water quality modelling. In particular, we evaluate the current
state of integrated water quality modelling, we highlight major research needs to assess and reduce model uncertainties,
and we examine opportunities to enhance model predictive capacity. To better account for the need of upscaling process
knowledge, we advocate the adoption of combined process-oriented field and modelling studies at representative sites. In-
stream nutrient metabolism investigations at the entire range of stream and river scales will enable the improvement of the
mathematical representation of these processes and therefore the articulation level of coupled watershed-receiving waterbody
models. Keeping the complexity of integrated water quality models in mind, the development of novel uncertainty analysis
techniques for rigorous assessing parameter identification and model credibility is essential. In this regard, we recommend the
use of Bayesian calibration frameworks that explicitly accommodate measurement errors, parameter uncertainties, and model
structure errors. The Bayesian inference can be used to quantify the information the data contain about model inputs, to offer
insights into the covariance structure among parameter estimates, to obtain predictions along with credible intervals for model

outputs, and to effectively address the ‘change of support’ problems. Copyright © 2010 John Wiley & Sons, Ltd.
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INTRODUCTION

Environmental policy making and successful manage-
ment implementation require robust methods for assess-
ing the contribution of various point and non-point
pollution sources to water quality problems as well as
methods for estimating the expected and achieved com-
pliance with the water quality goals. Water quality mod-
els have been widely used for creating the scientific
basis for environmental management decisions by pro-
viding a predictive link between management actions and
ecosystem response (Arhonditsis et al., 2006). Integrated
catchment management is becoming an increasingly com-
mon legislative requirement under the Water Framework
Directive (WFD) in the European Union or the Clean
Water Act in the United States. Analyses of water quality
management scenarios invite the development of predic-
tive models, which should be process-based and (ideally)
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integrated with hydrological models that quantitatively
describe the spatiotemporal patterns of the transporting
medium (e.g. water flow rates). Ultimately, linking land
use practises to the in-stream nutrient concentrations and
then accounting for the interplay among physical, chem-
ical, and biological processes is necessary to control cul-
tural eutrophication (Conley et al., 2009).

Water quality models aim to describe the spatiotem-
poral dynamics of constituents of concern. A number
of components or state variables have been gradually
incorporated into models over the past seven decades
following the evolution of water quality problems. Gen-
erally, water quality models are classified according to
their complexity, application domain (catchment, receiv-
ing water body, or integrated models), and type of
water quality variables predicted (e.g. nutrients, sedi-
ments, dissolved oxygen) (Borah et al., 2006). The data
requirements for water quality models increase with the
complexity and scope of application and can be specific
to the management question at hand. Despite the sig-
nificance and considerable attention, experiences from
different national projects worldwide revealed that the
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available water quality models are not always reliable
tools for operational applications by water resource man-
agers. For example, applications of different models in
the same river can support predictions of nutrient con-
centrations that may differ by more than 100% and
sometimes project system responses that are contradictory
(Bouraoui et al., 2009; Hejzlar et al., 2009; Kronvang
et al., 2009; Schoumans et al., 2009). Thus, an impera-
tive challenge in integrated water quality modelling is to
delve into the crux of the unresolved weaknesses and to
pinpoint some of the future thrusts in progress.

One of the critical problems in catchment-scale water
quality modelling is to accommodate the substantial spa-
tial variability that frequently dominates the catchment
behaviour. The so-called distributed water quality mod-
els aim to adequately represent this heterogeneity through
a sensibly refined spatial resolution (Refsgaard, 2007).
Catchment modelling is further complicated by the need
to describe the water and mass fluxes and transforma-
tion processes in different compartments like the soil,
vadose and saturated zones as well as the surface water
transportation processes including stream-aquifer inter-
actions. The upscaling from field-scale to larger scale
patterns by simply describing processes in a spatially dis-
tributed way is commonly termed bottom-up, mechanis-
tic, or reductionistic (Ebel and Loague, 2006). Although
such a reductionistic approach is made possible through
advancements in computer technology, its scientific foun-
dation is at least controversial. Important reasons for
that are the non-linear interactions between transport
and transformation, the increasing problems of parameter
identifiability, and the lack of a spatially distributed eval-
uation of the (sub)models (Beven, 1993; Wagener, 2003;
Woods, 2003; Wagener and Gupta, 2005). The upscaling
problems are also due to the fact that a well-accepted
upscaling methodology for transferring microscale pro-
cesses to the mesoscale is still missing (Wagener et al.,
2007). This is not only true for catchment processes but
also for in-stream processes. For example, it has been
recently demonstrated that serious artefacts can result
from inappropriate scale-transition methodologies in cou-
pled hydrological-biogeochemical modelling of pollu-
tants spreading through the groundwater—surface water
interface (Lindgren and Destouni, 2004; Darracq and
Destouni, 2005; Destouni and Darracq, 2006).

The accurate quantification of the overland nutrient
transport (Isermann, 1990; Kronvang et al., 1995) and
the subsequent in-stream attenuation processes are essen-
tial for predicting nutrient delivery rates to downstream
inland and coastal waters (Darracq and Destouni, 2007).
In particular, several studies argue that the magnitude of
the in-stream mass transformation processes may be a key
factor for the delineation of sensitive areas within water-
sheds (Alexander et al., 2000; Seitzinger et al., 2002;
Withers and Jarvie, 2008). It is also suggested that the
hyporheic zone has an important impact on these trans-
formation processes, although the quantitative assessment
for a given river is still difficult and highly uncer-
tain (Jones and Mulholland, 2000; Birgand et al., 2007).

Copyright © 2010 John Wiley & Sons, Ltd.

M. RODE ET AL.

Closely related to the improvement of the quantitative
description of catchment and in-stream processes along
with the aforementioned scale-transition methodologies
are open questions on model integration between catch-
ment and in-stream submodels. Many process-based stud-
ies have focussed on exchange between surface water
bodies (lakes, streams) and groundwater (Hayashi and
Rosenberry, 2002; Sebestyen and Schneider, 2004; Har-
vey et al., 2005), but only few attempts have been made
to closely link terrestrial water fluxes with the surface
waters of the entire river network of larger catchments
(Migliaccio et al., 2007; Rassam et al., 2008). It is also
unclear what the appropriate model linkage strategies are
and how can we ensure transparency of complex inte-
grated models.

The continuous demand to include as much knowl-
edge as possible in ‘state-of-the-art’ hydrological and
in-stream water quality models inevitably results in con-
siderably more complex model structures (Beck, 1999;
Omlin and Reichert, 1999). Although the increase of the
articulation level of our models is certainly the way for-
ward, it should also be acknowledged that the increasing
complexity reduces our ability to properly constrain the
parameters from observations, for example, the number
of parameters in planktonic models that must be specified
from the data is approximately proportional to the square
of the number of compartments (Denman, 2003). Further-
more, while a more detailed process description suppos-
edly decreases the structural uncertainties of the models
(Snowling and Kramer, 2001; Lindenschmidt, 2006), the
actual impact of the growing complexity should be eval-
uated by examining alternative process descriptions or,
less ideally, by adding correlated noise to model struc-
tures (Van Griensven and Meixner, 2004). Compared with
hydrological models, the problem of uncertainty is further
accentuated with the biogeochemical catchment and/or
in-stream water quality models. Because process-based
river water quality models in general describe biologi-
cal mechanisms like phytoplankton growth or grazing by
zooplankton, they are typically characterized by higher
complexity and larger number of parameters, and there-
fore the equifinality problem is accentuated (Arhonditsis
et al., 2006; Beven, 2006). Thus, a critical decision when
selecting and/or developing a water quality model is the
determination of the optimal model complexity for eval-
uating the effects of the potential management actions
with an acceptable level of uncertainty.

This paper is a synthesis of discussions held during
the workshop on ‘Integrated water quality modelling:
future demands and perspectives’ in connection with the
EU funded Marie Curie ToK Project ‘Modelling Com-
petence’ (Magdeburg, Germany, 23—-24 June 2008). In
particular, this workshop aimed (i) to evaluate the cur-
rent state of integrated water quality modelling, (ii) to
pinpoint major research needs that should enhance the
predictive capacity of the present generation of water
quality models, (iii) to rigorously assess model uncer-
tainties, and (iv) to highlight the future directions for
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Figure 1. Surface runoff and inundation in a flat area (Beltrum, Netherlands) with coarse sandy soils (Courtesy: Willemijn Appels (left) and Ype van
der Velde (right), Wageningen University)

improving model-based environmental management. The
paper is structured into four major topics as follows:

e catchment water quality modelling involving both
small- and regional-scale, process-oriented biogeo-
chemical modelling;

e in-stream water quality modelling with special empha-
sis on hyporheic zone processes and biogeochemical
controls;

e linkages between catchment and receiving water body
models; and

e uncertainties in water quality modelling.

CATCHMENT WATER QUALITY MODELLING

Enormous advances have been made in catchment-scale
modelling over the past decades. The scientific and oper-
ational success of such modelling endeavours, however,
may obscure fundamental shortcomings that we have to
be aware of. In this paper, we will elaborate on few partic-
ularly problematic aspects of the catchment water quality
modelling, as they have emerged from our past experi-
ence and contemporary practice.

Are we considering the correct scales in distributed
modelling ?

In all earth sciences, the perception of scale is an
intrinsic aspect of both experimental and modelling
research. Adhering to McLaughlin and van Geer’s
(1992, personal communication) scale typology, we
distinguish among the scales of the (i) involved pro-
cess(es); (ii) observations and measurements; (iii) model
discretization; and (iv) governance and management. In
distributed models, the typical model resolution level and
data availability are pragmatically determined by cost
limitations and computational demands, which implies
that model discretization usually differs from the exist-
ing measurements and can be coarse relative to the actual
scales of the driving processes. A characteristic example
involves the scale of processes that typically control sur-
face water quality which may be determined by localized
phenomena, such as the surface runoff. The latter pro-
cess can be envisioned as a superficial ephemeral stream

Copyright © 2010 John Wiley & Sons, Ltd.

flow, where most water is concentrated in small streams
that occupy only a minor part of the soil surface and
therefore accounts for only a minor fraction of the dis-
cretization surface/volume size. (Both redistributed water
and localized flow into a ditch can be seen in Figure 1.)
To deal with such scale mismatch problems, it seems
inevitable that new modelling concepts should be devel-
oped to effectively link the different scales.

How accurate is the representation of specific
hydrological processes (preferential flow, surface

runoff)?

Regarding the difference between process and mod-
elling scales, the typical coarseness of discretization of
numerical models implies that the preferential flow is
depicted in a lumped form in the model equations. Many
fundamental insights and experimental illustrations have
been offered into the preferential flow and transport,
while the analytical expressions derived can provide
guidelines for discretization, large-scale process formu-
lations, and equivalent parameterization of the upscaled
model parameters (Rinaldo and Marani, 1987; Dagan,
1989; Cirpka et al., 1999; Hesse et al., 2009). Hence,
the scientific toolkit is not empty to appropriately model
at different discretization scales, although there is little
doubt that more empirical studies are needed in offer-
ing practical consultation when delineating the optimal
aggregation level. In some cases, the local-scale pro-
cesses are still hardly understood, inadequately translated
in model equations, and poorly parameterized. Preferen-
tial flow and transport, especially when it involves dual
permeability domains, is an example where each study
site requires a completely new parameterization. Needless
to say, that the existing information for such site-specific
parameterizations is rarely sufficient. New examples of
channelled flow, for example, the pin and sand boils,
discovered by De Louw (2007) have received little con-
sideration in modelling. In particular, it has been shown
that these boils can transport substantial amount of water
(often rich of salts and nutrients) or both water and (flu-
idized) sand from deeper layers to surface water where
little craters may form. Yet, these processes have nei-
ther been integrated in surface water quality modelling

Hydrol. Process. 24, 3447-3461 (2010)
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Figure 2. Measured and predicted chloride concentrations as a function of the day of year (DOY) for the Hupsel Brook experimental catchment in
the east of the Netherlands. Predicted values were obtained by inverse modelling of the original MRF approach by Van der Ploeg and van Wijnen
(2009)

nor have they been parameterized properly, except by
inverse modelling exercises (De Louw, 2007).

Are we giving enough consideration to temporal
variability?

Because of their simple structure and good descrip-
tion obtained, the hydrographs relating rainfall inputs
to stream discharges are a popular concept in hydrol-
ogy. The premise of such impulse—response relationships
is founded upon the assumption of linear and time-
invariant properties of the underlying catchment. How-
ever, the time-invariance assumption is questionable and
a characteristic example of its limited applicability is the
mass response function (MRF) developed by Rinaldo and
Marani (1987) and Rinaldo ef al. (1989) to characterize
the flow and (solute, mass) transfer for entire watersheds
or river basins. We implemented their approach for the
Hupsel catchment in the Netherlands, which is a small,
650 ha size catchment in the east of the country (for a
good description, see Van der Velde et al., 2009a). Unfor-
tunately, our inverse modelling of the MRF gave only
moderately satisfactory results (Van der Ploeg and van
Wijnen, 2009). The underlying reason is that temporal
variability of stream discharge is significant, as prolonged
dry (summer) periods tend to result in low stream flows,
or even dry ditches and brooks, whereas wet periods are
associated with nearly filled streams and close to inunda-
tion conditions (Arhonditsis et al., 2002, Van der Velde
et al., 2009b). If, however, we are able to obtain dif-
ferent MRFs for the two main periods of the year (dry

Copyright © 2010 John Wiley & Sons, Ltd.

summer and wet winter half years, respectively), the
time-dependent parameterization can provide acceptable
results (Figure 2). Similar assumptions can be made with
regards to the seasonal trends in other climate zones and
geohydrological conditions, while the wealthy literature
on ‘old’ and ‘new’ water (usually non-reactive) transport
along with an in-depth interpretation of the MRF theory
should improve the depiction of such temporal variability
in our models.

What are the basic errors in biogeochemical models?

In the past decades, profound advances have been
made in our understanding of the transport of reac-
tive chemicals in natural porous media such as soil and
aquifers. Aside from the specialized models aimed at
solving one particular physico-chemical problem (Tin-
ker and Nye, 2000), generic tools with a broader appli-
cation domain have also been constructed. Character-
istic examples are the well-known packages of RT3D,
PHREEQC, and ORCHESTRA (Parkhurst and Appelo,
1999; Meeussen, 2003). Of special interest is that such
packages can be linked with multidimensional flow
models, for example, to study processes in the rhi-
zosphere (Szegedi et al., 2008), or with heterogeneous
flow domains (Wriedt and Rode, 2006). Yet, despite
these significant improvements, several basic issues have
remained unresolved. First, the chemical submodels are
often formulated on a logarithmic scale of ion activi-
ties, and therefore reaction coefficients are expressed as

Hydrol. Process. 24, 3447-3461 (2010)
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pK values (—log[K]). In the rather non-idealized, non-
pure earth systems, we rarely deal with pure crystals,
salts, and minerals. Hence, if pK values are incorrect or
flawed, as in the case of Meeussen (1992), this may lead
to considerable errors (over an order of magnitude) in the
original scale. Obviously, the ramifications on the calcu-
lated retardation factors can be quite substantial. Second,
the assumption that local process descriptions hold at
larger scales is at least questionable. In the context of
reacting chemicals transport, this issue has been consid-
ered by pore network models of Acharya et al. (2005) and
randomly heterogeneous aquifer of Janssen et al. (2006).
As a first approximation, the transport of chemicals that
undergo biogeochemical interactions is modelled by the
incorporation of a reaction term in the well-known con-
vection dispersion equation (CDE). The biogeochemical
interaction term can be either linear or non-linear with
regards to the chemical concentration. In the latter case,
the solution of the CDE leads (for appropriate initial and
boundary conditions) to the travelling wave (TW) type of
displacement (Van der Zee, 1990; Van Duijn and Knab-
ner, 1992). Both Acharya et al. (2005) and Janssen et al.
(2006) modelled a porous medium that is characterized by
spatial variability at a larger scale than that of discretiza-
tion. As has been shown by Cirpka et al. (1999), the
discretization of the flow domain, in case of non-linear
reactions and spatial variability, requires special care,
to avoid numerical dispersion problems. For example,
Janssen et al. (2006) adopted a simplified biodegradation
case with Monod kinetics to obtain a streamline adjusted
discretization of their randomly heterogeneous domain
which then enabled meaningful computations. As is
shown (Figure 3) for an electron acceptor that enters the
2D flow domain from the left, this leads to an irregularly
shaped domain. The initially present organic contaminant
(blue area; concentrations are appropriately made dimen-
sionless: Janssen et al., 2000) is being degraded upon the
introduction of the electron acceptor and the growth of
the microbial mass that is responsible for the degradation,
at the interface of the blue and red areas of Figure 3.
The resulting pattern is strongly affected by both the
spatial variability and the distinct non-linearity of the
Monod-biomass growth affected degradation process.
Using moment analysis, Janssen et al. (2006) showed for
situations as depicted in Figure 3 that depending on the
scales of the heterogeneity and of the dispersional mix-
ing regimes considered, either heterogeneity or non-linear
chemistry may dominate the transport behaviour.

It should be emphasized that major implications arise
when attributing non-linear interactions to discrete vol-
umes of arbitrary scale (often chosen for computational
speed). In particular, if heterogeneity dominates, the
non-linear transport is expected to approach the Fick-
ian regime with a macrodispersivity that is affected by
variance and correlation length of the heterogeneous field
(Dagan, 1989). However, the latter regime is not the case,
if transversal mixing dominates and the associated disper-
sivity is larger than the correlation length perpendicular
to the mean flow. The transversal mixing ‘homogenizes’

Copyright © 2010 John Wiley & Sons, Ltd.
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Figure 3. Three snapshots of solute transport for a random, exponentially

autocorrelated hydraulic conductivity in an aquifer. The model assumes

non-linear Monod biodegradation kinetics and a mixing zone affected

by both the highly non-linear degradation interactions and pore-scale

dispersion in a flow domain with spatial variability at a larger scale

than that of pore-scale dispersion (Courtesy: Gijs Janssen, Wageningen
University and Deltares, the Netherlands, 2006)

the heterogeneous medium and, under appropriate condi-
tions, TWs may develop (Van der Zee, 1990; Van Duijn
and Knabner, 1992). Only in the latter case, it may be
appropriate to use the CDE with a non-linear reaction
term at the scale of discretization. A similar message was
conveyed by Acharya et al. (2005) on the basis of pore
network models. As non-linear biogeochemical models
are never derived from empirical studies on samples of
many cubic metres of porous media (and if they are, such
samples are ‘shaken’ instead of undisturbed as in flow
and transport models), it is quite questionable whether
it is acceptable to combine non-linear biogeochemistry
with any transport model with discretizations exceeding
the level of several millimetres. Yet, the majority of our
models are still based on such simplified approximations.
Both examples discussed in this section imply that the
local-scale descriptions should not be oversimplified, if
we strive to maintain the correct behaviour at the larger
scales. In both cases, it is emphasized that local process
understanding needs to be related mechanistically with
larger scale approaches.

How can we define the appropriate complexity
for process-based models at the regional scale?

The continuous dynamic regional river basin models
are founded upon mathematical descriptions of physi-
cal, biogeochemical, and hydrochemical processes and

Hydrol. Process. 24, 3447-3461 (2010)
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therefore can be called process-based ecohydrological
(or water quality) models. These models combine sig-
nificant elements of both physical and conceptual semi-
empirical nature, containing reasonable spatial disaggre-
gation schemes [e.g. subbasins and hydrologic response
units (HRUs)], and may also include some stochas-
tic elements. Characteristic examples of process-based
modelling tools for river basins are the models SWAT
(Arnold et al., 1994), HSPF (Bicknell et al., 2001),
SWIM (Krysanova et al., 1998), and DWSM (Borah
et al., 2004). Numerous studies published during the last
decades have demonstrated that such models are able to
adequately represent hydrological, biogeochemical, and
vegetation growth processes at the catchment scale. How-
ever, the experience of using complex process-based
models has also led to the conclusion that the model
complexity should not be a self-purpose, and that the
following rule has to be adopted by the model develop-
ers: if a complex natural phenomenon or process can be
described mathematically in a simplified form and prop-
erly parameterized by the available data, this should be
preferable to one with a higher level of details but also
with higher number of unconstrained parameters. In the
latter case, the model parameterization becomes prob-
lematic, and the control of the model behaviour may
be difficult or impossible. In other words, one should
include submodels that are essential, parameters that can
be identified, and interrelations that can be understood
and validated in simulation experiments.

Spatially distributed or semi-distributed models are
usually required for improving the representation of bio-
geochemical processes while accommodating landscape
heterogeneity. The simplest way to alleviate the lumped
structure of a model is to subdivide a catchment into
subcatchments or subbasins. This procedure enables to
take into account differences in topography, soil types,
or land use patterns in parts of the catchment, and also to
consider spatial variations in model variables and param-
eters. Further subdivision of the land surface delineated
by subbasins is possible using the principle of similarity.
Usually for that the subbasin map, land use, and soil maps
are overlaid to create the so-called hydrotopes or HRUs,
which could be also combined into hydrotope classes
within subbasins. Then a typical disaggregation scheme
can be implemented in a model as a three-level process
consisting of (i) the simulation of all the processes in
the HRUs or hydrotopes, (ii) the aggregation of lateral
flows in subbasins, and (iii) the routing of water, sedi-
ments, and dissolved matter over the entire catchment,
while describing lateral transport of water, nutrients, and
pollutants in some reasonable way.

The spatial and temporal resolution of the model is
typically connected with the scale of the application and
objective of the study, but should also be commensurate
to the data availability. A fine spatial resolution may be
required for a small catchment in order to study water
flow components and their pathways using tracers. On the
other hand, a lumped model may be sufficient for the case
where the ‘precipitation—runoff’ relationships are only

Copyright © 2010 John Wiley & Sons, Ltd.
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investigated in a homogeneous small or medium-size
catchment. In a similar manner, a coarser resolution could
be applied for mesoscale or large river basins for water
resource assessments and climate impact studies where
no detailed evaluation of management options is needed.
Although attempts have been made to give guidance in
reducing overall model uncertainties in environmental
modelling (Refsgaard et al., 2007), a general framework
for selecting the appropriate process and spatial model
complexity for a given catchment is still missing.

Do we have suitable calibration datasets for complex
distributed models?

Increasing spatial model complexity does not always
improve model results. A case study using the SWIM
model for simulating nitrogen loads in the large Saale
catchment (Germany) showed that the use of distributed
parameters for simulating nitrogen retention in the sub-
surface and groundwater during the transport of nitrogen
from the soil column to the river network did not improve
the results compared to the use of global retention param-
eters (Huang et al., 2009). The Saale is the second largest
tributary of the Elbe river with the length of 427 km
and the catchment area of 24-167 km? (FGG-Elbe, 2004).
Wide loess areas and low mountain ranges characterize
the catchment. Due to very fertile loess soils, more than
two-thirds of the catchment area is used for agriculture.
The term ‘retention’ in the model mainly encompasses
soil and groundwater denitrification (see description of
the approach in Hattermann et al., 2006).

The model validation for the whole Saale with the
global retention parameters (Figure 4, upper graph) was
quite satisfactory, with the Nash and Sutcliffe efficiency
of 0-7. The hypothesis was that the use of distributed
retention parameters could improve the validation results
in the intermediate (not calibrated) gauges. The set-up
of simulation experiments and results are described in
detail in Huang et al. (2009). In fact, the results for
distributed parameter settings, which were based on dif-
ferent denitrification conditions specified by Wendland
et al. (1993), were very similar to those derived from the
global parameterization (Figure 4, lower graph), and the
model fit for some intermediate gauges was even worse
under the distributed parameter setting. It was hypothe-
sized that this counterintuitive result primarily stemmed
from the uncertainties in estimated soil and groundwa-
ter denitrification conditions, as karstic areas within the
basin may affect denitrification conditions. Hence, the
data on groundwater properties were insufficient to con-
duct a highly distributed calibration and this example
pinpoints the importance of the data availability problem
for the reliability of distributed catchment models. Future
work should therefore focus on how and to what extent
improved data availability could enhance the model qual-
ity in terms of the representation of the observed nutrient
dynamics. Critical model evaluation (e.g. using Bayesian
calibration frameworks) can be used to determine the

Hydrol. Process. 24, 3447-3461 (2010)
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Figure 4. Validation of nitrogen load dynamics for the Saale basin, gauge

Gross—Rosenburg (upper graph), and comparison of simulations for the

same gauge station with the global and distributed retention parameter
settings (lower graph) (Huang et al., 2009)

optimal sampling design and to assess the value of infor-
mation contained by the data (Rode ef al., 2007, Zhang
and Arhonditsis, 2008).

IN-STREAM NUTRIENT TRANSPORT MODELLING

In-stream mass transformation is controlled by various
processes in different compartments (pelagic, river bed,
and hyporheic zones) with varying importance as we
move from the headwaters to the mid-reach streams and
finally to the downstream regions (Borchardt and Pusch,
2009). Large rivers are more likely to be dominated
by transport and conversion processes in the pelagic
zone. In contrast, headwater streams and mid-stream
regions with coarse substrates are affected by both
resuspension processes and benthic activity as well as
the hyporheic zone effects. Recent studies suggest that
the hyporheic zone plays an important role in maintaining
and regulating in-stream nutrient metabolism (Jones and
Mulholland, 2000; Birgand et al., 2007; Ingendahl et al.,
2009).

Do we place sufficient emphasis on hyporheic processes?

The hyporheic zone may be loosely defined as the
porous areas of the stream bed and stream bank where the
stream water mixes with shallow groundwater. Due to the
differences in chemical composition of the surface water
and groundwater, exchange of water and solute between
stream and hyporheic zone have many biogeochemi-
cal implications (Runkel et al., 2003). Hyporheic zones
influence the biogeochemistry of stream ecosystems by
increasing solute residence times; specifically, the contact
of solutes with substrates increases in environments with
pronounced dissolved oxygen and pH spatial gradients

Copyright © 2010 John Wiley & Sons, Ltd.

3453

(Bencala, 2000). The influence of hyporheic exchange
upon the transport and transformation of solutes occurs
in environments where hydrologic and biogeochemical
processes are dynamic and highly heterogeneous. Doc-
umenting the biogeochemical function of the hyporheic
exchange has thus been primarily accomplished in high
sampling intensity research (Bencala, 2005). Aside from
the nutrient (P, N) conversion, the hydrological exchange
between the river and its hyporheic zone has also a
strong influence on the fauna distribution, the transport
of organic matter, and the metabolism in the hyporheic
zone (Pusch, 1996; Naegeli and Uehlinger, 1997).

Water quality models are often implemented in order
to quantify the substance transformation in lotic waters
and to investigate the impact of changes of the boundary
conditions on aquatic ecosystem dynamics. Most conven-
tional river water quality models (e.g. QUAL2E, WASPS5,
Mike 11) focus on biological processes in which nutrient
decomposition is considered as a first order decay process
without explicitly accounting for the role of the hyporheic
zone processes, for example, denitrification (Wagen-
schein and Rode, 2008). Although improved process-
oriented approaches for explicitly describing nutrient
transformations in the hyporheic zone have been devel-
oped (Reichert et al., 2001; Sheibley et al., 2003; Runkel,
2007), their application is still problematic because
site-specific data are often sparse, and parameters of
hydraulic equations or biogeochemical rate constants
are often unknown. Future research should specifically
focus on the elucidation of the importance of the water
column-hyporheic zone interactions as well as on the
role of advective exchanges in modulating the nutrient
metabolism. Variables such as hydraulic conductivity,
grain size distribution, stream bed geometry, and stream
velocity are critical measurement requirements (Findlay,
1995; Birgand et al., 2007).

Do biological processes play an important role
on hyporheic exchange?

Water exchange between hyporheic zone and the water
column are not exclusively controlled by physical proper-
ties. New findings showed that biological processes may
also have significant impact on this advective exchange.
Ibisch et al. (2006) reported a clear negative exponen-
tial relationship between infiltration rates and periphyton
biomass. The same study concluded that external colma-
tion by periphyton is an important process in eutrophic
rivers controlling hyporheic exchange patterns. Decol-
mation is the reverse process of colmation, that is the
loosening of compacted structures and the return to a
state with higher sediment permeability (Schélchli, 1993).
This decolmation is not only induced by physical pro-
cesses (Sengschmitt et al., 1999), as biogenic decolma-
tion due to bioturbation of the interstitial fauna may also
increase the permeability of the sediment matrix (Find-
lay, 1995; Ward et al., 1998; Hakenkamp and Morin,
2000; Mermillod-Blondin et al., 2000). A recent study
by Schmidt et al. (2009) showed that bioturbation and
grazing activities by meiofauna have a measurable impact
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on the permeability of the stream sediments. These find-
ings may offer new insights into the functional role of
interstitial fauna for the self-purification of polluted river
sections. The quantification of the relative role of physical
and biological processes on the water column-hyporheic
zone exchanges constitutes a challenge for future ecolog-
ical research.

How can we improve regional scale in-stream nutrient
transport modelling?

The uncertainties in simulating natural in-stream atten-
uation processes at the local scale are magnified when
undertaking predictions of nutrient transport and attenua-
tion processes across various stream network characteris-
tics (Darracq and Destouni, 2007). Most contemporary
operational models of in-stream nutrient transport use
simple empirical relationships, which are based on statis-
tical analysis of large data sets (Alexander et al., 2000,
2009; Behrendt and Opitz, 2000; de Wit, 2001). New
findings provide evidence that transformation processes
are highly non-linear, which implies that the simple
empirical relationships have limited capacity for predict-
ing unknown future states with variable nutrient concen-
trations or climate conditions (Mulholland et al., 2008).
Furthermore, there is an ongoing debate on the scal-
ing of nutrient removal from small streams up to larger
river sizes (Alexander et al., 2006; Destouni and Darracq,
2006; Wollheim et al., 2006). Because most process-
based studies on in-stream nutrient attenuation focus on
small headwater streams, we propose scale-dependent
studies which cover the full range of stream/river scales
and give special consideration on the hyporheic zone.
Currently, process-based nutrient transport research espe-
cially in mid-river scales is sparse (Mulholland et al.,
2008). If most important river types and network char-
acteristics are covered, it should be possible to develop
process-based models with higher predictive capabili-
ties. Additional knowledge on detailed physical transport
processes can be provided by non-reactive tracer stud-
ies where novel mobile aquatic mesocosm approaches,
offering reasonable approximations to natural surface
waters, may allow insights into the biogeochemical pro-
cesses influencing in-stream nutrient turnover (Battin
et al., 2003; Evans-White and Lamberti, 2005; Petersen
and Englund, 2005).

LINKAGE OF CATCHMENT AND RECEIVING
WATER BODY MODELS

The coupling of catchment with in-stream processes
raises several practical problems with regards to the typ-
ical spatiotemporal resolution mismatch among the dif-
ferent submodels, the propagation of uncertainty through
the complex model structures derived from the combi-
nation of the individual components, the integration of
the different modules with an easy, flexible, and trans-
parent way, and the uniqueness of some local processes
that hamper the development of a general protocol for
assembling the submodels into one coherent framework.
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What is the appropriate model linkage strategy?

Only few attempts have been made to fully couple
distributed catchment models with complex river water
quality models. This coupling can be done at different
levels. A distinction can be made between external link-
ing, through file exchange, and internal linking, through
the internal computer memory. External file exchange
often requires programming (reformatting) or intensive
labour as there is no standardized format for model
input/outputs. The alternative linking, through memory, is
adopted in several forms. The tight integration is known
by the MIKE-SHE modelling software, whereby the dis-
tributed catchment model SHE is fully integrated towards
the dynamic river model, known as Mikel1 (Graham and
Butts, 2006). The latter tool is easily applicable and com-
putationally efficient but lacks flexibility to link up to
other tools or processes.

Another form of integration is done by develop-
ing modular structures within a certain framework, for
example, the Java-based Modular Modelling System
(Leavesley et al., 2006) and the Object Modelling Sys-
tem (Kralisch et al., 2005, Rode et al., 2009, Hesser
et al., 2010). A third option is integrating different soft-
ware packages into a single framework. In the United
States, the framework for risk analysis in multimedia
environmental systems—multimedia, multipathway, and
multireceptor risk assessment (FRAMES-3MRA)—is an
important model being developed by the United States
Environmental Protection Agency for risk assessment of
hazardous waste management facilities (Babendreier and
Castleton, 2008). In Europe, the OpenMI interface aims
at integrating independent modelling software, after being
slightly modified as OpenMI compliant versions, in order
to be applied within a common interface that manages
the simulations of the submodels at running time and
the exchange of model outputs (Gregersen et al., 2007).
There is little additional computation time by the func-
tioning of the interface as long as not too many software
applications or dynamic links are involved (e.g. 1D-2D
integration). A characteristic example is the work by
Getnet (2009), who used OpenMI to link a catchment
model (soil and water assessment tool) to a river model
(SOBEK) for simulating erosion and sediment transport
processes.

How can we ensure transparency of complex integrated
models?

In addition to flexibility, transparency is a key word.
A good integrated modelling practice is a decentralized
one, whereby the subsystems are individually calibrated
and validated as much as possible. Whatever format is
adopted for model integration, it leads undoubtedly to
higher complexity and higher uncertainty. Furthermore,
the complexity of submodels often differs significantly
which creates problems in model linkage or imbalanced
process description with regard to their importance for
water and mass transport. For example, many distributed
catchment models place emphasis on detailed soil process
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description but use very simple lumped descriptions for
groundwater transport and biogeochemistry (e.g. SWAT,
HSPF). The latter issue can be perceived as another
aspect of the ‘change of support’ problem (sensu Wikle,
2003), and has received considerable attention in the
modelling literature (Wikle and Berliner, 2005; see also
following section).

The application of the coupled catchment-receiving
water body modelling constructs involves substantial
uncertainty contributed by both model structure and
parameters. One of the future challenges is to develop
calibration frameworks that assess the effects and prop-
agation of uncertainty in integrated environmental mod-
elling systems, allow insights into the degree of informa-
tion the data contain about model inputs, and effectively
link land use changes in the watershed (e.g. urbaniza-
tion) with the responses of the receiving waterbody (e.g.
Vandenberghe et al., 2002). A screening of the different
sources of uncertainty has been attempted by efficient
sampling designs such as the Latin-Hypercube sampling
or the One-Factor-at-a-Time design (Vandenberghe et al.,
2001; Van Griensven et al., 2006). Furthermore, model
structure can be evaluated by ensemble modelling (e.g.
Mclntyre et al., 2005; Viney et al., 2005). Integrating
the results of a number of candidate model structures,
rather than simply assuming one model structure, may
significantly reduce prediction bias and enhance model
transparency (Neuman, 2003).

UNCERTAINTIES IN WATER QUALITY
MODELLING

As the articulation level of our water quality models
continues to grow, an emerging imperative is the devel-
opment of novel uncertainty analysis techniques to rig-
orously assess the error pertaining to model structure
and input parameters (Reichert and Omlin, 1997). The
assessment of the uncertainty characterizing the multi-
dimensional parameter spaces of mathematical models
involves two important decisions: (i) selection of the like-
lihood measure to quantify model error and (ii) selection
of the sampling algorithms to generate a series of model
realizations. Arhonditsis et al. (2007) has recently intro-
duced a Bayesian calibration methodology founded upon
Markov chain Monte Carlo (MCMC) sampling schemes
and Gaussian likelihoods that can explicitly accommodate
measurement error, parameter uncertainty, and model
structure imperfection. Avoiding overly complex model
constructs, the proposed framework combines the advan-
tageous features of both process-based and statistical
approaches in that the models offer mechanistic under-
standing but still remain within the bounds of data-based
parameter estimation. The incorporation of mechanism
improves the confidence in predictions made for a vari-
ety of conditions, while the statistical methods provide an
empirical basis for parameter estimation. In a subsequent
study, Zhang and Arhonditsis (2008) have illustrated
some of the benefits for environmental management from
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the Bayesian calibration framework, such as the assess-
ment of the exceedance frequency and confidence of
compliance with different water quality criteria, proba-
bilistic inference on cause-effect relationships pertaining
to water quality management, optimization of monitor-
ing programs using value of information concepts from
decision theory, and alignment with the policy practice
of adaptive management implementation.

Yet, several technical issues regarding the formulation
of the error structure, the selection of the parameter priors
and likelihood functions, the optimal model complexity,
and the computational efficiency of the Bayesian cali-
bration scheme require particular attention and/or invite
further investigation.

How can we distinguish among different sources
of uncertainty?

The uncertainty in water quality modelling generally
stems from several sources of error: input and response
uncertainty, that is errors associated with measurements
of input (rainfall) and response data, such as water level,
flow discharge, water quality variables (Rode and Suhr,
2007), parametric uncertainty, and structural error arising
from the intrinsic inability of a given model structure to
reproduce the mechanisms involved in runoff generation
or in biogeochemistry (Montanari, 2004). Bayesian the-
ory coupled with MCMC sampling strategies has proven
to be a valuable means for evaluating the effects of
the different sources of uncertainty in simple lumped
as well as in more complex fully distributed hydrolog-
ical models (Kavetski er al., 2002, 2006; Balin, 2004,
Ajami et al., 2007; Huard and Mailhot, 2006; Marshall
et al., 2006). Balin et al. (2010) presented a Bayesian
approach for assessing the impact of errors of input rain-
fall data on distributed hydrological modelling (Balin,
2004). The characterization of the rainfall data error was
modelled with a hierarchical normal model, where the
first level of hierarchy specified the measurement error
for the observed noisy data which then were associated
with the true unknown rainfall data. This model config-
uration, however, did not lead to substantially different
results with regards to the estimated parameters, model
efficiency, and uncertainty of the simulated water dis-
charges (Balin et al., 2010). The latter finding may be
due to the fact that other sources of uncertainty contribute
more to the total uncertainty of distributed hydrolog-
ical modelling rather than the point random measure-
ment error in the rainfall data. Interestingly, when the
spatial rainfall uncertainty was taken into account by
means of rainfall conditional simulations using the Turn-
ing Band Algorithm, the same modelling exercise showed
that the impact of the underlying uncertainty on both
estimated parameters and predicted responses was sub-
stantially more important (Balin et al., 2010). Without
any intent of generalizing, this example indicates that the
scientists should be careful when attempting to associate
the different sources of uncertainty with the predictions
provided by environmental models. There is an urgent
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need to explore the role of different sources of uncer-
tainty in hydrological and water quality models and to
improve their use for operational and decisional purposes
by developing novel uncertainty analysis methodological
frameworks (Kuczera and Parent, 1998; Kavetski et al.,
2002, 2006; Balin, 2004; Marshall et al., 2006; Ajami
et al., 2007; Yang et al., 2007).

How can we improve the assessment of model structural
errors?

The statistical representation of the model error can
significantly alter the inference about the parameter pos-
teriors as well as the model predictive distributions (Thie-
mann et al., 2001). Arhonditsis et al. (2008) noted that
statistical formulations that postulate a ‘perfect’ model
structure and a model misfit solely caused by the data
error tend to provide narrow-shaped parameter distribu-
tions. This result, however, does not necessarily depict
the amount of knowledge gained with regards to the
parameter values when considering prior literature infor-
mation and available data from the system modelled,
and may be attributed to an overconditioning of the
parameter estimates owing to an overestimation of the
information content of the observations. By contrast,
statistical formulations that explicitly consider errors
in the model specification (e.g. missing key ecologi-
cal processes, misspecified forcing functions, erroneous
formulations) improve model performance, although the
parameter posteriors tend to be flatter (Higdon et al.,
2004; Arhonditsis et al., 2008). The development of
statistical formulations explicitly recognizing the lack
of perfect simulators of natural system dynamics is a
promising prospect for the Bayesian calibration frame-
work, and future research should also accommodate the
spatiotemporal dependence patterns of the parameter val-
ues and model error terms.

How can we balance robustness of uncertainty analysis
and associated computational demands?

Robust Bayesian analysis is a promising framework
to rigorously assess the conclusions drawn from typ-
ical uncertainty analysis applications based on single
prior distributions and/or likelihood functions (Berger,
1994). For example, Tomassini et al. (2007) examined
the robustness of the uncertainty analysis results of cli-
mate system properties using classes of parameter priors,
different scaling of the observational error, and alterna-
tive likelihood functions. The posterior predictive pat-
terns highlighted the critical role of the prior parameter
distributions, and also dictated areas where future data
collection efforts should focus on to constrain climate
model sensitivity. Despite its sound premise though, the
potential for broad adoption of robust Bayesian uncer-
tainty analysis in water quality modelling is still unclear
given the computational demands that this framework
entails.

Recent efforts to improve the computational efficiency
of MCMC implementations of Bayesian inference for
water quality models focussed on the development of
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parallel algorithms (Altekar et al., 2004; Whiley and Wil-
son, 2004). Parallel computation for MCMC can reduce
the time needed to generate a sufficient number of
samples from target distributions of larger dimensions,
although Whiley and Wilson (2004) assert that a good
proposal distribution is of equal importance as the imple-
mentation of a parallelization scheme. Alternatively, Hig-
don et al. (2004) proposed a compromise between the
‘fidelity of the simulator’ and the °‘simulation speed’
claiming that a comprehensive examination of the pos-
terior distribution of a simple model can be more infor-
mative than an insufficient posterior approximation of a
more complex model. Moreover, additional model com-
plexity does not necessarily imply more MCMC runs;
if the number of parameters that drive the model out-
puts does not change, then the number of runs required
to sufficiently approximate the posterior will not be sig-
nificantly different (Jansen and Hagenaars, 2004). In the
modelling practice, our experience is also that only a sub-
set of the input parameters is influential on the outputs of
water quality models (Omlin et al., 2001; Arhonditsis and
Brett, 2005), and therefore an effective calibration does
not always require statistical formulations framed in a
hyperdimensional context (Kennedy and O’Hagan, 2001).

How can we define the optimal model complexity?

The latter point also raises the issue of the opti-
mal model complexity selection. Zhang and Arhonditsis
(2008) emphasized that the integration of the Bayesian
calibration framework with complex overparameterized
simulation models disallows meaningful insights into the
ecosystem functioning (e.g. realistic magnitudes of the
various ecological processes), despite the satisfactory fit
to the observed data that is usually obtained. Acknowl-
edging the increasing demand for complex water quality
models in the contemporary modelling practice, the same
study suggested that the rigid structure of complex math-
ematical models can be replaced by more flexible mod-
elling tools (e.g. Bayesian networks) with the ability to
integrate quantitative descriptions of ecological processes
at multiple scales and in a variety of forms (intermediate
complexity mathematical models, empirical equations,
expert judgements), depending on available information
(Borsuk et al., 2004). Other interesting ideas in the liter-
ature include strategies for dimension reduction, adaptive
designs to overcome limited number of simulation runs,
and replacement of the simulators with statistical mod-
els that encompass key features of the modelled system
(Craig et al., 2001; Goldstein and Rougier, 2004; Higdon
et al., 2004).

The Bayesian paradigm has also been considered as
a means for addressing the different issues that fall
under the ‘change of support’ topic (Wikle, 2003). In
particular, Bayesian approaches have been used to alle-
viate problems of spatiotemporal resolution mismatch
among different submodels of integrated environmen-
tal modelling systems, to overcome the conceptual or
scale misalignment between processes of interest and
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Figure 5. A conceptual application of the Bayesian hierarchical framework to allow the transfer of information in space (Zhang and Arhonditsis, 2009)

supporting information, to exploit disparate sources of
information that differ with regards to the measurement
error and resolution, to accommodate tightly intertwined
environmental processes operating at different spatiotem-
poral scales, and to explicitly consider the variability
pertaining to latent variables or other inherently ‘unmea-
surable’ quantities. The existing propositions involve
general hierarchical spatial model frameworks (Cressie,
2000; Wikle et al., 2001; Wikle, 2003), Markov ran-
dom field models (Besag et al., 1995), and hierarchical
spatiotemporal models that are simplified by dimension
reduction (Berliner et al., 2000) or by conditioning on
processes considered to be latent or hidden (Hughes
and Guttorp, 1994). In the same general context, Zhang
and Arhonditsis (2009) advocated the relaxation of the
assumption of globally common parameter values used in
coupled physical-biogeochemical process-based models
and the adoption of hierarchical statistical formulations
that reflect the more realistic notion that each site is
unique but shares some commonality of behaviour with
other sites of the same system. The proposed approach
represents a practical compromise between entirely site-
specific and globally common parameter estimates and
may be a conceptually more sound strategy to accommo-
date the spatial variability observed in terrestrial as well
as in aquatic ecosystems. A conceptual application of the
Bayesian hierarchical framework to allow the transfer of
information in space is shown in Figure 5. The prob-
lem of parameter estimation is viewed as a hierarchy. At
the bottom of the hierarchy are the process-based mod-
els for individual waterbodies i and sites j, f(6;;). In
the next level, the spatial heterogeneity is accommodated
by introducing i(= 5) lake-specific or ‘regional’ distri-
butions; that is depending on the lake that the individual
sites belong, the model parameters ¢;; are drawn from one
of these local populations. Similarly, in the upper stage,
the local population parameters w; and o; are specified
probabilistically in terms of global population parame-
ters or hyper-parameters; for example, a global mean w
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and variance o that correspond to the wider Great Lakes
area. The observed data y;; are used to estimate the model
parameters 6;;, the ‘regional’ population parameters p;,
o; and the hyper-parameters u, o. The terms §;; and
&;; represent the site-specific structural and measurement
errors, respectively (Zhang and Arhonditsis, 2009).

CONCLUSIONS

One of the fundamental problems on catchment-scale
water quality modelling is that the integration of non-
linear biogeochemistry with any transport model may
lead to considerable uncertainty, because the study scale
for deriving the reaction terms differs significantly from
the model application scale. Considerable errors may also
arise from the use of logarithmic scales. Therefore, we
propose the following.

1. Simpler linear models should be used at larger scales,
if the rigorous evaluation of non-linear biogeochemical
models is not possible at the application scale.

2. Because the upscaling of process knowledge in
catchment-scale modelling is still an unresolved prob-
lem, we advocate a shift in the focus of combined field
and modelling process-based studies. Namely, scale-
dependent process studies which systematically cover
the entire range of river scales and catchment charac-
teristics is very likely to bolster the predictive capacity
of process-based models at larger scales.

3. Research priorities and selection of representative
sites should be driven by the importance of a given
transport phenomenon for the water quality at the
catchment scale of interest. Our current understanding,
for example, suggests that groundwater/surface water
interactions are scale dependent and may become less
significant with increasing stream order.

4. The spatial and temporal resolution as well as the
model complexity should always be related to the scale
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of application, the objective of the study, the knowl-
edge on the key processes, and the data availability.

Compared to terrestrial ecosystems, we think that the
importance of in-stream nutrient (mainly phosphorus and
nitrogen) transport processes is not adequately repre-
sented in most integrated water quality models. Most
conventional river water quality models do not explic-
itly account for the role of hyporheic zone processes.
Therefore, we suggest the following.

1. Future research should specifically focus on improv-
ing our understanding and mathematical description
of the water column-hyporheic zone interactions as
well as the role of advective exchanges on nutrient
metabolism.

2. Bioturbation and grazing activities by meiofauna
impact the permeability of stream sediments. There-
fore, the quantification of the relative role of phys-
ical and biological processes on the water column-
hyporheic zone exchange constitutes a challenge for
future ecological research.

3. We propose scale-dependent studies on in-stream nutri-
ent attenuation processes which cover the full range of
stream/river scales and give special consideration on
the hyporheic zone.

4. Novel mobile aquatic mesocosm approaches may allow
insights into biogeochemical processes influencing in-
stream nutrient turnover.

Coupling of catchment with in-stream process raises
several practical problems which are closely related to
uncertainty assessment of integrated water quality mod-
els, especially to model structure and input parameters.

1. We found that the integration through new software
such as OpenMI or through modular structures offers
promising prospects to effectively couple quantitative
descriptions of ecological processes at multiple scales.

2. Keeping the growing complexity of integrated water
quality models in mind, the development of novel
uncertainty analysis techniques for rigorous assess-
ing parameter identification and model credibility is
essential.

3. We recommend the use of Bayesian calibration frame-
works that explicitly accommodate the measurement
errors, parameter uncertainties, and model structure
errors. The Bayesian inference can be used to quantify
the information the data contain about model inputs,
to offer insights into the covariance structure among
parameter estimates, to obtain predictions along with
credible intervals for model outputs, and to effectively
address the ‘change of support’ problems.

4. To overcome the computation demands of MCMC
implementations of Bayesian inference for integrated
water quality models, recent promising efforts involve
the development of adaptive sampling algorithms and
parallel computing schemes.
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Despite all the uncertainties associated with limited
input data, water quality models are increasingly impor-
tant tools to support water managers and policy makers
in implementing integrated water resources management
(IWRM). It would be impossible to evaluate the effec-
tiveness of alternative watershed management plans (e.g.
land use changes) or the repercussions of climate change
on water quality without using modelling tools. The
dynamic catchment models include water and nutrient
processes as a function of the vegetation, climate, and
human impacts, thereby offering a useful methodology
for projecting future system responses and for designing
river basin management plans accordingly. The improve-
ment of our mechanistic understanding at multiple scales
along with development of novel methods for accom-
modating rigorous and complete error analysis are the
imperative challenges for the future of integrated water
quality modelling.
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