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a b s t r a c t

Model practitioners increasingly place emphasis on rigorous quantitative error analysis in aquatic bio-
geochemical models and the existing initiatives range from the development of alternative metrics for
goodness of fit, to data assimilation into operational models, to parameter estimation techniques. How-
ever, the treatment of error in many of these efforts is arguably selective and/or ad hoc. A Bayesian
hierarchical framework enables the development of robust probabilistic analysis of error and uncertainty
in model predictions by explicitly accommodating measurement error, parameter uncertainty, and model
structure imperfection. This paper presents a Bayesian hierarchical formulation for simultaneously cali-
brating aquatic biogeochemical models at multiple systems (or sites of the same system) with differences
in their trophic conditions, prior precisions of model parameters, available information, measurement
error or inter-annual variability. Our statistical formulation also explicitly considers the uncertainty in
model inputs (model parameters, initial conditions), the analytical/sampling error associated with the
field data, and the discrepancy between model structure and the natural system dynamics (e.g., miss-
ing key ecological processes, erroneous formulations, misspecified forcing functions). The comparison
between observations and posterior predictive monthly distributions indicates that the plankton models
calibrated under the Bayesian hierarchical scheme provided accurate system representations for all the
scenarios examined. Our results also suggest that the Bayesian hierarchical approach allows overcoming
problems of insufficient local data by “borrowing strength” from well-studied sites and this feature will
be highly relevant to conservation practices of regions with a high number of freshwater resources for
which complete data could never be practically collected. Finally, we discuss the prospect of extend-
ing this framework to spatially explicit biogeochemical models (e.g., more effectively connect inshore
with offshore areas) along with the benefits for environmental management, such as the optimization
of the sampling design of monitoring programs and the alignment with the policy practice of adaptive
management.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Many freshwater ecosystems are currently jeopardized by
human intrusion, without proper documentation of their base-
line state and how humans have altered their biotic communities
and biogeochemical cycles. The invasion of biotic communities by
non-native species is perhaps the greatest threat to the integrity
of lakes and rivers (Schindler, 2001). Climate-induced chemical
and biological responses in lakes are another important issue,
and several ecological and biogeochemical studies have shown a
coupling among lake temperatures and water chemistry, individ-
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ual organism physiology, population abundance, and community
structure (Schindler, 1997; Straile, 2002; Weyhenmeyer, 2004).
Climate forcing can have different effects on various taxonomic
groups/trophic levels, and decouple species from favorable food
conditions with dire consequences on ecosystem functioning
(Thomas et al., 2001; Hampton, 2005). Therefore, the development
of holistic understanding of the climate-driven aquatic ecosystem
responses requires consideration of the complex interplay between
physical, chemical factors and multiple trophic levels at a variety of
spatial and temporal scales. Given the increasingly ominous con-
text, the demand for reliable modeling tools that can offer insights
into the ecosystem dynamics and effectively support environmen-
tal management is more pressing than ever before (Arhonditsis and
Brett, 2004; Arhonditsis et al., 2006). However, the general lack of
uncertainty estimates for most environmental models, the arbitrary
selection of higher, more costly, and often unattainable threshold
values for environmental variables as a hedge against unknown
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prediction errors, risky model-based management decisions and
unanticipated system responses are often experienced in the cur-
rent management practice.

Uncertainty analysis of mathematical models has been a central
topic in aquatic ecosystem research, and there have been several
attempts to rigorously assess model error associated with model
structure and parameter uncertainty (Omlin and Reichert, 1999;
Brun et al., 2001; Reichert et al., 2002; Chen et al., 2007). Model
uncertainty analysis essentially aims to make inference about the
joint probability distribution of model inputs, reflecting the amount
of knowledge available for model parameters, initial conditions,
forcing functions, and model structure. In this regard, Bayes’ Theo-
rem provides a convenient means to combine existing information
(prior) with current observations (likelihood) for projecting future
ecosystem response (posterior). Hence, the Bayesian techniques are
more informative than the conventional model calibration practices
(i.e., mere adjustment of model parameters until the discrepancy
between model outputs and observed data is minimized), and can
be used to refine our knowledge of model input parameters while
obtaining predictions along with uncertainty bounds for output
variables (Arhonditsis et al., 2007). Nonetheless, despite the com-
pelling arguments for considering Bayesian inference techniques as
an integral part of the model development process, their high com-
putational demands along with the lack of analytical expressions for
the posterior distributions was until recently a major impediment
for their broader application (Reichert and Omlin, 1997).

Elucidation of the uncertainty patterns in the multidimensional
parameter spaces of mathematical models involves two critical
steps: (i) selection of the likelihood function to quantify model mis-
fit, and (ii) selection of the sampling scheme for generating input
vectors which then are evaluated with regards to the model perfor-
mance. The latter decision addresses the sampling efficiency of the
approach, e.g., Random sampling, Latin hypercube, Markov chain
Monte Carlo (MCMC). Many Bayesian or non-Bayesian uncertainty
analysis applications (e.g., Generalized Likelihood Uncertainty Esti-
mation, Bayesian Monte Carlo) have been combined with sampling
algorithms which draw samples uniformly and independently from
the prior parameter space. These strategies often result in Monte
Carlo samples that misrepresent (or insufficiently cover) regions of
high model likelihood; especially, when the joint prior parameter
distribution is very wide or the parameters are highly correlated
(Qian et al., 2003). To address this problem, several recent studies
advocate the use of MCMC sampling schemes that are specifically
designed to sample directly from the posterior distribution and to
converge to the higher model likelihood regions (Gelman et al.,
1995; Arhonditsis et al., 2007; Stow et al., 2007). On the other hand,
the selection of the model likelihood function entails conceptual
dilemmas involving the selection of generalized (e.g., root mean
square error, reliability index, U-uncertainty) or purely probabilis-
tic (e.g., normal, lognormal or Poisson error) likelihood functions
that can significantly alter the results (Beven, 2001). In typical
uncertainty analysis applications, the likelihood function is broadly
specified as any measure of goodness of-fit that can be used to com-
pare observed data with model predictions, e.g., sum of squared
errors, fuzzy measures or even qualitative measures for model eval-
uation (Franks et al., 1998; Beven, 2001; Page et al., 2004). However,
it has been argued that unless the likelihood function corresponds
to a formal probability distribution that directly connects the data
with model input parameters and output state variables, the uncer-
tainty analysis results do not have a clear Bayesian interpretation
(Engeland and Gottschalk, 2002; Hong et al., 2005).

In the context of water quality modeling, there are several
recent studies illustrating how the Bayesian inference techniques
combined with MCMC sampling schemes can improve model fore-
casts and management actions over space and time. For example,
Malve et al. (2005) showed how the Bayesian parameter esti-

mation of a dynamic non-linear model can be used to quantify
the winter respiration rates (oxygen depletion per unit area of
hypolimnetic surface) in a hyper-eutrophic shallow Finnish lake.
A conceptually similar modeling approach was also used to elu-
cidate the confounded bottom-up and top-down effects on the
phytoplankton community structure of the shallow, mesotrophic
Lake Pyhäjärvi (Malve et al., 2007). Arhonditsis et al. (2007, 2008a)
introduced a Bayesian calibration scheme using simple mathe-
matical models (<10 state variables) and statistical formulations
that explicitly accommodate measurement error, parameter uncer-
tainty, and model structure error; this framework was then used to
quantify the information the data contain about model inputs, to
offer insights into the covariance structure among parameter esti-
mates, and to obtain predictions along with credible intervals for
model outputs. A follow-up study examined the efficiency of two
uncertainty analysis strategies, a typical Generalized Likelihood
Uncertainty Estimation (GLUE) approach combined with a random
sampling scheme vis-á-vis a formal probabilistic model configura-
tion updated with MCMC simulations, to elucidate the propagation
of uncertainty through the input spaces of simple numerical aquatic
biogeochemical models (Arhonditsis et al., 2008b). Finally, a recent
study integrated the Bayesian calibration framework with a com-
plex aquatic biogeochemical model simulating multiple elemental
cycles and functional plankton groups to illustrate how the Bayesian
parameter estimation can be used for assessing the exceedance
frequency and confidence of compliance of different water quality
criteria (Zhang and Arhonditsis, 2008).

In this paper, we present another prospect of the Bayesian
inference techniques by introducing a hierarchical formulation
for calibrating aquatic biogeochemical models at multiple sites.
This illustration is based on several synthetic datasets represent-
ing oligo-, meso- and eutrophic lake conditions. Our objective
is to examine if the incorporation of mathematical models into
Bayesian hierarchical frameworks can assist the effective model-
ing of systems with limited information by enabling the transfer of
information across systems. With the hierarchical model configu-
ration, we can potentially overcome problems of insufficient local
data by “borrowing strength” from well-studied sites on the basis of
distributions that connect systems in space. This outcome is highly
relevant to conservation practices of regions with a high number
of freshwater resources for which complete data could never be
practically gathered. Finally, we discuss the prospect of extending
this framework to coupled physical-biogeochemical models along
with its benefits to environmental management, such as the opti-
mization of the sampling design of monitoring programs and the
alignment with the policy practice of adaptive management.

2. Methods

Hierarchical Bayes allows decomposing the environmental
problems into intuitively manageable levels, thereby offering a
conceptually plausible means for addressing the complexity per-
vading the natural systems (Clark, 2005). As such, the Bayesian
hierarchical modeling can be an indispensable methodological
framework to disentangle complex ecological patterns, to exploit
disparate sources of ecological information, to accommodate
tightly intertwined environmental processes operating at differ-
ent spatiotemporal scales, and to explicitly consider the variability
pertaining to latent variables or other inherently unmeasurable
quantities (Wikle, 2003a; Clark, 2005). Furthermore, Wikle (2003a)
argued that rather than specifying the ecological dynamics as joint
multivariate spatiotemporal covariance structures, it would also be
statistically easier to factor such joint distributions into a series of
conditional models, i.e., dissect the total process into a number of
connected subprocesses. The essence of the Bayesian hierarchical
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thinking is that the environmental complexity can be decomposed
into the following series of models coherently linked together via
Bayes’ rule (Berliner, 1996):

[process,parameters|data]
︸ ︷︷ ︸

Posterior distribution

∝ [data|process,parameters]
︸ ︷︷ ︸

Data model

×[process|parameters]
︸ ︷︷ ︸

Process model

× [parameters]
︸ ︷︷ ︸

Parameter model

(1)

where the posterior distribution reflects our beliefs on the lev-
els of the process and parameters after the data updating, which
can be thought of as the product of the data model, specifying the
dependence of the observed data on the process of interest and
parameters, with the process model, describing the process condi-
tional on other parameters, and the parameter model, quantifying
the uncertainty in parameter values. Each of these models may then
consist of multiple substages to account for the role of an inconceiv-
ably complex array of environmental functions that comes into play
in real world applications (Wikle, 2003a).

In environmental science, the general formula (1) has been used
to predict demographic processes and spatiotemporal population
spread (Wikle, 2003b; Clark, 2005), to incorporate physically based
prior information on simulated geophysical processes (Royle et al.,
1999; Wikle et al., 2001), to stochastically treat boundary condi-
tions in coupled atmospheric–ocean models (Wikle et al., 2003),
and more recently to resolve the mechanisms of species coexis-
tence and the biodiversity paradox (Clark et al., 2007). The present
study extends the application of Bayesian hierarchical structures
with process-based models, and our aim is (i) to illustrate how
they can assist in sharing information among different systems (or
sites); and (ii) to obtain predictions along with uncertainty bounds
that take into account the insufficient amount of information in less
studied systems as well as the variability observed across systems.

2.1. Bayesian hierarchical framework

Our statistical formulation explicitly considers the uncertainty
in model inputs (model parameters, initial conditions), the ana-
lytical/sampling error associated with the field data, and the
discrepancy between model structure and the natural system
dynamics (e.g., missing key ecological processes, erroneous formu-
lations, misspecified forcing functions). Earlier applications of this
formulation have resulted in an improvement of the model per-
formance, i.e., the median predictions along with the 95% credible
intervals delineate zones that accurately describe the observed data
(Arhonditsis et al., 2007, 2008a,b). In this study, the Bayesian hier-
archical framework builds upon the assumption that the model
discrepancy is invariant with the input conditions, and thus the
difference between model and system dynamics is constant over
the annual cycle for each state variable. The hierarchical struc-
tures examined consist of two submodels representing two local
aquatic systems (or two sites of the same system) with differences
in their trophic conditions, prior precisions of model parameters,
available information, measurement error or inter-annual variabil-
ity (Table 1). In particular, the first scenario considers a mesotrophic
system combined with an oligotrophic or eutrophic one, aiming
to examine the posterior patterns when crossing different trophic
states under the hierarchical framework. Two mesotrophic datasets
with different inter-annual variability (15% and 30%) were used in
scenario B, thereby assessing the robustness of the results if, for
example, we explicitly consider both dynamic (inshore) and static
(offshore) areas of the same system during the model calibration
process. The focus of the third scenario was to compare how the two
submodels will be calibrated when combining systems (or sites)
with different sampling intensity (C1 and C2) or systems with dif-

Fig. 1. The structure of the two hierarchical frameworks examined: (a) scenarios A,
B, C, and D; (b) scenario E.

ferent dynamics, e.g., vertical mixing regimes (C3). The scenario D
extends the scheme examined in the scenario A by increasing the
prior standard deviations of the system-specific parameters. This
numerical experiment relaxes our confidence on the knowledge
used to formulate the global priors and broadens the parameter
space examined during the calibration of the two submodels. Based
on these scenarios, the hierarchical modeling framework can be
summarized as follows (Fig. 1a):

yijk∼N(f (�k, xik, y0k), �
2
ijk) (2)

�k∼N(�, �2
k ) y0k∼N(y1k, k

2
k ) (3)

log(�)∼N(�,�2) (4)

�2
ijk = ı2

jk + ε2
ijk (5)

ı2
jk∼Inv-Gamma(0.01,0.01) (6)

�2
k = (˛1 × �)2; k2

k = (˛2 × yik)2; ε2
ijk = (˛3 × yijk)2

i = 1, . . . , n; j = 1, . . . ,m; k = 1, . . . , o (7)

where yijk is the ith observed value of the jth state variable in the
system (or site of the same system) k; f(�k, xik, y0k) is the numerical
solution of the eutrophication model; xik is a vector of time depen-
dent control variables (e.g., boundary conditions, forcing functions)
describing the environmental conditions in the system (or site of
the same system) k, the vector �k is a time independent set of the
calibration model parameters (i.e., the 14 parameters in Table 2)
derived from k system-specific normal distributions with means
drawn from the global prior � and standard deviations �k equal
to ˛1 (=15, 35)% of the corresponding mean values; �, �2 repre-
sent the first and second order moments of the hyperparameter
distributions; y0k corresponds to the concentrations of the state
variables at the initial time point t0 derived from normal prior dis-
tributions with mean values the January monthly averages y1k and
standard deviation that was ˛2 (=15)% of the mean value for each
state variable j; ıjk is a state variable and system-specific error term
representing the discrepancy between the model structure and the
natural system dynamics; εijk is the measurement error associated
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Table 1
The scenarios examined along with the general questions addressed under the Bayesian hierarchical configuration of the mathematical model.

Scenario no. Submodel Measurement error Parameter precision Inter-annual variability Trophic state Observed data availability

(A) How robust are the posterior patterns when combining sites of different trophic states (e.g., a eutrophic embayment with the central part of a lake)?

A1

1 15% 15% 15% Mesotrophic 12 monthly values
2 15% 15% 15% Oligotrophic 12 monthly values

A2

1 15% 15% 15% Mesotrophic 12 monthly values
2 15% 15% 15% Eutrophic 12 monthly values

(B) How robust are the posterior patterns when combining sites of different inter-annual variability (e.g., inshore and offshore areas of the same system)?

B1

1 15% 15% 15% Mesotrophic 12 monthly values
2 15% 15% 30% Mesotrophic 12 monthly values

(C) How robust are the posterior patterns when combining systems and/or sites with different sampling intensity (C1 and C2) or systems with different hydrodynamics (C3)?

C1

1 15% 15% 15% Mesotrophic 12 monthly values
2 25% 15% 15% Mesotrophic 4 seasonal values

C2

1 15% 15% 15% Mesotrophic 12 monthly values
2 15% 15% 15% Mesotrophic 6 monthly values during the stratified period

C3

1 15% 15% 15% Mesotrophic 12 monthly values
2 15% 15% 15% Eutrophic dimictic 6 monthly values during the ice-free period

(D) How robust are the posterior patterns when combining systems of different trophic states, and we are less confident on the knowledge used to formulate the global priors?

D1

1 15% 35% 15% Mesotrophic 12 monthly values
2 15% 35% 15% Oligotrophic 12 monthly values

D2

1 15% 35% 15% Mesotrophic 12 monthly values
2 15% 35% 15% Eutrophic 12 monthly values

(E) How robust are the posterior patterns when combining a “refined” parameterization stemming from a well-studied system with a less intensively studied system?

E1

1 15% Updated prior 15% Mesotrophic 12 monthly values
2 15% 15% 15% Eutrophic 12 monthly values

E2

1 15% Updated prior 15% Mesotrophic 12 monthly values
2 25% 15% 15% Mesotrophic 4 seasonal values

with each observation yijk assumed to be ˛3 (=15, 25)% of the cor-
responding values; m, n, and o correspond to the number of state
variables (m = 4), the number of observations in time used to cali-
brate the model (n = 4, 6, and 12 average monthly values), and the
number of systems (or sites of the same system) incorporated into
the hierarchical framework (o = 2), respectively.

We also examined if a “refined” parameterization stemming
from a well-studied system can improve model performance in
less intensively studied systems (scenario E). Namely, the sys-
tem represented from the first submodel underwent a preliminary
training (calibration) prior to the configuration of the hierarchi-
cal framework. The updated parameter distributions served as
the global priors which then were used to delineate the two
system-specific parameter spaces (Fig. 1b). The first submodel was
subject to a second calibration exercise with a qualitatively simi-
lar dataset, whereas the second submodel was firstly tested against
an eutrophic dataset (E1) and subsequently against a system for

Table 2
The prior probability distributions of the hyperparameters.

Parameter Units Mean S.D.

Maximum phytoplankton growth rate (a) day−1 1.446 0.308
Zooplankton mortality rate (d) day−1 0.173 0.021
Half-saturation constant for predation (pred) mg C m−3 54.61 13.94
Half-saturation constant for PO4 uptake (e) mg P m−3 10.93 4.818
Cross-thermocline exchange rate (k) day−1 0.037 0.013
Phytoplankton respiration rate (r) day−1 0.117 0.070
Phytoplankton sinking loss rate (s) day−1 0.040 0.032
Zooplankton growth efficiency (a) 0.366 0.126
Zooplankton excretion fraction (ˇ) 0.293 0.111
Regeneration of zooplankton predation excretion (�) 0.293 0.111
Maximum zooplankton grazing rate (�) day−1 0.609 0.107
Zooplankton grazing half-saturation coefficient (�) mg P m−3 6.575 1.867
Detritus remineralization rate (ϕ) day−1 0.092 0.032
Detritus sinking rate ( ) day−1 0.142 0.084

which only four seasonal averages were available (E2). Under the
fifth scenario, the hierarchical framework can be summarized as
follows:

yijk∼N(f (�k, xik, y0k), �
2
ijk) (8)

�k∼N(�, �2
k ) y0k∼N(y1k, k

2
k ) (9)

log(�)∼Nl(�̂,˙) (10)

�2
ijk = ı2

jk + ε2
ijk (11)

ı2
j1∼Inv-Gamma(˛,ˇ) (12)

ı2
j2∼Inv-Gamma(0.01,0.01) (13)

�2
k = (˛1 × �)2; k2

k = (˛2 × yik)2; ε2
ijk = (˛3 × yijk)2

i = 1, . . . , n; j = 1, . . . ,4; k = 1,2; l = 14 (14)

where � represents the global prior drawn from a l-dimensional
multivariate normal distribution with mean �̂ and covariance
matrix ˙ derived from the original model calibration in the well-
studied system; and ˛, ˇ correspond to the shape and scale
parameters of the updated j inverse-gamma distributions after the
first model training.

2.2. Mathematical model

We used a zero-dimensional (single compartment) model that
considers the flows of mass among four state variables: phosphate
(PO4), phytoplankton (PHYT), zooplankton (ZOOP), and detritus
(DET). The mathematical description of the aquatic biogeochem-
ical model is provided in the Appendix A (Table A1), while the
definition of the model parameters can be found in Arhonditsis
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et al. (2007, 2008b). The phosphate equation considers the phy-
toplankton uptake, the proportion of the zooplankton excretion
and mortality/predation that is returned back to the system as dis-
solved phosphorus. Epilimnetic phosphate levels are also fuelled by
the bacteria-mediated mineralization of detritus, exogenous load-
ing, and are subject to seasonally varying diffusive mixing with
the hypolimnion. The equation for phytoplankton biomass consid-
ers phytoplankton production and losses due to basal metabolism,
settling and herbivorous zooplankton grazing. The growth of phy-
toplankton is regulated from the physical (light and temperature)
conditions and the phosphorus availability. Phytoplankton and
detritus are two alternative food sources of zooplankton with equal
palatability. Both herbivory and detrivory were formulated using
the Holling Type III function, and a sigmoid closure term was
selected to represent a “switchable” type of predator behaviour
controlled by a prey threshold concentration (Edwards and Yool,
2000). The particulate phosphorus (detritus) is fuelled by phyto-
plankton respiration, a fraction of the zooplankton growth that
represents the faecal pellets, and exogenous loading. Detritus
is transformed to phosphate by seasonally forced mineraliza-
tion processes and sinks out of the epilimnion at a constant
rate.

The well-studied system (submodel 1) in the hierarchical model
configuration was represented from the average Lake Washing-
ton conditions; a mesotrophic system with limnological processes
strongly dominated by a recurrent spring diatom bloom with epil-
imnetic chlorophyll concentration peaks on average at 10 �g L−1,
which is approximately three times higher than the summer con-
centrations when the system is phosphorus limited (Arhonditsis
et al., 2003). The hypothetical systems in the second submodel
represent oligotrophic conditions, mesotrophic conditions in less
intensively studied sites, and eutrophic conditions with monomic-
tic or dimictic mixing patterns, which exchange information via
the hierarchical structure with the first submodel. In our anal-
ysis, the average input total phosphorus (TP) concentrations for
the oligo-, meso-, and eutrophic environments correspond to 50
(32.5 �g TP L−1), 100 (65 �g TP L−1), and 200% (130 �g TP L−1) of
the reference conditions in Lake Washington, respectively. Based
on these loading scenarios, the model was run using the poste-
rior medians presented in Arhonditsis et al. (2008b). The simulated
monthly averages provided the mean values of normal distribu-
tions with standard deviations assigned to be 15% of the monthly
values for each state variable (Zhang and Arhonditsis, 2008). These
distributions were then sampled to generate the oligo-, meso- and
eutrophic datasets used for the Bayesian model calibration along
with the corresponding hypolimnetic phosphate boundary condi-
tions.

2.3. Numerical approximations for posterior distributions

The calibration vector consists of the same 14 parameters used
in previous applications of the model (Arhonditsis et al., 2007,
2008b). The prior distributions of the hyperparameters or global
priors were formulated on the basis of existing knowledge (e.g.,
field observations, laboratory studies, literature information and
expert judgment) of the relative plausibility of their values. In this
study, we identified the global minimum and maximum values
for each parameter, and then we assigned lognormal distributions
parameterized such that 95% of the parameter values were lying
within the literature ranges (Steinberg et al., 1997). The global prior
distributions of the model parameters are presented in Table 2.
The numerical approximations of the posterior distributions were
obtained using the general normal-proposal Metropolis algorithm
along with an ordered overrelaxation (Spiegelhalter et al., 2003).
This MCMC scheme generates multiple samples per iteration and
reduces the within-chain correlations by selecting a value that is

negatively correlated with the current one of each stochastic node
(Neal, 1998). The posterior simulations were based on one chain
with starting point a vector obtained from an earlier optimiza-
tion of the model with the Fletcher–Reeves conjugate-gradient
method (Chapra and Canale, 1998). We used 50,000 iterations
and convergence was assessed with the modified Gelman–Rubin
convergence statistic (Brooks and Gelman, 1998). Our framework
was implemented in the WinBUGS Differential Interface (WBD-
iff); an interface that allows numerical solution of systems of
ordinary differential equations (ODEs) within the WinBUGS soft-
ware. The ODEs were solved using the fourth-order Runge-Kutta
method.

2.4. Model updating

We used the MCMC estimates of the mean and standard devia-
tion parameter values along with the covariance structure to update
the model (Legendre and Legendre, 1998). Under the assumption
of a multinormal distribution for the log-transformed parameter
values, the conditional distributions are given by:

�̂i|j = �̂i + [�j − �̂j]˙−1
j
˙i,j (15)

˙i|j =˙i −˙j,i˙−1
j
˙i,j j∈ {i+ 1, . . . , n} (16)

where �̂i|j and˙i|j correspond to the mean value and the dispersion
matrix of the parameter i conditional on the parameter vector j; the
values of the elements ˙i ˙i,j and ˙j correspond to the variance

and covariance of the two subset of parameters; and �̂i, �̂j , �j corre-
spond to the posterior mean and random values of the parameters
i and j, respectively. The shape and scale parameters of the inverse-
gamma distributions used to represent our updated beliefs for the
values of the seasonally invariant discrepancy terms (Eq. (11)) were
estimated with the method of moments (Bernardo and Smith, 1994
p. 434). We also examined the sensitivity of our results to these
informative priors using alternative ones that reflected lower con-
fidence in the estimated error term values (Qian and Reckhow,
2007).

3. Results

3.1. General patterns of the posterior parameter distributions

The MCMC sequences of the models converged rapidly (≈5000
iterations) and the statistics reported herein were based on the last
45,000 draws by keeping every 10th iteration (thin = 10). The eval-
uation of the degree of updating of model input parameters was
based on the shifts of the most possible values and the reduction of
the parameter uncertainty. The relative differences between global
priors and scenario/submodel-specific posterior estimates of the
mean values and standard deviations of the 14 model parameters
are presented in Fig. 2. The majority of the parameters were charac-
terized by significant shifts of their posterior means relative to the
global priors assigned to the first four scenarios (A, B, C, and D). Some
parameters showed an increase of their central tendency values in
all the scenarios examined, e.g., the phytoplankton respiration rate
(r) (15–81%), the zooplankton mortality rate (d) (5–165%), and the
zooplankton grazing half-saturation constant (�) (16–182%). There
were also parameters with consistently decreased posterior mean
values, such as the detritus sinking rate ( ) (54–84%), the detritus
mineralization rate (ϕ) (17–79%), and the zooplankton excretion
fraction (ˇ) with 14–39% decrease. Notably, the mean values of
some parameters significantly varied among the different scenar-
ios, e.g., the phytoplankton sinking loss rate (s) (−68 to 172%), the
half-saturation constant for predation (pred) (−18–149%), and the
regeneration of zooplankton predation excretion (�) with −26%
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Fig. 2. The relative difference between posterior estimates of the mean values and standard deviations and the corresponding global prior distributions of the model
parameters. Relative differenceij = (Posteriorij − Prior)/Prior × 100%, i = scenario and j = submodel (see the first two columns in Table 1).

to 15% relative change. The majority of the posterior standard
deviations decreased relative to the values assigned to the hyper-
parameters, such as the maximum phytoplankton growth rate (a)
(30–72%), the phytoplankton sinking loss rate (s) (8–78%), and the
detritus sinking rate ( ) (27–93%). However, there were also cases
with significantly increased posterior standard deviations and the
most characteristic examples were the zooplankton mortality rate
(d) (110–620%), the half-saturation constant for predation (pred)
(1–329%), and the zooplankton grazing half-saturation constant (�)
(20–404%).

3.2. What is the effect of the hierarchical configuration on the
posterior parameter distributions?

We also compare the posterior parameter patterns when the
model was calibrated against individual datasets representing
oligo-, meso-, and eutrophic conditions (see Appendix A: Table A2)
and those obtained when crossing sites of different trophic states
under the hierarchical framework, i.e., scenarios A and D (Fig. 3).
[The MCMC estimates of the mean values and standard deviations
of the model stochastic nodes (parameters and error terms) derived
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Fig. 3. The relative difference between the posterior parameter estimates obtained after model calibration against individual datasets representing oligo-, meso- and eutrophic
conditions and the hierarchical settings examined in the scenarios A and D. Relative differencei = (Hierarchicali − Nonhierachicali)/Nonhierachicali × 100%, i = oligotrophic,
mesotrophic, eutrophic.

from the first and fourth scenarios are provided in Tables A3 and A5.]
An important finding was that the previously reported inflation of
the standard deviation of parameters associated with the zooplank-
ton feeding kinetics (�) and mortality (d, pred) is only manifested
with the hierarchical setting. We also note the significant increase
of the posterior means of the same parameters in the mesotrophic
and –especially– the eutrophic submodels. Generally, the relax-
ation of the prior precisions of the system-specific parameters
and the broadening of the sampled parameter space (scenario D)

resulted in higher posterior standard deviations. The phytoplank-
ton respiration rate (r) demonstrated significant increase of the
first and second order moments relative to the estimates obtained
when the model was calibrated against the eutrophic dataset.
The same trend was observed with the half-saturation constant
for PO4 uptake (e) in the two oligotrophic submodels. The lat-
ter cases were also characterized by a consistent decrease of the
central tendency and dispersion values of the cross-thermocline
exchange rate (k), the phytoplankton respiration (r) and sinking

Table 3
Scenario C. Markov Chain Monte Carlo posterior estimates of the mean values and standard deviations of the model stochastic nodes.

Nodes C1 C2 C3

1 2 1 2 1 2

Mean S. D. Mean S. D. Mean S. D. Mean S. D. Mean S. D. Mean S. D.

a 1.314 0.140 1.330 0.158 1.307 0.116 1.306 0.128 1.361 0.157 1.331 0.140
d 0.197 0.055 0.182 0.045 0.216 0.059 0.203 0.053 0.234 0.072 0.209 0.050
pred 54.37 22.64 59.25 26.09 56.24 21.58 46.43 24.41 55.26 21.21 60.84 35.64
e 13.05 2.895 10.92 3.122 15.84 2.907 22.11 11.17 15.09 3.815 24.64 7.687
k 0.022 0.007 0.025 0.016 0.019 0.005 0.043 0.022 0.030 0.010 0.024 0.016
r 0.197 0.027 0.197 0.050 0.178 0.025 0.161 0.057 0.181 0.034 0.211 0.075
s 0.030 0.013 0.033 0.018 0.018 0.009 0.017 0.009 0.027 0.013 0.110 0.029
˛ 0.376 0.143 0.360 0.136 0.481 0.154 0.471 0.162 0.497 0.180 0.502 0.187
ˇ 0.229 0.081 0.237 0.088 0.245 0.091 0.252 0.095 0.230 0.092 0.240 0.092
� 0.266 0.104 0.275 0.105 0.253 0.096 0.248 0.097 0.286 0.123 0.284 0.126
� 0.581 0.115 0.576 0.114 0.599 0.107 0.593 0.112 0.659 0.121 0.660 0.124
� 9.896 3.529 8.453 2.968 11.01 3.752 11.15 3.929 10.47 3.496 8.886 3.044
ϕ 0.050 0.011 0.053 0.023 0.040 0.013 0.040 0.026 0.052 0.018 0.067 0.030
 0.030 0.006 0.028 0.008 0.033 0.008 0.038 0.016 0.038 0.010 0.038 0.023
�PO4 0.796 0.335 1.383 1.230 0.712 0.303 1.024 0.638 0.709 0.316 5.666 6.063
�PHYT 8.516 12.13 7.062 15.21 6.906 9.113 9.520 18.30 8.727 11.70 246.7 153.3
�ZOOP 28.79 12.69 7.989 13.97 24.63 12.19 33.45 23.59 22.80 12.78 68.76 63.26
�DET 2.261 1.072 1.486 1.926 2.568 1.234 2.904 2.384 2.637 1.471 15.71 7.939



Author's personal copy

W. Zhang, G.B. Arhonditsis / Ecological Modelling 220 (2009) 2142–2161 2149

Fig. 4. Scenario C. Prior (thin black lines) and posterior (C1: thick black lines; C2: thick grey lines; and C3: thick light grey lines) parameter distributions.

loss rates (s), the detritus remineralization (ϕ) and sinking rates
( ).

3.3. Examination of the posterior patterns when combining
systems and/or sites with different sampling intensity (C1 and C2)
or systems with different hydrodynamics (C3)

The posterior estimates of the mean values and standard devi-
ations of the 14 model parameters with the third scenario are

shown in Table 3 and Fig. 4. The first sub-scenario (C1) aimed to
combine two datasets representing similar dynamics but differ-
ent sampling intensity, i.e., 12 monthly values versus four seasonal
averages for each state variable. Our results show that the poste-
rior means and standard deviations of the two submodels were
very similar. Relatively similar results were also found with the sec-
ond sub-scenario (C2), i.e., data collected on a monthly basis during
the stratified period, although some variation exists with regards
to the posterior moments of the cross-thermocline exchange rate
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Fig. 4. (Continued ).

(k), the half-saturation constant for PO4 uptake (e), and the phy-
toplankton respiration rate (r). The same parameters along with
the half-saturation constant for predation (pred), the zooplankton
grazing half-saturation constant (�), and the phytoplankton sink-
ing velocity (s) were moderately (or significantly) different when
examining systems with different trophic states and vertical mix-
ing regimes, i.e., mesotrophic monomictic versus eutrophic dimictic
lakes. The temporally invariant error terms (�j, j = PO4, PHYT, ZOOP,
DET) delineate a constant zone around the model predictions that
accounts for the discrepancy between model structure and nat-
ural system dynamics. The first and second order moments of
the posterior distributions of the error terms associated with the
model predictions in the “well-studied” system were fairly con-
stant across the three scenarios (C11, C21, and C31). Interestingly,
lower error values were found when the model was calibrated
against seasonal data (C12), whereas the use of data collected only
from the stratified period increased the model error (scenario C22);
especially for the zooplankton biomass (�ZOOP with mean and stan-
dard deviation equal to 33.45 and 23.59 �g C L−1, respectively). The
scenario C32 of the eutrophic dimictic lake resulted in very high
error values; in particular, the error terms associated with phy-
toplankton (�PHYT with a mean of 246.7 �g C L−1 and a standard
deviation of 153.3 �g C L−1) and zooplankton biomass (�ZOOP with

mean and standard deviation equal to 68.76 and 63.26 �g C L−1,
respectively).

Generally, the comparison between the observed and posterior
predictive monthly distributions indicates that the plankton mod-
els calibrated under the Bayesian hierarchical structure provided
accurate system representations for all the scenarios examined. In
particular, the mesotrophic submodel of the third scenario resulted
in median predictions along with 95% credible intervals that closely
describe the observed data, despite the slight underestimation
of the spring plankton biomass peaks (Fig. 5). We also highlight
the robustness of the model predictions of the same submodel,
regardless of the second dataset considered under the hierarchi-
cal framework. On the other hand, the median model predictions
for chlorophyll a, zooplankton, phosphate and total phosphorus
matched the seasonal data (scenario C12), except from the zoo-
plankton mean spring biomass. In the same scenario, the wider
uncertainty bands reflect the higher variability (measurement
error) associated with the seasonal average values. The calibra-
tion of the second submodel against the dataset from the stratified
period resulted in close reproduction of the summer plankton
biomass levels as well as the contemporaneous phosphorus vari-
ability (scenario C22). Finally, the median predictions along with the
uncertainty bounds delineated a zone that closely represented the
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dynamics of the eutrophic dimictic system during the open surface
period (scenario C32).

3.4. Examination of the posterior patterns when combining a
“refined” parameterization (updated model) stemming from a
well-studied system with a less intensively studied system

The parameter posterior statistics along with the model error
terms with global priors based on the updated conditional distribu-
tions of the 14 parameters along with informative inverse-gamma
distributions for the seasonally invariant discrepancy terms are pre-
sented in Table 4 and Fig. 6. The posterior means and standard
deviations of the updated model remained fairly stable under the
two sub-scenarios E1 and E2 examined. It should also be noted
that the shifts of the posterior means were less than 40% rel-

ative to the updated global priors, whereas the majority of the
standard deviations were significantly reduced (see also Fig. 2).
On the other hand, the calibration of the second model with an
eutrophic dataset (scenario E12) resulted in posteriors alike those
obtained for the first submodel. Notable exceptions were the half-
saturation constant for PO4 uptake (e), the zooplankton grazing
half-saturation constant (�), and the half-saturation constant for
predation (pred). Furthermore, in a similar manner to the scenario
C1, the use of four seasonal averages provided very similar poste-
rior means and standard deviations between the two submodels
(Scenario E22). The same scenario also resulted in fairly low mean
values of the model error terms, although the corresponding coef-
ficients of variation (standard deviation/mean) were much higher.
The same high coefficients of variation characterized the model
error terms (�j) of the scenario E12, but the posterior means were

Fig. 5. Scenario C. Comparison between the observed and posterior predictive distributions. Solid line corresponds to the median value of model predictions and dashed lines
correspond to the 2.5% and 97.5% uncertainty bounds. The square dots represent the observed data, while the error bars reflect the measurement error.
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Fig. 5. (Continued )

also significantly higher than the ones obtained for the updated
model (E11).

In the fifth scenario, the predictive median values along with the
uncertainty bounds of the updated model provided results similar
to those obtained from the submodel 1 of the third scenario and all
the observed monthly values were included within the 95% credi-
ble intervals (Fig. 7). However, the zooplankton median predictions
still underestimated the late spring biomass, which was also the
case with the second submodel of the scenario E1, i.e., eutrophic
dataset with 12 monthly observations. The latter scenario resulted
in a notably accurate reproduction of the chlorophyll a, total phos-
phorus, and phosphate seasonal cycle. Finally, the use of updated
global priors did not improve model fit against the dataset that con-
sists of four seasonal averages (E22). The wide prediction bounds
included all the observed values, but the median spring zooplank-
ton predictions failed again to capture the concurrent observed
biomass levels.

4. Discussion

The philosophical and pragmatic differences between Bayesian
and frequentist methods of inference have been extensively
debated in the ecological literature (Dennis, 1996; Ellison, 1996,
2004). The distinctions arise from the different definitions of
probability (long-run relative frequencies of events vis-á-vis an
individual’s degree of belief in the likelihood of an event), the
use of prior knowledge along with the sample data, and the
treatment of model parameters as random variables or as fixed
quantities (Ellison, 2004). Recently, however, Clark (2003, 2005)
offered a different perspective arguing that the assumptions of fre-
quentist and simple Bayesian models are more similar than are
usually perceived in ecological studies and that only the hierarchi-
cal Bayes is a distinctly different framework to accommodate the
complexity in environmental systems. Hierarchical Bayes relaxes
the fundamental assumption that there is an underlying “true”
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Fig. 5. (Continued ).

parameter value that is gradually approximated with increasing
sample size. Using simple empirical models with a large num-
ber of hierarchies and spatiotemporally variant parameters, the
latter feature has been shown to provide an effective means for
addressing difficult space-time problems (Borsuk et al., 2001;
Wikle, 2003a; Malve and Qian, 2006). Our objective herein was
to demonstrate how the hierarchical Bayes can be used to simul-
taneously calibrate mathematical models at multiple sites with

Table 4
Scenario E. Markov Chain Monte Carlo posterior estimates of the mean values and
standard deviations of the model stochastic nodes.

Nodes E1 E2

1 2 1 2

Mean S. D. Mean S. D. Mean S. D. Mean S. D.

a 1.209 0.069 1.195 0.071 1.271 0.048 1.271 0.068
d 0.234 0.024 0.303 0.045 0.204 0.023 0.222 0.055
pred 54.23 7.908 113.0 29.71 53.49 8.616 58.62 22.62
e 13.87 1.856 30.08 4.635 15.62 1.811 13.02 2.377
k 0.026 0.004 0.023 0.005 0.022 0.003 0.018 0.008
r 0.143 0.014 0.150 0.021 0.154 0.019 0.174 0.053
s 0.025 0.005 0.020 0.006 0.022 0.005 0.027 0.016
˛ 0.655 0.131 0.665 0.129 0.496 0.104 0.494 0.114
ˇ 0.192 0.061 0.191 0.078 0.207 0.055 0.208 0.069
� 0.174 0.043 0.152 0.045 0.273 0.098 0.283 0.111
� 0.730 0.097 0.743 0.091 0.685 0.100 0.686 0.105
� 9.984 1.429 15.34 5.493 9.026 1.628 11.910 3.935
ϕ 0.050 0.011 0.046 0.019 0.051 0.013 0.043 0.018
 0.040 0.006 0.041 0.016 0.044 0.007 0.026 0.007
�PO4 0.893 0.290 1.658 0.778 0.800 0.258 1.000 0.959
�PHYT 2.962 4.822 10.24 16.32 3.113 5.194 7.964 17.29
�ZOOP 14.50 4.151 21.37 10.56 16.75 5.412 8.158 14.34
�DET 4.312 1.037 9.673 3.210 4.136 0.959 1.461 1.947

different ecological dynamics or amount of information avail-
able.

4.1. How robust are the posterior patterns under the hierarchical
framework?

The degree of updating of the model input parameters from prior
to posterior is usually evaluated using three different criteria: (i)
shift in the most likely value; (ii) reduction in the parameter uncer-
tainty; and (iii) change in the shape of the distribution (Endres and
Schindelin, 2003). In this study, although we have not quantified
the change in the shape from prior to posterior parameter distribu-
tions, the first two criteria did reveal interesting results with regards
to the degree of updating under the hierarchical model configura-
tion. First, we highlight the often significant shifts of the posterior
means and the increased standard deviations of the zooplankton
mortality rate (d), the half-saturation constant for predation (pred),
and the zooplankton grazing half-saturation constant (�). These
posterior patterns probably indicate that the zooplankton feeding
kinetics and the mortality/higher predation rates (the so-called clo-
sure term) are primarily used to accommodate the site-specific
variability, and therefore can be more resistant to the Bayesian
shrinkage effect. Shrinkage is a well-known phenomenon in both
Bayesian and frequentist statistics in which individual estimates
are shrunk toward the overall mean when they are derived jointly
rather than independently (Efron and Morris, 1975; Gelman and
Pardoe, 2006). This finding reiterates the well-documented pro-
found impact of these parameters upon the dynamics of plankton
ecosystem models and underscores the importance of developing
articulate site-specific prior probability distributions when data
from different study sites are combined under the hierarchical
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Fig. 6. Scenario E. Prior (thin black lines) and posterior (E1 submodel 1: thick black lines; E1 submodel 2: thick black dashed lines; E2 submodel 1: thick gray lines; and E2

submodel 2: thick dashed grey lines) parameter distributions.

structure (Edwards and Yool, 2000; Franks, 2002; Arhonditsis and
Brett, 2004).

The rest parameters of the calibration vector can be classified
into two groups: (i) parameters that depending on the scenario
examined can play an active role during the model training process,
e.g., the half-saturation constant for PO4 uptake (e), phytoplank-
ton respiration (r) and sinking (s) rates, the detritus sinking ( )
and mineralization (ϕ) rates; (ii) parameters with relatively unal-

tered posterior moments comparing with the values assigned to
the global priors, e.g., the zooplankton growth efficiency (a) and
excretion fraction (ˇ), and the regeneration of zooplankton pre-
dation excretion (�). Overall, these results are similar to those
reported in earlier applications of the same simple model structure
(Arhonditsis et al., 2007, 2008b). The consistent increase/decrease
of the central tendency values of some parameters, such as the phy-
toplankton respiration rate (r), the detritus sinking rate ( ), and the
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detritus mineralization rate (ϕ), probably indicates that the prior
distributions obtained from the literature review misrepresented
the underlying ecological processes; at least under the setting (e.g.,
datasets, model structure) used in this analysis. We also note the
relatively greater shifts in the mean parameter values when relax-
ing our confidence in the prior knowledge used to formulate the
global priors (scenario D). The sensitivity of the first-order posterior
moments to the assigned site-specific parameter precisions sug-
gests that the broadening of the parameter space examined allows
the identification of regions of higher model performance but also
increases the standard deviations of the parameter marginal distri-
butions (see the differences of the parameter standard deviations
between the scenarios A and D in Figs. 2 and 3).

4.2. How can the hierarchical framework assist the current
modeling practices?

The Bayesian hierarchical proposition may be useful for a variety
of aquatic science and ecological modeling applications in which
partial, but not complete, commonality can be assumed among
the modeled units. A characteristic case is the Laurentian Great
Lakes region where the most degraded areas are nearshore zones
above the summer thermocline adjacent to the mouths of large
rivers and enclosed bays/harbours with restricted mixing with
offshore water. These areas are intermediate zones in that they
receive highly polluted inland waters from watersheds with signif-
icant agricultural, urban, and/or industrial activities while mixing

Fig. 7. Scenario E. Comparison between the observed and posterior predictive distributions. Solid line corresponds to the median value of model predictions and dashed lines
correspond to the 2.5% and 97.5% uncertainty bounds. The square dots represent the observed data, while the error bars reflect the measurement error.
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Fig. 7. (Continued ).

with offshore waters having different biological and chemical char-
acteristics (Nicholls, 1999; Rockwell et al., 2005; Winter et al.,
2007). We believe that this type of spatial heterogeneity cannot be
fully accommodated by the typical practice of developing spatially
explicit mechanistic models with common parameter values over
the entire systems; that is, how realistic is to assume that the same
phytoplankton growth rate occurs throughout the waterbody?
Rather, the practical compromise between entirely site-specific and
globally common parameter estimates offered by the hierarchi-
cal approach may be a conceptually more sound strategy (Fig. 8).
Importantly, our illustration showed that such model configuration
does not negate the basic premise for using process-based models,
i.e., reproduction of the observed system dynamics while gaining
mechanistic insights, and it does provide parameter posteriors that

have meaningful ecological interpretation. For example, the poste-
rior means for the half-saturation constant for PO4 uptake (e) after
updating the model against individual datasets representing oligo-
, meso-, and eutrophic conditions were equal to 5.75, 13.17, and
22.05 �g P L−1, respectively (Table A2). These values are ecologi-
cally plausible and depict the continuum between phytoplankton
communities dominated by species with strong (e.g., diatom-like)
and weak (e.g., cyanobacteria-like) P competitive abilities. With the
hierarchical scheme, the relative magnitude of the same parameter
remained unaltered across the three states, although their abso-
lute values were somewhat different (Tables A3 and A5). The wider
observational range stemming from the combination of sites that
represent different trophic conditions (scenarios A and D) consis-
tently reduced the error terms associated with the phosphate (�PO4 )
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Fig. 8. A conceptual application of the Bayesian hierarchical framework to allow the transfer of information in space.

and detritus (�DET) equations, whereas variant results were found
for the phytoplankton (�PHYT) and zooplankton (�ZOOP) error terms
depending on the scenarios examined. Realistic parameter values
and reduced error terms were also derived from the second experi-
ment that simulated the case in which inshore and offshore areas of
a mesotrophic lake are combined under the hierarchical structure
(Table A4).

We also examined the ability of the Bayesian hierarchical frame-
work to provide a mechanism for pooling information from systems
with different sampling intensity and strengthen the predictive
ability in individual sites. Indeed, our analysis showed that primar-
ily the scenario that uses seasonal averages for the state variables
(C1) and secondarily the one using data solely from the strati-
fied period (C2) resulted in relatively similar posterior parameter
moments between the two locations, providing more confidence in
the representation of the ecological structure of the less intensively
studied site. Furthermore, aside from the previously mentioned
low precisions of the parameters associated with the zooplank-
ton feeding kinetics and mortality rates, the differences between
the posterior first and second order moments of the hyperparam-
eters and the system-specific parameters were also quite small
(Fig. 9); that is, the site-specific parameters converged toward the
global means but these shifts were not accompanied by a signifi-
cant shrinkage of the corresponding parameter standard deviations
(Gelman and Pardoe, 2006).

The comparison between the observed and posterior predic-
tive monthly distributions along with the values of the error
terms can also be used to dictate the optimal type of informa-
tion required to improve the predictive power of the model. For
example, the calibration of the model with data collected once
per season results in very wide uncertainty bands and thus less
useful for water quality management. Furthermore, although the
median predictions closely match the majority of the observed
data and the values of the error terms were notably lower, the
model fails to capture the timing of the spring phytoplankton
bloom and does not reproduce the contemporaneous peak of the
zooplankton biomass. Interestingly, the latter problems were not
alleviated when the model of the less intensively studied system
was combined with a “refined” model parameterization based on
a well-studied site (scenario E). On the other hand, the use of data
collected with higher frequency but solely from the stratified period

overcomes the misrepresentation of the spring plankton dynamics
and also reduces the predictive uncertainty. Similar experiments
can be designed regarding the spatiotemporal sampling intensity
or the collection of data on parameters versus data on output
variables, while the subsequent assessment of the value of infor-
mation can further optimize the existing monitoring programs and
assist model-based decision making and management (Dorazio
and Johnson, 2003). Finally, we note the overwhelmingly high
error values resulting from a hierarchical structure that combines
a mesotrophic monomictic with an eutrophic dimictic system.
These results are not surprising as it would seem counterintu-
itive to improve ecological forecasts by exchanging information
between systems that have substantial functional and structural
differences. This numerical experiment merely aimed to provide
an additional sensitivity analysis with regards to the role of the
different parameters in accommodating the variability of the two
datasets.

4.3. Outstanding methodological issues and future perspectives

In conclusion, we introduced a Bayesian hierarchical framework
that enables the development of robust probabilistic analysis of
error and uncertainty in model predictions by explicitly taking
into account the measurement error, parameter uncertainty, and
model structure imperfection. Our intent was to illustrate how this
approach can be used to transfer knowledge in space, and therefore
to simultaneously calibrate process-based models at multiple sites.
Some of the unresolved technical aspects and future perspectives
of the Bayesian hierarchical scheme are as follows:

(i) Hierarchical Bayes and spatially explicit mathematical models:
The description of spatial and spatiotemporal environmental
processes has been the focus of several Bayesian modeling
studies, and the existing propositions involve general hierar-
chical spatial model frameworks (Cressie, 2000; Wikle, 2003a),
Markov random field models (Besag et al., 1995), hierarchical
spatio-temporal models (Wikle et al., 1998), spatiotempo-
ral dynamic models (Wikle et al., 2001), and spatiotemporal
models that are simplified by dimension reduction (Berliner
et al., 2000) or by conditioning on processes considered
to be latent or hidden (Hughes and Guttorp, 1994). In the
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Fig. 9. Scenario C. The relative difference between posterior estimates of the mean values and standard deviations of the hyperparameters and the system-specific parameters.
Relative differencek = (Parameterk − Global parameter)/Global parameter × 100%, k = submodel 1, 2.

present study, we advocated the relaxation of the assump-
tion of globally common parameter values used in coupled
physical-biogeochemical models and the adoption of hier-
archical statistical formulations reflecting the more realistic
notion that each site is unique but shares some common-
ality of behaviour with other sites of the same system. The
proposed hierarchical structure will be easily employed with
model segmentations of 5–10 completely mixed boxes with-
out significant increase of the computation demands, while
future research should also evaluate formulations that explic-
itly consider the spatiotemporal dependence patterns of the
parameter values and model error terms.

(ii) Mathematical models fitted to cross-system data: In aquatic
ecosystem modeling, cross-system data have been used in a
global sense to develop empirical relationships between catch-
ment features and nutrient loading (Howarth et al., 1996), lake
morphometric/hydraulic characteristics and total phospho-
rus concentrations (Brett and Benjamin, 2008), light/nutrient
availability and phytoplankton levels (Smith, 1986; Malve
and Qian, 2006), algal and zooplankton biomass (McCauley
and Kalff, 1981). In this context, the proposed framework is
a logical advancement that allows developing models with
stronger mechanistic foundation while remaining within the
bounds of data-based parameter estimation (Borsuk et al.,
2001). The main advantage of such hierarchical model con-
figuration will be the effective modeling of systems with
limited information by borrowing strength from well-studied
systems. Indeed, our analysis showed that this approach
provides ecologically meaningful parameter estimates at loca-
tions with limited data as well as site-specific predictions
with more realistic uncertainty ranges than the conventional
pooled approaches. Future research should identify the most
appropriate criteria (trophic status, morphological charac-
teristics) for delineating the number of levels and type of
groups included in the hierarchical structures, thereby opti-
mizing the transfer of information across systems, e.g., see
the geomorphological typology presented in Malve and Qian
(2006).

(iii) Prior assumptions on parameter distributions and model struc-
ture: The prior distributions assigned to the hyperparameters
of hierarchical models have received considerable attention
in the Bayesian literature (Box and Tiao, 1973; Spiegelhalter
et al., 2003; Gelman et al., 1995), and special emphasis has
been placed on the use of appropriate noninformative priors
for hierarchical variance parameters (Gelman, 2005). In the
context of the present analysis, we also caution to carefully
select the priors for the error terms representing the discrep-
ancy between the model structure and the natural system
dynamics, as our experience was that some of the results pre-
sented herein were sensitive to the pertinent selection. We
also note the instrumental role of the parameters associated
with the zooplankton feeding kinetics and the mortality/higher
predation rates in accommodating the site-specific variabil-
ity. In this regard, an appealing next step would be the
development of a prescriptive approach for optimizing the
structure of hierarchical modeling constructs by choosing site
specific closure terms (linear, quadratic, hyperbolic, sigmoid)
or functional forms for zooplankton grazing (linear, saturat-
ing, saturating with feeding threshold, acclimating to ambient
food) on the basis of the posterior parameter and model output
patterns.
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Table A1
The specific functional forms of the aquatic biogeochemical model.

dPO4

dt
= − PO4

e+ PO4
a�(t)PHYT P/Cphyto + ˇ�((PHYT · P/Cphyto)2 +ωDET2)

�2 + (PHYT · P/Cphyto)2 +ωDET2
�(tz)ZOOP P/Czoop

+ �d�(tz)
ZOOP3

pred2 + ZOOP2
P/Czoo + ��(t)DET + k(1 − �(t))(PO4(hypo) − PO4) + PO4exog

− outflows · PO4

dPHYT
dt

= PO4

e+ PO4
a�(t)PHYT − r�(t)PHYT − �(PHYT · P/Cphyto)2

�2 + (PHYT · P/Cphyto)2 +ωDET2
�(tz)ZOOP

− sPHYT − outflows · PHYT
dZOOP
dt

= ˛�((PHYT ·P/Cphyto)2+ωDET2)

�2+(PHYT· P/Cphyto)2+ωDET2 �(tz)ZOOP − d�(tz)
ZOOP3

pred2+ZOOP2 − outflows · ZOOP

dDET
dt

= r�(t)PHYT P/Cphyto + [(1 − ˛− ˇ)(PHYT · P/Cphyto)2 − (˛+ ˇ)ωDET2]�

�2 + (PHYT · P/Cphyto)2 +ωDET2
�(tz)ZOOP P/Czoop

− ϕ �(t)DET − DET + DETexog − outflows · DET

P/Cphyto (phosphorus to carbon ratio for phytoplankton): 0.015 mg P (mg C)−1; P/Czoop (phosphorus to
carbon ratio for zooplankton): 0.029 mg P (mg C)−1;ω (relative zooplankton preference for detritus
compared to phytoplankton): 1; �(t) and �(tz): seasonal forcing on phytoplankton and zooplankton
dynamics (Arhonditsis et al., 2008b); PO4exog , DETexog,: phosphate and particulate matter inflows
into the system (Arhonditsis et al., 2008b); Outflows: outflows from the system (Arhonditsis et al.,
2008b).

Table A2
Markov Chain Monte Carlo posterior estimates of the mean values and standard
deviations of the model stochastic nodes against three datasets representing oligo-,
meso-, and eutrophic conditions.

Nodes Oligotrophic Mesotrophic Eutrophic

Mean S. D. Mean S. D. Mean S. D.

a 1.129 0.130 1.273 0.189 1.073 0.058
d 0.182 0.024 0.183 0.022 0.188 0.020
pred 45.04 10.98 53.68 10.50 66.75 15.61
e 5.749 0.947 13.17 3.336 22.05 2.928
k 0.008 0.001 0.028 0.006 0.029 0.006
r 0.174 0.035 0.180 0.031 0.090 0.009
s 0.043 0.012 0.028 0.011 0.044 0.008
˛ 0.481 0.182 0.469 0.132 0.560 0.079
ˇ 0.256 0.088 0.256 0.088 0.224 0.073
� 0.287 0.106 0.297 0.113 0.275 0.064
� 0.659 0.113 0.641 0.110 0.686 0.077
� 6.597 1.724 7.280 1.624 8.577 1.362
ϕ 0.051 0.015 0.073 0.021 0.088 0.018
 0.045 0.028 0.055 0.020 0.101 0.023
�PO4 5.272 0.487 14.43 1.661 27.51 2.464
�PHYT 38.59 4.383 69.35 8.032 131.5 14.86
�ZOOP 9.750 1.449 20.02 3.824 36.42 4.822
�DET 7.657 0.968 19.05 3.677 36.68 5.324

Table A3
Scenario A. Markov Chain Monte Carlo posterior estimates of the mean values and
standard deviations of the model stochastic nodes.

Nodes A1 A2

1 2 1 2

Mean S. D. Mean S. D. Mean S. D. Mean S. D.

a 1.472 0.168 1.525 0.216 1.172 0.123 1.159 0.114
d 0.215 0.060 0.199 0.053 0.257 0.067 0.282 0.056
pred 55.08 22.36 46.93 28.35 56.13 15.29 101.6 28.14
e 17.65 2.535 12.30 2.230 13.17 1.997 25.92 6.161
k 0.020 0.007 0.005 0.001 0.019 0.004 0.023 0.006
r 0.174 0.034 0.152 0.022 0.187 0.016 0.179 0.039
s 0.026 0.012 0.022 0.007 0.016 0.008 0.018 0.012
˛ 0.523 0.198 0.522 0.197 0.673 0.130 0.685 0.119
ˇ 0.229 0.089 0.236 0.094 0.247 0.094 0.241 0.083
� 0.303 0.104 0.307 0.109 0.233 0.077 0.229 0.076
� 0.626 0.124 0.627 0.123 0.722 0.123 0.724 0.119
� 12.60 4.276 9.703 2.952 13.17 3.565 16.22 5.416
ϕ 0.038 0.019 0.028 0.011 0.039 0.009 0.054 0.025
 0.027 0.007 0.030 0.006 0.031 0.007 0.042 0.015
�PO4 14.50 1.241 5.689 0.514 14.44 1.283 28.21 2.283
�PHYT 65.90 7.411 35.11 3.685 66.34 6.500 119.4 13.00
�ZOOP 19.58 2.933 9.557 1.473 19.48 2.785 34.82 4.860
�DET 16.39 2.238 7.329 0.936 17.17 2.136 35.66 4.810

Table A4
Scenario B. Markov Chain Monte Carlo posterior estimates of the mean values and
standard deviations of the model stochastic nodes.

Nodes B1

1 2

Mean S. D. Mean S. D.

a 1.303 0.092 1.317 0.087
d 0.288 0.066 0.263 0.058
pred 53.42 14.07 57.12 15.21
e 13.66 2.278 11.61 2.129
k 0.028 0.006 0.039 0.006
r 0.153 0.033 0.134 0.032
s 0.032 0.011 0.046 0.012
˛ 0.772 0.126 0.779 0.121
ˇ 0.215 0.078 0.218 0.082
� 0.232 0.069 0.240 0.062
� 0.738 0.103 0.739 0.105
� 8.753 2.863 7.611 2.244
ϕ 0.072 0.030 0.064 0.023
 0.044 0.017 0.046 0.015
�PO4 14.51 1.344 14.63 1.591
�PHYT 67.48 6.779 60.50 6.799
�ZOOP 18.49 2.601 17.24 2.373
�DET 18.16 2.352 17.21 2.416

Table A5
Scenario D. Markov Chain Monte Carlo posterior estimates of the mean values and
standard deviations of the model stochastic nodes.

Nodes D1 D2

1 2 1 2

Mean S. D. Mean S. D. Mean S. D. Mean S. D.

a 1.316 0.217 1.399 0.159 1.028 0.096 1.027 0.116
d 0.458 0.143 0.317 0.154 0.417 0.128 0.379 0.101
pred 69.63 20.83 44.64 59.81 68.12 19.87 136.2 36.62
e 15.70 4.812 12.03 2.552 11.31 2.052 23.61 9.309
k 0.020 0.006 0.004 0.001 0.019 0.004 0.022 0.006
r 0.170 0.055 0.151 0.027 0.176 0.025 0.172 0.074
s 0.019 0.012 0.013 0.008 0.015 0.010 0.018 0.008
˛ 0.740 0.155 0.673 0.235 0.746 0.142 0.772 0.099
ˇ 0.225 0.125 0.252 0.178 0.186 0.094 0.177 0.099
� 0.216 0.118 0.336 0.209 0.294 0.102 0.247 0.095
� 0.823 0.127 0.796 0.149 0.783 0.124 0.799 0.114
� 9.783 4.563 9.280 3.407 13.730 3.508 18.55 9.417
ϕ 0.076 0.062 0.020 0.012 0.029 0.014 0.063 0.031
 0.041 0.025 0.022 0.006 0.026 0.007 0.066 0.061
�PO4 14.13 1.367 5.837 0.548 14.98 1.344 28.74 2.622
�PHYT 64.30 6.766 34.65 3.697 67.83 6.561 124.8 14.39
�ZOOP 18.34 2.709 9.243 1.468 19.16 2.798 32.86 4.499
�DET 16.94 2.241 6.971 0.795 16.44 2.068 35.14 4.986
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