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Abstract

Kenney, M.A., G.B. Arhonditsis, L.C. Reiter, M. Barkley, and K.H. Reckhow. 2009. Using structural equation
modeling and expert elicitation to select nutrient criteria variables for south-central Florida lakes. Lake Reserv.
Manage. 25:119–130.

To protect the nation’s waterbodies from excessive impairments from pollution leading to eutrophication, the Clean
Water Act requires states to establish water quality standards. These water quality standards are designed to protect
the designated use, or water quality goal; however, they are indirectly measured and assessed using a water quality
criterion. An alternative approach to develop nutrient criteria is the predictive approach (Reckhow et al. 2005), which
determines the predictive variables by combining water quality data with assessments from multiple experts on the
probability of designated use attainment using structural equation modeling (SEM). Our objective was to expand the
predictive approach to include a region of waterbodies and to use multiple experts. To demonstrate these extensions,
the approach was applied to lakes in south-central Florida using four experts to quantify attainment of a fish and
wildlife designated use. Multiple models were built that related eutrophication processes to the designated use. Of
the two plausible models, total phosphorus was the most predictive of the designated use followed by chlorophyll
a. Using the model results, the risk of nonattainment of the designated use for these two predictive variables was
calculated; to achieve high attainment (90% or more), total phosphorus should be <0.015 mg/L and chlorophyll
a < 5µg/L. This study provides vital extensions to the previous approach through its use of multiple experts and a
region of lakes, making the approach applicable to other regions of waterbodies and conclusions useful to inform
policy.

Key words: chlorophyll a, eutrophication, expert elicitation, lakes, nutrient criteria, structural equation modeling,
total phosphorus, water quality modeling

The United States Environmental Protection Agency
(USEPA) named nutrients as the number one cause of water
quality pollution for lakes, reservoirs, and ponds, causing the
eutrophication of 3.8 million acres of waters (USEPA 2002).

∗Current contact information: Department of Geography and En-
vironmental Engineering, National Center for Earth-surface Dy-
namics, Johns Hopkins University, Baltimore, MD 21218. Email:
M.A.KenneyPHD@gmail.com

Eutrophication is a condition fueled by excess nitrogen and
phosphorus that causes problems such as anoxia, noxious al-
gal blooms, and fish kills (Novotny and Olem 1994, Chapra
1997). To protect the nation’s waterbodies from excessive
impairments, Sections 101(a) and 303(c) of the Clean Wa-
ter Act require states and tribes to establish water quality
standards.

Water quality standards contain an antidegradation clause,
a qualitative designated use statement, and a qualitative or
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Kenney et al.

quantitative criterion. The antidegradation clause is a narra-
tive statement that the water quality standards must prevent
additional degradation of a waterbody’s use(s). The desig-
nated use is a narrative statement that articulates the water
quality goal. The designated uses are set by states and de-
scribe the desired uses of the waters, such as public drinking
water supply, primary contact recreation, and support of
aquatic life. Because the designated use cannot be directly
measured, a criterion serves as the measurable surrogate for
the designated use. The criterion is either a numeric indicator
or narrative statement, and is intended to indicate attainment
(or nonattainment) of the designated use. Typically, the crite-
rion is a combination of an easily measurable water quality
variable and the critical level for that variable; this level
for the criterion provides a minimum threshold that must
be maintained or attained to support the designated uses.
Though states have set criteria for toxic chemicals (e.g., met-
als or chlorine) and for water quality characteristics (e.g.,
dissolved oxygen and temperature), they have not widely
addressed criteria to protect against cultural eutrophication
impairments.

Currently the USEPA is encouraging states to adopt nutrient
criteria (USEPA 2000b), identified as any measurable wa-
ter quality variable or variables that can be used to detect
eutrophication impairments (e.g., excessive algae, reduced
water clarity) and their associated criteria levels. Selecting
criteria is not a trivial issue, and it has led to much de-
bate about what method should be used to establish these
criteria.

The method to set nutrient criteria is left to the best judg-
ment of the state; however, the most common method is
the USEPA-endorsed ecoregion approach using a reference
waterbody strategy (USEPA 2000b, 2000a). The USEPA
method recommends setting criteria based on the reference
conditions, those that represent pristine or minimally im-
pacted waters. First, to set the criteria variables USEPA
recommends that a state or tribe use four variables for each
of its ecoregions that reflect both the causal and the response
conditions of eutrophication: total phosphorus (TP), total ni-
trogen (TN), chlorophyll a, and Secchi depth. The guidance
does not recommend that any variable be weighted as more
important than another. Second, the criterion levels were set
for each ecoregion by developing seasonal (winter, spring,
summer, and fall) frequency distributions using all lakes and
reservoirs within an ecoregion for each of the variables. The
25th percentile of each of the four seasons was calculated;
the median value of these 25th percentiles was used to set
the criterion level (Walker et al. 2007). The USEPA chooses
to use the 25th percentile of these distributions because
it approximates the 75th percentile of the distribution of
reference waterbodies. These reference conditions, USEPA

argues, should be used to set the upper bounds for an ecore-
gion to maintain or achieve natural and attainable conditions
for lakes and reservoirs.

This approach to set nutrient criteria has two major flaws.
First, it fails to substantively link the criteria to the desig-
nated use, meaning that the criterion variable is not necessar-
ily a good predictor of designated use attainment. Second it
fails to distinguish between science and societal values, mak-
ing the implicit risk-based decision incorporated to set the
criterion levels seem scientifically driven rather than a com-
bination of science and value judgments (USEPA 2000b,
Reckhow et al. 2005).

To address these flaws, an alternative approach was previ-
ously developed called the predictive approach to nutrient
criteria (Reckhow et al. 2005, Reckhow et al. 2006, Kenney
2007). This procedure includes six steps. First, a dataset is
developed that is representative of a given region of lakes
(or separately for other types of waterbodies). Second, the
probability of designated use attainment is quantified using
expert assessments. Third, conceptual models of eutrophi-
cation processes are developed that link the water quality
characteristics to the designated use. Fourth, given the con-
ceptual models (step 3), structural equation modeling (SEM)
is used to evaluate models parameterized with water quality
data and designated use attainment assessments (step 1 and
2). Fifth, for those models deemed plausible using statistical
tests, determine which variable(s) are most predictive of the
designated use and use these variables (step 5) as the nutrient
criteria variables. Sixth, using the results of the SEM (step
5), plot the risk of nonattainment of the designated use for the
criterion variable(s). This information (step 6) is provided to
a decision-maker, who would use the information to choose
the criterion level(s). Though this procedure provides an
excellent alternative conceptual framework for developing
nutrient criteria, the method needs to be expanded beyond
a single waterbody and a single expert to fully demonstrate
its utility for policy implementation.

Our objective was to extend the methodology of the pre-
dictive approach to nutrient criteria to develop models for a
region of waterbodies and to use multiple experts to assess
the probability of designated use attainment. Using the pre-
dictive approach framework, this study determined which
measured water quality variables are most predictive of des-
ignated use attainment for a region of lakes. These predic-
tive variables were statistically determined, using SEM, by
combining water quality data with assessments from multi-
ple experts on the probability of designated use attainment.
The approach was applied to lakes in south-central Florida,
but the approach is appropriate for application in other
regions.
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Selecting nutrient criteria variables for Florida lakes

Figure 1.-Kissimmee Chain-of-Lakes in south-central Florida. The lakes in this region from north to south include East Lake Tohopekaliga,
Lake Tohopekaliga, Cypress Lake, Lake Hatchineha, Lake Kissimmee, and Lake Okeechobee.

Methods
Study site

The lakes used in this study are those located in south-
central Florida: Lake Okeechobee, East Lake Tohopekaliga,
Lake Tohopekaliga, Cypress Lake, Lake Hatchineha, and
Lake Kissimmee (Fig. 1). All of these lakes are located in an
area with similar weather patterns, general lake dynamics,
and similar seasonal physical, chemical, and biological

trends and attributes (K. Havens, Chair of the Department
of Fisheries and Aquatic Sciences, University of Florida,
2005, pers. comm.). These lakes are shallow (2–5 m) and
encompass a wide range of trophic states (Havens 2003).
The summary statistics for the untransformed variables
used in the analysis are provided (Table 1).

Of the six lakes, all are considered eutrophic except East
Tohopekaliga, which is considered mesotrophic. East To-
hopekaliga has some of the highest color values (>200
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Kenney et al.

Table 1.-Summary statistics for the eutrophication-related water quality variables used in the study. These values are from the
data subset of 100 data rows used for the analysis throughout the paper. The data used in the study were log10 transformed,
except for Secchi depth; however, the values presented are in their untransformed state. Data were obtained from the South
Florida Water Management District database.

Mean Standard Deviation Minimum Maximum Skewness Kurtosis

Chlorophyll a (µg/L) 18.68 18.12 1.00 97.41 1.65 3.50
Total Phosphorus (mg/L) 0.05 0.03 0.01 0.15 1.54 2.60
Total Nitrogen (mg/L) 1.03 0.33 0.25 2.32 0.69 1.34
Total Kjeldahl Nitrogen (mg/L) 1.02 0.34 0.25 2.31 0.65 1.44
Dissolved Inorganic Nitrogen (mg/L) 0.04 0.05 0.01 0.21 1.92 3.04
Total Suspended Solids (mg/L) 5.61 6.91 0.50 36.50 2.18 6.06
Color (PCU) 91.01 62.06 24.00 267.98 1.27 0.91
Secchi Depth (m) 0.91 0.44 0.20 2.60 1.25 1.82

platinum-cobalt unit (PCU) during rain events), but has low
chlorophyll a, TN, and TP values. All of the lakes in this re-
gion are highly regulated and have been periodically drawn
down for Hydrilla control and muck removal (Havens 2005).

This system of lakes has several designated uses, but for
the purposes of this study, we chose to use “the propagation
and maintenance of a healthy, well-balanced population of
fish and wildlife (Rule 62-302.400, Florida Administrative
Code),” considered to be the most stringent designated use
definition. This designated use addresses the Florida Class
III classification, with the exclusion of the Class III use of
“Recreation.”

Step 1: Develop water quality dataset

The South Florida Water Management District (SFWMD)
conducts routine monthly water quality sampling and col-
lects data on standard limnological parameters. The dataset
for the six lakes in South-central Florida was obtained from
the SFWMD database (SFWMD 2007), which ranged from
January 1995 to December 2001, consisted of the set of ob-
servations from the 12-mo annual data collection cycle for
the following water quality variables: chlorophyll a, TN,
TP, Secchi depth, color, total suspended solids, and total
Kjeldahl nitrogen (Table 1). Thus, a data row consists of the
data for the previously mentioned variables collected on the
same day at the same location.

The dataset was first reduced by omitting any set of observa-
tions with a missing value. Next, a subset of 100 data rows
was constructed. This subset was determined to be an accu-
rate representation of the full dataset by retaining the sign
(positive or negative) and the significance (significant or not)
of each of the various bivariate relationships manifested in
the original dataset.

Step 2: Expert assessments

Because designated use attainment cannot be directly mea-
sured, an expert assessment was conducted to elicit the prob-

ability of designated use attainment given correlated water
quality data. The expert assessment protocol was similar
to the approach used in Reckhow et al. (2005), which was
based on best practices (Morgan and Henrion 1990, Keeney
and Von Winterfeldt 1991, Meyer and Booker 1991, Clemen
and Reilly 2001). Similar to the Reckhow et al. (2005) ap-
proach, this assessment had two parts, which were modified
as described below.

In Part 1, the experts were asked to translate the given narra-
tive designated use. The experts were additionally asked in
this study, given their interpretation of the designated use, to
state what they believed to be the ideal measurable variable
to assess designated use attainment (for example, fish bio-
diversity), the change (attainment or nonattainment) point
of this variable, and the commonly measured water quality
variables that could be used as proxies for the ideal variable.

In Part 2, the experts were asked to go through an exercise to
quantify the designated use for 100 correlated water quality
data rows. Specifically, the elicitor asked each expert to look
at an individual data row, considering all the water quality
variables and their associated levels, and answer the ques-
tion: “Given 100 hypothetical lakes in South-central Florida,
all with identical average levels of these variables, and as-
suming other factors (e.g., morphological, climatic) vary
randomly according to the characteristics of these Florida
lakes, how many of the 100 lakes would be in attainment of
the given designated use?” The image of 100 lakes was used
to assist the experts in thinking about the question proba-
bilistically; thus, the response could be directly translated
from the assessment to the probability (i.e., an assessment
of 50 lakes = 0.5 or 50% probability of designated use at-
tainment). Additionally, the experts were asked to explain
a sample of their assessments and were asked questions
about their judgments, allowing the elicitors to check for
consistency and biases. This check also ensured that experts
had a chance to modify their judgments or provide a jus-
tification, assuring that the experts’ assessments accurately
represented their knowledge. These checks were particularly
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Selecting nutrient criteria variables for Florida lakes

useful given that experts are not always good at making prob-
ability assessments, especially near the extremes (Meyer and
Booker 1991, Clemen and Reilly 2001). The final result was
an assessment for each data row, provided by each expert,
of the probability of designated use attainment (0–100%);
this information is necessary to parameterize the models in
steps 3–5.

Because the expert assessment included multiple experts,
it was essential to combine the assessments into an aggre-
gate designated use value to use the expert judgment as a
response variable. After careful consideration of multiple
methods, such as Bayesian approaches and behavioral ap-
proaches, equal-weighted averaging was used because it is
extremely robust (Clemen and Winkler 1999). Furthermore,
to employ other techniques, it is essential to have additional
information to appropriately weight the relative value of one
expert versus another expert (Clemen and Winkler 1999).
Because this information was unavailable, the experts were
weighted equally.

Steps 3, 4, and 5: Structural equation modeling

Structural equation modeling (SEM) is a multivariate statis-
tical technique that can be used to describe linear relation-
ships among variables (Bollen 1989, Kline 1998, McCune
and Grace 2002, Grace 2006). The technique is a general
extension of multiple regression where the causal relation-
ships among the variables can be described with multiple lin-
ear equations that describe both direct and indirect effects
(Bollen 1989). Therefore, SEM is an excellent statistical
technique to use when conditions, such as eutrophication,
can be described through causal interactions that can be rep-
resented by the covariance between variables (Arhonditsis
et al. 2006, Grace 2006). The relative strength of these re-
lationships, regardless of the variable’s units and scale, are
described using standardized path coefficients. These val-
ues, similar to the coefficients in regression, can be used to
calculate both the direct and indirect effects (the total effects
being the sum of the direct and indirect effects).

SEM is an a priori method. By this we mean that a researcher
develops a model reflective of the background knowledge of
how the system works and then tests it with data. Therefore,
unlike other approaches, a researcher using SEM hopes to
accept the null hypothesis (Ho: data matches model) be-
cause this means the model is a plausible representation of
the system (McCune and Grace 2002). Rejection of the null
hypothesis indicates that the data do not support the model
structure. Specifically, an SEM fit is tested by minimizing
the difference, or residual, between the model-implied co-
variance matrix and the data-implied covariance structure
(McCune and Grace 2002).

Because no single test statistic can incorporate all the dif-
ferent facets of model fit, multiple test statistics were used
to determine the adequacy of the models. Four widely used
methods were applied to evaluate our models: χ2, Com-
parative Fit Index (CFI), Tucker-Lewis Index (TLI), and
Root Mean Square Error of Approximation (RMSEA; Kline
1998).

� The χ2statistic indicates whether or not the model, which
in SEM is by definition overidentified, differs statistically
from a just-identified version of the model; a nonsignifi-
cant model (accept the null hypothesis) would not differ
statistically as indicated by p-values >0.05.

� The CFI is a test statistic that signifies the overall pro-
portion of variance explained by the model; good fit is
indicated by a CFI > 0.9.

� The TLI adjusts for the proportion of explained variance,
and a model is considered to have good fit if the TLI >

0.9.
� The RMSEA is a model fit index that considers the

model’s residuals; an RMSEA < 0.1 indicates a satis-
factory model representation.

If one evaluates multiple models, and the test statistics in-
dicate that several models are plausible, it is reasonable to
compare the relative fit of the competing models by using
two model selection criteria, Akaike Information Criterion
(AIC) and Bayesian Information Criterion (BIC). Both ap-
proaches reward models that have both good fit and are
parsimonious; thus, models that include additional param-
eters that do not add additional information are penalized.
Smaller values of both of these information criteria indicate
preferred models.

The models were structured using the conceptual models
provided by the experts in part 1 of the expert elicitation
(step 2) and confirmed with literature descriptions of the
conditions causing eutrophication in south-central Florida.
The final models were a combination of multiple experts’
understanding of the relationships. The models were pa-
rameterized using the water quality data from the dataset
previously described and the designated use attainment data
from the expert elicitations. The models were then tested
using the SEM test statistics described above. The plausible
models were those that that satisfactorily performed on the
four model test statistics.

Steps 6: Probability of the risk of
non-attainment of the designated use

Using the results of SEM, one can construct plots of the
risk of nonattainment of the designated use. These plots
were developed by calculating the probability of designated
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Kenney et al.

use attainment given the range of the predictive variable(s),
keeping other variables constant. The calculated probability
of designated use reflects uncertainty in the elicited judg-
ments as well as natural variability and error in the water
quality dataset. Thus, decision-makers can use the plots, and
associated values, to determine criterion levels given their
risk of nonattainment of the designated use.

Results
Expert assessment

In the first part of the assessment, the experts provided their
translation of the designated use. Three of the expert (Ex-
perts 1, 3, and 4) interpretations focused on attainment be-
ing a full diversity of native aquatic life. The definition of
what was included within aquatic life differed, with one ex-
pert defining it as those fish and wildlife that live within
the water system (e.g., including birds, reptiles), one expert
agreeing with the previous expert and expanding it to also
include aquatic invertebrates, and one expert agreeing with
the previous two experts but additionally expanding the def-
inition to include native plants. The other expert (Expert 2)
had a different perspective and stated that the designated
use focuses on sport fish population and wildlife associated
with a healthy sport fish population. This study did not judge
whether one interpretation of the designated use was more
“right” than another. The experts also identified what they
felt were important indicators of eutrophication-related im-
pairments of the designated use; all experts stated that TP
and chlorophyll a were important predictors of designated
use attainment. The importance of other variables, such as
color, TN, and Secchi depth, varied among experts. The ex-
perts also supplied conceptual models of the conditions that
lead to eutrophication-related impairments in this region;
this information provided the starting point for structuring
the SEMs.

After learning how the experts interpreted the designated
use, in the second part of the elicitation they quantified the
probability of designated use attainment. To assess how sim-
ilarly the experts responded, each expert’s responses were
correlated against another expert’s responses. If the experts
responded exactly the same for all the data rows, the correla-
tion was 1; a moderate to high correlation (>0.5) is desirable
to demonstrate that the experts are approaching the probabil-
ity assessment similarly. Because each expert has different
expertise and experiences, some variation is expected, but
not extreme differences.

The results of the correlation table indicate that the degree
of expert correlation varied (Table 2). Specifically, Expert
1 and 3 were strongly correlated (0.74), while Expert 1
and 4 (0.46) and Expert 3 and 4 (0.57) were somewhat

Table 2.-Correlation of expert responses. Strong or moderate
correlations indicate that Experts 1, 3, and 4 were thinking similarly
about designated use attainment, as indicated by similar
responses to the probability assessment. Extremely low
correlations are highlighted in bold; Expert 2’s responses were not
correlated with any of the other experts.

Expert 1 Expert 2 Expert 3 Expert 4

Expert 1 1
Expert 2 −0.21 1
Expert 3 0.74 −0.22 1
Expert 4 0.46 −0.10 0.57 1

correlated. Finally, Expert 2 was negatively correlated with
the other three, indicating that this expert’s responses were
fundamentally different from the others. This difference is
largely reflective of Expert 2’s notably different definition
of the designated use stated earlier.

Because multiple experts were used, it was important to
combine the expert judgments. The largest benefit of having
multiple experts is the collection of data from a diversity
of sources of expertise; therefore, there should be a good
reason to weight experts unequally or to exclude an expert
from the dataset (Clemen and Winkler 1999). As a result,
one dataset was created that used all of the experts’ assess-
ments and combined their assessments using equal-weighted
averaging (Clemen and Winkler 1999). Because Expert 2’s
responses were notably different from the other three ex-
perts, a second dataset was developed that excluded Expert
2’s responses and combined the three experts’ responses
using equal-weighted averaging. By creating both of these
datasets, the authors could assess the sensitivity of the model
results.

Structural equation modeling

Of the tested models, two, Model 1 and 2, demonstrated
good fit. Model 1 is a simple nutrient criteria model (Fig. 2).
In the model, increased TP levels directly affect chlorophyll
a levels, describing the primary eutrophication process. Des-
ignated use attainment is directly affected by TP, chlorophyll
a, and Secchi depth. In the model, increased levels of TP
and chlorophyll a decreased the probability of designated
use attainment, whereas increased Secchi depth levels in-
creased the probability of designated use attainment. All
paths (similar to regression coefficients) in this model, ex-
cept for Secchi depth, are significant at p ≤ 0.05. Model
1 was tested both with the dataset that included all experts
(Fig. 2b) and with the dataset that excluded Expert 2 (Fig.
2a).

For the model that used the dataset that excluded Expert 2
(Fig. 2a), the Chi-squared test statistic (χ2 = 1.76; df = 1;
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Selecting nutrient criteria variables for Florida lakes

Figure 2.-Structural equation Model 1 for the Kissimmee Chain-of Lakes for (a) dataset without Expert 2, and (b) dataset with all the
experts. The values on the arrows are the standardized path coefficients and the values in rectangles are the R2 values. The χ2

(Chi-squared test statistic), df (degrees of freedom), and p-value refer to a model fit test statistic; p-values > 0.05 indicate good model fit.
In this model, the most predictive variables are total phosphorus and chlorophyll a.

p-value = 0.18) indicates that the model is a plausible repre-
sentation. The other tests of model fit, such as CFI (0.996),
TLI (0.98), and RMSEA (0.087), additionally provide sup-
port that the model is reasonable.

The standardized path coefficients in this model provide us
with information on the relative strength of the relationships,
regardless of the variable’s units and scale, across the vari-
ables. In this model (Fig. 2a), comparing the total effects
from the standardized path coefficients, the most predictive
variable is TP (direct effect = −0.51; indirect effect = 0.76∗

−0.36 = −0.27; total effect = −0.51 +−0.27 = −0.78);
the second most predictive variable is chlorophyll a (direct
effect = −0.36; indirect effect = 0; total effect = −0.36). In
comparison, the other paths provide much less explanation
of designated use attainment.

The R2 values for the model can be interpreted similarly
to multiple regression. In this model a modest amount of
variance is accounted for by chlorophyll a (0.58), whereas a
considerable proportion of variability is explained for des-
ignated use attainment (0.66).

Model 2 is a slightly more complex nutrient criteria model
(Fig. 3). In this model, increased levels of TP and Sec-
chi depth cause increased levels of chlorophyll a. Increased
chlorophyll a and color cause a decrease in Secchi depth.
Increased levels of TP and chlorophyll a decreases the likeli-
hood of designated use attainment; whereas, increased Sec-

chi depth levels increases the likelihood of designated use
attainment. All paths in this model, except for the path be-
tween Secchi depth and designated use, are significant at the
5% level. Similar to Model 1, Model 2 was tested both with
the dataset that included all experts (Fig. 3b) and with the
dataset that excluded Expert 2 (Fig. 3a). Color was added
to this model because allochthonous organic substances are
the primary driver of color and affect the Secchi depth and
trophic status (Canfield and Hodgson 1983).

For the model that used the dataset that excluded Expert 2
(Fig. 3a), the Chi-squared test statistic (χ2 = 2.37; df = 2;
p-value = 0.31) indicates that the model is reasonable. The
other tests of model fit, such as CFI (0.999), TLI (0.994),
and RMSEA (0.043), additionally provide support that the
model is a plausible representation. The interpretation of the
predictive variables and R2 values is similar to Model 1a.

For comparison sake, we also tested the models (Models
1b and 2b) with a designated use attainment dataset that
included all of the experts (Fig. 2b and 3b). Using the model
fit test statistics and the path coefficients, the results of the
models with the dataset of all experts, Model 1b and 2b,
were similar to their 1a and 2a counterparts. Of particular
note, the most predictive variables and direction of the path
coefficients remained the same. The main difference is the
value for the standardized path coefficients; because Expert
2’s responses were very different from the other experts, the
loss in the relative strength in the TP and chlorophyll a path
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Kenney et al.

Figure 3.-Structural equation Model 2 for the Kissimmee Chain-of Lakes for (a) dataset without Expert 2, and (b) dataset with all the
experts. The values on the arrows are the standardized path coefficients and the values in rectangles are the R2 values. The χ2

(Chi-squared test statistic), df (degrees of freedom), and p-value refer to a model fit test statistic; p-values > 0.05 indicate good model fit.
In this model, the most predictive variables are total phosphorus and chlorophyll a.

coefficients is likely a result of the inclusion of Expert 2’s
responses.

Comparing the models using AIC and BIC, Model 2a
(AIC = 606.4, BIC = 632.5; sample-size adjusted BIC =
600.9) outperforms Model 1a (AIC = 610.5, BIC = 626.2;
sample-size adjusted BIC = 607.2). Even though Model
1a has a lower BIC than Model 2a, Model 2a has a lower

sample-size adjusted BIC as well as a lower AIC, indicating
that Model 2 has better model fit. Overall, the differences
between the models are very slight, and both models indi-
cated that TP and chlorophyll a, in that order, are the most
predictive variables.

The model was applied to consider the probability of des-
ignated use attainment for various levels of the two most
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Selecting nutrient criteria variables for Florida lakes

Figure 4.-Three-dimensional surface of probability of designated use attainment for nutrient criteria, total phosphorus and chlorophyll a.
The average expert response is logit transformed, and the criteria levels are for the most likely range of summer values for both of these
variables.

predictive variables, TP and chlorophyll a. Using these vari-
ables, we considered appropriate candidate criterion levels
by plotting the variables against a logit transformation of the
average experts’ responses. The values of the other variables
were set to their mean values; this assumption means that
the uncertainty is understated because the full range of the
other variables was not considered. Given the model results,
the two candidate criteria (Fig. 4) and a single TP or chloro-
phyll a criterion (Fig. 5a and 5b) were plotted as candidate
criterion(a).

Values for TP and chlorophyll a were presented for a given
probability of designated use attainment, or the surface of the
probability of designated use attainment for TP and chloro-
phyll a (over a range of most-likely values of both variables),
conditional on Secchi depth remaining constant (Fig. 4). Us-
ing this graph, a decision-maker could determine his/her risk
of noncompliance of the designated use and assess which
levels of TP and chlorophyll a would lead to an acceptable
level of attainment.

Instead of considering a surface of potential values, one
could consider the same problem in two-dimensions for

TP (Fig. 5a) and chlorophyll a (Fig. 5b). For TP (Fig.
5a), the probability of designated use attainment remains
high when the TP levels are <0.015 mg/L and then dra-
matically decreases until it levels out at 10% or less at-
tainment of designated use when TP values are >0.05
mg/L.

For chlorophyll a (Fig. 5b), the figure exponentially decays
over the range of values. Therefore, the chlorophyll a val-
ues must be <5 µg/L to achieve a high (90% or greater)
attainment of the designated use; setting a chlorophyll a cri-
terion level at a value such as 30 µg/L would yield a 40%
attainment of the designated use. The three-dimensional sur-
face of the probability of designated use attainment (Fig. 4)
emerges from the combination of the exponentially declin-
ing chlorophyll a graph (Fig. 5b) and the reversed S-shaped
TP graphs (Fig. 5a).

Discussion
Given the variety of expertise, this range was captured by us-
ing multiple experts and then aggregating their assessments.
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Kenney et al.

Figure 5.-Two-dimensional graph of a probability of designated use attainment versus the candidate criterion, (a) total phosphorus, and
(b) chlorophyll a. Decision-makers can use such a graphic to determine the criterion level that will meet their risk of nonattainment of the
designated use.

The inherent variability in the experts’ responses, particu-
larly when one seeks and assesses such a diverse group of
experts as performed in this study, stresses the need to use
multiple experts.

The structural equation modeling results highlight that mul-
tiple plausible models can link eutrophication and desig-
nated use attainment; our study had two plausible models.
Because both of the models indicated that the same variables
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Selecting nutrient criteria variables for Florida lakes

were predictive of the designated use, TP and chlorophyll
a, the authors are confident that the results are appropriately
identifying the most predictive variables.

Additionally, using the model results, an analysis of the
risk of nonattainment of the designated use was presented
(Fig. 4 and 5). A decision-maker can use such informa-
tion to set a criterion level or criteria levels based on their
risk of nonattainment of the designated use. This is the key
difference between this method and the USEPA approach.
With the predictive approach to nutrient criteria, a decision-
maker(s) (advisor, state committee, agency, or legislature)
would determine what they believed was an acceptable prob-
ability of designated use attainment and then use the val-
ues on the graph (or associated results) to set the criterion
level.

Research directions underway include an extension of this
approach to a statewide assessment, with multiple ecore-
gions and multiple designated uses. Part of this research
team has also been involved in developing methods that
could provide a decision-maker with a specific nutrient cri-
terion level using his or her value tradeoff between water
quality and cost. This emerging method combines water
quality models with decision value models to determine the
optimal criterion level, thus maintaining the transparency
between scientific assessments and value judgments (Ken-
ney 2007).

Setting nutrient criteria that are truly predictive of
eutrophication-related designated use impairments is essen-
tial to properly identify, and then maintain or restore, the
desired uses of lakes and reservoirs. This study provides
important extensions to the predictive nutrient criteria ap-
proach, using a region of lakes and assessments from multi-
ple experts. Using the expanded approach presented in this
paper, states and tribes can now apply the method to other
regions to select nutrient criteria predictive of the designated
use.
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