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a b s t r a c t

Simple models have significant contribution to the development of ecological theory.

However, these minimalistic modeling approaches usually focus on a small subset of

the causes of a phenomenon and neglect important aspects of system dynamics. In this

study, we use a complex aquatic biogeochemical model to examine competition patterns

and structural shifts in the phytoplankton community under nutrient enrichment condi-

tions. Our model simulates multiple elemental cycles (org. C, N, P, Si, O), multiple func-

tional phytoplankton (diatoms, green algae and cyanobacteria) and zooplankton

(copepods and cladocerans) groups. It also takes into account recent advances in stoichio-

metric nutrient recycling theory, and the zooplankton grazing term is reformulated to in-

clude algal food quality effects on zooplankton assimilation efficiency. The model

provided a realistic platform to examine the functional properties (e.g., kinetics, growth

strategies, intracellular storage capacity) and the abiotic conditions (temperature, nutri-

ent loading) under which the different phytoplankton groups can dominate or can be

competitively excluded in oligo, meso and eutrophic environments. Based on the results

of our analysis, the intergroup variability in the minimum cell quota and maximum trans-

port rate at the cell surface for phosphorus along with the group-specific metabolic losses

can shape the structure of plankton communities. We also use classification tree analysis

to elucidate aspects (e.g., relative differences in the functional group properties, critical

values of the abiotic conditions, levels of the other plankton community residents) of

the complex interplay among physical, chemical and biological factors that drive epilim-

netic plankton dynamics. Finally, our study highlights the importance of improving the

mathematical representation of phytoplankton adaptive strategies for resources procure-

ment (e.g., regulation of transport kinetics, effects of transport kinetics on the kinetics of

assimilation, relationship between assimilation and growth) to effectively link variability

at the organismal level with ecosystem-scale patterns.

ª 2008 Elsevier Masson SAS. All rights reserved.
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‘‘.It is far harder, though essential, to delineate when and

where the resource competition is important, and the pat-

terns of species composition and characteristics that re-

sult.The complexity of the tasks involved ensures that

delays and dead ends will be encountered, but if the route

to knowledge is circuitous, that should not discourage us

from setting out on the journey’’ (Grover, 1997).
1. Introduction

Unravelling patterns and mechanisms that underlie phyto-

plankton communities is a popular area of research for exper-

imental as well as theoretical ecologists. Although the key

topics (species richness, stability and succession, trait selec-

tion, organizational resilience) pertaining to phytoplankton

assemblages are no different from those impinging upon

other natural communities, the operational time scales (e.g.,

typical generation times of algae) are significantly shorter

(Scheffer et al., 2003; Reynolds, 2006). In particular, Reynolds

(1993) points out that the plankton succession sequences ac-

commodated between two winters are comparable to the

number of generations that have occurred since the Weichse-

lian glaciation period in temperate forests. Hence, the spatio-

temporal phytoplankton patterns are more discernible for

a human observer and can be used to derive assembly rules

or – at least – to gain insights into other ecological communi-

ties (Reynolds, 2006). A characteristic example is the study of

the high species richness in phytoplankton communities for

eliciting conceptual paradigms that can be used for under-

standing the driving forces of diversity in biological systems

(Lawton, 1997). Namely, one of the most puzzling questions

in ecology has been the so-called ‘‘paradox of plankton’’; the

violation of Hardin’s (1960) principle of competitive exclusion

from the phytoplankton communities in which a large num-

ber of species can be competing for essentially the same lim-

iting resources (light, nitrogen, phosphorus, silicon, iron,

inorganic carbon, and few trace metals or vitamins) in an ap-

parently homogeneous environment.

In a seminal paper, Hutchinson (1961) offered a first expla-

nation to the plankton paradox by pinpointing the continuous

variation in environmental conditions as the most obvious

factor that induces non-equilibrium phytoplankton dynam-

ics. Since that time, there have been several attempts to cir-

cumvent the competitive exclusion principle and to explain

the species diversity of planktonic communities. The various

arguments invoked can be classified into three main cate-

gories: (i) food-web interactions favour species coexistence,

e.g., the interacting fluctuations of algae, consumers and

other higher predators contribute to the maintenance of di-

versity (Paine, 1966; Hastings and Powell, 1991; Heaney et al.,

1988; Boersma, 1995); (ii) resource-based competition entails

tradeoffs, growth strategies (e.g., gleaners, opportunists, stor-

age specialists) and internal responses to resource availability

that lead to multispecies coexistence (Tilman, 1982; Grover,

1997); and (iii) the spatiotemporal variability, e.g., the regular

annual cycle driven by the gradual change of temperature

and light during the year (Sommer et al., 1986) or even the

small-scale, spatial heterogeneity generated by chaotic advec-

tion (Karolyi et al., 2000), promotes diversity. Moreover, the
effects of this complex interplay among physical, chemical,

and biological factors on the phytoplankton community com-

position can be further altered by climatic perturbations such

as droughts, hurricanes and floods (Padisak et al., 1993). The

latter mechanism commonly referred to as disturbance can

induce community restructuring or can impede succession

sequences from achieving equilibrium conditions and is

thought to be important in keeping algal communities diverse

and dynamic (Reynolds, 1993; Litchman, 1998; Floder and

Sommer, 1999).

Despite the stunning complexity of phytoplankton dynam-

ics, much of our current understanding has been based on

simple models describing food-web interactions with few dif-

ferential equations. These minimalistic modeling structures

focus on one of the several possible causes of a phenomenon

and can generate hypotheses that would not easily be

achieved intuitively (e.g., Doveri et al., 1993; Huisman et al.,

1999). From a mathematical standpoint, they consist of low-

dimensional parameter vectors and (under some conditions)

allow for analytical solutions that make it easy to explore their

behaviour (Kuznetsov, 1995; Franks, 2002). On the other hand,

the adequacy of these simplistic approaches for reproducing

real-world dynamics has frequently been challenged (Van

Nes and Scheffer, 2005; Flynn, 2005, 2006; Le Quere, 2006).

For example, aside from the traditional criticism of being

crude oversimplifications with arbitrarily set levels of abstrac-

tion, Flynn (2005) recently questioned the validity of some of

the assumptions made from the typical nutrient–phytoplank-

ton–zooplankton (NPZ) models. The same study also high-

lighted the dysfunctionality of the simpler models and

attributed part of their success to the fact that ‘‘two (or

more) wrongs do sometimes make a right’’. Likewise, Le Quere

(2006) contended that the current models of planktonic sys-

tems are far behind our theoretical understanding. Although

the line between what is unwanted detail and what is unjus-

tified simplification is still unclear, the aquatic ecosystem

modeling community seems to be reaching a consensus

with regards to the need of attaining more articulated models

for further advancing ecological theory (Van Nes and Scheffer,

2005). There is a pressing demand for developing models that

more effectively depict the wide array of direct and synergistic

effects (trophic functionality, allelopathy, omnivory, food

quality effects on trophic interactions) underlying plankton

dynamics (Flynn, 2006).

Sober views in the literature still raise concerns about the

dire ramifications of the increasing complexity and advice to

seek parsimony rather than simplicity in modeling (Simon,

2001; Anderson, 2005). To address this controversy (simple

versus complex models), there are recent attempts to bring

the two worlds closer and propose strategies for improving

our understanding of the way complex models generate

their results (see the ‘‘scrutinize–simplify–synthesize’’

framework in Van Nes and Scheffer, 2005). In this regard,

we present the integration of a complex aquatic biogeo-

chemical model with a Monte Carlo type analysis to examine

competition patterns and structural shifts in the phyto-

plankton community under a wide range of enrichment con-

ditions. Our model simulates multiple elemental cycles (org.

C, N, P, Si, O), multiple functional phytoplankton (diatoms,

green algae and cyanobacteria) and zooplankton (copepods



a c t a o e c o l o g i c a 3 3 ( 2 0 0 8 ) 3 2 4 – 3 4 4326
and cladocerans) groups. The model provides a realistic

means for examining the functional properties (e.g., kinetics,

growth strategies, intracellular storage capacity) and the abi-

otic conditions (temperature, nutrient loading) under which

the different phytoplankton groups can dominate or can be

competitively excluded in oligo, meso and eutrophic envi-

ronments. The probabilistic treatment of the input vector

(e.g., model parameters, forcing functions) of our complex

model provides the means for unravelling statistically signif-

icant patterns and gaining insights into the mechanisms

shaping phytoplankton communities. Finally, we critically

discuss the validity of some of the typically utilized formula-

tions of phytoplankton resource competition strategies and

underscore the need for improving their mathematical

representation.
2. Methods

2.1. Aquatic biogeochemical model

2.1.1. Model description
The spatial structure of the model consists of two compart-

ments representing the epilimnion (upper layer) and hypo-

limnion (lower layer) of a lake. The model simulates five

biogeochemical cycles, i.e., organic carbon, nitrogen, phos-

phorus, silica and dissolved oxygen. The particulate phase

of the elements is represented from the state variables par-

ticulate organic carbon, particulate organic nitrogen, particu-

late organic phosphorus, and particulate silica. The dissolved

phase fractions comprise the dissolved organic (carbon, ni-

trogen, and phosphorus) and inorganic (nitrate, ammonium,

phosphate, silica, and oxygen) forms involved in the five ele-

mental cycles. The major sources and sinks of the particulate

forms include plankton basal metabolism, egestion of excess

particulate matter during zooplankton feeding, settling to

hypolimnion or sediment, bacterial-mediated dissolution,

external loading, and loss with outflow. Similar processes

govern the levels of the dissolved organic and inorganic

forms along with the bacterial mineralization and the verti-

cal diffusive transport. The model also explicitly simulates

denitrification, nitrification, heterotrophic respiration, and

the water column–sediment exchanges. The external forcing

encompasses river inflows, precipitation, evaporation, solar

radiation, water temperature, and nutrient loading. The ref-

erence conditions for our Monte Carlo analysis correspond

to the average epilimnetic/hypolimnetic temperature, solar

radiation, and vertical diffusive mixing in Lake Washington

(Arhonditsis and Brett, 2005a,b; Brett et al., 2005). Similar

strategy was also followed with regards to the reference con-

ditions for the hydraulic and nutrient loading. Specifically,

the hydraulic renewal rate in our hypothetical system was

0.384 year�1, the fluvial and atmospheric total nitrogen in-

puts were 1114� 103 kg year�1, and nitrate and ammonium

loading supplies were 561 and 34� 103 kg year�1, respec-

tively. The exogenous total phosphorus loading contributed

approximately 74.9� 103 kg year�1, while 23.9 and

17.3� 103 kg year�1 were entering the system as dissolved

phosphorus and phosphate. In our analysis, the average in-

put nutrient concentrations for the oligo, meso, and
eutrophic environments corresponded to 50 (484 mg TN/L

and 32.5 mg TP/L), 100 (967 mg TN/L and 65 mg TP/L), and 200%

(1934 mg TN/L and 130 mg TP/L) of the reference conditions,

respectively. Detailed model description has been provided

in Arhonditsis and Brett (2005a); thus, our focus here is on

the model equations pertaining to phytoplankton dynamics

(Table 1).

The phytoplankton production and losses are governed by

growth, basal metabolism, herbivorous zooplankton grazing,

settling to sediment or hypolimnion, epilimnion/hypolimnion

diffusion exchanges, and outflow losses. Nutrient, light, and

temperature effects on phytoplankton growth are considered

using a multiplicative model (Jorgensen and Bendoricchio,

2001). Phytoplankton growth temperature dependence

( ftemperature) has an optimum level (Topt) and is modelled by

a function similar to a Gaussian probability curve (Cerco and

Cole, 1994):

ftemperature ¼ exp
�
� KTgr1

�
Topt � T

�2
�

when T � Topt

¼ exp
�
� KTgr2

�
T� Topt

�2
�

when T > Topt (1)

We used a fairly simple mathematical model to describe the

effects of nutrient limitation on phytoplankton growth

( fnutrient), which has conceptual similarities to Grover’s

(1991) variable-internal-stores (VIS) model. Phosphorus and

nitrogen dynamics within the phytoplankton cells account

for luxury uptake, and phytoplankton uptake rates depend

on both intracellular and extracellular nutrient concentra-

tions (Schladow and Hamilton, 1997; Arhonditsis et al., 2002).

fnutrient ¼min

�
N�Nmin

Nmax �Nmin
;

P� Pmin

Pmax � Pmin

�
(2)

dN
dt
¼ NupNfb � growth�N

dP
dt
¼ PupPfb � growth� P (3)

growth ¼ growthmax fnutrient flight ftemperature (4)

Nup ¼ Nupmax
DIN

DINþ KN
Pup ¼ Pupmax

PO4

PO4 þ KP
(5)

Nfb ¼
Nmax �N

Nmax �Nmin
Pfb ¼

Pmax � P
Pmax � Pmin

(6)

where N, P represent the intracellular nitrogen (mg N mg C�1)

and phosphorus (mg P mg C�1) levels, DIN and PO4 correspond

to dissolved inorganic nitrogen (mg N m�3) and phosphate

(mg P m�3) concentrations in the water column. Silica limita-

tion on diatom growth is also accounted for by a similar sub-

model, while the inorganic carbon required for algal growth is

assumed to be in excess and therefore is not considered by the

model.

Amongst the variety of mathematical formulations relat-

ing photosynthesis and light intensities (Jassby and Platt,



Table 1 – Definitions and statistical distributions assigned to 14 model parameters pertaining to phytoplankton dynamics

Model parameter Symbol Unit
measurement

Diatoms Green Algae Cyanobacteria Sources

Maximum growth rate growthmax day�1 N(2.2, 0.092) N(1.8, 0.132) N(1.2, 0.132) Reynolds (2006), Jorgensen et al. (1991), Cerco and Cole (1994 and references

therein), Hamilton and Schladow (1997 and references therein), Omlin et al.

(2001), Chen et al. (2002 and references therein), Arhonditsis and Brett (2005a)

Basal metabolism rate bmref day�1 N(0.10, 0.0172) N(0.08, 0.0092) N(0.08, 0.0092) Reynolds (2006), Jorgensen et al. (1991), Cerco and Cole (1994 and references

therein), Hamilton and Schladow (1997 and references therein), Omlin et al.

(2001), Arhonditsis and Brett (2005a)

Half-saturation constant

for nitrogen uptake

KN mg N m�3 N(65, 4.32) N(45, 4.32) N(25, 4.32) Reynolds (2006), Jorgensen et al. (1991), Cerco and Cole (1994 and references

therein), Hamilton and Schladow (1997 and references therein), Arhonditsis

and Brett (2005a)

Half-saturation constant

for phosphorus uptake

KP mg P m�3 N(6, 0.92) N(10, 0.92) N(18, 2.12) Reynolds (2006), Jorgensen et al. (1991), Cerco and Cole (1994 and references

therein), Hamilton and Schladow (1997 and references therein), Omlin et al.

(2001), Chen et al. (2002 and references therein), Arhonditsis and Brett (2005a)

Light attenuation coefficient

for chlorophyll

KEXTchla m2 mg chla�1 N(0.02, 0.0042) N(0.02, 0.0042) N(0.05, 0.0092) Hamilton and Schladow (1997 and references therein), Arhonditsis and

Brett (2005a)

Settling velocity Vsettling m day�1 N(0.35, 0.0302) N(0.20, 0.0522) N(0.02, 0.0042) Reynolds (2006), Cerco and Cole (1994 and references therein), Arhonditsis

and Brett (2005a), Sandgren (1991), Wetzel (2001)

Maximum nitrogen

uptake rate

Nupmax mg N mg C�1 day�1 N(0.08, 0.0092) N(0.12, 0.0092) N(0.16, 0.0092) Jorgensen et al. (1991), Hamilton and Schladow (1997 and references therein),

Arhonditsis and Brett (2005a)

Maximum intracellular

nitrogen quota

Nmax mg N mg C�1 N(0.20, 0.022) N(0.20, 0.022) N(0.20, 0.022) Jorgensen et al. (1991), Hamilton and Schladow (1997 and references therein),

Arhonditsis and Brett (2005a)

Minimum intracellular

nitrogen quota

Nmin mg N mg C�1 N(0.055, 0.0112) N(0.055, 0.0112) N(0.055, 0.0112) Jorgensen et al. (1991), Hamilton and Schladow (1997 and references therein),

Arhonditsis and Brett (2005a)

Maximum phosphorus

uptake rate

Pupmax mg P mg C�1 day�1 N(0.013, 0.0012) N(0.010, 0.0012) N(0.007, 0.0012) Jorgensen et al. (1991), Hamilton and Schladow (1997 and references therein),

Arhonditsis and Brett (2005a)

Maximum intracellular

phosphorus quota

Pmax mg P mg C�1 N(0.029, 0.0032) N(0.029, 0.0032) N(0.029, 0.0032) Jorgensen et al. (1991), Hamilton and Schladow (1997 and references therein),

Arhonditsis and Brett (2005a)

Minimum intracellular

phosphorus quota

Pmin mg P mg C�1 N(0.009, 0.0032) N(0.009, 0.0032) N(0.009, 0.0032) Jorgensen et al. (1991), Hamilton and Schladow (1997 and references therein),

Arhonditsis and Brett (2005a)

Effect of temperature below

optimal temperature

KTgr1 C��2 U(0.0035, 0.0045) U(0.0045, 0.0055) U(0.0055, 0.0065) Reynolds (2006), Jorgensen et al. (1991), Cerco and Cole (1994 and references

therein), Omlin et al. (2001), Arhonditsis and Brett (2005a)

Effect of temperature above

optimal temperature

KTgr2 C��2 U(0.0035, 0.0045) U(0.0045, 0.0055) U(0.0055, 0.0065) Reynolds (2006), Jorgensen et al. (1991), Cerco and Cole (1994 and references

therein), Omlin et al. (2001), Arhonditsis and Brett (2005a)
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1976), we used Steele’s equation along with Beer’s law to scale

photosynthetically active radiation to depth ( flight):

flight ¼
2:718� FD

KEXT � depth
ðexpðaÞ � expðbÞÞ

a ¼ � Idt

FD� Iopt
expð � KEXT � ðZDþ depthÞÞ

b ¼ � Idt

FD� Iopt
expð�KEXT � ZDÞ ð7Þ

KEXT ¼ IOðKEXTback þ KEXTchlachlaÞ (8)
Fig. 1 – Monte Carlo analysis of the aquatic biogeochemical mo

nutrient loading, solar radiation, epilimnion temperature, hypo

mixing) and physiological properties (i.e., growth and storage s

kinetics, light and temperature requirements, and settling velo
Iopt ¼ ð0:7� Idt þ 0:2� Idt�1 þ 0:1� Idt�2Þ exp
�
� KEXT � Dopt

�
(9)

where KEXT represents the extinction coefficient (m�1) deter-

mined as the sum of the background light attenuation and at-

tenuation due to chlorophyll a; depth represents the

epilimnion/hypolimnion depth (m); FD is the fractional day

length (0� FD� 1); ZD is the distance from water surface to

top of the model segment (m); Idt represents the daily illumi-

nation at water surface and model day t (Langleys day�1); Iopt

represents the optimal illumination (Langleys day�1) which

considers physiological adaptations by phytoplankton based

on light levels during the two preceding model days Idt�1 and
del. The input vector consists of forcing functions (i.e.,

limnion temperature, and epilimnion/hypolimnion vertical

trategies, basal metabolism, nitrogen and phosphorus

city) of the three phytoplankton functional groups.



a c t a o e c o l o g i c a 3 3 ( 2 0 0 8 ) 3 2 4 – 3 4 4 329
Idt�2 (Ferris and Christian, 1991; Cerco and Cole, 1994); chla is

the total phytoplankton biomass expressed as chlorophyll

a concentration (mg L�1); Dopt is the depth of maximum phyto-

plankton production (m); and IO represents the effects of light

attenuation on the growth of the different phytoplankton

groups. The latter parameter was not included in our Monte

Carlo analysis, and for this presentation we used the values

of the calibration vector of the model application in Lake

Washington, i.e., IO(diat)¼ IO(greens)¼ 1 IO(cyan)¼ 0.6. Finally,

phytoplankton basal metabolism is assumed to increase ex-

ponentially with temperature and corresponds to all the inter-

nal processes that decrease algal biomass (e.g., respiration

and excretion) as well as natural mortality.

The three phytoplankton functional groups (diatoms,

green algae, and cyanobacteria) differ with regards to their

strategies for resource competition (nitrogen, phosphorus,

light, temperature) and metabolic rates as well as their mor-

phological features (settling velocity, shading effects). Dia-

toms are modelled as r-selected organisms with high

maximum growth rates and higher metabolic losses, strong

phosphorus and weak nitrogen competitors, lower tolerance

to low light availability, low temperature optima, silica re-

quirements, and high sinking velocities. By contrast, cyano-

bacteria are modelled as K-strategists with low maximum

growth and metabolic rates, weak P and strong N competitors,

higher tolerance to low light availability, low settling veloci-

ties, high temperature optima, and higher shading effects

(i.e., filamentous cyanobacteria). The parameterization of

the third functional group (labelled as ‘‘Green Algae’’) aimed

to provide an intermediate competitor and more realistically

depict the continuum between diatom- and cyanobacteria-
Table 2 – Monte Carlo analysis of the model in three trophic st

PO4
(mg L�1)

TP
(mg L�1)

DIN
(mg L�1)

TN
(mg L�1)

TN/TP chla
(mg L�1) (

Oligotrophic

Mean 5.2 11.2 206 304 27.4 2.1

Median 5.1 11.1 207 303 27.2 2.1

Int. range 1.4 1.8 16 16 3.8 0.4

Min 2.1 7.1 151 271 19.9 1.3

Max 10.0 16.5 244 334 40.4 3.4

Mesotrophic

Mean 8.3 17.4 238 386 22.6 2.7

Median 7.9 17.1 237 385 22.5 2.7

Int. range 2.2 2.7 19 18 3.1 0.4

Min 3.4 10.8 180 349 10.6 0.7

Max 36.3 43.8 365 472 33.7 4.0

Eutrophic

Mean 15.0 30.8 316 556 18.3 3.6

Median 14.8 30.6 316 556 18.2 3.6

Int. range 3.9 5.1 23 22 2.6 0.4

Min 6.1 18.2 259 506 12.7 2.6

Max 29.4 47.5 393 621 28.7 4.9

Summary statistics of the average annual values of the phosphate (PO4), to

(TN), ratio of total nitrogen to total phosphorus (TN/TP), chlorophyll a (chl

mass (CYB), cladoceran biomass (CLB), and copepod biomass (COB).

Mean: average value; Int. range: interquartile range (difference between th

value; Min: minimum value.
dominated communities in our numerical experiments. In ad-

dition, the three phytoplankton groups differ with respect to

the feeding preference and food quality for herbivorous zoo-

plankton. We also note the similar distributions assigned to

the nutrient quotas of the three phytoplankton groups along

with the negative relationship assumed between the maxi-

mum rate of nutrient transport at the cell surface and the

half-saturation constant for the same nutrient.

The herbivorous zooplankton community consists of two

functional groups, i.e., cladocerans and copepods, and their

biomass is controlled by growth, basal metabolism, higher pre-

dation, and outflow loss. The zooplankton grazing term explic-

itly considers algal food quality effects on zooplankton

assimilation efficiency, and also takes into account recent ad-

vances in stoichiometric nutrient recycling theory (Arhonditsis

and Brett, 2005a). The two herbivores modelled differ with

regards to their grazing rates, food preferences, selectivity strat-

egies, elemental somatic ratios, vulnerability to predators, and

temperature requirements (Arhonditsis and Brett, 2005a,b).

These differences drive their successional patterns along with

their interactions with the phytoplankton community.

2.1.2. Model application
Our Monte Carlo analysis examines the functional properties

(e.g., kinetics, growth strategies, and intracellular storage ca-

pacity) and the abiotic conditions (temperature, solar radia-

tion, nutrient loading) under which the different

phytoplankton groups can dominate or can be competitively

excluded in oligo, meso and eutrophic environments (Fig. 1).

Based on the previous characterization of the three functional

groups, we assigned probability distributions that reflect our
ates

DB
mg chla L�1)

GB
(mg chla L�1)

CYB
(mg chla L�1)

CLB
(mg C L�1)

COB
(mg C L�1)

1.4 0.6 0.1 26.1 18.7

1.5 0.5 0.0 25.9 18.4

0.4 0.5 0.1 4.8 5.7

0.1 0.0 0.0 14.4 7.2

2.4 2.0 2.2 46.2 39.4

1.7 0.8 0.2 37.3 31.4

1.7 0.8 0.1 37.3 31.3

0.4 0.6 0.3 5.5 7.7

0.0 0.0 0.0 9.0 3.6

2.7 2.2 2.2 56.8 55.4

1.9 1.2 0.5 57.2 53.1

1.9 1.2 0.5 56.9 52.5

0.5 0.5 0.5 7.4 11.1

0.4 0.0 0.0 41.7 30.3

2.9 2.5 2.6 81.0 82.8

tal phosphorus (TP), dissolved inorganic nitrogen (DIN), total nitrogen

a), diatom biomass (DB), green algae biomass (GB), cyanobacteria bio-

e 75th and 25th percentiles); Median: median value; Max: maximum
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knowledge (field observations, laboratory studies, literature in-

formation and expert judgment) on the relative plausibility of

their growth and storage strategies, basal metabolism, nitro-

gen and phosphorus kinetics, light and temperature require-

ments, and settling velocity (Table 1). In this study, we used

the following protocol to formulate the parameter distribu-

tions: (i) we identified the global (not the group-specific) mini-

mum and maximum values for each parameter from the

pertinent literature; (ii) we partitioned the original parameter

space into three subregions reflecting the functional properties

of the phytoplankton groups; and then (iii) we assigned normal

or uniform distributions parameterized such that 95–99% of

their values were lying within the identified ranges. The

group-specific parameter spaces were also based on the cali-

bration vector presented during the model application in

Lake Washington (see Appendix II in Arhonditsis and Brett,
Fig. 2 – Seasonal variability of three phytoplankton functional g

a trophic gradient. Solid lines correspond to monthly median b

97.5th percentiles of the Monte Carlo runs.
2005a). For example, the identified range for the maximum

phytoplankton growth rate was 0.9–2.4 day�1, while the three

subspaces were 2.2� 0.2 day�1 for diatoms (calibration val-

ue� literature range), 1.8� 0.3 day�1 for greens and

1.2� 0.3 day�1 for cyanobacteria. We then assigned normal

distributions formulated such that 98% of their values were ly-

ing within the specified ranges. We also induced perturbations

of the reference abiotic conditions, uniformly sampled from

the range �20%, to accommodate the interannual variability

pertaining to nutrient loading, solar radiation, epilimnetic/

hypolimnetic temperature, and vertical diffusion. In a similar

manner, we incorporated daily noise representing the intra-

annual abiotic variability (Arhonditsis and Brett, 2005b). For

each trophic state, we generated 7000 input vectors indepen-

dently sampled from 47 (3� 14 model parameters and five

forcing functions) probability distributions, which then were
roups (diatoms, green algae, and cyanobacteria) across

iomass values; dashed lines correspond to the 2.5th and



Fig. 2 – (continued).
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used to run the model for 10 years. Finally, we generated three

(7000� 12� 9) output matrices that comprised the average

monthly epilimnetic values for the five plankton functional

group biomass, dissolved inorganic nitrogen (DIN), total nitro-

gen (TN), phosphate (PO4), and total phosphorus (TP) concen-

trations in the oligo, meso, and eutrophic environments.

2.2. Statistical methods

2.2.1. Principal component analysis and multiple linear
regression models
Principal component analysis (PCA), a data reduction and

structure detection technique (Legendre and Legendre, 1998),

was applied for identifying different modes of intra-annual

variability (Jassby, 1999; Arhonditsis et al., 2004). The basic ra-

tionale behind this application of PCA is that different phases

of the intra-annual cycle may be regulated by distinct mecha-

nisms and may therefore behave independently of each other,

thereby impeding identification of clear cause–effect relation-

ships (Jassby, 1999). For each phytoplankton functional group,

the monthly biomass matrix of 12 columns (months of the

year) and 7000 rows (output data sets) was formed at each tro-

phic state; each row began with January until December. PCA

was used to unravel the number of independent modes of bio-

mass variability, and the months of year in which they were

most important (component coefficients). Principal compo-

nents (PCs) were estimated by singular value decomposition

of the covariance matrix of the data. The selection of signifi-

cant PCs was based on the Kaiser criterion, i.e., we retained

only PCs with eigenvalues greater than 1. The significant

modes were rotated using the normalized varimax strategy
to calculate the new component coefficients (Richman,

1986). We then developed multiple linear regression models

within the resultant seasonal modes of variability, whereas

when a pair functional group-trophic state did not result in

the extraction of significant PCs the multiple regression anal-

ysis was conducted for each month. We employed a forward-

stepwise parameter selection scheme using as predictors the

functional properties and abiotic conditions considered in

our Monte Carlo analysis.

2.2.2. Classification trees
Classification trees were used to predict responses on a categor-

ical dependent variable (i.e., phytoplankton functional groups)

based on one or more independent predictor variables (i.e.,

model parameters, forcing functions), without specifying a pri-

ori the form of their interactions (Breiman et al., 1984; De’ath

and Fabricius, 2000). For each functional group, we considered

the July average biomass classified by lumping every 25 mg C L�1

(z0.5 mg chla L�1) as one class (e.g., 0–25, 25–50, and so on) to

convert continuous biomass data to categorical data. The pre-

dictor variables consisted of the group-specific model parame-

ters, the abiotic conditions, and the levels of the rest state

variables in July. The outputs from the three nutrient loading

scenarios were combined to obtain a matrix of 21,000 rows

for the classification tree analysis. During the analysis, the al-

gorithm began with the root (or parent) node, which corre-

sponded to the original categorical data for each

phytoplankton functional group. The data were split into in-

creasingly homogeneous subsets with binary recursive parti-

tioning and examination of all possible splits for each

predictor variable at each node, until the Gini measure of
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node impurity was below a pre-specified baseline (Breiman

et al., 1984). The stopping rule for the analysis was that the

terminal nodes (also known as leaves in the tree analogy)

should not contain more cases than 5% of the size of each class.

The final classification trees represented a hierarchical struc-

ture (shown as dendrograms) depicting the interplay among

physical, chemical and biological factors that drives structural

shifts in phytoplankton communities, i.e., different levels of

each phytoplankton functional group (nodes) were associated

with threshold values of its physiological features (e.g., kinet-

ics, growth strategies, metabolic rates) along with critical levels

of the abiotic conditions and the other phytoplankton compet-

itors or zooplankton consumers (splitting conditions).
3. Results

3.1. Statistical results of the Monte Carlo analysis

The summary statistics of the major limnological variables in

the three trophic states, as derived from averaging the model

endpoints over the 10-year simulation period, are given in

Table 2. The average annual phosphate (PO4) and total phos-

phorus (TP) concentrations dramatically increase by nearly

180% from the oligotrophic to the eutrophic environment,

whereas the corresponding dissolved inorganic nitrogen

(DIN) and total nitrogen (TN) increase was relatively lower

(�85%). The total nitrogen to total phosphorus ratio (TN/TP)

supports stoichiometric predictions of phosphorus limitations

in the three environments. However, the transition from the

oligotrophic to the eutrophic state is associated with a relaxa-

tion of the phosphorus limitation as the TN/TP declines from

27.4 to 18.3; in fact, the latter environment lies close to the di-

chotomy boundary (Redfield ratio 16:1) between phosphorus

and nitrogen limitation while several Monte Carlo simulations

represented nitrogen-limiting conditions (see reported ranges

in Table 1). In general, the phytoplankton biomass shows an

increasing trend in response to the nutrient enrichment. Chlo-

rophyll a concentrations increase from 2.1 to 2.7 and eventu-

ally to 3.6 mg chla L�1. Diatoms possess superior phosphorus

kinetics and therefore consistently dominate the phytoplank-

ton community, accounting for 68, 62, and 52% of the total

phytoplankton biomass at the three trophic states, respec-

tively. Being the intermediate competitors, green algae con-

tribute approximately 30% to the composition of

phytoplankton, whereas the cyanobacteria proportion was

relatively low (�15%) due to their phosphorus competitive

handicap. In response to the phytoplankton biomass increase,

the biomass of the two zooplankton groups progressively rises

across the three trophic states, i.e., cladocerans and copepods

demonstrated a twofold (from 26.1 to 57.2 mg C L�1) and three-

fold (from 18.7 to 53.1 mg C L�1) increase, respectively.

The seasonal variability of the three phytoplankton groups

offers insights into the competition patterns in the three tro-

phic environments (Fig. 2). The diatoms clearly dominate the

spring bloom when their median monthly biomass varies

from 2.7 to 3.3 mg chla L�1. In the summer-stratified period,

the diatoms also dominate the phytoplankton community, ac-

counting for 64, 57, and 49% of the total phytoplankton bio-

mass in the three states, respectively. Interestingly, the
eutrophic environment favours the development of a second-

ary late summer diatom bloom (z2 mg chla L�1). The seasonal

patterns of the green algae are characterized by a distinct late

spring–early summer increase, whereas the cyanobacteria

median monthly levels remain very low (<0.2 mg chla L�1)

throughout the annual cycle in the oligo and mesotrophic en-

vironments. The only exception was the eutrophic state in

which the relaxation of the phosphorus limitation allows fre-

quent exceedances of the 1.0 mg chla L�1 level, and the median

values remain within the 0.5–1.0 mg chla L�1 range for most of

the summer-stratified period. Another notable result is the

‘‘symmetrical’’ within-month variability of the diatoms and

green algae (meso and eutrophic states), as indicated from

the equidistant location of the monthly median relative to

the 2.5th and 97.5th percentiles. In contrast, the cyanobacteria

monthly variability is positively skewed, i.e., the mass of the

distribution is concentrated on the abscissa and the elongated

tail represents Monte Carlo simulations in which cyanobacte-

ria gained competitive advantages and built-up their biomass.

3.2. Principal component analysis and multiple linear
regression models

The PCA revealed the existence of distinct modes of variability

characterizing the diatom temporal patterns (Fig. 3). In the ol-

igotrophic environment, the first mode of variability repre-

sents the period when the lake is vertically homogeneous

(January–March and November–December), and the second

mode covers the period from the onset of stratification until

the time when stratification begins to erode (April–October).

Despite minor variations with regards to the loadings of the

different months, these seasonal modes also characterize

the diatom patterns in the meso and eutrophic environments.

Moreover, as the external nutrient loading increases, a third

significant mode is extracted, mainly associated with the dia-

tom biomass variability in May, i.e., the period when the max-

imum and subsequent collapse of the spring bloom occurs,

and the system enters a transient phase until the establish-

ment of the summer stratification. Aside from the green algae

in the eutrophic environment, the PCA application did not

identify more than one significant PCs pertaining to the in-

tra-annual variability of the other two functional groups.

The regression analysis intended to unveil the basic mech-

anisms that underlie the seasonal modes of diatom variabil-

ity, using as predictor variables the phytoplankton

functional properties and the abiotic conditions considered

in our Monte Carlo analysis (Table 3). For each model, we pres-

ent the five most significant predictors based on the absolute

values of the standardized regression coefficients (jbj). The di-

atom basal metabolism rate (bmref (D)) is overwhelmingly the

most influential parameter on the diatom variability during

the cold period of the year (jbj> 0.880). The maximum diatom

growth rate (growthmax (D)) is another significant parameter

positively related to the diatom biomass (jbj> 0.220). During

the non-stratified period, the diatom biomass levels are also

dependent on the values assigned to their maximum intracel-

lular phosphorus quota (Pmax (D)) and maximum phosphorus

uptake rate (Pupmax (D)). Interestingly, being the inferior nitro-

gen competitors among the three phytoplankton groups, dia-

toms are also sensitive to the maximum nitrogen uptake rate



Fig. 3 – Rotated component coefficients for the principal components of diatom biomass across a trophic gradient.
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(Nupmax (D), jbj ¼ 0.220) and the maximum internal nitrogen

(Nmax (D), jbj ¼ 0.150) in the eutrophic environment. The sec-

ond seasonal mode (i.e., stratified period) is mainly driven by

the minimum diatom phosphorus quota (Pmin (D)), as the
importance of the negative relationship between diatom bio-

mass and Pmin (D) was consistently highlighted at the three

trophic states (jbj> 0.500). The high jbj values of the maximum

phosphorus uptake rate for the green algae (Pupmax (G)> 0.200)



Table 3 – Multiple regression models developed for examining the most influential factors (plankton functional properties
and abiotic conditions) associated with diatom biomass in three trophic states

Oligotrophic

First mode (r2¼ 0.949) jbj Second mode (r2¼ 0.880) jbj

bmref (D)a 0.820 Pmin (D)a 0.738

Tepi 0.231 Pupmax (G)a 0.225

growthmax (D) 0.225 Tepi
a 0.221

Pmax (D)a 0.215 bmref (G) 0.202

Pupmax (D) 0.196 Nutrient loading 0.187

Mesotrophic

First mode (r2¼ 0.881) jbj Second mode (r2¼ 0.812) jbj Third mode (r2¼ 0.785) jbj

bmref (D)a 0.799 Pmin (D)a 0.639 Tepi
a 0.804

growthmax (D) 0.258 Tepi 0.426 bmref (G) 0.167

KTgr1 (D)a 0.170 Pupmax (G)a 0.195 Pmin (D)a 0.156

Pupmax (D) 0.169 Pmax (D)a 0.186 Pupmax (G)a 0.119

Pmax (D)a 0.156 bmref (G) 0.147 growthmax (G)a 0.108

Eutrophic

First mode (r2¼ 0.922) jbj Second mode (r2¼ 0.866) jbj Third mode (r2¼ 0.891) jbj

bmref (D)a 0.787 Tepi 0.528 Tepi
a 0.799

growthmax (D) 0.268 Pmin (D)a 0.501 Pmin (D)a 0.212

Nupmax (D) 0.220 Pmax (D)a 0.256 bmref (G) 0.185

KTgr1 (D)a 0.177 Pupmax (G)a 0.246 Pupmax (G)a 0.182

Nmax (D)a 0.150 bmref (D)a 0.185 Pmax (D)a 0.159

Symbol jbj denotes the absolute value of the standardized coefficients.

a Negative sign of the standardized coefficients.
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are indicative of the competition between the two functional

groups. The epilimnetic temperature (Tepi) is another moder-

ately significant predictor of the diatom variability in the three

trophic environments. While the negative diatom–tempera-

ture relationship can be partly explained by the predominance

of the basal metabolism losses over the net diatom growth in

the oligotrophic environment during the stratified period, the

switch to a positive sign when higher enrichment conditions

are employed invites further investigation (see Sections 2.2.2

and 4). The third seasonal mode of variability is mainly char-

acterized by a negative relationship with the epilimnetic

temperature.

In a similar way to the diatom patterns, the two seasonal

modes of green algal variability identified in the eutrophic

environment represented the cold and the thermally stratified

period of the system. The most significant predictors for the

former period were the green algal basal metabolism (bmref

(G)), maximum growth rate (growthmax (G)), and maximum

phosphorus uptake rate (Pupmax (G)); while the latter one was

associated with the diatom basal metabolism (bmref (D)) and

maximum phosphorus uptake rate (Pupmax (D)) along with

the minimum phosphorus quota (Pmin (G)) of the green algal

cells (Table 4). Relatively similar results were also found from

the monthly multiple regression models in the oligo and

mesotrophic environments, i.e., the differences between the

diatom and green algal growth minus metabolic loss balance

control the biomass of the greens in the system. Finally, the

cyanobacteria biomass variability is mainly driven from the

interplay among three factors, i.e., their basal metabolic losses

(bmref (CY)), the maximum rate of phosphorus transport at the

cell surface (Pupmax (CY)), and their minimum intracellular

phosphorus quota (Pmin (CY)) (Table 5).
3.3. Classification trees

We developed classification trees to gain further insight into

the importance of the group-specific functional properties

vis-à-vis the role of lake physics, chemistry, and biology on

the variability of the three phytoplankton groups during the

summer-stratified period. The presented tree structures

were cross-validated to avoid ‘‘overfitted’’ models, i.e., the

classification tree computed from the learning sample (a ran-

domly selected portion of the data sets) was used to predict

class membership in the test sample (the remaining portion

of data sets) (Breiman et al., 1984; De’ath and Fabricius,

2000). In the tree analysis of the diatom biomass, the first split

into two equally sized groups is identified when the level of

cladoceran biomass (CLJul) in July is 52.5 mg C L�1 (Fig. 4).

When CLJul� 52.5 mg C L�1 the diatom biomass mainly varies

between 50 and 100 mg C L�1 or between 1.0 and 1.5 mg chla L�1

(Class 2), whereas Class 3 (1.5–2.0 mg chla L�1) is dominant

when CLJul> 52.5 mg C L�1. The epilimnetic temperature (Tepi)

and zooplankton biomass are important predictors in the

right branch of the tree (including 51% of original data sets).

If Tepi� 19.9 �C most of the diatom biomass values fall in Class

3, whereas higher temperatures are associated with higher di-

atom biomass levels, i.e., 1.5–2.0 mg chla L�1 (Class 4). Then,

the diatom biomass variability was again dependent on two

critical summer biomass levels of the two zooplankton

groups, i.e., 71.9 mg C L�1 for cladocerans and 25.4 mg C L�1 for

copepods (COJul). The left portion of the tree contains 49% of

the total data and the node is again separated when a cladoc-

eran biomass threshold of 38.8 mg C L�1 occurs. Although both

branches are dominated by Class 2, the left node comprises

lower diatom concentrations (<75 mg C L�1 or 1.5 mg chla L�1),



Table 5 – Multiple regression models developed for examining the most influential factors (plankton functional properties
and abiotic conditions) associated with cyanobacteria biomass in three trophic states

Oligotrophic

January (r2¼ 0.666) jbj April (r2¼ 0.901) jbj July (r2¼ 0.947) jbj October (r2¼ 0.969) jbj

bmref (CY)a 0.476 bmref (CY)a 0.550 Pmin (CY)a 0.487 bmref (CY)a 0.487

Pmin (CY)a 0.345 Pupmax (CY) 0.383 bmref (CY)a 0.460 Pmin (CY)a 0.478

Pupmax (CY) 0.283 Pmin (CY)a 0.343 Pupmax (CY) 0.393 Pupmax (CY) 0.371

growthmax (CY) 0.249 growthmax (CY) 0.341 bmref (D) 0.259 Tepi
a 0.257

KP (CY)a 0.195 bmref (D) 0.230 KP (CY)a 0.254 KP (CY)a 0.255

Mesotrophic

January (r2¼ 0.820) jbj April (r2¼ 0.931) jbj July (r2¼ 0.887) jbj October (r2¼ 0.899) jbj

bmref (CY)a 0.525 bmref (CY)a 0.554 Pmin (CY)a 0.458 Pmin (CY)a 0.462

Pmin (CY)a 0.376 Pupmax (CY) 0.401 bmref (CY)a 0.441 bmref (CY)a 0.459

Pupmax (CY) 0.354 Pmin (CY)a 0.354 Pupmax (CY) 0.402 Pupmax (CY) 0.378

growthmax (CY) 0.275 growthmax (CY) 0.343 bmref (D) 0.285 bmref (D) 0.270

bmref (D) 0.240 bmref (D) 0.265 KP (CY)a 0.247 KP (CY)a 0.251

Eutrophic

January (r2¼ 0.953) jbj April (r2¼ 0.939) jbj July (r2¼ 0.732) jbj October (r2¼ 0.771) jbj

bmref (CY)a 0.545 bmref (CY)a 0.538 Pmin (CY)a 0.394 Pmin (CY)a 0.407

Pupmax (CY) 0.409 Pupmax (CY) 0.422 Pupmax (CY) 0.379 bmref (CY)a 0.389

Pmin (CY)a 0.351 growthmax (CY) 0.391 bmref (CY)a 0.357 Pupmax (CY) 0.359

growthmax (CY) 0.343 Pmin (CY)a 0.313 bmref (D) 0.290 bmref (D) 0.286

bmref (D) 0.274 bmref (D) 0.266 growthmax (CY) 0.206 Tepi
a 0.227

The multiple regression analysis was implemented individually on each month, and herein the results of 4 months (i.e., January, April, July, and

October) are presented for comparison at each trophic state.

Symbol jbj denotes the absolute value of the standardized coefficients.

a Negative sign of the standardized coefficients.

Table 4 – Multiple regression models developed for examining the most influential factors (plankton functional properties
and abiotic conditions) associated with green algal biomass in three trophic states

Oligotrophic

January (r2¼ 0.951) jbj April (r2¼ 0.932) jbj July (r2¼ 0.796) jbj October (r2¼ 0.801) jbj

bmref (G)a 0.510 bmref (G)a 0.470 Pmin (G)a 0.470 Pmin (G)a 0.437

Pmin (G)a 0.383 bmref (D) 0.422 bmref (D) 0.339 bmref (D) 0.343

bmref (D) 0.340 Pmin (G)a 0.341 bmref (G)a 0.311 bmref (G)a 0.328

Pupmax (G) 0.311 Pupmax (G) 0.304 KP (D) 0.293 KP (D) 0.304

growthmax (G) 0.246 growthmax (G) 0.265 Pupmax (G) 0.262 Pupmax (G) 0.263

Mesotrophic

January (r2¼ 0.915) jbj April (r2¼ 0.833) jbj July (r2¼ 0.815) jbj October (r2¼ 0.777) jbj

bmref (G)a 0.544 bmref (G)a 0.467 Pmin (G)a 0.460 Pmin (G)a 0.413

Pmin (G)a 0.326 bmref (D) 0.390 bmref (D) 0.403 bmref (D) 0.363

bmref (D) 0.325 growthmax (G) 0.318 bmref (G)a 0.278 bmref (G)a 0.330

Pupmax (G) 0.318 Pupmax (G) 0.308 KP (D) 0.276 KP (D) 0.297

growthmax (G) 0.312 Pmin (G)a 0.286 Pupmax (D)a 0.273 Pupmax (G) 0.255

Eutrophic

First mode (r2¼ 0.926) jbj Second mode (r2¼ 0.894) jbj

bmref (G)a 0.581 bmref (D) 0.539

growthmax (G) 0.477 Pmin (G)a 0.435

Pupmax (G) 0.314 Pupmax (D)a 0.323

Pmax (G)a 0.297 KP (D) 0.258

KTgr1 (G)a 0.168 growthmax (D)a 0.174

Principal component analysis (PCA) extracted two distinct modes of variability for the eutrophic state. No distinct modes of variability were

identified for the other two trophic states; therefore, the multiple regression analysis was implemented individually on each month, and herein

the results of 4 months (i.e., January, April, July, and October) are presented.

Symbol jbj denotes the absolute value of the standardized coefficients.

a Negative sign of the standardized coefficients.
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Fig. 4 – Classification tree diagram of diatom biomass under nutrient enrichment conditions. Dependent variable is the

diatom biomass in July; predictors include all diatom physiological properties and the abiotic conditions along with the major

limnological variables in July. Solid boxes and dashed boxes represent the split nodes and terminal nodes, respectively.

The cases of the parent nodes are sent to the left child nodes if the corresponding values are no greater than the split

conditions; otherwise they are sent to the right child nodes. The numbers in the boxes represent the dominant categorical

dependent variable of phytoplankton-group biomass. The percentage values represent the percent of learning sample from

parent nodes going to the corresponding child nodes. The cross-validation cost for this classification tree is 28.3%.
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whereas the right one corresponds to higher biomass levels

(>50 mg C L�1). Other (relatively weak) predictors for diatoms

were the minimum diatom phosphorus quota (Pmin (D)), the

total nitrogen concentrations (TNJul), and the biomass of the

other two phytoplankton groups (GJul and CYJul).

The initial splitting condition for the green algae is based

on the total phosphorus (TPJul) concentration, i.e., 47% of

the total data set mainly dominated by Class 3 (1.0–

1.5 mg chla L�1) concentrations is classified on the right side

of the tree when TPJul> 13.4 mg L�1 (Fig. 5). This node is further

subdivided when total phosphorus concentration reaches

a threshold value of 25.6 mg L�1. In this case, both branches

are dominated by Class 3; however, if TPJul> 25.6 mg L�1 the

biomass of the group labelled as ‘‘Green Algae’’ is usually

higher than 75 mg C L�1 or 1.5 mg chla L�1. On the other hand,

when TPJul� 25.6 mg L�1 the biomass of the greens varies be-

tween 0.5 and 1.5 mg chla L�1 and a significant predictor for

this subbranch of the tree is the minimum intracellular phos-

phorus quota (Pmin (G)¼ 0.012 mg P mg C�1). The left branch

represents 53% of the original data sets mainly comprising

biomass values within the range defined as Class 2. Subse-

quently, a value of Pmin (G)> 0.010 mg P mg C�1 is usually as-

sociated with low green algal biomass (<1 mg chla L�1).

When the minimum phosphorus quota is lower than this crit-

ical level, the green algae depend on the TPJul concentrations
to increase their biomass (>1 mg chla L�1). In addition, dis-

solved inorganic nitrogen (DINJul), diatom biomass (DJul), bmref

(G), and Pmax (G) act as moderately important predictors in the

tree structure.

The classification tree for cyanobacteria is structurally

similar to the one for green algae (Fig. 6). The first partitioning

was again based on a critical total phosphorus (TPJul) concen-

tration, the left node (TPJul� 14.7 mg L�1) comprises 62% of the

data set and is dominated by simulations with lower levels of

cyanobacteria biomass (Class 1), while the other subset

(TPJul> 14.7 mg L�1) is mainly associated with conditions that

allow cyanobacteria exceedances of the 0.5 mg chla L�1 critical

level. Based on a second critical total phosphorus concentra-

tion (TPJul¼ 24.6 mg L�1), the right part of the tree is further

split into two almost equal data sets. If TPJul> 24.6 mg L�1,

a maximum phosphorus transfer rate (Pupmax (CY)) higher

than 0.0072 mg P mg C�1 day�1 usually results in cyanobacte-

ria biomass within the Class 3 range. When TPJul� 24.6 mg L�1

the cyanobacteria variability is mainly driven by their meta-

bolic loss strategies (bmref (CY)). On the left side of the tree di-

agram, Pmin (CY) is a significant predictor, and a critical value

of 0.007 mg P mg C�1 further subdivides the data set. Other in-

fluential factors of the cyanobacteria variability were the dis-

solved inorganic nitrogen (DINJul) and copepod biomass

(COJul). Finally, it should be noted that the cross-validation



Fig. 5 – Classification tree diagram of green algal biomass under nutrient enrichment conditions. Dependent variable is the

green algal biomass in July; predictors include all green algal physiological properties and the abiotic conditions along with

the major limnological variables in July. The cross-validation cost for this classification tree is 38.4%.

Fig. 6 – Classification tree diagram of cyanobacteria biomass under nutrient enrichment conditions. Dependent variable is

the cyanobacteria biomass in July; predictors include all cyanobacteria physiological properties and the abiotic conditions

along with the major limnological variables in July. The cross-validation cost for this classification tree is 22.4%.



Fig. 7 – Plots of phytoplankton functional group biomass against selected physiological properties (basal metabolism,

minimum phosphorus cell quota, maximum phosphorus uptake rate) and a wide range of nutrient loading that corresponds

to the 1–300% of the current total organic carbon, total nitrogen and total phosphorus input concentrations in Lake

Washington.

a c t a o e c o l o g i c a 3 3 ( 2 0 0 8 ) 3 2 4 – 3 4 4338
cost (i.e., an estimate of the misclassification error) for the

three classification trees was 28.3, 38.4, and 22.4%,

respectively.

3.4. Examination of the role of the most influential
parameters under nutrient enrichment conditions

To analyze the impact of significant model parameters on dif-

ferent phytoplankton groups as identified from the multiple

regression models and classification trees, we developed

a special simulation procedure. Maintaining all the rest forc-

ing functions at reference values (Arhonditsis and Brett,

2005b), a series of nutrient loadings was created spanning
the 1–300% range of the reference exogenous nutrient input

(or 9.7–2901 mg TN/L and 0.65–195 mg TP/L) with an increment

of 1%. These enrichment conditions were used to reproduce

a broad range of trophic states (i.e., from ultra-oligotrophic

to hyper-eutrophic). For each nutrient loading the model

was run for a 10-year period, which was sufficient a simulation

period to reach ‘‘equilibrium’’ phase; i.e., the same pattern

was repeated each year. The phytoplankton biomass was

recorded subsequently at an arbitrarily chosen day in summer

(15th, July) of the 10th year. Thereafter, we started a simulation

in which one model parameter of interest (e.g., bmref (D)) was

changed, and all the other parameters were kept as in the cal-

ibration vector reported in the Lake Washington presentation
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(Arhonditsis and Brett, 2005a). The final state of the modelled

plankton dynamics after each step was used as a new starting

point for the simulation of the next step.

We selected various physiological properties (basal metab-

olism losses, phosphorus kinetics) of the different phyto-

plankton groups (i.e., bmref (D), Pmin (D) and Pupmax (G) on

diatoms; bmref (G), Pmin (G) and bmref (D) on green algae; bmref

(CY), Pmin (CY) and Pupmax (CY) on cyanobacteria), and the

resulting biomass was plotted against the corresponding pa-

rameter and nutrient loading values (Fig. 7). All nine plots al-

most consistently show that the phytoplankton biomass–

nutrient loading relationship is characterized by a concave

(concave downward) shape where the apex (maximal extre-

mum) is usually located within the 120–180% range of the ref-

erence nutrient input. The subregion where phytoplankton

biomass decreases with increasing nutrient loading probably

reflects the control of herbivorous grazing on phytoplankton

along with the prevalence of nitrogen-limiting conditions.

The diatom biomass has a decreasing trend with respect to

bmref (D) and Pmin (G) when nutrient loading is low, but an

increasing trend when loading is high. In contrast, the

diatom–Pupmax (G) relationship is monotonically decreasing

throughout the nutrient loading range. The green algal bio-

mass monotonically decreases with increasing bmref (G) and

Pmin (D) values (especially at <200% loading levels), while the

relationship with the bmref (D) is monotonically increasing

and the global maxima are usually observed at the higher

end of the diatom metabolic loss rates under high enrichment

conditions. The cyanobacteria biomass has a negative
relationship with the bmref (CY) and Pmin (CY) and a positive

one with the Pupmax (CY), but these patterns are weakening

as the nutrient loading increases. Finally, the cyanobacteria

biomass showed a discontinuous pattern with a sudden

jump around the 30% level of the reference loading conditions,

which corresponds to average input concentrations of

290 mg TN/L and 19.5 mg TP/L. In the context of the present

model specification (e.g., parameter values, external forcing,

features of the hypothetical system), this TP loading value is

the critical threshold for the competitive exclusion of cyano-

bacteria from the system.
4. Discussion

The development of laws of simplification and aggregation is

a central problem in ecology and evolutionary biology (Levin,

1992). Mathematical modeling as a tool for elucidating ecolog-

ical patterns is subject to the complexity issue, and attempts

to abstract the essential ecosystem features for achieving

the optimal model dimension are ubiquitous in modeling

practice (Levins, 1966; Costanza and Sklar, 1985; Jorgensen,

1999; Arhonditsis and Brett, 2004). Hence, it is not surprising

that one of the ‘‘hottest’’ debates in the ecological modeling

literature is the selection of the optimal aggregation level of

the biotic communities; aquatic biogeochemical modeling be-

ing no exception (Anderson, 2005; Flynn, 2005; Arhonditsis

et al., 2006). Despite the satisfactory predictability attained

at higher aggregation levels (Scheffer et al., 2003), several
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aquatic ecosystem modellers argue that there are good rea-

sons to opt for a finer representation of the plankton commu-

nities, e.g., species populations are more sensitive to external

perturbations (nutrient enrichment, episodic meteorological

events), and important ecosystem functions are ultimately

linked to particular plankton functional groups (Cottingham

and Carpenter, 1998; Flynn, 2005; Arhonditsis et al., 2007).

Others claim that the derivation of distinct functional groups

from fairly heterogeneous planktonic assemblages poses

challenging problems with respect to the development of ro-

bust parameterizations that can support predictions in

a wide array of spatiotemporal domains (Anderson, 2005). In

this study, we analyzed a complex aquatic biogeochemical

model that has successfully reproduced seasonal succession

plankton patterns (Arhonditsis and Brett, 2005b), and the

probabilistic treatment of its input vector (e.g., model param-

eters, forcing functions) offered insights into the mechanisms

shaping competition patterns and structural shifts in phyto-

plankton communities.

4.1. Competition patterns among phytoplankton
functional groups

The crux of the functional grouping problem was articulated

by Anderson (2005), who used as an example the typical repre-

sentation of the wide variety of plankton groups involved in

the ocean calcification by the single coccolithophore species

Emiliania huxleyi. While a great deal of effort has been devoted

to understand the conditions underlying this species dynam-

ics (Tyrrell and Merico, 2004; Lessard et al., 2005), the antici-

pated improvement of its parameterization does not address

the enormous variability characterizing other calcifying algal

species, such as Florisphaera profunda and Umbellosphaera irreg-

ularis. Given that similar concerns can be raised for other

plankton classification schemes typically used in aquatic bio-

geochemical modeling (e.g., picophytoplankton, nitrogen

fixers, chlorophytes, dimethyl sulfide producers), is it reason-

able to expect single-valued data set-specific parameter esti-

mates of artificially defined biotic entities to be extrapolated

over wider geographical regions?

In this modeling study, the within-group variability was

depicted by probability distributions assigned to the three

functional groups to examine the simulation robustness of

seasonal succession plankton patterns in epilimnetic environ-

ments. Our analysis suggests that the reproduction of the or-

dered succession of seasonal events in temperate thermally

stratified lakes is quite robust and can be manifested under

a wide range of group-specific functional properties and abi-

otic conditions. However, the straightforward delineation of

the modelled functional groups (diatoms, cyanobacteria, and

an intermediate competitor labelled as ‘‘Green Algae’’) along

with the distinct niche partitioning assumed probably made

the reproduction of these patterns easier (Scheffer and Van

Nes, 2006). Our numerical experiments are based on a phyto-

plankton community that consists of three species with very

discrete positions in the multidimensional habitat simulated.

Put simply, if the density of a cloud depicts niche utilization in

a three dimensional space, then the centers of mass and the

volumes occupied from the three clouds are distant and have

minimum overlap, respectively. Being sufficiently different,
the three species are able to coexist and, most importantly, ex-

hibit the range of responses typically reported in the limnologi-

cal literature (Sommer et al., 1986; Marshal and Peters, 1989;

Vanni and Temte, 1990; Hansson et al., 1998; Rothhaupt, 2000).

Viewed from an environmental management perspective, this

admittedly simplified representation of the phytoplankton

community can support predictions in the extrapolation

domain without the need to invoke extra complexity.

Our analysis spanned a gradient of phosphorus-limiting

conditions and therefore the competition patterns arisen

can be partly explained with concepts from the algal nutri-

tional physiology. Having the features of a velocity and phos-

phorus affinity specialist, diatoms are the dominant

competitors and consistently account for a large portion

(>50%) of the total phytoplankton biomass. Because of its

high maximum growth (cell division) rate combined with

high maximum phosphorus transport rate at the cell surface

and low half-saturation constant, the diatom-like species

was able to overcome the higher sinking loss and basal metab-

olism rates assigned along with the higher grazing pressure

exerted from the zooplankton community (see following dis-

cussion). The diatom run-to-run variability during the sum-

mer-stratified period (second seasonal mode) was associated

with the minimum intracellular phosphorus quotas, i.e., the

minimum phosphorus requirement to produce another cell.

This result is not surprising, as earlier work from Grover

(1991) similarly showed that a decrease in the minimum nutri-

ent quota provides competitive advantage in both equilibrium

and non-equilibrium habitats. The interesting finding here is

that the predominant role of this parameter on the interspe-

cific competition is also manifested with complex models

where several – often contrasting – forces (e.g., vertical mix-

ing, herbivory, seasonal forcing) are explicitly modelled. In

contrast with the minimum phosphorus quota, an increasing

maximum bound on the intracellular phosphorus decreases

the competitive ability in nutrient-rich habitats, such as the

summer epilimnion of the eutrophic state or the period

when the system is well-mixed, i.e., the first seasonal mode

of variability (Table 3). In essence, the negative relationship

between this parameter and the diatom biomass implies

that a higher maximum rate of conversion of the intracellular

nutrients into storage products/macromolecules (i.e., the fab-

ric of organelles and other complex cellular components) re-

sults in reduced growth even when the ambient levels are

relatively high. Moreover, Turpin (1988) suggested a tradeoff

between the kinetics of transport and the assimilation rates

arising from the limited amount of protein per cell that can

be allocated between the two processes. This hypothesis has

not been considered in this study, as similar distributions

were assigned to the maximum nutrient quotas (Nmax(i),

Pmax(i)) of the three phytoplankton groups and were sampled

independently from the corresponding maximum transport

rates (Nupmax(i), Pupmax(i)). While Grover’s (1991) study showed

that the negative relationship between the upper bound of

maximum nutrient transport rate and the maximum nutrient

quota can be a critical factor in non-equilibrium habitats, it is

unlikely that the competition patterns reported here would

have changed if we had considered this assumption.

Being assigned to neighbouring locations along the niche

axis that represents the species phosphorus competitive



Fig. 8 – The diatom–cladocerans relationship during the

summer-stratified period across a wide range of nutrient

loading corresponding to the 1–300% of the current total

organic carbon, total nitrogen and total phosphorus input

concentrations in Lake Washington.
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ability, the diatoms and the green algae directly compete

against each other, as the one group’s functional properties

(growth rates, storage capacity, metabolic rates) and biomass

levels can be significant predictors for the other one’s dynam-

ics (Tables 3 and 4; Figs. 4 and 5). On the other hand, cyanobac-

teria are somewhat more remotely located along the same

axis, and therefore their variability remains unaffected from

the other two groups’ functional properties or biomass levels

(Table 5; Fig. 6). The metabolism rate is another important de-

terminant of the competitive ability of the three residents of

the phytoplankton community. In this model, the phyto-

plankton basal metabolism rate encompasses natural mortal-

ity, respiration (i.e., oxidation of the stored organic matter to

produce energy) as well as excretion (Arhonditsis and Brett,

2005a). Regarding the latter process, Baines and Pace (1991)

showed that the phytoplankton exudation of organic matter

can be as high as 13% of the total fixation during photosynthe-

sis and increases nonlinearly with primary productivity with

very low percentage extracellular organic matter release in

eutrophic lacustrine ecosystems. The differences in the

group-specific metabolic rates can overturn species competi-

tive dominance based on the differences in physiological

characteristics. In particular, the role of the metabolic losses

can be particularly influential in non-steady environments

where the competitive dynamics can be very slow, and thus

small intergroup differences in the metabolic loss rates can

easily negate competitive (dis)advantages causing structural

shifts in phytoplankton communities (Grover, 1991).

4.2. Direct and indirect relationships in the
phytoplankton–zooplankton interface

Our numerical experiments also underscore the manifold ef-

fects of the herbivores on the structure of the phytoplankton

community. In particular, the third seasonal mode represent-

ing the mid-late spring diatom biomass variability in meso

and eutrophic environments was mainly associated with the

epilimnetic temperature (Table 3), i.e., a significant regulatory

factor of the cladocerans growth in the spring (Arhonditsis

et al., 2004). The latter zooplankton group is a dominant grazer

that can strongly control the standing crop of the diatom-

dominated spring blooms; the so-called clear water phase

(Lampert and Sommer, 1997).

More intriguing was the nature of the prey–predator inter-

actions during the summer-stratified period, and their inter-

pretation requires invoking the role of herbivorous grazing in

concert with the recycling processes. Namely, our model con-

siders nutrient release from zooplankton excretion and dur-

ing the feeding process when zooplankton homeostasis is

maintained by removing elements in closer proportion to

zooplankton body ratios than to the elemental ratio of the

food (Elser and Foster, 1998; Arhonditsis and Brett, 2005b).

The quantitative significance of these nutrient sources to

phytoplankton productivity is unclear, although there is evi-

dence that the excreted or egested nutrients from zooplank-

ton can play an important role in the summer epilimnion

(Wetzel, 2001). In our analysis, the exceedance of several crit-

ical threshold values of the summer cladoceran biomass was

associated with higher diatom levels (Fig. 4), while the posi-

tive temperature jbj values in the meso and eutrophic states
probably reflect the predominant role of the temperature-de-

pendent mineralization as a phosphate source in the epilim-

netic environment (Table 3). This tight connection and

positive relationship between diatoms (r-strategist with su-

perior phosphorus kinetics) and cladocerans (P-rich animals)

deviate from the conceptualization postulated by Lampert

and Sommer (1997), where they hypothesized that zoop-

lankton monotonically decreases the biomass of highly

edible algae but this decrease is at first slow and then be-

comes faster as zooplankton biomass increases (Lampert

and Sommer, 1997, Fig. 6.18, p. 201). In our simulations, the

diatom–zooplankton relationship has a positive slope until

phosphorus limitation is alleviated and a global maximum

is reached, then the net growth rate is negative and the dia-

tom biomass declines (Fig. 8).

Our analysis also suggests that the other two functional

groups do not seem to benefit from the phosphorus flux ema-

nating from zooplankton and their summer biomass levels are

primarily determined by the external nutrient enrichment

conditions along with their phosphorus kinetics or metabolic

losses (Tables 4 and 5; Figs. 5 and 6). Interestingly, the classifi-

cation tree analysis did not provide evidence of a significant

negative impact of zooplankton grazing on green algae/cyano-

bacteria. The latter finding may suggests that the establish-

ment of a closed loop between P-limited diatoms and

summer zooplankton community seems to alleviate the other

two functional groups from the control exerted by the herbiv-

orous grazing. The weak linkage between green algae/cyano-

bacteria and zooplankton is further promoted by the way the

zooplankton feeding selectivity is modelled, i.e., food selection

is determined by prior assigned preferences of the two zoo-

plankton groups but also changes dynamically as a function

of the relative availability of the four food-types: diatoms,

green algae, cyanobacteria, and detritus (Fasham et al., 1990;

Arhonditsis and Brett, 2005a). Therefore, having consistently

higher concentrations, the diatoms are the most favourable

food and are selectively ingested throughout the annual cycle.

Finally, another interesting aspect of the primary producer–

herbivore interface was investigated in an earlier study by
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Arhonditsis and Brett (2005b), where a wide variety of pulses

were induced to test the resilience of the phytoplankton com-

munity to disturbances that resemble episodic mixing events

during the summer-stratified period. Generally, the planktonic

community was quite resistant and no major structural shifts

were observed from the hypolimnetic nutrient intrusions; just

minor phytoplankton peaks that were proportionally allocated

among the three phytoplankton groups. Transient nutrient

pulses are thought to induce competitive advantages for stor-

age strategists, e.g., the cyanobacteria functional group in the

present model (Suttle et al., 1987), and such structural shifts

were obtained only when cladocerans were eliminated from

the system. This result was interpreted as evidence that the

dominant grazers act as a ‘‘safety valve’’ and do not allow cya-

nobacteria to gain competitive advantage. Recent experimen-

tal studies reported similar results supporting the hypothesis

that large-bodied zooplankton grazers have the ability to

reduce phytoplankton sensitivity to external perturbations

(Cottingham and Schindler, 2000; Cottingham et al., 2004).
5. Conclusions and future perspectives

We used a complex aquatic biogeochemical model to eluci-

date phytoplankton competition patterns under nutrient en-

richment conditions. Because complex models project

species competition onto a higher number of niche dimen-

sions, we were able to simultaneously examine the role of

functional properties, abiotic conditions, and food-web inter-

actions on the structural shifts observed in phytoplankton

communities. Our analysis provided evidence that the inter-

group variability in the minimum cell quota and maximum

transport rate at the cell surface for phosphorus along with

the group-specific metabolic losses can shape the structure

of phytoplankton communities. We also found a tight connec-

tion and positive relationship between diatoms (fast-growing

species with superior phosphorus kinetics) and cladocerans

(P-rich animals) that seems to reduce the grazing pressure

exerted on the other residents of the phytoplankton commu-

nity. Our model also supports the hypothesis that large her-

bivorous animals buffer the effects of external perturbations

(e.g., nutrient pulses) on the phytoplankton community

structure.

From an ecological standpoint, the robustness of some of

our findings can be further examined if we adopt the most

realistic assumption of a higher niche overlap when charac-

terizing the functional attributes of the modelled groups

(Seip and Reynolds, 1995). Generally, the probability distribu-

tions characterizing the functional properties of the biotic

entities modelled is a critical feature of the present frame-

work (Fig. 1), and the recognition of their importance does

invite one to ask if there are any operational rules to deter-

mine the species optimal spacing and niche width along

the different niches’ axes of the simulated habitats. We be-

lieve that the primary factor is the selection of coherent spe-

cies assemblages that demonstrate distinctive ecologies and

recurring patterns in the system being studied. In particular,

Reynolds et al.’s (2002) and Reynolds’ (2006) functional clas-

sification scheme provides an excellent guide for designing

functional groups with behavioural/physiological features
that can be translated into realistic probability distributions.

Our fidelity on the phytoplankton community modelled can

then be tested by assessing the sensible behaviour exhibited

by the different phytoplankton assemblages across different

gradients of the simulated habitat, e.g., enrichment condi-

tions, climate change. Thus, model dysfunctionality should

be used to dictate the most reliable structure of the biotic

communities, e.g. optimal number and organizational level

(species, genera, taxa) of the biotic entities modelled along

with the components of physiology or other ecological pro-

cesses needed. The latter issue highlights the importance

of improving the mathematical representation of phyto-

plankton adaptive strategies for resources procurement to

effectively link variability at the organismal level with eco-

system-scale patterns. For example, one of the most contro-

versial features of aquatic biogeochemical models is the

mathematical formulation used for describing interactions

among multi-nutrients, light, and temperature (Flynn,

2003). Several authors pinpoint the inadequacy of the Monod

or the Droop version of the quota model for simulating

multi-nutrient interactions and transient states (e.g., David-

son and Cunningham, 1996; Flynn, 2003). While several re-

cent mechanistic submodels have significantly improved

the sophistication level (Legovic and Cruzado, 1997; Geider

et al., 1998; Flynn, 2001), the substantial increase of complex-

ity has been a major impediment for their incorporation in

ecosystem models. The ongoing debate on the need to bal-

ance between simplicity and realism (Anderson, 2005; Flynn,

2005; Arhonditsis et al., 2006) should identify the best strate-

gies (e.g., prudent increase in complexity, rigorous error

analysis) for developing reliable modeling tools that can as-

sist the management of natural resources and also contrib-

ute to the development of ecological theories.
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