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a b s t r a c t

We examined the spatiotemporal phytoplankton community patterns and identified the

nature of the underlying causal mechanisms in a freshwater–saltwater continuum, the

Neuse River Estuary (North Carolina, USA). We used a Bayesian structural equation mod-

eling (SEM) approach that considers the regulatory role of the physical environment (flow,

salinity, and light availability), nitrogen (dissolved oxidized inorganic nitrogen and total dis-

solved inorganic nitrogen), phosphorus, and temperature on total phytoplankton biomass

and phytoplankton community composition. Hydrologic forcing (mainly the river flow fluc-

tuations) dominates the up-estuary processes and loosens the coupling between nutrients

and phytoplankton. The switch from an upstream negative to a downstream positive

phytoplankton–physical environment relationship suggests that the elevated advective

transport from the upper reaches of the estuary leads to a phytoplankton biomass accu-

mulation in the mid- and down-estuary segments. The positive influence of the physical

environment on the phytoplankton community response was more evident on diatom,

chlorophyte and cryptophyte dynamics, which also highlights the opportunistic behavior of

these taxa (faster nutrient uptake and growth rates, tolerance on low salinity conditions) that

allows them to dominate the phytoplankton community during high freshwater conditions.

Model results highlight the stronger association between phosphorus and total phytoplank-

ton dynamics at the upstream freshwater locations; both nitrogen and phosphorus played

a significant role in the middle section of the estuary, while the nitrogen–phytoplankton
relationship was stronger in the downstream meso-polyhaline zone. Finally, our analy-

sis provided evidence of a protracted favorable environment (e.g., longer residence times,

low DIN concentrations and relaxation of the phosphorus limitation) for cyanobacteria

ove
dominance as we m
phytoplankton communit
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to the down-estuary area, resulting in structural shifts on the
y temporal patterns.
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. Introduction

n his 2001 review paper, J.E. Cloern highlighted as one of
he major advancements of our current conceptual model
f coastal eutrophication the explicit recognition that signif-

cant variability exists in terms of the inter- and intrasystem
esponses to nutrient enrichment. Coastal research has
rovided overwhelming evidence that the operational char-
cteristics of individual ecosystems – the so-called “filter” in
loern’s (2001) conceptual diagrams – determine their car-
ying capacity and largely regulate their sensitivity to the
nthropogenically induced nutrient stressors. For example,
hysiographical properties (bathymetry, basin geography), cir-
ulation patterns (tidal and wind mixing, river flows, density
tratification), physico-chemical attributes of the water col-
mn (light availability, salinity) and “top–down” processes

herbivory, benthic–pelagic coupling) modulate ecosystem
ynamics and, thus, can explain the large differences in
heir responses to quantitatively similar nutrient loadings
Nixon, 1995; Cloern, 2001; Paerl et al., 2006). A second key
dvancement in eutrophication research is the realization that
utrient enrichment should not be analyzed as an isolated
ausative factor, because the manifestation of its signals can
e amplified/dampened by complicated interactions with sev-
ral other anthropogenic or natural perturbations (Boesch et
l., 2001; Paerl et al., 2006). Consequently, understanding the
ndividual and synergistic effects of the various components
f the ecosystem filtering function and their interactions with
he external multiple stressors is one of the major future chal-
enges for the development of effective coastal management
chemes (Cloern, 2001; Paerl et al., 2006).

Hydrological forcing, resulting from both intra- and inter-
nnual climatic variability, strongly drives estuarine and
oastal ecosystem dynamics (Goldenberg et al., 2001; Cloern,
001; Paerl et al., 2006). Intense, short-term episodic events
hurricanes, tropical storms) and seasonal hydrologic variabil-
ty trigger biogeochemical and trophic responses and change
cosystem functional properties. The phytoplankton commu-
ity is particularly responsive to these climatic perturbations

Paerl et al., 2006). For example, river flow fluctuations alter
everal physical (water residence times and stratification pat-
erns) and chemical (salinity variations, nutrient loads and
oncentrations) waterbody attributes, which, in turn, can
irectly affect phytoplankton growth rate and spatiotempo-
al distribution (Harding, 1994; Paerl et al., 2003; Borsuk et
l., 2004). The hydrological forcing is also likely to induce
tructural shifts in phytoplankton community, since phyto-
lankton taxonomic groups are differentially affected by the
esulting physico-chemical changes (Paerl et al., 2006). It is
xpected that reduced freshwater discharges associated with
rought conditions (long water residence time and reduced
utrient concentrations) favor slower growing taxa, such
s dinoflagellates and cyanobacteria. Other phytoplankton
roups with the ability to exhibit optimal growth rates under
educed salinity conditions, competitively utilize nutrients

nd grow rapidly, will be favored during periods of increased
iver flow rates (reduced water residence times and salinity
nd increased nutrient concentrations) associated with wet
ears and episodic precipitation events (Paerl et al., 2003).
8 ( 2 0 0 7 ) 230–246 231

Thus, considering the large amounts of nutrient and energy
flows mediated through the primary producer level, phyto-
plankton can provide sensitive “warning signs” of the climate
system effects on coastal ecosystem integrity (Arhonditsis et
al., 2003, 2004; Paerl et al., 2006).

Resolution of spatiotemporal nutrient limitation patterns
and the relative macronutrient importance on algal growth
along a freshwater–marine continuum is another important
factor for our basic understanding of the coastal/estuarine
ecosystem structure and functioning (Downing, 1997; Paerl et
al., 2004). More importantly, the elucidation of the resource
limitation variability can directly aid eutrophication control
and assist water quality management (Malone et al., 1996).
Using micro- and mesoscale bioassays, numerous studies
have concluded that nitrogen and phosphorus limitation are
closely controlled by several factors (hydrology, geography and
physiography) and can show wide seasonal and spatial vari-
ations (Paerl et al., 2006). Generally, phosphorus and nitrogen
seem to control freshwater and saltwater primary produc-
tion, respectively, but these effects vary seasonally and can
further be masked by light availability (Rudek et al., 1991;
Fisher et al., 1999; Elmgren and Larsson, 2001). Given the intri-
cate nature of resource limitation in estuarine environments,
sound scientific foundation is urgently needed to guide the
costly implementation of nutrient reduction strategies and
optimize their effectiveness (Fisher et al., 1999; Paerl et al.,
2004).

We introduce a Bayesian structural equation modeling
approach to evaluate the relative importance of the physical
environment (flow, salinity, temperature, and light availability)
versus nutrient concentration (inorganic nitrogen and phos-
phate) effects on the spatiotemporal phytoplankton biomass
and community composition patterns in the Neuse River
Estuary. Specifically, our modeling framework delineates the
hydrological forcing vis-à-vis nutrient role on phytoplankton
growth and compositional alterations along the estuary. By
resolving the particularly problematic relationship between
factors that often have confounding/conflicting influence on
the waterbody properties (Borsuk et al., 2004), our inten-
tion is to provide insight into the complex interactions
that drive phytoplankton community dynamics in estuarine
ecosystems and influence their responses to nutrient input
reductions.

2. Materials and methods

2.1. Study area

The Neuse River drains a 16,008 km2 watershed, which
includes the highly urbanized North Carolina’s Research Tri-
angle (defined by the cities of Raleigh, Durham, and Chapel
Hill) upstream and the intensive row crop agriculture, silvi-
culture and animal farming industry in the lower portions of
the basin (Stow and Borsuk, 2003). The Neuse River discharges
into the Neuse Estuary (35◦00′N; 76◦45′W) and Pamlico Sound

(Fig. 1). Water-quality conditions in the Neuse River show sig-
nificant interannual variability and phytoplankton growth is
regulated by a complex interplay between physical, chemical
and biological factors (Rudek et al., 1991; Pinckney et al., 1998;
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Fig. 1 – The Neuse River Estuary; the vertical lin

Borsuk et al., 2004; Paerl et al., 2006), and is further influenced
by a recent rise in the hurricane and tropical storm frequency
(Paerl et al., 2003, 2006). The Neuse Estuary is an intermittently
mixed and shallow (<4 m) system, where salinity varies with
precipitation, river discharges, and saltwater inflows from
Pamlico Sound (Luettich et al., 2000; Borsuk et al., 2001). The
shallow average depth combined with the protection from
tides offered by the Outer Banks results in a wind-controlled
vertical mixing (McNinch and Luettich, 2000). The estuary has
been experiencing characteristic symptoms of nutrient over-
load including excessive algal blooms, low levels of dissolved
oxygen, and large fish kills (Paerl et al., 2004). The eutroph-
ication problems led the Neuse River to be characterized as
one of the 20 most threatened rivers in the United States in
1997. The Neuse has also been listed as an impaired water
body on the Federal 303(d) list because, in certain segments,
more than 10% of water quality samples analyzed for chloro-
phyll a exceeded the state of North Carolina 40 �g/L criterion.
These problems are generally attributed to high nitrogen load-
ing, though historic and other lines of evidence suggests
that phosphorus has also contributed to excessive algal pro-
duction (Qian et al., 2000; Buzzelli et al., 2002; Paerl et al.,
2004).

2.2. Data description

Daily mean flow rates were based on the United States
Geological Survey streamflow gauging station at Fort Barn-
well (Stow and Borsuk, 2003). Nutrient concentrations,
salinity vertical attenuation coefficient values and photopig-
ments representative of the five dominant algal taxonomic
groups (chlorophytes, cryptophytes, cyanobacteria, diatoms
and dinoflagellates) in the NRE, were provided from the

UNC-CH Institute of Marine Sciences Neuse River Bloom
Project, the Neuse River Estuary Modeling and Monitoring
Project, MonMod, and the Atlantic Coast Environmental Indi-
cators Consortium Project, ACE-INC (study period 1995–2001).
eparate the four segments used for this study.

Detailed information regarding the collection and analytical
protocols and methods used in these programs can be found
elsewhere (Luettich et al., 2000; Paerl et al., 2003, 2004). We
also used a modification of the Pinckney et al. (1998) spatial
segmentation by dividing the study area into four sections
A, B, C and D (Fig. 1), i.e., this study’s first and third seg-
ments were grouped with the second and the fourth spatial
compartment, respectively. For each segment, we calculated
volume-weighted averages for all the environmental vari-
ables of the model based on the corresponding water volumes
(m3) for two depth intervals, i.e., surface to 2 and 2 m to
bottom.

2.3. Bayesian structural modeling

We selected a structural equation modeling approach for three
basic reasons: (i) allows the evaluation of a network of relation-
ships between observed and latent variables, (ii) enables to
explicitly test indirect effects between two explanatory vari-
ables, i.e., effects mediated by other intermediary variables,
and (iii) explicitly incorporates uncertainty due to observation
error or lack of validity of the observed variables, i.e., vari-
ables of conceptual interest that are not directly measurable
can be represented by multiple indicator (observed) variables
(Bollen, 1989; Pugesek et al., 2003). We also adopted a Bayesian
approach to SEM that has several advantages over the clas-
sical methods (e.g., maximum likelihood, generalized and
weighted least squares). A Bayesian SEM can incorporate prior
knowledge about the parameters and more effectively treat
unidentified models (Scheines et al., 1999; Congdon, 2003). In
addition, the modeling process does not rely on asymptotic
theory, a feature that is particularly important when the sam-
ple size is small and the classical estimation methods are not

robust (Congdon, 2003). Markov Chain Monte Carlo (MCMC)
samples are taken from the posterior distribution, and conse-
quently the procedure works for all sample sizes and various
sources of non-normality. The assumptions used to deter-
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Fig. 2 – The structural equation model used for predicting
the Neuse River Estuary phytoplankton dynamics. The use
of rectangular boxes for temperature and phosphate
implies that the variable was considered as directly
observable with no measurement error (�8 = �9 = 1.0 and
ı6 = ı7 = 0). The metrics of the latent variables were set by
fixing �2 = �4 = �5 = 1.0. Variables that act only as predictors
for other variables are referred to as exogenous variables,
while those that are dependent are referred to as
endogenous. Arrows correspond to the coefficients relating
observed and latent variables (loadings) or exogenous and
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ndogenous variables (paths).

ine the latent variable metrics can be treated stochastically
nd provide additional insight into the ecological structures
Congdon, 2003). Detailed presentation of Bayesian structural
quation modeling along with illustrative applications for
xploring ecological patterns (e.g., epilimnetic phytoplankton
ynamics in different trophic status lakes) can be found in a
ecent study by Arhonditsis et al. (2006).

The initial framework for model development was based
n pre-conceptualizations that reflect our research questions

r existing knowledge for the system structure. Our start-

ng point is a “conceptual/mental model” that considers the
ffects of four latent variables (oval shapes in Fig. 2), i.e., phys-
cal environment, nitrogen, phosphorus and temperature, on
8 ( 2 0 0 7 ) 230–246 233

phytoplankton dynamics (as a general/abstract idea). Each of
these conceptual factors (latent variables) can be linked with
observed variables (rectangular boxes in Fig. 2, i.e., “what can
be measured in the real world”), while it is explicitly acknowl-
edged that none of these variables perfectly represents the
underlying property (measurement errors; ı and ε in Fig. 2).
Specifically, we hypothesized that the latent variable physical
environment along with the three-indicator variables atten-
uation coefficient (m−1), salinity (‰), and daily flow rates
(m3 s−1) comprised the measurement model for the physi-
cal environment. The premise for the selection of the first
two indicators was based on the findings of the principal
factor analysis presented by Pinckney et al. (1997; see their
Table 2), where salinity and attenuation coefficient had the
highest positive and negative loadings on the first principal
factor (31% of the observed variability), respectively. The inclu-
sion of the flow rates builds upon the results of a recent
study that highlights the regulatory role of flow on the spa-
tiotemporal NRE phytoplankton dynamics (Borsuk et al., 2004).
We also used the latent variable nitrogen and two surrogate
variables: the first variable was total dissolved inorganic nitro-
gen (DIN) concentrations, while the second included only the
oxidized forms of inorganic nitrogen (nitrate + nitrite; NOx)
(Arhonditsis et al., 2007). The phosphorus role was solely
described by phosphate (the latent phosphorus coincided with
the observed variable phosphate; PO4). It should be noted that
in a strict causal sense, the inclusion of external nutrient load-
ing (instead of ambient nutrient concentrations) would have
had a more unequivocal interpretation. However, given the
spatially explicit character of our model, the consideration of
this causal link also entails substantial increase of uncertainty
and is beyond the scope of the present paper. In contrast with
Borsuk et al. (2004) study, the coefficient that relates temper-
ature (expressed as water temperature deviance from 20 ◦C)
to phytoplankton was not considered spatially constant. As
a result, the respective path values are confounded with the
effects of other drivers not explicitly accounted for by the
model, and mainly aim to detect shifts in the seasonal phyto-
plankton patterns along the estuary.

To provide a quantitative description of total phytoplank-
ton dynamics (aggregated SEM), we formulated a model
using one endogenous latent variable (phytoplankton) com-
bined with two indicator variables, i.e., chlorophyll a and
primary productivity (Fig. 2). Note that this multivariate
method accounts for two sources of error, i.e., measurement
and structural error (its variance is denoted as  in Fig. 2).
The latter error source reflects the latent variable model
efficiency, i.e., “how well can the physical environment, nitro-
gen, phosphorus, and temperature describe phytoplankton?”
Alternatively, we tested four different models to examine
the relative importance of the various abiotic factors on
the phytoplankton community composition (compositional
SEMs). The first model considers the functional group A
(PFG A) comprised of diatoms, cryptophytes and chloro-
phytes, and also retains dinoflagellates and cyanobacteria as
two further, distinct groups. The second model aggregates

cryptophytes and chlorophytes (PFG B), lumps dinoflagel-
lates with diatoms (PFG C), while cyanobacteria are treated
separately. The third model combines chlorophytes with
diatoms (PFG D), dinoflagellates with cryptophytes (PFG E) and
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Fig. 3 – (a–d) The four alternative conceptualizations of th

again cyanobacteria are considered a third distinct functional
group. Finally, the fourth model considers two functional
groups, i.e., the functional group A (PFG A) and the func-
tional group F (PFG F) that aggregates dinoflagellates with
cyanobacteria (Fig. 3). Thus, based on existing literature infor-
mation or observed correlations from the study system, we
constructed measurement models that allow several phyto-
plankton groups to form single entities, i.e., latent variables
that characterize phytoplankton functional groups. We tested
the compatibility of the different pre-conceptualizations with
the observed ecological patterns, and selected the model with
the higher performance in each spatial section to resolve the
optimal aggregation level of the phytoplankton community
structure.
Assessment of the goodness-of-fit between the model
outputs and the observed data was based on the posterior pre-
dictive p-value, i.e., the Bayesian counterpart of the classical
p-value (Gelman et al., 1996). The compatibility of the alterna-
use River Estuary phytoplankton community dynamics.

tive phytoplankton community pre-conceptualizations with
the observed ecological patterns (“Which of the four phyto-
plankton groupings is better supported in each segment?”),
and the model performance with or without phosphorus (N + P
versus N models) was evaluated by the use of the Bayes factor
(Kass and Raftery, 1995). Linearity among the observed indi-
cators of the exogenous and the endogenous latent variables
was obtained by square root and natural logarithm transfor-
mations. Based on calculated residence times (Christian et al.,
1991) and exploratory data analyses, mean daily flow rates
were calculated for the 2-day, 1-week, 2-week, and 25-day
period preceding the sampling dates in the four spatial sec-
tions, respectively. Aside from the flow rate values, we used
contemporaneous measurements from individual samplings

for all the environmental variables, i.e., no time-averaging or
lagged relationships were considered. [See also the Appendix
A for further methodological details pertinent to Bayesian
structural equation modeling.]
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Table 1 – Average chlorophyll a and phytoplankton taxa
values in the four segments of the study

Section A Section B Section C Section D

Chlorophyll a 3.29 11.74 16.71 9.32
Chlorophytes 0.80 (35%) 2.14 (23%) 2.73 (19%) 1.31 (16%)
Cryptophytes 1.03 (32%) 3.47 (32%) 3.69 (23%) 1.66 (18%)
Cyanobacteria 0.35 (12%) 2.52 (18%) 4.10 (26%) 2.74 (32%)
Diatoms 0.86 (18%) 2.52 (20%) 3.49 (21%) 1.95 (20%)
Dinoflagellates 0.25 (3%) 1.39 (7%) 2.36 (11%) 1.76 (14%)
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Numbers in parenthesis indicate the average percentage contribu-
tion of the five phytoplankton taxa.

. Results

verage chlorophyll a levels were lower in the up-estuary seg-
ent (≈3.29 �g/L), where chlorophytes and cryptophytes were

he predominant groups (>30%) followed by diatoms (18%)
nd cyanobacteria (12%) (Table 1). The mid-estuary segments

and C exhibited higher average chlorophyll a concen-
rations (11.74 and 16.71 �g/L), while diatoms, chlorophytes
nd cryptophytes consistently comprised 65–70% of the total
hytoplankton community biomass. Both cyanobacteria and
inoflagellate concentrations and average percentage contri-
ution show increasing trends moving downstream, while
he former group dominates the segment D with an average
oncentration of 2.74 �g/L (≈32%). Upstream DIN concentra-

ions show a fairly steady annual cycle with an approximate

edian value of 600 �g/L (Fig. 4). The DIN annual median
evels were considerably lower in the other three segments
≈379, 104 and 46 �g/L), where the annual minima usually

ig. 4 – (a–d) Seasonal variability of the dissolved inorganic nitro
euse River Estuary.
8 ( 2 0 0 7 ) 230–246 235

occur during the summer months (July–August). In particular,
down-estuary DIN concentrations were almost consistently
lower than 50 �g/L from April to October. In contrast, phos-
phate concentrations decrease from the up-estuary (42 �g/L)
to the down-estuary section (18 �g/L) was less pronounced,
and the annual patterns were characterized by distinct late
summer–early fall annual maxima (Fig. 5). The DIN:DIP molar
ratios were higher in the upstream area (annual median val-
ues in sections A and B >24) and dropped below the Redfield
ratio (16) after the middle part of the estuary (annual median
values C and D <10). In addition, the DIN:DIP patterns were
fairly similar along the estuary with wide seasonal variation
and annual minimum values usually observed by the end of
summer (Fig. 6).

The Bayes factor values for both the total phytoplankton
and phytoplankton community composition models indicate
that phosphorus inclusion results in a higher model perfor-
mance (Table 2). We note, however, that the reported Bayes
factor values are lying in the range (1–3) where the support of
the alternative hypothesis (N + P models) is “not worth more
than a bare mention” (Kass and Raftery, 1995, page 777). The
root mean square error (RMSE) values for the modeled chloro-
phyll a and primary productivity in the four segments ranged
from 2.5–7.6 �g/L to 4–23 mg C m−3 h−1 (Fig. 7). In addition,
the RMSE values for the two inorganic nitrogen forms in the
total phytoplankton biomass structural equation model varied
from 11 to 30 �g/L. The salinity, attenuation coefficient and
flow RMSE value ranges were 1.32–2.65‰, 0.38–0.47 m−1 and

38–57 m3/s, respectively. The direct standardized path from
nitrogen to phytoplankton is weak in the upper part of the
estuary (−0.02) and becomes stronger moving to the down-
estuary, i.e., −0.08, −0.25 and −0.26 in the segments B, C and

gen concentrations (�g/L) in the four segments of the
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Fig. 5 – (a–d) Seasonal variability of the phosphate concentrations (�g/L) in the four segments of the Neuse River Estuary.

Fig. 6 – (a–d) Seasonal variability of the DIN/DIP (molar) ratio in the four segments of the Neuse River Estuary. The respective
median annual values were 31, 24, 10, and 7.
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Fig. 7 – (a–d) Aggregate phytoplankton SEM for the four spatial segments of the Neuse River Estuary. The numbers
correspond to the posterior medians of the standardized path coefficients and the root mean square error (numbers in
rectangles) between the observed values and the medians of the predictive posterior distributions. The standardized
coefficients correspond to the shift in standard deviation units of the dependent variable that is induced by shifts of one
s hus p
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tandard deviation units in the explanatory variables, and t
arious model paths.

, respectively. In contrast, the direct path from phosphorus
o phytoplankton was stronger in the upper and middle estu-
ry segments (−0.17, −0.28 and −0.16 in the segments A–C),
nd weaker (−0.09) in the down-estuary section D. Tempera-
ure effects on phytoplankton become weaker as we move to
he down-estuary sections (i.e., from 0.49 to 0.13). The phys-
cal environment plays a significant role on phytoplankton
ynamics in the up-estuary segments A and B. In particu-

ar, the flow rates have the stronger total standardized effects
0.39 (= −0.43 × 0.91) and −0.64 (= −0.69 × 0.93) among the

hree-indicator variables used for the physical environment
easurement model. The path from the physical environment

o phytoplankton was weaker in the segment C (−0.13), and

he posterior median effects were switched from negative to
ositive (0.11) in the spatial section D. Salinity has a higher

absolute) loading on the respective latent variable (physical
nvironment) in the middle and down-estuary segments C
rovide a means to assess the relative importance of the

and D. Finally, the comparison between the observed and pre-
dicted chlorophyll a/primary productivity values is presented
in Fig. 8, where it can be seen that our structural modeling
approach describes sufficiently the observed phytoplankton
patterns and more than 97% of the data were included within
the 95% credible intervals (see also the posterior predictive
p-values reported in Fig. 7).

Generally, the structural equation model that consid-
ers a classification of the phytoplankton community into
the PFG A assemblage (diatoms, chlorophytes and cryp-
tophytes), cyanobacteria, and dinoflagellates provided sat-
isfactory results (see the posterior predictive p-values in
Fig. 9). The RMSE for the five group-specific chlorophyll a

values were lower in the upper part (<1 �g/L) of the estu-
ary. The highest RMSE values were found for cryptophytes
and cyanobacteria in the section B (2.2 �g/L), for dinoflagel-
lates (3.2 �g/L), cyanobacteria (2.5 �g/L) in the section C of
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mea
Neu
Fig. 8 – Comparison of the observed (volume weighted) and
and primary productivity values in the four segments of the

the estuary, and for dinoflagellates (1.8 �g/L), cyanobacteria
(1.9 �g/L) in the down-estuary section D. [One point worth
mentioning is that our reported measures of model perfor-
mance are inflated by several observed phytoplankton (total

and group-specific) peaks in the estuary, but we chose to
keep the original information unaltered and thus no out-
lier exclusion was implemented.] The RMSE values for the
two inorganic nitrogen forms were varying from 5 to 38 �g/L,
n predicted (along with 95% credible intervals) chlorophyll
se River Estuary.

while the respective salinity, attenuation coefficient and
flow ranges were 1.42–2.52‰, 0.39–0.43 m−1 and 43–63 m3/s.
Among the three phytoplankton functional groups of the
model (dinoflagellates, cyanobacteria and PFG A), dinoflag-

ellates had the relatively stronger posterior median path
with nitrogen (−0.17) in the up-estuary section (A), whereas
the respective cyanobacteria and PFG A–nitrogen paths were
fairly weak (< −0.09). The coupling between dinoflagellates
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Fig. 9 – (a–d) Compositional phytoplankton SEM for the four spatial segments of the Neuse River Estuary. The numbers have
the same interpretation as in Fig. 7. For the sake of consistency, the same compositional SEM (PFG A, dinoflagellates, and
cyanobacteria) results are presented in the four segments of the estuary, although this categorization was not the most
f
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avorably supported by the data in the lower section (D).

−0.34) and cyanobacteria (−0.25) with nitrogen was strong
n the second NRE segment. In addition, the dinoflagellates
ad the strongest association with nitrogen in the mid- and
own-estuary sections C and D (−0.37 and −0.24), where the
espective PFG A and cyanobacteria path values were rela-
ively similar and constant (≈ −0.20). The posterior median
tandardized phosphate–PFG A paths were strongly negative
n the upper and middle sections of the estuary (< −0.26), and
elatively weaker in the downstream section D (−0.15). Like-
ise, the up- and mid-estuary cyanobacteria–phosphate paths
ere negative (<−0.14), whereas their coupling with phospho-

us is minimized as we move downstream. Interestingly, the

inoflagellates seem to have a positive – but relatively weak
relationship with phosphate along the estuary (0.04–0.18).
he physical environment is the major regulatory factor of

he phytoplankton community dynamics in the upper and
middle NRE segments (A and B), where the absolute values
of the respective posterior median paths were usually higher
than 0.40. The path between the physical environment and the
functional group A was switched from negative (−0.42) to pos-
itive (0.17) between the second and the third spatial section,
while the positive relationship was further manifested (0.36)
in the down-estuary segment (D). Similarly, the dinoflagellate
dynamics are also characterized by a positive – but weaker –
relationship with the physical environment (0.14) in the fourth
spatial section. Flow rates are the predominant indicator vari-
able of the physical environment measurement model with
total standardized effects on phytoplankton that varied from

−0.32 to −0.49. On the other hand, the (absolute) salinity load-
ing values are slightly higher (>0.91) in the down-estuary NRE
segments C and D. The functional group A has a relatively
strong positive relationship with temperature in the up- and
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Fig. 10 – Observed (volume weighted) and predicted phytoplankton community composition in the four segments of the
Neuse River Estuary. Model predictions are based on the medians of the predictive chlorophyte, cryptophyte, cyanobacteria,
diatom, and dinoflagellate distributions.
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Table 2 – Comparisons of the phytoplankton and
phytoplankton community (N + P) and (N) models for
each section of the estuary using the Bayes factor

Section A Section B Section C Section D

Phytoplankton model
Section A 1.281
Section B 1.192
Section C 1.015
Section D 1.018

Phytoplankton community model
Section A 1.075
Section B 1.085
Section C 1.038
Section D 1.301

The likelihood of the (N + P)/(N) model forms the numera-
tor/denominator of the Bayes factor (see also Arhonditsis et al.,
2007).

Table 3 – Bayes factor comparisons of the two
phytoplankton community conceptualizations with the
highest performance

Section A Section B Section C Section D

Section A 1.255
Section B 1.082
Section C 1.013
Section D 0.945

The numerator of the Bayes factor is the likelihood of the model A,
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while the denominators correspond to the models C, D, C and C for
the Neuse River Estuary sections A, B, C and D, respectively.

id-estuary segments A and B, which progressively weakens
nd switches to a negative relationship (−0.35) as we move
o the down-estuary area. The cyanobacteria–temperature
ath is consistently strong and positive along the estuary

>0.37). The comparisons between the alternative phytoplank-
on community classifications indicated that the first model
Fig. 3a) that considers dinoflagellates and cyanobacteria as
wo distinct functional groups and lumps together diatoms,
ryptophytes and chlorophytes, outperforms in the sections
–C (Table 3). In contrast, the model that combines chloro-
hytes with diatoms, dinoflagellates with cryptophytes and
reats cyanobacteria separately has a better foundation in
he down-estuary segment D. However, it should be noted
gain that none of the Bayes factor values provided strong evi-
ence in support of one of the alternative conceptualizations
f the NRE phytoplankton community. Finally, the comparison
etween the observed concentrations and the medians of the
redictive chlorophyte, cryptophyte, cyanobacteria, diatom,
nd dinoflagellate distribution in the four spatial segments
f the estuary illustrates the satisfactory description of the
patiotemporal phytoplankton community patterns from our
tructural equation model (Fig. 10).
. Discussion

lucidation of the fundamental causal connections and
echanistic understanding are often proposed as the “ulti-
8 ( 2 0 0 7 ) 230–246 241

mate objective” for the development of effective coastal
eutrophication management schemes. It is claimed that the
consideration of the most important causal relationships is
essential for a reliable model foundation that addresses the
problem of the unwieldy ecological complexity and has the
potential to provide quantitative tools with general applica-
bility (Shipley, 2000). However, our current experience from
the coastal ecosystem functioning does not justify the latter
argument and highlights the necessity to adopt site-specific
approaches in eutrophication research (Cloern, 2001). Fur-
thermore, earlier work by Peters (1991) questions the actual
meaning of the concept “cause” and the feasibility of iden-
tifying causal relationships in ecological systems, where
everything is connected to everything else. In this study,
although we do not agree with Peters’ point of view that
most of the “thorny” issues in ecology will disappear if cause,
mechanism and explanation are ignored, we do recognize that
even in our relatively simple conceptual model several mean-
ingful paths are missing (e.g., connections between physical
environment and nutrients or water temperature). In addi-
tion, the magnitude or the sign of the included ecological
paths might differ if we consider lagged instead of contem-
poraneous measurements or a different temporal resolution.
Our intention is neither to illustrate the enormous inter-
connectivity in nature nor to identify the “optimal model”.
In this study, we simply formulated a model based on our
best knowledge of the system, which through a reasonable
representation of the observed variability and conditional
on our assumptions (scale, data aggregation) aims to illu-
minate the relative impact of the considered causal factors
on the Neuse River Estuary spatiotemporal phytoplankton
dynamics.

The physical environment is the predominant factor that
regulates phytoplankton dynamics at the upper reaches of
the estuary (sections A and B), where the respective poste-
rior median paths for both the aggregate and compositional
models were consistently strong (< −0.40). Given the high-
standardized flow rate loading values on the latent physical
environment, we also infer that the phytoplankton dynam-
ics in the relatively narrow upper NRE area are primarily
driven by the control of flow on the phytoplankton growth-
minus-physical advection loss balance (Borsuk et al., 2004).
As a result, the up-estuary total phytoplankton maxima usu-
ally occur during periods of low flow conditions, i.e., late
summer–early fall (section A) and late spring–mid summer
(section B), which is also reflected by the positive temperature
path values (>0.45). In addition, the chlorophyll a concentra-
tions are notably higher as we move downstream and further
insight into the mechanisms that drive this gradient was
provided by Pinckney et al. (1997). Specifically, this study pro-
posed a conceptual pattern that explains the spatiotemporal
disparity between elevated growth rates and phytoplank-
ton productivity or biomass increase in the Neuse River
Estuary. During periods of low phytoplankton biomass, favor-
able density-independent factors (meteorological conditions,
nutrient and salinity levels) and the absence of density-

dependent limitations (e.g., self-shading effects) stimulate
algal growth in the upper reaches of the estuary. Phytoplank-
ton blooms, however, are usually manifested in the central
parts of the estuary, where the combination of elevated growth



i n g

regular occurrence of late winter/early spring dinoflagellate
242 e c o l o g i c a l m o d e l l

rates and favorable physical conditions (low turbidity, slower
current velocities and longer residence time) lead to biomass
accumulation (Pinckney et al., 1997).

The fast-growing PFG A (diatoms, chlorophytes and cryp-
tophytes) is the most abundant group in the upper portions of
the estuary. [Note that the high-standardized loadings of the
three phytoplankton taxa on the respective latent variable jus-
tify their treatment as one entity without missing much of the
information underlying their individual patterns.] Local PFG A
maxima are usually observed during the late spring–mid sum-
mer months (see also the respective temperature paths), but
this group’s opportunistic behavior also allows dominating the
system after episodic hydrologic perturbations and showing
irregular peaks throughout the annual cycle (Paerl et al., 2003).
In addition, although the amplitude of the up-stream DIN:DIP
ratio seasonal variations is quite wide; its values almost con-
sistently lie above the Redfield ratio (16) and, thus, support
stoichiometric predictions of phosphorus limitation (Redfield,
1958). The close coupling between phosphorus availability and
PFG A dynamics is also indicated by the strongly negative
posterior median path values (−0.26 and −0.44). It should be
noted that the negative signs probably stem from the adopted
temporal resolution of the study (data from individual sam-
plings with no time averaging) and also reflect their ability
to promptly respond to externally induced nutrient pulses
(affinity/velocity strategists), increase their abundance and,
consequently, decrease the contemporaneous nutrient lev-
els; especially those in shortest supply (Happey-Wood, 1988;
Klaveness, 1988; Hecky and Kilham, 1988). In contrast, the
weak nitrogen paths suggest that the periods when the PFG
A assemblage is more responsive (winter, spring and fall)
are also associated with sufficient and relatively constant
upstream DIN levels.

Being weak phosphorus competitors and having slower
growth rates, cyanobacteria can only gain competitive advan-
tage in warmer water temperatures and low nitrogen
concentrations (Paerl, 1988; Andersson et al., 1994; Piehler et
al., 2002). Thus, they usually dominate the upstream phy-
toplankton community during the mid-late summer period
(see the strongly positive temperature paths), when: (i) the
water column conditions are more stable, (ii) the DIN lev-
els are lower, especially in section B where the respective
nitrogen path is relatively strong (−0.25), and (iii) the DIN:DIP
ratios reach their annual minima and, thus, their phosphorus
competitive handicap is relaxed. Finally, the dinoflagellates
also have slower growth rates, lower nitrogen and phos-
phorus affinities and high sensitivity to hydrological forcing
(Pollingher, 1988; Paerl et al., 2003, 2006). The main dinoflagel-
late competitive advantages are their tolerance on cold water
conditions and their flagellar mobility that allows screening
the water column for nutrients and optimal light condi-
tions (Pollingher, 1988). Thus, the dinoflagellates exhibit a
fairly regular upstream annual cycle with fall maxima, asso-
ciated with longer residence times, the minimum – but
still sufficiently high – upstream DIN concentrations and
relatively high DIP concentrations. This conceptual pattern

probably explains the distinct negative temperature – (−0.14
and −0.20) and nitrogen – dinoflagellate paths (−0.17 and
−0.34) and the weakly positive relationship with phosphorus
(≈0.09).
2 0 8 ( 2 0 0 7 ) 230–246

The relationship between physical environment and total
phytoplankton is weaker and also changes sign in the tran-
sitional area between the upstream freshwater environment
and the downstream meso-polyhaline zone, i.e., the respective
path switches from weakly negative (segment C) to positive
(segments D). By inspecting the paths of the phytoplankton
composition model, we infer that the three functional groups
of the highest performing model (PFG A, dinoflagellates and
cyanobacteria) show a differential response to the signals of
the physical forcing. The positive physical environment–PFG
A paths (particularly in section D) along with the higher stan-
dardized salinity loadings on the respective latent variable
underscore this group’s ability to exhibit optimal growth rates
and dominate the phytoplankton community during high
freshwater discharge/reduced salinity conditions (Paerl et al.,
2003). Further insight into the PFG A dynamics can be obtained
by the temperature posterior median paths, which became
weakly positive (0.11) and negative (−0.35) in the spatial seg-
ments C and D, respectively. These path values probably reflect
a progressive spatiotemporal shift of the PFG A patterns from
the upstream summer maxima to a more uniform seasonal
cycle in the mid-estuary, and more pronounced responses
during the colder period of the year as we move to the down-
stream area. Aside from the physical environment effects
that are no longer restrictive for winter bloom development,
these changes should also be driven by the concurrent nutri-
ent dynamics. Both DIN concentrations and DIN:DIP seasonal
variations indicate transition towards a more prolonged sta-
tus of nitrogen limitation in the lower estuarine locations. As
a result, the duration of the suite of conditions (e.g., longer
residence times, warm water temperatures, low DIN concen-
trations and relaxation of the phosphorus limitation) that can
cause cyanobacteria dominance is longer, whereas the rest of
the phytoplankton taxa experience a favorable environment
for their competitive potential for a shorter period of the year
(late fall until mid–spring). For the latter period, stoichiome-
try usually predicts a phosphorus and/or transition towards
nitrogen limitation status, which probably explains the rel-
atively distinct nitrogen and phosphorus signatures on the
PFG A dynamics. Thus, this functional group’s patterns are
likely to be controlled by the synergistic nitrogen and phos-
phorus effects in the freshwater–saltwater transition zone,
i.e., likelihood of N and P co-limitation instead of a single
nutrient limitation. Interestingly, the nutrient–PFG A inter-
actions are also depicted in the total phytoplankton model
(see the respective nitrogen and phosphorus path values in
Fig. 9c), since the three taxa that comprise this functional
group account for a significant portion of the total phytoplank-
ton biomass.

Similarly, the physical environment/temperature–dinofla-
gellate paths indicate a temporal shift towards the colder
months of the year in the middle-lower estuary area. As it was
also suggested from past NRE studies, this change is mainly
due to the hospitable environment (sufficient nutrient lev-
els, longer residence times and usually oligo- to mesohaline
conditions) that this estuarine location provides for the fairly
blooms (e.g., Heterocapsa triquetra blooms, see Mallin, 1994;
Paerl et al., 2006). Moreover, based on the existing NRE lit-
erature, we can also hypothesize that the signature of the
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op–down control is likely to become more apparent under
he longer residence times of the lower estuarine area and
lay a role on the phytoplankton community pattern forma-
ion. For example, Mallin and Paerl (1994) provided evidence
hat the abundance of both centric diatoms and dinoflagel-
ates was positively correlated with the grazing rates, while the
rincipal species (Chroomonas amphioxiae, Chroomonas minuta
nd Cryptomonas testaceae) of the local cryptophyte community
re usually considered as high food quality for zooplankton
Brett et al., 2000). Generally, a complex interplay between
hysical, chemical and biotic factors probably induces the
tructural shifts on the phytoplankton community temporal
atterns and, thus, can explain the change of the optimal
hytoplankton community categorization in the spatial seg-
ent D; the model that aggregates diatoms with chlorophytes

PFG D), lumps dinoflagellates with cryptophytes (PFG E), and
eparately treats cyanobacteria provides slightly better results
Fig. 3c and Table 3).

One point for careful consideration is that the identifi-
ation of the nutrient limitation status can be a formidable
ask and that inherent weaknesses characterize both the
utrient addition bioassays and the stoichiometric predic-
ions based on the ambient DIN:DIP ratio (Hecky and Kilham,
988; Carpenter, 1996). In this study, we interpreted our model
esults within the context of knowledge of the system; our
nference was based on the relative magnitudes/signs of the
tructural paths vis-à-vis the ambient nutrient concentra-
ions and ratios. However, there are several other mechanisms
hat were not considered in our analysis, and their explicit
ecognition is likely to put our results into perspective. More
pecifically, phytoplankton have the ability to physiologically
dapt (e.g., luxury uptake and intracellular storage, alkaline
hosphatase production) and alleviate nutrient limitation,
hile increasing evidence from theoretical and experimen-

al studies indicates that the canonical Redfield ratio of 16 is
ikely to reflect an overall community average rather than a
universal optimum” (Sanudo-Wilhelmy et al., 2004; Piehler
t al., 2004; Klausmeier et al., 2004). In addition, our mod-
ling study did not consider the dissolved organic nitrogen
e.g., urea, nucleic and amino acids) role, which can become
mportant in the middle and lower estuary area and supply a
arge proportion of the phytoplankton requirements (Twomey
t al., 2005). Finally, several NRE studies have discussed the
lose coupling between phytoplankton community and lat-
ral/sediment nutrient fluxes, emphasizing the importance of
he bacterial-mediated nutrient recycling on the local phyto-
lankton patterns (Rudek et al., 1991; Twomey et al., 2005; Paerl
t al., 2006). It is worth mentioning that, although implicitly,
he fine temporal resolution of our models is likely to have cap-
ured the rapid phytoplankton-microbial consortia dynamics
nd, perhaps, the higher primary productivity standardized
oadings on the latent phytoplankton of the sections C and D
an be interpreted as an indication of a phytoplankton com-
unity intermittently dependent on nutrient recycling (i.e.,

arbon fixation with little net gain in biomass).
Undoubtedly, the derivation of phytoplankton paradigms
ntails compromises between simplistic approaches, where
hytoplankton dynamics are perceived as an operation mainly
riven by the availability of few natural resources, and
omplex approaches, where factors, such as adaptive strate-
8 ( 2 0 0 7 ) 230–246 243

gies, niche behavior and colonization abilities come into
play (Smayda, 2002; Cloern and Dufford, 2005). We believe
that the former strategy can be a better starting point; as
this study showed, the reduction of the hyperdimensional
space of factors (main and interactive effects) that underlie
phytoplankton dynamics to a low dimensional problem of sev-
eral important causal connections does facilitate meaningful
insights.
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Appendix A

Using the classical SEM notation, we present an illustrative
example of the matrices’ forms and the specific assumptions
made for the first phytoplankton community composition
structural equation model (model A, Fig. 3). The development
of the other three SEMs along with one used for exploring the
total phytoplankton patterns is similar. The exogenous latent
variable measurement model consists of four matrices, i.e., X
is a q × 1 vector of observable indicators of the independent
latent variables �; �x is a q × n matrix of coefficients relating X
to �; � is a n × 1 vector of independent (exogenous) latent vari-
ables, and ı is a q × 1 vector of measurement errors for X. In
the present model, we included four (n = 4) exogenous latent
variables � which were described from seven (q = 7) indicator
variables, i.e., NOx and DIN were used for the latent vari-
able “Nitrogen”; salinity, attenuation coefficient and flow for
the latent variable “Physical Environment”; phosphate for the
latent variable “Phosphorus” and temperature for the respec-
tive latent variable. Thus,

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

X1 = NOx

X2 = DIN
X3 = Attenuation coefficient

X4 = Salinity
X5 = Flow

X6 = Temperature
X7 = PO4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡
⎢⎢⎢
�6 0 0 0
�7 0 0 0
0 �8 0 0

⎤
⎥⎥⎥
�X = ⎢⎢⎢⎢⎣
0 �9 0 0
0 �10 0 0
0 0 �11 0
0 0 0 �12

⎥⎥⎥⎥⎦
,
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� =

⎡
⎢⎣

�1 = Nitrogen
�2 = Physical environment

�3 = Temperature
�4 = Phosphorus

⎤
⎥⎦ ,

ı =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ı1
ı2
ı3
ı4
ı5
ı6
ı7

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(A1)

The endogenous latent variable measurement model also con-
sists of four matrices, i.e., Y is a p × 1 vector of observable
indicators of the dependent latent variables �; �y is a p × m
matrix of coefficients relating Y to �; � is a m × 1 vector of
dependent (endogenous) latent variables; ε is a p × 1 vector
of measurement errors for Y; for the model A, five indica-
tor variables (p = 5) were used for the representation of three
(m = 3) endogenous latent variable, i.e., chlorophytes, crypto-
phytes, diatoms were used as indicators for the latent variable
“Functional Group A”, and dinoflagellates, cyanobacteria for
the respective latent variables. Thus, the exogenous latent
variable measurement model can be described from the four
matrices:

Y =

⎡
⎢⎢⎢⎣

Y1 = Dinoflagellates
Y2 = Diatoms
Y3 = Chlorophytes
Y4 = Cryptophytes
Y5 = Cyanobacteria

⎤
⎥⎥⎥⎦ , �Y =

⎡
⎢⎢⎢⎣

�1 0 0
0 �2 0
0 �3 0
0 �4 0
0 0 �5

⎤
⎥⎥⎥⎦ ,

� =

⎡
⎣ �1 = Dinoflagellates
�2 = Functional Group A
�3 = Cyanobacteria

⎤
⎦ , ε =

⎡
⎢⎢⎢⎣

ε1

ε2

ε3

ε4

ε5

⎤
⎥⎥⎥⎦ (A2)

The additional two matrices of the structural equation for the
latent variable model are:

� =

⎡
⎣ �1 �2 �3 �4

�5 �6 �7 �8

�9 �10 �11 �12

⎤
⎦ , 	 =

⎡
⎣ 	1
	2
	3

⎤
⎦ (A3)

where � is the matrix of coefficients for the latent exoge-
nous variables; 	 is the vector of latent (structural) errors.
Note that the absence of direct cause–effect relationships
between the three phytoplankton functional groups (PFG A,
dinoflagellates and cyanobacteria) implies that the matrix
of the coefficients that relate latent endogenous variables
(B) is a zero matrix. As it can be inferred from the path
diagram (Fig. 3), the associated covariance matrices of the
model, Cov(�) =˚(n × n): covariances between the independent

variables �; Cov(ε) =
ε(p × p): covariances between the mea-
surement errors in Y; Cov(ı) =
ı(q × q): covariances between
the measurement errors in X; Cov(	) =� (m × m): covariances
between the structural errors 	, have the off-diagonal ele-
2 0 8 ( 2 0 0 7 ) 230–246

ments equal to zero:


ε =

⎡
⎢⎢⎢⎣

var(ε1)
0 var(ε2)
0 0 var(ε3)
0 0 0 var(ε4)
0 0 0 0 var(ε5)

⎤
⎥⎥⎥⎦ ,


ı =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

var(ı1)
0 var(ı2)
0 0 var(ı3)
0 0 0 var(ı4)
0 0 0 0 var(ı5)
0 0 0 0 0 var(ı6)
0 0 0 0 0 0 var(ı7)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

� =

⎡
⎣ 11

0  22

0 0  33

⎤
⎦ ,

˚ =

⎡
⎢⎣
�11

0 �22

0 0 �33

0 0 0 �44

⎤
⎥⎦ (A4)

The metric of the latent variables was set by fixing one load-
ing in each column of �X and �Y to 1.0. In this particular case,
we assumed that �1 = �2 = �5 = �7 = �8 = �11 = �12 = 1.0. Moreover,
implicit in the assumption that the latent variables tempera-
ture, phosphorus, dinoflagellates, and cyanobacteria coincide
with the respective observed variables, is: ı6 = ı7 = ε1 = ε5 = 0.

The hierarchical Bayesian configuration of the phytoplank-
ton community composition SEM can be specified as:

Y1i = �1�1i + ε1,

Y2i = �2�2i + ε2, Y3i = �3�2i + ε3, Y4i = �4�2i + ε4,

Y5i = �5�3i + ε5

ε. ∼ N(0,
ε)
X1i = �6�1i + ı1, X2i = �7�1i + ı2
X3i = �8�2i + ı3, X4i = �9�2i + ı4, X5i = �10�2i + ı5
X6i = �11�3i + ı6
X7i = �12�4i + ı7
ı. ∼ N(0,
ı), �. ∼ N(0, ˚)
�1i = �1�1i + �2�2i + �3�3i + �4�3i + 	1
�2i = �5�1i + �6�2i + �7�3i + �8�3i + 	2
�3i = �9�1i + �10�2i + �11�3i + �12�3i + 	3
	. ∼ N(0, � )

(A5)

Let wi = {y.i, x.i, i = 1, . . . , 
} be the joint vector of the observed
variables (expressed as deviations from the respective means)
for an arbitrary observation i. According to the model (A5),
each observation i comes from a multivariate normal distribu-
tion f(�(�)i,�(�)) where �(�)i is the conditional mean (expected)
vector, �(�) is the conditional covariance matrix, given by
(Bollen, 1989):
˙(�) =
[
�y(I− B)−1(�˚� ′ + � )[(I− B)−1]′�′

y +
ε �y(I− B)−1
�˚�′

x

�x˚� ′[(I− B)−1]′�′
y �x˚�′

x +
ı

]

(A6)
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nd � is the vector of the unknown model parameters. The
ikelihood of w = (w1, . . . ,w
) is:

(w|�) =
n∏
i=1

(2�)−(p+q)/2|˙(�)|−1/2

× exp
[
−1

2
[wi − �(�)i]

′˙(�)−1[wi − �(�)i]
]

(A7)

here q = 7 and p = 3 are the number of exogenous and endoge-
ous manifest (observed) variables. In the context of the
ayesian statistical inference, the focus is on the posterior
ensity of � given the observed data w, which is defined as:

(�|w) = p(w|�)p(�)∫
p(w|�)p(�) d�

∝ p(w|�)p(�) (A8)

here p(�) is the prior density of � which is required to be
pecified for each of the unknown model parameters. Aside
rom the cases where no measurement error was assumed
etween the latent and indicator variables, we used indepen-
ent non-informative conjugate gamma priors (0.01, 0.01) for
he elements of the matrices 
−1

ı , 
−1
ε , ˚−1 and �−1. Effec-

ively “flat” normal prior distributions with means equal to
and precisions equal to 0.0001 were used for the struc-

ural parameters and the factor loadings. A methodology to
est the sensitivity of the model results to these assumptions
as presented in Arhonditsis et al. (2006). MCMC simula-

ion was used as the computation tool implemented in the
inBUGS software (Spiegelhalter et al., 2003). We used three

hain runs of 30,000 iterations and samples were taken every
0th iteration to avoid serial correlation, and convergence
as assessed using the modified Gelman–Rubin convergence

tatistic (Brooks and Gelman, 1998). Generally, the sequences
onverged rapidly (≈2000 iterations), while the summary
tatistics reported in this study were based on the last 7500
raws. The accuracy of the posterior estimates was inspected
y assuring that the Monte Carlo error (an estimate of the
ifference between the mean of the sampled values and the
rue posterior mean; see Spiegelhalter et al., 2003) for all
he parameters was less than 5% of the sample standard
eviation. [All the material (e.g., model codes, data) perti-
ent to this study is available upon request from the first
uthor.]
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