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ABSTRACT: The National Research Council recommended Adaptive Total Maximum Daily Load implementa-
tion with the recognition that the predictive uncertainty of water quality models can be high. Quantifying pre-
dictive uncertainty provides important information for model selection and decision-making. We review five
methods that have been used with water quality models to evaluate model parameter and predictive uncer-
tainty. These methods (1) Regionalized Sensitivity Analysis, (2) Generalized Likelihood Uncertainty Estimation,
(3) Bayesian Monte Carlo, (4) Importance Sampling, and (5) Markov Chain Monte Carlo (MCMC) are based on
similar concepts; their development over time was facilitated by the increasing availability of fast, cheap com-
puters. Using a Streeter-Phelps model as an example we show that, applied consistently, these methods give
compatible results. Thus, all of these methods can, in principle, provide useful sets of parameter values that can
be used to evaluate model predictive uncertainty, though, in practice, some are quickly limited by the ‘‘curse of
dimensionality’’ or may have difficulty evaluating irregularly shaped parameter spaces. Adaptive implementa-
tion invites model updating, as new data become available reflecting water-body responses to pollutant load
reductions, and a Bayesian approach using MCMC is particularly handy for that task.
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INTRODUCTION

Water quality models provide an essential
framework for scientific assessment in support of
water quality management and decisions such as

total maximum daily load (TMDL) determinations
(NRC 2001). Models allow decision makers to evalu-
ate the logical outcomes of alternative management
actions based on informed speculation about system
behavior captured in a set of equations.
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Given a choice of models, a decision maker is likely
to choose the model that predicts most accurately.
If a model were available that was 100% accurate
(i.e., the model predicts correctly 100% of the time),
this model would be a clear choice over one that was,
say, 80% accurate. With 100% accuracy, management
actions could be chosen based only on the societal
value of the consequences of those actions. Even mod-
els of relatively low predictive accuracy can be useful,
if the predictive accuracy is appropriately quantified.
A model with only 80% accuracy is still informative,
but applying such a model requires hedging decisions
by the relative probabilities of a range of possible out-
comes and the societal value of those outcomes. Thus,
model uncertainty quantification provides informa-
tion useful in both model selection and application.

However, decision makers are often provided with
models, or model results, and given no information
regarding forecast uncertainty. How then, can these
models be appropriately used for decision purposes?

Model uncertainty is typically quantified by inclu-
sion of an error-term on the model, and estimating the
model’s structural and error-term parameter values.
Often, however, modelers have little data to support
rigorous parameter estimation or assess parameter
uncertainty; thus, modelers employ ‘‘judicious did-
dling’’ (Hornberger and Spear, 1981) to select values
of key model parameters, aided by the user’s manual
or other established precedent. Among experienced
water quality modelers, it is well-recognized that
many ‘‘sets’’ of parameter values will fit the model
about equally well; similar predictions can be obtained
by simultaneously manipulating several parameter
values in concert. This is plausible in part because all
models are approximations of actual ecosystem pro-
cesses, and because all parameters represent aggre-
gate processes (spatially and temporally averaged at
some implicit scale) and are unlikely to be represented
by a fixed constant across scales. Additionally, many
mathematical structures impart extreme correlation
among model parameters, even when the model is
overdetermined. This condition, called ‘‘equifinality,’’
is well-documented in the hydrologic sciences (Franks
et al., 1997), but the concept has rarely been discussed
in the water quality modeling research literature. We
believe that the recognition of equifinality should
change the perspective of water quality modelers from
seeking a single ‘‘optimal’’ value for each model
parameter, to seeking a distribution of parameter sets
that all meet a pre-defined fitting criterion (Spear,
1997). These acceptable parameter sets may then pro-
vide the basis for estimating model prediction error
associated with the model parameters.

Herein, we discuss several techniques that might
be used for evaluating plausible parameter sets, and
compare their utility. We then illustrate the

approaches using a simple Streeter-Phelps dissolved
oxygen model. Though the rationale for uncertainty
analysis in water quality modeling has been recog-
nized for many years (Reckhow and Chapra, 1983;
Beck, 1987), in practice rigorous uncertainty analysis
is rare. Pappenberger and Beven (2006) suggested
that one of the reasons modelers often fail to do
uncertainty analysis is that there are many ‘‘compet-
ing methods’’ making it difficult to choose a method
and interpret the results. A primary goal of this
paper is to show that, though these techniques have
origins in distinct disciplines, they will provide simi-
lar inference if they are consistently applied. Accord-
ingly, we encourage water quality modelers to
consider a refocus from single optimal parameter
selection to estimation of complete parameter sets,
leading to the multi-parameter distribution. Using
the multi-parameter distribution to make predictions
then provides a quantified estimate of predictive
uncertainty.

Regionalized (Generalized) Sensitivity Analysis

The development of methods for identifying plausi-
ble parameter sets for large multi-parameter environ-
mental models with limited observational data
began with the work of Hornberger and Spear (1981).
Their method, called regionalized (or generalized)
sensitivity analysis (RSA), is a Monte Carlo sampling
approach to assess model parameter sensitivity.
Hornberger and Spear advocated the application of
this method as a means to prioritize future sampling
and experimentation for model and parameter
improvements.

Regionalized sensitivity analysis is simple in con-
cept, and is a useful way to use limited information to
bound model parameter distributions. Given a particu-
lar model and a system (e.g., water body) being mod-
eled, the modeler first defines the plausible range of
certain key model response variables (e.g., chlorophyll
a, total nitrogen) as the ‘‘behavior.’’ Outside the range
is ‘‘not the behavior.’’ The modeler then samples from
(often uniform) distributions of each of the model
parameters and computes the values for the key
response variables. Each complete sampling of all
model parameters, leading to prediction, results in a
‘‘parameter set.’’ All parameter sets that result in pre-
dictions of the key model response variables in the
‘‘behavior’’ range are termed ‘‘behavior generating’’
and thus become part of the model parameter distribu-
tion. The parameter sets that do not meet this behav-
ior criterion are termed ‘‘nonbehavior generating.’’

Hornberger and Spear (1981) proposed that the
cumulative distribution function (cdf) of each para-
meter distribution from these two classes of parame-
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ter sets (behavior generating and nonbehavior gener-
ating) be compared with evaluate model parameter
sensitivity. For a particular parameter, if the behav-
ior generating and nonbehavior generating distribu-
tions are substantially different, then prediction of
the key response variables is sensitive to that param-
eter. Hence, resources devoted toward model
improvement might be preferentially allocated toward
improved estimation of that parameter.

In addition, we can consider the distribution of the
behavior generating parameter sets as reflecting
equifinality. Thus, the empirical distribution charac-
terizes the error (variance and covariance) structure
in the model parameters, conditional on the model
and on the fitting criterion (the defined plausible
range of key response variables).

Generalized Likelihood Uncertainty Estimation

The Generalized Likelihood Uncertainty Estima-
tion (GLUE) approach is an extension of the original
RSA; the binary system of acceptance ⁄ rejection of
behavioral ⁄ nonbehavioral simulations is replaced by
a ‘‘likelihood’’ measure that assigns different levels of
confidence (weighting) to different parameters sets
(Beven and Binley, 1992; Zak and Beven, 1999; Page
et al., 2004). Unlike Bayesian Monte Carlo (BMC),
Importance Sampling (IS), and Markov Chain Monte
Carlo (MCMC), the term likelihood has a very broad
meaning in the GLUE methodology and it is specified
as any measure of goodness-of-fit that can be used to
compare observed responses and model predictions
(Zak et al., 1997). Herein, we will use ‘‘likelihood
measure’’ to distinguish this concept from ‘‘likelihood
function’’, a term that is well-defined and universally
applied in the statistical literature. A wide variety of
likelihood measures can be found in the GLUE litera-
ture [e.g., likelihood measures based on the sum of
squared errors (Beven and Binley, 1992; Sorooshian
and Gupta, 1995; Freer et al., 1997), fuzzy measures
(Franks et al., 1998; Page et al., 2004) or even quali-
tative measures for model evaluation (Beven, 2001)].

The GLUE procedure requires a large number of
Monte Carlo model runs sampled from (usually) uni-
form distributions across plausible parameter ranges.
Prior knowledge regarding the expected joint parame-
ter distributions can be incorporated by assigning
appropriate prior likelihood weights to each of the
parameter sets (Schulz et al., 1999). The behavioral
runs are selected on the basis of a subjectively chosen
threshold of the likelihood measure and are rescaled
so that their cumulative total is 1.0. The weighting
assigned to the retained behavioral runs is propa-
gated to the model output and forms a likelihood-
weighted cumulative distribution of the predicted

variable(s), which are then used for estimating the
prediction uncertainty ranges (Beven and Binley,
1992).

Bayesian Approaches – General

Bayesian approaches begin with the realization
that model predictions will contain error; thus, a term
representing this error is explicitly incorporated in
the model. This prediction error is often written as
an additive term (though other error structures are
possible),

Y ¼ g x; h½ � þ e; ð1Þ

where Y is the response variable (such as dissolved
oxygen or chlorophyll a), g is a general model form
(such as a Streeter-Phelps dissolved oxygen model), x
represents one or more state variables (such as tem-
perature or nutrient concentration), h represents one
or more model parameters (such as rate coefficients),
and e is the model error. Often e is assumed to be
normally distributed with mean (denoted l) = 0, and
variance = r2. Under the assumption that e is distrib-
uted normally, the likelihood function for this model is

fðyjhÞ ¼
Yn
i¼1

1ffiffiffiffiffiffiffiffiffiffi
2pr2
p exp

Y� g x; h½ �ð Þ2

�2r2

" #
; ð2Þ

where n is the number of observations. In this func-
tion, h is regarded as an unknown quantity that can
be predicted from the observed data.

Bayes theorem combines Equation (2) with any
prior information a modeler has about the value of h
resulting in

pðhjyÞ ¼ pðhÞfðyjhÞR
h pðhÞfðyjhÞdh

; ð3Þ

where p(h|y) is the posterior probability of h (the
probability of the parameter vector, h, after observing
the data, y), p(h) is the prior probability of h, (the
probability of h before observing y), and f (y|h) is the
likelihood function. In water quality modeling p(h) is
often represented by a single fixed value based on the
prior knowledge of the modeler, or chosen from the
literature or a compendium of such values (Bowie
et al., 1985). In contrast, noninformative priors are
typically used if little prior knowledge about the
parameter values is available, or if the modeler
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prefers that the parameter values be estimated using
only information conveyed by the data. When nonin-
formative priors are used Bayesian approaches pro-
vide results consistent with maximum likelihood
results or, if the model error term is additive and nor-
mally distributed, least-squares estimation. However,
Bayesian approaches emphasize inference using the
entire posterior parameter distribution, whereas max-
imum likelihood and least-squares methods empha-
size the choice of a single optimal value for each
parameter.

Bayesian Monte Carlo

The BMC approach (Dilks et al., 1992) is similar to
the Hornberger-Spear algorithm, but carries the addi-
tional assumptions of an additive, normally distrib-
uted error term, with mean = 0 and variance = r2

(Equation 1). Acceptable model behavior can be
implicitly constrained a priori by setting the value of
r2. Then, the modeler samples from uniform distribu-
tions were chosen to represent plausible ranges of
values for each parameter. However, rather than
grouping parameter sets into two categories, ‘‘behav-
ior generating’’ and ‘‘nonbehavior generating’’, param-
eter sets are weighted using the likelihood function.
Parameter sets that result in more likely model pre-
dictions (closer to the maximum of the likelihood
function) are weighted more heavily than those
resulting in unlikely predictions. The result is analo-
gous to a multivariate probability density function for
the model parameters.

Importance Sampling

The Hornberger-Spear algorithm, GLUE, and the
BMC all run the risk of becoming limited by the
‘‘curse of dimensionality’’; in high-dimensional models
(models with many unknown parameters) the plausi-
ble parameter space can become an extremely small
proportion of the space defined a priori by a set of
independent uniform distributions. When this
occurs sampling may be, at best, inefficient and, at
worst, ineffective. Additionally, some combinations of
parameter values may provide plausible model
results, though these combinations may include val-
ues for the individual parameters that would not be
deemed plausible when the parameters are consid-
ered one at a time. This latter situation is particu-
larly problematic when the parameters are highly
correlated (Figure 1). In this case, the joint parame-
ter space defined a priori by uniform distributions
(solid box) for each individual parameter may exclude
important regions in the tails of the parameter space

(ellipse). Enlarging the space by increasing the width
of each of the uniform distributions may incorporate
these regions (dashed box), but this approach exacer-
bates the curse of dimensionality. Using this tactic,
the volume of the parameter space to be sampled is
likely to increase more rapidly than the important
parameter space, making it even less likely that the
plausible region will be sampled effectively.

Thus, IS and its variations (Sampling ⁄ Importance
Resampling – SIR) is premised on the idea that sam-
pling effectiveness can be increased by choosing a
sampling distribution (for which pseudorandom num-
ber generators exist) that more closely approximates
the important region of the parameter space. In a
Bayesian context, this means choosing a surrogate,
such as a multivariate normal or t-density that clo-
sely approximates the posterior parameter distribu-
tion. Often this can be done by first finding the
maximum of the posterior distribution, and then
using Fisher information (the negative expectation of
the Hessian of the log of the posterior) to estimate
the parameter covariance structure (Geweke, 1989).

Like BMC, the SIR algorithm often includes a nor-
mally distributed additive error term, but the param-
eters of this error term are included in the set of
model parameters to be estimated. SIR is most useful
when a good surrogate exists to the posterior distri-
bution, when this surrogate is easy to sample, and
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FIGURE 1. Illustration of How a Priori Independent Uniform Dis-
tributions Can Miss Important Regions of the Parameter Space.
Ellipse depicts important parameter space of two positively
correlated parameters, h1 and h2 while the solid box shows the area
encompassed by a priori plausible ranges of 30-75 for h1 and 20-80
for h2. The ellipse encompasses only a small proportion of the box
indicating that random sampling within the box will be inefficient.
Concurrently, random sampling within the box will miss the upper
and lower tails of the ellipse. If the box is enlarged (dashed box) to
capture the tails, then the efficiency of random sampling will be
further reduced because the area of the box increases more rapidly
than the additional area included in the tails.
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when a limited number of samples is desired (Rubin,
1988). The SIR algorithm takes more samples than
needed (say M) from the surrogate distribution, then
resamples from this finite sample of size M, based on
the ratio of the true posterior to the surrogate, to
obtain m final draws (where m>M).

Markov Chain Monte Carlo

An historical limitation in the application of Bayes-
ian approaches was that, for many model forms,
using the posterior parameter distribution required
solving analytically intractable integrals. Importance
sampling addresses this limitation by using a surro-
gate to provide a sample from the posterior distribu-
tion; MCMC estimation (prediction) uses cleverly
written algorithms to draw samples directly from the
posterior distribution (more accurately – these sam-
ples will converge, in distribution to the posterior)
allowing precise numerical approximation of any
function of the posterior distribution (Gelfand and
Smith, 1990; Smith and Roberts, 1993). There are
several algorithms available; the Metropolis-Hastings
algorithm (Chib and Greenberg, 1995) is general but
less numerically efficient, while the Gibbs Sampler
(Casella and George, 1992), a special case of Metropo-
lis-Hastings, can take advantage of structural regu-
larities present in some models to converge more
efficiently. Selecting the most appropriate algorithm
is dependent on the model form and the distribu-
tional structure chosen to represent the stochastic
terms. Fortunately, there is freely available software
for this task; WinBUGS incorporates MCMC algo-
rithms into a straightforward programming environ-
ment (Gilks et al., 1994).

Summary

These five approaches can be thought as approxi-
mately evolutionary, facilitated by the availability of
fast, inexpensive computers (Figure 2). The RSA
approach is completely general, assumes no structure
associated with model error and serves as a screening

approach to identify plausible regions of model
parameter values. RSA requires a priori determina-
tion of the behavior-generating region for the
response variables. This determination is very impor-
tant and can be based on either expert-judgment, or
more empirically derived like it is using the other
four procedures. The BMC builds on the RSA
approach by adding assumptions regarding model
error structure and uses that added structure to deli-
mit plausible parameter regions. GLUE is similar to
BMC (and in some cases can be the same) but per-
mits a broader range of functions that define the
model error structure. GLUE can also be ‘‘updated’’,
much like a Bayesian procedure (Beven and Binley,
1992). IS recognizes the problems associated with the
‘‘curse of dimensionality’’ that can limit the effective-
ness of sampling using RSA, BMC, and GLUE and
employs a well-chosen surrogate distribution instead
of sampling parameter values from independent uni-
form distributions. MCMC employs a full Bayesian
framework and uses clever algorithms to choose a
sample that approaches the posterior density function
in distribution.

EXAMPLE USING THE STREETER-
PHELPS DISSOLVED OXYGEN MODEL

To illustrate and compare these five approaches,
we simulated a dataset using the following form of
the Streeter-Phelps stream dissolved oxygen model
(Streeter and Phelps, 1925)

DO ¼ DOs �
k1BODu

k2 � k1
e�k1

x
v � e�k2

x
v

� �
�Die

�k2xv; ð4Þ

where DO is the dissolved oxygen concentration
(mg ⁄ l), DOs is the saturation oxygen concentration,
k1 is the BOD decay coefficient (1 ⁄ day), k2 is the rea-
eration coefficient (1 ⁄ day), BODu is the ultimate BOD
(mg ⁄ l), x is the downstream distance (km), v is
stream velocity (km ⁄ day), and Di is the initial DO
deficit (mg ⁄ l). Using simulated data allows compari-
son of estimated (predicted) parameters with the true
parameter values that generated the data. For this
example we set DOs = 8.0, k1 = 0.25, k2 = 0.8,
BODu = 35, v = 10, and Di = 1.0. A random normal
error with l = 0 and r2 = 0.6 was added to each obser-
vation. Thirteen x values between 0 and 100 km were
randomly generated from a uniform distribution
resulting in a set (Figure 3) with observed DO rang-
ing from 1.9 to 7.8 mg ⁄ l and a minimum at �20 km.
For straightforward depiction on bivariate plots, we

RSA BMC 
GLUE

IS
MCMC

slow
expensive

fast
cheap

Computing Speed
Availability 

FIGURE 2. Conceptual Timeline Depicting the Availability
of Fast, Cheap Computing and Parameter Evaluation Methods.
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treated k1 and k2 as the unknown model parameters,
though various combinations of the other model
inputs could also be predicted (estimated) from the
data.

To illustrate the application of RSA, we defined the
plausible DO range as ‡0 mg ⁄ l. No upper bound on
DO was necessary because this form of the Streeter-
Phelps model has no oxygen source term that would
push DO above saturation, thus no combination of
values for k1 and k2 will cause model predictions to
exceed the 8 mg ⁄ l saturation value.

Choosing candidate ranges for k1 and k2 was some-
what trickier; Bowie et al. (1985) listed k1 values
ranging from 0.004 to �5 and k2 values from �0.01 to
�100, while in our experience, values between 0 and
1.0 are most common for each. Selecting different
parameter spaces can strongly affect the inference
made; the parameter ranges suggested by Bowie
et al. (1985) result in an acceptable parameter region
.95% of the total parameter space (Figure 4a),
whereas ranges from 0 to 1 for k1 and k2 result in an
acceptable region .22% of the total space (Figure 4b).
Considering the larger parameter space, we would
conclude that the model was more sensitive to k2, as
indicated by large difference (relative to k1) between
the cdfs for the behavior and nonbehavior generating
sets (Figure 5, panels a and b). Conversely, when the
parameter space for both parameters is constrained
to range from 0 to 1, the behavior and nonbehavior
generating cdfs are more similar to each other for k2

than for k1 indicating that the model will be sensitive
to choices of k1 (Figure 5, panels c and d).

We chose to illustrate the GLUE procedure using
an error sum of squares likelihood measure defined as

ess ¼
Xn
i¼1

Pi �Oið Þ2; ð5Þ

where ess is error sum of squares, n is the number of
observations, Pi is the ith of n predicted values, and
Oi is the ith of n observed values. Using the error
sum of squares provides a result that is closely analo-
gous to Bayesian estimation with a normal, additive
model error, and a noninformative prior distribution.
The result (Figure 6) is consistent with the RSA
result (Figure 5), but provides more information
about the location of the most likely parameter val-
ues. The plot contours depict parameter sets that are
equally likely, given the chosen likelihood measure.
While the most likely values are near the center of
the contour ellipse, many other sets that are almost
as likely are also identified.

Qian et al. (2003) indicated that a priori specifica-
tion of a precise value for r2, using BMC, can
strongly influence the variance of the posterior
parameter distribution and thus prediction variance.
However, if r2 is treated as a parameter to be esti-
mated from the data, then the main difference
between BMC and IS is that IS uses a well-chosen
surrogate for the posterior distribution, to concen-
trate sampling effort near the most probable para-
meter values. To compare these two approaches, we
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FIGURE 3. Depiction of the Example Streeter-Phelps
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chose 2000 samples from two uniform [0,1] distribu-
tions for the BMC, and two normal distributions, esti-
mated from the example data using nonlinear least
squares, for the IS distribution. The results (Figure 7)
indicate the relative inefficiency of the BMC, with
only about 4% of the BMC samples falling within the
area IS sampled. This inefficiency is exacerbated

when the parameters are highly correlated, particu-
larly in higher dimensional models (Qian et al.,
2003). Similarly, a poor choice for the IS surrogate
can cause inefficient or nonrepresentative sampling.
In this example, we used independent, normal distri-
butions; though incorporating parameter correlation
into the IS sampling distribution can increase
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efficiency and accuracy. However, choosing a good
surrogate can be difficult for high-dimensional models
or highly nonlinear models, where the tails of the
posterior distribution are often irregularly shaped.

Comparison of Figures 6 and 7, however, reveals
that these methods provide consistent results, with
the most likely values for k1 and k2 near the true val-
ues that were used to generate the dataset. An
MCMC sample (Figure 8) using a noninformative
prior distribution, generated using WinBUGS, is also
similar to the IS sample (Figure 7) and the most
likely region of the GLUE (Figure 6). The advantage
of using MCMC is that a well-written algorithm
quickly converges to provide a sample from the pos-
terior parameter distribution and does not require
independent information regarding a surrogate distri-
bution to sample. This is particularly advantageous
when extreme parameter correlation and nonlinear
model structure make choosing a good surrogate dis-
tribution difficult.

CONCLUSIONS

Our simple two-dimensional Streeter-Phelps exam-
ple illustrates the capabilities and limitations of these
methodologies. RSA is completely general, but only
separates parameter sets into two groups: in or out.
Adding structural assumptions about the model error
term, either implicitly, applying GLUE, or explicitly,
using Bayesian approaches, yields considerably
more information; the resultant parameter sets are
expressed probabilistically. MCMC methods make it
feasible to generate large samples from these probabi-
listic parameter sets, which can be used in model pre-

dictions, thus resulting in a straightforward
calculation of model prediction uncertainty. We delib-
erately chose an example using a simple low dimen-
sional model, where all properties of the model are
known, for easy depiction. In real applications and
higher dimensional models, the concepts are analo-
gous but problems resulting from the ‘‘curse of
dimensionality’’ become more difficult. Thus, using an
approach capable of effectively and efficiently
sampling the appropriate parameter space becomes
increasingly important.

The National Research Council (NRC 2001) TMDL
report recommended ‘‘Adaptive Implementation’’ of
TMDLs, an approach based on the ‘‘Adaptive Man-
agement’’ concept (Holling, 1978). Using adaptive
implementation water quality models are an integral
component of the TMDL assessment phase in which
alternative management actions are evaluated based
on the probability of attaining water quality stan-
dards. To fully implement this NRC recommendation,
it will be imperative to routinely incorporate uncer-
tainty analysis approaches, such as those we have
reviewed, into model development. Within the Adap-
tive Management framework, TMDL implementation
is regarded as a ‘‘learning by doing’’ opportunity – an
ecosystem-scale experiment (Carpenter et al., 1995),
that can provide data and information about system
behavior not available by other means. Bayesian
methods are particularly useful for model develop-
ment under adaptive management because they pro-
vide a straightforward, rigorous basis for data
assimilation and model updating using Bayes
theorem.
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