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We examined the factors that determine the citations of
153 mechanistic aquatic biogeochemical modeling papers
published from 1990 to 2002. Our analysis provides
overwhelming evidence that ocean modeling is a dynamic
area of the current modeling practice. Models developed
to gain insight into the ocean carbon cycle/marine
biogeochemistry are most highly cited, the produced
knowledge is exported to other cognitive disciplines, and
oceanic modelers are less reluctant to embrace technical
advances (e.g., assimilation schemes) and more critically
increase model complexity. Contrary to our predictions, model
application for environmental management issues on a
local scale seems to have languished; the pertinent papers
comprise a smaller portion of the published modeling
literature and receive lower citations. Given the critical
planning information that these models aim to provide, we
hypothesize that the latter finding probably stems from
conceptual weaknesses, methodological omissions, and an
evident lack of haste from modelers to adopt new ideas
in their repertoire when addressing environmental
management issues. We also highlight the lack of significant
association between citation frequency and model
complexity, model performance, implementation of conven-
tional methodological steps during model development
(e.g., validation, sensitivity analysis), number of authors,
and country of affiliation. While these results cast doubt on
the rationale of the current modeling practice, the fact
that the Fasham et al. (1990) paper has received over 400
citations probably dictates what should be done from
the modeling community to meet the practical need for
attractive and powerful modeling tools.

Introduction
Mechanistic biogeochemical models have had a central role
in aquatic ecosystem research, e.g., they have been used for
elucidating ecological patterns or aspects of system dynamics
that are technologically or economically unattainable by other
means (1, 2); they have formed the scientific basis for

environmental management decisions by providing a pre-
dictive link between management actions and ecosystem
response (3, 4); they have provided an important tool for
understanding the interactions between climate variability
and plankton communities, and thus address questions
regarding the pace and impacts of climate change (5, 6).
Their role as a key research tool for understanding and
quantitatively describing aquatic ecosystems can also be
indicated by recent review/synthesis papers that assessed
their methodological consistency and performance (7),
underscored the importance of effectively coupling physical
and biogeochemical models (8, 9), and identified the major
problems, technical or conceptual advances and future
perspectives (10-12).

Despite the significance and considerable attention, a
recent evaluation of the current state of mechanistic aquatic
biogeochemical modeling across the range of temporal and
spatial scales typically utilized has provided controversial
quantitative and qualitative information (7). Specifically, one
of the major findings was that the performance of existing
mechanistic aquatic biogeochemical models declines as we
move from physical-chemical to biological components of
planktonic systems and that the consideration of longer
simulation periods and increased model complexity has not
improved model performance. The same analysis also
indicated that there was considerable methodological in-
consistency regarding the steps followed during the devel-
opment stages of the models; i.e., conventional modeling
procedures, such as sensitivity analysis, validation, or even
assessment of goodness-of-fit were not applied in a high
proportion of the published modeling studies (7; see their
Figure 2). Given the convincing presentation in several classic
modeling textbooks of what “rational model development”
is (13, 14), the absence of a systematic methodological
protocol widely followed from the modelers was surprising.

The objective of this study is to present a second
quantitative assessment of the current state of aquatic
biogeochemical modeling by focusing on their citation
frequency and identifying the factors that determine the
citation rates. Our aim is to analyze how has the modeling
community received and applied the 153 models published
from 1990 to 2002. Thus, this study will allow us to gain
insight into what characteristics of a model are more attractive
to the potential “consumers” and may influence the fre-
quency of its use and subsequent citation. First, we compiled
the demographic profiles of the papers that cited the 153
modeling studies (authors, journal, publication year, institu-
tion, scientific discipline, and country of affiliation) and
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identified the basic features of the “market”/potential users
of mechanistic aquatic biogeochemical models. Then, we
examined the factors that determine the citation frequency
of the modeling papers; we tested the association between
citation rates and characteristics of the published modeling
studies: type of the ecosystem modeled, journal impact
factor, authorship characteristics, methodological consis-
tency, and model performance. Our main question is to
determine whether the social factors, the quality of the
modeling study, or the questions being addressed is the basic
criterion for the recognition that a modeling study receives.
We conclude our presentation with a critical discussion of
some of the outstanding challenges of the current and future
modeling practice.

Citation Rates of Mechanistic Aquatic Biogeochemical
Modeling Papers
Our citation analysis builds upon the results of an earlier
study focused on the ability of biogeochemical models to
predict spatial and temporal patterns in the physical,
chemical, and biological dynamics of planktonic systems (7).
As noted there, the literature was searched using (i) the
electronic databases “Aquatic Sciences & Fisheries Abstracts”,
“BIOSIS previews”, “ISI Web of Science”, and “ScienceDirect”;
and (ii) the keywords “eutrophication model(l)-ing”, “NPZ
model(l)-ing”, “water quality model(l)-ing”, “phytoplankton
model(l)-ing”, “freshwater model(l)-ing”, “ocean model(l)-
ing”, and “biogeochemical model(l)-ing”. To be included in
the analysis, studies had to present graphs or tables in which
observed data were compared to model outputs; 153 papers
fit this criterion (7; see Appendix 1). These same 153 papers
are analyzed here for their citation records. Papers that
modeled the aquatic fate and transport of individual con-
taminants or groups of contaminants, without specific
reference to nutrient cycles and plankton dynamics, were
not included. Nor were studies that provided only qualitative
(conceptual) modeling and/or sampling results. We searched
the electronic database Web of Science (http://www.isiwe-
bofknowledge.com/index.html) to extract quantitative in-
formation (journal, institution and country of affiliation,
scientific discipline, and publication year) pertinent to the
papers that cited the 153 mechanistic aquatic biogeochemical
modeling studies. The papers used in the original meta-
analysis were published in 34 journals and, not surprisingly,
the large majority of both cited and citing articles originated
from journals that place emphasis on ecological modeling
(e.g., Ecological Modeling, Journal of Marine Systems, and
Deep Sea Research; see Figure 1). The modeling studies
considered in our analysis received citations from papers
published in 246 different journals that spanned a wide range
of disciplines. The latter finding is probably an indication
that mechanistic aquatic biogeochemical modeling produces
“exportable” knowledge of wider scientific interest. The 153
modeling studies were cited 21 times on average, while the
median value and the interquartile range (difference between
the 75th and the 25th percentile) of their citations were 13
and 18, respectively.

Among the modeling papers published during the study
period (1990-2002), the Fasham et al. (15) food web model
stands out as the most cited paper in the process-based
aquatic biogeochemical modeling literature (Table 1). In-
terestingly, more than half (53.09%) of this paper’s 405
citations were received within the last 5 years, which indicates
that several aspects of this study (e.g., novel model formula-
tions, ecological structure, sensitivity analysis, ecosystem
studied) are still appealing to contemporary research. For
example, the Fasham et al. (15) study was the first modern
model to explicitly consider separate formulations for nitrate
and ammonium flows that symbolize new and regenerated
production (i.e., the Eppley-Peterson f-ratio paradigm),

respectively. In addition, the same model was also created
to give outputs directly compatible with flow analysis routines
(16) and was the first to be coupled to a basin-scale circulation
model (17). The late 1980s and early 1990s were a time when
a couple of pioneers in the ocean biogeochemistry com-
munity had started to incorporate biogeochemical processes
into ocean general circulation models. The Fasham et al.
(15) model was simple enough to be implemented in ocean
general circulation models or variations of it in a wide range
of other applications (17, 18). In this respect, the Fasham et
al. (15) study came up with the right idea at the right time;
a phenomenon that is often seen when a major breakthrough
starts a new field.

Another ocean modeling study by Doney et al. (19) was
the second most highly cited paper (107 citations). In this
study, the authors introduced a simple four-compartment
(nitrogen-phytoplankton-zooplankton-detritus) biological
model with an interesting parameterization (e.g., photoad-
aptation, variable chlorophyll-to-nitrogen ratios) along with
a physical mixed-layer model that improved the simulation
of the plankton dynamics in the oceanic euphotic zone.
Several other simple ecological models with aggregated
plankton state variables and 3-dimensional (20, 21) or simpler
spatial structure (22, 23) can be found in the top ten of the
most highly cited modeling papers. However, there are also
complex modeling approaches (ERSEM, SWAMCO) with
multiple biogeochemical cycles and several functional plank-
ton groups considered that have received considerable
attention (24-26). Generally, nine ocean modeling studies
were included in the list of the ten most highly cited papers,
with the only exception being the paper by Cerco and Cole
(27). The latter paper presented the application of the three-
dimensional CE-QUAL-ICM model to the Chesaseake Bay,
and the main objective was to assist eutrophication man-
agement.

FIGURE 1. Frequency histogram of the journals that (a) publish and
(b) cite mechanistic aquatic biogeochemical modeling papers.
Citations from the paper Arhonditsis and Brett (2004) were subtracted
from the journal Marine Ecology-Progress Series.
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Based on the reprint author’s country of affiliation, we
infer that a total of 27 countries contributed to the published
modeling literature during the period 1990-2002 and that
nearly half (45.5%) of these studies were originated from
U.S., British, and French institutions (Figure 2a). Likewise,
the same countries (along with Germany) represent 62.6%
of the citations received, although researchers from 68
different countries participated in the authorship of the citing
articles (Figure 2b). These trends clearly show that the field
of mechanistic aquatic biogeochemical modeling is domi-
nated by a relatively small group of countries that account
for the large majority of the cited and citing articles.
Furthermore, the United States shows a comparative ad-
vantage over the European countries in terms of the frequency
of producing models and consuming the generated knowl-
edge (Figure 2). Nonetheless, a closer look on the ten
institutions (Table 2) that mostly cite mechanistic aquatic
biogeochemical modeling papers indicates that only two were
from the United States (Woods Hole Oceanography Institute
and University of Washington), whereas the Plymouth Marine
Lab (Great Britain) and the University of Hamburg (Germany)

were the top-ranked institutions regarding the number of
publications that cite modeling studies.

The citing articles were classified in 60 different disciplines.
Several of these disciplines (e.g., astronomy, computer
science, software engineering, plant sciences, genetics, and
heredity) had no apparent association with mechanistic
aquatic biogeochemical modeling, which is probably another
indication that this field produces scientific knowledge (e.g.,
methodological advancements for system analysis, ecological
questions addressed) that can have broader application and
assist quite different subject areas. Oceanography is the most
popular subject category of the articles that cite mechanistic
aquatic biogeochemical models and more than 27% (ap-
proximately 1500 counts) of the total citations were related
to this research topic (Figure 3). The second most popular
thematic area was marine and freshwater biology (21.75%)
followed by geosciences (10.90%) and ecology (10.33%).
Interestingly, disciplines more closely associated with en-

TABLE 1. Ten Most Highly Cited Papers in the Field of Mechanistic Aquatic Biogeochemical Modeling (Study Period 1990-2002)

authors year journal ecosystem complexity citationsa

Fasham et al. 1990 J. Mar. Res. Atlantic Ocean simple 405
Doney et al. 1996 Deep-Sea Res. Part II Atlantic Ocean simple 107
Fasham et al. 1993 Global Biogeochem. Cycles Atlantic Ocean simple 84
Six and Maier-Reimer 1996 Global Biogeochem. Cycles Pacific Ocean simple 81
Cerco and Cole 1993 J. Environ Eng. ASC. Chesapeake Bay complex 55
Lancelot et al. 2000 Deep-Sea Res. Part I Atlantic Ocean complex 55
Sharples and Tett 1994 J. Mar. Syst. North Sea simple 51
Aksnes et al. 1995 Ophelia North Sea simple 46
Broekhuizen et al. 1995 J. Sea Res. North Sea complex 46
Ebenhoh et al. 1995 J. Sea Res. North Sea complex 46
a Reported date: 18 November 2005 (ISI Web of Science).

FIGURE 2. Country of affiliation of the authors who (a) published
(reprint author) and (b) cited mechanistic aquatic biogeochemical
modeling papers.

TABLE 2. Ten Institutions That Mostly Cite Mechanistic
Aquatic Biogeochemical Modeling Papers

name country citationsa

Plymouth Marine Lab Great Britain 229
University of Hamburg Germany 133
Woods Hole Oceanography Institute United States 121
University of Kiel Germany 97
Southampton Oceanography Centre Great Britain 94
University Paris 06 France 92
Bidston Observatory Great Britain 92
Alfred Wegener Institute Germany 85
Centre National de la

Recherche Scientifique
France 73

University of Washington United States 68b

a Reported date: 18 November 2005 (ISI Web of Science). b Citations
from the paper Arhonditsis and Brett (2004) were subtracted from both
the University of Washington and Duke University.

FIGURE 3. Frequency histogram of the scientific classification
(subject category) of the papers that cite mechanistic aquatic
biogeochemical modeling papers.
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vironmental management, e.g., environmental sciences
(8.21%), environmental engineering (2.37%), and water
resources (1.81%), account for a relatively low proportion of
the total citations received.

Citation Rates and Individual Study Characteristics
We examined the association between citation rates and
several characteristics of the published modeling studies:
type of the ecosystem modeled, journal impact factor,
authorship characteristics, methodological consistency, and
model performance. The immediacy index (i.e., the average
number of times that an article published in a specific year
within a specific journal is cited over the course of that same
year <0.500) and cited half-life (i.e., the number of years,
going back from the current year, that account for 50% of the
total citations received by the cited journal in the current
year >5 years) values of the journals that publish modeling
studies raised questions related to the effects of publication
year differences on the statistical analysis results. While we
recognize that the citation patterns of the more recently
published modeling studies are not completely revealed by
our analysis, we found that the standardization of the citation
rates by the publication year (i.e., partial correlation and
analysis of covariance) did not alter the inference regarding
the statistical significance of the following results.

Using as a criterion the type of the ecosystem modeled,
the published modeling studies were classified in six
categories, i.e., “Coastal area-Estuary”, “Mesocosm”, “Bay-
Lagoon-Harbor”, “Lake-Reservoir”, “Ocean-Sea”, and “River”.
Ocean modeling studies have received significantly higher
citations (F ) 7.87, df ) 5, p < 0.001) among the various
ecosystem types (Figure 4a). [Note that the threesout of fives
most highly cited papers in the category “Mesocosm” were
preliminary model examinations in experimental set-ups
prior to the actual application to oceanic systems]. Further-
more, the higher citation frequency of ocean modeling studies
can also explain the significantly higher citations of papers
(F ) 8.65, df ) 10, p < 0.001; journals with <5 papers were
not considered) published in journals pertinent to the topics
of oceanography and/or global climate change. In contrast
with a recent study by Leimu and Koricheva (28), we found
that paper citation rates were not significantly correlated
with the journal impact factor. Interestingly, papers published
in specialized modeling journals (e.g., Ecological Modeling,
Environmental Modeling & Software) or prestigious journals
in water quality research (e.g., Water Research) received fairly
low citations. Given the local character of the majority of
these modeling studies, the latter finding probably indicates
a lack of wider interest in models developed for addressing
site-specific environmental management problems or un-
derstanding ecological patterns that are not related to ocean
dynamics. We also tested whether citation rates of modeling
papers differ depending on the reprint author’s country of
affiliation. We found that papers by authors from Great
Britain, the United States, Germany, and France receive
significantly higher citations than authors from other coun-
tries (F ) 2.92, df ) 7, p ) 0.008). In addition, we examined
the influence of the number of authors and the article length
on the citation rates; we found that neither of these factors
is associated with the number of citations that the study
receives.

Regarding the model complexity role (expressed as the
number of state variables) as a model feature that attracts
citations, we found that the citation rates of the individual
articles were not significantly correlated with the corre-
sponding model complexity (r ) 0.111, p ) 0.183). The
positive correlation value between model complexity and
citations probably reflects an increasing citation trend for
models with over 40 state variables (see the respective median
value in Figure 5a), although the majority of the highly cited

modeling papers represented simple models with fewer than
10 state variables (Table 1 and outliers in Figure 5a). We also
examined whether the methodological consistency of the
published modeling studies is a factor that influences their
citation rates. The expression “methodological consistency”
refers to the extent that methodological steps typically
recommended by classic modeling textbooks were actually
implemented during model development (i.e., sensitivity
analysis, quantification of goodness-of-fit, and validation).
Based on the Arhonditsis and Brett (7) classification scheme
(see their Figure 2), we found that the citation counts did not
differ significantly among studies that conducted (thorough/
partial) sensitivity analysis and those that did not (F ) 1.16,
df ) 2, p ) 0.316). The citation patterns of the modeling
studies were not affected by whether or not the modelers
reported assessment of the goodness-of-fit in the original
study (F ) 0.05, df ) 1, p ) 0.943; Figure 5b), or by whether
or not the model was structurally or predictively validated
(F ) 2.03, df ) 1, p ) 0.156). Finally, the authors did not
consider model performance as a criterion for citing modeling
papers; e.g., citation rates and model performance for the
“key” state variable phytoplankton were not significantly
correlated (r ) 0.163, p ) 0.07; Figure 5c).

What Can we Learn from this Citation Analysis?
Citation frequency and impact factors are increasingly
recognized as convenient tools for assessing the importance
and utility of scientific research; ideally, high-quality papers
should motivate future research and should be used as source
of information by subsequent studies in the field (29). In

FIGURE 4. Citation frequency for (a) different types of modeled
ecosystem, and (b) publishing journals. The journal impact factors
are reported above the box-plots. Note that the study by Fasham
et al. (1990) is not included in the plot to facilitate the visualization
of the inter-group comparisons. [Numbers of studies for each group
case are indicated at the top of the two plots].
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practice, however, there are critical voices that cast doubt on
the objectivity of the citation scores and also highlight the
role of several subjective (e.g., interpersonal connections,
flattery) and social (e.g., nationality, gender, institution)
factors that are unrelated with the scientific process (28, 30).
Our study examined the effects of some of these commonly
reported mis-citation errors and biases vis-à-vis the quality
features of the 153 modeling studies considered in the original
meta-analysis (e.g., consistency with methodological pro-
tocols, model complexity, and goodness-of-fit). We recognize
that our results do not reflect the entire spectrum of studies/
projects pertinent to aquatic biogeochemical modeling
during the study period; there are also other means for
communicating scientific research (e.g., books, technical
reports, websites) that were not accounted for in our analysis.

Nonetheless, a comprehensive sample from the peer-
reviewed literature that covers more than a decade of
modeling practice can sufficiently unveil trends, preferences,
and biases of the cited and citing articles.

Like other disciplines (31), a small number of countries
(e.g., the United States, Great Britain, France, Germany) head
the list of nations in the number of publications and citations
in the field of process-based aquatic biogeochemical model-
ing. Model citations are determined neither by the reported
performance, model complexity, and methodological con-
sistency nor by the journal published, article length, and
number of authors. The type of the ecosystem being modeled
was proven to be the most influential factor that shapes the
citation patterns of the aquatic biogeochemical modeling
papers. Specifically, ocean modeling studies have received
considerable attention and overwhelmingly dominate the
total citation counts. By interpreting our results, someone
can infer that as long as a modeling study addresses aspects
of oceanic dynamics is likely to receive more attention,
regardless of the features of the model used, methodological
protocol followed, and goodness-of-fit obtained. Is this
statement valid? Which are the actual factors hidden behind
these citation patterns?

Marine biogeochemical numerical modeling has been an
indispensable tool for addressing several pressing environ-
mental issues, with the most profound being the under-
standing of the oceanic response to climate change and
illumination of the interplay between plankton dynamics
and atmospheric CO2 levels via several feedback mechanisms,
e.g., “biological pump”, calcification (5, 12). Oceans have a
major role in the global carbon cycle and their biota have a
tremendous socioeconomic value (32). Therefore, the oceanic
numerical models offer insights that are appealing to a
broader audience and stimulate research that spans a wide
range of tightly intertwined disciplines (6). Methodologically,
the evolution of the oceanic models has been fairly rational
and congruent with the technological constraints and data
availability. The majority of the models belong in the family
of the Fasham et al. (15) food-web model and consist of a
small number of state variables that mainly comprise the
limiting nutrient (nitrogen) and highly aggregated biotic
compartments (e.g., phytoplankton, bacteria, zooplankton).
This class of models has provided simulations of bulk
properties, (e.g., timing and magnitude of phytoplankton
blooms, primary productivity, nutrient fields) that are usually
supported by the existing data (7, 12), while their fairly simple
parameterization can overcome major problems of identi-
fiability and has enabled the coupling with general circulation
models (21, 33). Thus, their flexible structure, efficiency and
ease of understanding have led to an “informal consensus”
of their use and can explain the impressively high number
of citations that some of these studies have received (Table
l). Furthermore, oceanic modelers are also keener to embrace
technical advances to control prediction error or ameliorate
problems of underdetermination, e.g., assimilation schemes
(5), and more prudent to formulate complex models, e.g.,
test new ecological theories, include specific plankton
functional types, and multiple element cycles (12, 34). Overall,
oceanic modeling appears to be a more methodologically
coherent and vibrant area of research; the modelers seem to
have a clearer picture of what needs to be done to gain
scientifically rigorous insights and provide convincing ex-
planations of marine biogeochemical cycles. In this context,
the high number of citations and their ability to produce
knowledge that is exported to other cognitive disciplines is
not surprising.

Contrary to our expectations, model application for
addressing environmental management issues on a local scale
seems to have languished. The pertinent papers comprise a
smaller portion of the published modeling literature; the

FIGURE 5. Citation frequency for different levels of (a) model
complexity (number of state variables), (b) reported assessment of
the goodness-of-fit in the original modeling study, and (c) model
performance for phytoplankton. Note that the study by Fasham et
al. (1990) is not included in the plot to facilitate the visualization
of the inter-group comparisons. [Numbers of studies for each group
case are indicated at the top of the two plots].
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number of modeling studies from lakes, reservoirs, coastal
embayments, estuaries, and harbors combined was ap-
proximately equal to the number of oceanic applications (7;
Figure 1b). One plausible reason for the relative under-
representation of local character studies in the modeling
literature might be the inclination of model practitioners to
convey their results mainly through technical reports and
lack of interest or motivation to publish in the peer-reviewed
literature. If this explanation is true, then our analysis is
missing some information from site-specific modeling
constructs that have been developed for addressing water
quality management issues (e.g., eutrophication control).

On the other hand, the majority of the local character
modeling studies published from 1990 to 2002 have received
fairly low citations; although some of these papers appeared
in prestigious journals specialized in modeling or water
quality research. Given the critical planning information that
these model applications aim to provide, the patterns of
esotericism found by our analysis invite further investigation;
i.e., why are modeling papers that deal with practical
management problems less cited? Apparently, modelers seem
to work in isolation and, counter to the interdisciplinary
nature of their objectives, show a lack of haste to borrow
experiences and new ideas from other disciplines or similar
character modeling studies. The greater suite of idiosyncrasies
that many streams, lakes, and rivers exhibit may rule out a
“methodological consensus”, but does not fully justify the
distinctly lower citations received by the majority of these
studies. Furthermore, while we recognize that some influ-
ential studies in the field of water quality management never
appeared in major scientific journals (e.g., 35), thespreviously
mentionedslimited exposure to the peer-review process is
likely to further accentuate the esoteric character of the
modeling practice. However, robust modeling tools to address
impaired conditions of water bodies are needed now more
than ever before; e.g., the costly implementation of total
maximum daily loads for pollutants during the next 10-15
years has raised the bar for innovative model developments
that can accommodate rigorous error analysis (36). Con-
ceptual weaknesses, methodological omissions, failure to
incorporate residual variability, and parameter uncertainty
in predictions are more critical when addressing practical
management problems (10). In oceanography, the use of
models as heuristic tools to elicit conceptual paradigms, to
provide semiquantitative (or even qualitative) descriptions
and understanding of ecological patterns is still a fundamental
objective, while the policy-making process that guides costly
management decisions requires predictive tools able to
support deterministic statements (and associated errors).
Different objectives result in different expectations and
standards, which probably explains the different patterns of
citation and recognition between the two groups of the
modeling community. Yet, modelers are more reluctant to
adopt new ideas in their repertoire when addressing envi-
ronmental management issues; for example, data assimila-
tion techniques (37), formulations that consider new eco-
logical theories (e.g., stoichiometric nutrient recycling theory;
4), and novel calibration methods (38) are relatively rare. In
many respects, the practice underlying the water quality
modeling-decision making interface has remained unaltered
during the last three decades. Failure to engage novelty and
creativity with solutions to practical environmental problems
has inevitably resulted in unattractive modeling products
that cannot export knowledge to other disciplines.

Future Perspectives
We believe that the mechanistic aquatic biogeochemical
modeling can benefit from the examination of the reasons
that made several ocean modeling papers so successful;
namely, these studies introduced breakthrough ideas that

came at a time when the community was ready for them.
Viewed from this perspective, a great deal of the research
that has occurred over the past 15 years represents incre-
mental learning without the capacity to truly inspire sig-
nificant new breakthroughs. This is the usual trajectory that
most new fields of knowledge follow. However, this view
does invite one to ask what it would take to prime the pump
for the next Fasham et al. study to come along? Several review/
synthesis papers in aquatic ecosystem modeling have
provided insights into the current state of the field, and have
highlighted the major challenges and future directions of
research (2, 5, 9, 10, 34). Development of new model
formulations, empirical representations of plankton func-
tional types, emerging techniques of data assimilation and
model optimization, effective integration of physics with
biology, novel uncertainty analysis techniques, and strategies
to improve the contribution of complex models to ecological
theories are some of the ongoing and future thrusts in
progress. Among the variety of interesting suggestions for
model improvement, we will elaborate on two issues that
warrant special consideration: i.e., the pressure for increasing
model complexity and the need for developing effective tools
for model uncertainty assessment.

Despite several sober views in the literature (9, 12), there
is an increasing demand for more complex models; for
example, there are requirements for explicit treatment of
multiple biogeochemical cycles and increase of the functional
diversity of biotic communities, e.g., plankton functional
types that can carry out key biogeochemical processes (5).
There are even propositions for mechanistic description of
processes that produce random (or quasi-random) events
(39). Generally, the premise for constructing complex models
is to mirror the complexity of natural systems and account
for ecological processes that can become important in future
hypothesized states, and thus increase their predictive ability
(40). In essence, modelers believe that if they can “get the
processes right” in the mathematical equations, then the
model truly is a mimic of the real system. However, if we
inspect the theory behind process description, we will realize
that all models are drastic simplifications of reality that
approximate the actual processes (see Supporting Informa-
tion, Box 1: How feasible is the “correct process descrip-
tion?”), and all parameters are effective (e.g., spatially and
temporally averaged processes) values unlikely to be rep-
resented by a fixed constant (see Supporting Information,
Box 2: What do model parameters represent?). Causal
explanations and mechanistic descriptions are scale-de-
pendent and many practical applications are based on simple
aggregated summaries. Furthermore, poorly understood
ecology, determination of the optimal aggregation level of
biotic entities, and understanding the entire suite of direct
and interactive effects between system components impose
barriers to the potential of success of these reductionistic
views on aquatic ecosystem modeling (12). While the increase
of the articulation level is certainly an effective means for
improving our models, we should not neglect that the
increasing complexity also reduces our ability to properly
constrain the model parameters from observations, i.e., the
number of parameters that must be specified from the data
is approximately proportional to the square of the number
of compartments (34). In this case, the application of
mechanistic models for extrapolative tasks gradually becomes
“an exercise in prophecy” rather than scientific action based
on robust prognostic tools (41). Our current experience
indicates that the forecasting of ecosystem behavior is
extremely difficult and even in well-studied, data-rich systems
using very sophisticated models, accurate predictions were
not feasible (3, 42). Ecosystem dynamics are driven by
foreseeable environmental processes which are often con-
founded with self-organized, complex adaptive behaviors
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that are difficult to be predicted (3). Differentiating the
predictable from the unpredictable patterns and increasing
model complexity accordingly requires careful consideration
and should be tightly coupled with critical evaluation of the
model outputs; the latter concern underscores the central
role of uncertainty analysis.

The importance of investigating the effects of uncertainty
on model predictions has been extensively highlighted in
the modeling literature (12, 41, 43). Nonetheless, most aquatic
mechanistic biogeochemical models published over the past
decade did not fully assess prediction error; thorough
quantification of model sensitivity to parameters, forcing
functions and state variable submodels was only reported in
27.5% of the studies, while 52.9% of the published models
were not predictively or structurally validated (7). Regardless
if this factor determines (or not) the citations of a modeling
study, modelers should understand the necessity for explicitly
reporting the uncertainty contributed by both model struc-
ture and parameters. There is also an urgent research need
for novel uncertainty analysis methods that can accom-
modate complete error analysis and the Bayesian calibration
is one of the most promising prospects (38).

Bayesian calibration can be used to refine our knowledge
of model input parameters, obtain insight into the degree of
information the data contain about model inputs (i.e.,
parameter estimates with measures of uncertainty and
correlation among the parameters), and obtain predictions
and uncertainty bounds for modeled output variables (44,
45). Technically, this method is a proof of the concept that
there are better ways to parameterize mechanistic models,
other than simply tuning (adjusting) model parameters until
the modeler obtains a satisfactory fit. The anticipated
technical advances and benefits from the Bayesian calibration
would be as follows. (i) Identification Problem: By incor-
porating prior information on the model parameters, the
Bayesian inference techniques offer an effective strategy to
overcome the identification problem. The use of additional
information (along with the calibration dataset) reduces the
disparity between what ideally we want to learn (internal
description of the system) and what can realistically be
observed, which is the primary reason for the poor model
identifiability (43). (ii) Adaptive Management Implementa-
tion: The Bayesian (iterative) nature of the proposed
approach is conceptually similar to the policy practice of
adaptive management, i.e., an iterative implementation
strategy that is recommended to address the often-substantial
uncertainty associated with water quality model forecasts
and avoid implementation of inefficient and flawed man-
agement plans. (iii) Realistic Uncertainty Estimates of the
Ecological Forecasts: For the purpose of prediction, the
Bayesian approach generates a posterior predictive distribu-
tion that represents the current estimate of the value of the
response variable, taking into account both the uncertainty
about the parameters and the uncertainty that remains when
the parameters are known (38). Therefore, estimates of the
uncertainty of Bayesian model predictions are more realistic
(usually larger) than those based on the classical procedures.
Predictions are expressed as probability distributions, thereby
conveying significantly more information than point esti-
mates in regards to uncertainty (46). Thesoften deceptives
deterministic statements are avoided and the water quality
goals are set by explicitly acknowledging an inevitable risk
of non-attainment, the level of which is subject to decisions
that reflect different socioeconomic values and environ-
mental concerns.

In conclusion, we examined the factors that determine
the recognition (expressed in citation counts) of published
studies in the field of mechanistic aquatic biogeochemical
modeling. Our analysis provided evidence that modeling
papers are cited mainly based on the questions being asked;

models that aim to elucidate oceanic patterns are more highly
cited than models developed for addressing local water
quality management issues regardless of their methodological
features and technical value. While these results cast doubt
on the rationale of the current modeling methodology, we
suggest that these citation patterns are partly driven by the
different practices followed by the two groups of the aquatic
ecosystem modeling community. Oceanic modeling evolves
more rationally and congruent with the technological
constraints and data availability, more easily embraces
methodological advances, and more critically considers the
future directions. The impressively high number of citations
that some of the ocean modeling studies have received, their
ability to produce exportable knowledge along with some
vital technical improvements (e.g., prudent increase in
complexity, rigorous error analysis) dictate what needs to be
done to meet the demand for attractive and powerful
modeling tools.
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Box 1: How feasible is the “correct process description”?

The basic elements of large process-oriented models are simple equations adopted as useful first

approximations of isolated behaviors in controlled laboratory experiments. In general, modelers fit a first-

order reaction to the behavior, and modified it over time if additional laboratory or field data became

available. Although this practice was convenient and necessary to make comprehensive models

manageable, it would seem surprising that simple disparate equations should collectively yield useful

information about ecosystem behavior. Indeed, we now know that small-scale results may not apply at the

ecosystem scale (1).

As an example, consider how modelers have described the mechanism by which nutrients in non-

living organic matter are recycled into inorganic forms that are available for phytoplankton uptake and

growth. This is a metabolic process by which bacteria degrade particulate organic substrates into soluble

substrates and enzymatically assimilate the soluble forms. The rate of mineralization is affected by many

factors, including temperature, the physical and biological structure of the organic substrate, and the

physiological state of the agents and their enzymatic systems. Organic nitrogen compounds, for example,

include proteins, amino acids, amines, nucleotides, and refractory humic compounds of low nitrogen

content. Degradation proceeds progressively with different bacteria involved at different stages.

Intermediately formed compounds are recycled rapidly; residual forms decompose slowly, being more

resistant to utilization by bacteria. Thus, accurate simulation of nutrient mineralization on small time-scales

would require complex modeling of specific organic compounds and bacteria to allow for variable

mineralization rates. However, the commonly used expressions for mineralization in most water quality

models lump organic nitrogen and phosphorus compounds into a single compartment and do not explicitly

model bacteria (equations 1.1 and 1.2). What is the scientific basis for these expressions?
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where ON = organic nitrogen concentration (mg N L
-1
); OP = organic phosphorus concentration (mg P L

-1
);

k
ON

= ON mineralization rate at 20C (d
-1

);k
OP

= OP mineralization rate at 20C (d
-1
); 

ON
= ON mineralization

temperature coefficient; 
OP

= OP mineralization temperature coefficient; C = phytoplankton carbon

concentration (mg C L-1); K
m

= half-saturation constant (mg C L-1); T = water temperature (C); t = time.

First, modelers omitted bacteria because phytoplankton generally have a greater effect on

productivity than do bacteria, and the science of metabolic transformations of organic matter was young

when the models were initially developed. Second, the equations were constructed to reach a compromise

among a series of studies with variable results. Early laboratory studies suggested that degradation of

organic matter is reasonably approximated by a first-order reaction, while others suggested second-order

models with the recycling rate directly proportional to the phytoplankton. The latter approach seemed

reasonable since field studies indicated that bacterial biomass increased with phytoplankton biomass.

However, neither first- nor second-order kinetics provided a satisfactory match between observations and

expected theoretical results, so Michaelis-Menten half-saturation kinetics were introduced as a compromise

between the two. With this factor, the mineralization rate will not increase continuously and is low when

the phytoplankton population is low. The result is a manageable expression that has a simple explanation.

The conditions under which equations (1.1) and (1.2) apply are limited by the assumptions upon

which they rest. Since these and many other model equations depend to some degree, sometimes

completely, on the first-order reaction model, a review of the assumptions required by first-order models is

prudent. For equations 1.1 and 1.2 the underlying assumptions are (adapted from 2):

1. All non-living organic nutrient molecules have an identical and independent probability of being



4

mineralized in a given interval of time.

2. The probability that a given molecule will be mineralized depends only on the length of the interval of

time and not when the interval starts.

3. As the time interval is decreased to zero, the probability of mineralization decreases smoothly and

continuously to zero.

4. The rate of change of the derivative must be slow relative to the rate at which the underlying

elementary events occur; the derivative must be essentially constant during the time interval.

Under what conditions do these assumptions hold true? The first two are violated for relatively

small intervals of time because organic nutrient composition is non-homogeneous and degradation is

progressive. The fourth assumption is violated for relatively large intervals of time. Models may operate on

a variety of time-scales, i.e., the calculation time-step, the output time-step, and the time-step of available

data for forcing functions. These time-scales may vary from hours to months. If there was a time interval

that can satisfy the above assumptions, and it was within this range, that may explain the usefulness of the

first-order model as a first approximation. But how often is this feasible in real world applications?

The limitations described above are typical of the compromises accepted by modelers in their

attempts to characterize mechanisms in mathematical models. So, what might we conclude about the

mechanisms in process-based models? Of greatest significance, these models are not correctly expressing

the mechanisms; thus, the goal or claim that “if the modelers use correct process descriptions then the

models can effectively reproduce natural system dynamics” is simply not a reasonable expectation. Beyond

that, we seem to be locked into a space/time scale that has become the de facto modeling standard, yet is

beyond our ability to correctly capture in the mathematics, and as described in Box 2, is incompatible with

available data for parameter estimation.
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Box 2: What do model parameters represent?

Model parameters play an essential role in model fit, and yet they rarely can be estimated from site-

specific observations. Instead, modelers depend on the scientific and modeling literature for guidance in

selecting initial parameter values, which may subsequently be adjusted during calibration. The most

common sources of parameter values are model documentation and reference manuals that report plausible

ranges of parameter values, list values used in previous model applications, and cite values found in other

scientific literature. Among these sources there is a wide range of reported values, sometimes spanning

several orders of magnitude. The cause for this variability lies in differences in water bodies, model

structures, and measurement conditions that are not always apparent in the literature.

One fundamental difficulty with selecting parameter values from the literature is that

experimentally determined values may not be useful because they are often obtained under controlled

conditions that do not represent field conditions. As a result, laboratory and field values do not always

agree. Lab values of the optimal light intensity for algal growth, for example, are always lower than the

values that reproduce observations in the field (3). The discrepancy between laboratory and field values is

not surprising, given model nonlinearities and ecological variability. To understand this, suppose that a

nonlinear equation of a constituent c is accurate at a point, as in a well-mixed test tube.

2kc
t
c 

 (2.1)

To transfer this equation to a larger body of water, the modeler must assume that there is no variability in c,

or that the body is a continuously stirred tank reactor. In practice, the modeler assumes that the equation

represents the average behavior of the constituent, or that

2ck
t
c 

 (2.2)

Developing the left-hand side of the equation (2.2) for a fixed number of points in the water body yields:
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2
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The parameter k cannot satisfy both equations (2.2) and (2.3) unless the variability in c is zero. Since even

small compartments of natural water bodies are spatially and temporally variable, experimentally derived

values of k may be biased. The inequality between the two equations may be addressed by the use of an

“effective” parameter keff whose value depends on the variability of c over space and time. In practice,

modelers use a constant effective parameter value, ignoring system variability. Such values are estimated

from a statistical sample of small-scale measurements or by calibrating model predictions to a set of

observations by incrementally modifying or “tuning” parameter values to achieve a more satisfying fit

between predictions and observations.

Statements in the literature made by modelers in support of their parameter choices are frequently

non-informative. For example, parameter choices have been justified because model applications are

reported to be “provisional,” or “qualitatively correct”, hypotheses “requiring substantial experimental

validation”, or “crude approximations of order of magnitude”. In many cases, parameter values are also

justified by favorable assessment of the model goodness-of-fit based on highly aggregated spatiotemporal

scales, although the models are actually developed to support predictions at finer scales. Since many

ecological properties can be generalized across systems, “reasonable” model results may not be too

surprising. However, often a variety of very distinct parameter combinations provide equally good fits

between predictions and observations, and optimal parameter choices among these are elusive. Those

combinations that will prove most useful in describing aquatic system behavior under different

environmental conditions (e.g., external nutrient loading, climate variability) may be impossible to

determine a priori.
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