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Abstract

Structural equation modeling is a multivariate statistical method that allows evaluation of a network of relationships between
manifest and latent variables. In this statistical technique, preconceptualizations that reflect research questions or existing
knowledge of system structure create the initial framework for model development, while both direct and indirect effects
and measurement errors are considered. Given the interesting features of this method, it is quite surprising that the number of
applicationsin ecology is limited, and even less common in aquatic ecosystems. This study presents two examples where structural
equation modeling is used for exploring ecological structures; i.e., summer epilimnetic phytoplankton dynamics. Both eutrophic
(Lake Mendota) and mesotrophic (Lake Washington) conditions were used to test an initial hypothesized model that considered
the regulatory role of abiotic factors and biological interactions on lake phytoplankton dynamics and water clarity during the
summer stratification period. Generally, the model gave plausible results, while a higher proportion of the observed variability was
accounted for in the eutrophic environment. Most importantly, we show that structural equation modeling provided a convenient
means for assessing the relative role of several ecological processes (e.g., vertical mixing, intrusions of the hypolimnetic
nutrient stock, herbivory) known to determine the levels of water quality variables of management interest (e.g., water clarity,
cyanobacteria). A Bayesian hierarchical methodology is also introduced to relax the classical identifiability restrictions and
treat them as stochastic. Additional advantages of the Bayesian approach are the flexible incorporation of prior knowledge on
parameters, the ability to get information on multimodality in marginal densities (undetectable by standard procedures), and
the fact that the structural equation modeling process does not rely on asymptotic theory which is particularly important when
the sample size is small (commonly experienced in environmental studies). Special emphasis is given on how this Bayesian
methodological framework can be used for assessing eutrophic conditions and assisting water quality management. Structural
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equation modeling has several attractive features that can be particularly useful to researchers when exploring ecological pattern
or disentangling complex environmental management issues.
© 2005 Elsevier B.V. All rights reserved.
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that can be decomposed into an infinite number of sub-
processes and causal interactions. The premise behind
this partitioning is that the selective measurement of
some of these elements can improve our understanding
about the collective behavior/mechanism. The attempt
to abstract essential features and reduce the complexity
of the real world is ubiquitous in ecological practice.
Mechanistic understanding and prediction of Levin (1992)characterized the study of the transfer-
patterns is a key feature in ecological researiérs, ability of ecological phenomena across scales and the
1991; Jorgensen, 1997; Pace, 2001; Carpenter, 2002development of laws of simplification and aggregation
Arhonditsis and Brett, 2005 Given the hierarchical ~as a central problem in ecology and evolutionary
structure of biological information, observations in biology.
a particular study scale are usually associated with Modeling as a tool for elucidating ecological
upper-level joint behaviors and lower-level processes, patterns is subject to the same problem of complexity,
thus it is essential for ecologists, when exploring and the optimal model dimension has been extensively
patterns, to be able to shift between different scales debated in the ecological literaturéefins, 1966;
of description in space, time, and organizational com- Costanza and Sklar, 1985; Rastetter et al., 1992;
plexity (Sugihara and May, 1990; Levin, 199Zor Jorgensen, 1999; Reckhow, 1999; Arhonditsis and
example,Vepsalainen and Spence (200&jvocated Brett, 2004. Applied ecologists are inclined to select
the development of “general explanatory frameworks” realism and precision in favor of generality; driven

1. Introduction

“...Thinking only in terms of directly observable vari-
ables confines our horizons and limits our assessment
of complex systems. ..” (Malaeb et al., 2000, Environ-
mental and Ecological Statistics, pg 95)

that comprise (i) the focal level, defined by the
pattern/process of interest, and (ii) the contiguous
lower and upper levels, associated with the initiating
conditions and boundary constraints, respectively.
Recognizing the intertwined nature of ecological hier-

by technical or conceptual limitations, they adopt
“intuitively manageable scales” and develop models
that aim to provide “faithful descriptions” of the data
(Vepsalainen and Spence, 200\ characteristic

example is the application of regression analysis

archies, this framework was proposed as a convenientfor analyzing data from experimental/observational
means to select the appropriate level of information for studies and the use of the best-fit model for inference
understanding specific observations/events. Similarly, and hypothesis testing. While useful for investigating
earlier studies bySalthe (1985)and O’Neill et al. causality in nature, regression models have several
(1986)acknowledged the importance of a basic triadic limitations: (i) the predictor variables are assumed to
approach, which explicitly considers the effects of be free of measurement error or uncontrolled variation,
slow, larger-scale and fast, smaller-scale processes(ii) the assumption of normality is frequently violated
on the focal level observed ecological patterns. The by the errors in the resultant models, and (iii) hypothe-
problem of scale can also be raised from our inability ses are formulated in a way that solely allow for the
to measure with absolute accuracy characteristics andinclusion of directly observed variablesélaeb et
properties of conceptual interesi¢Cune and Grace,  al., 200Q. Therefore, it is increasingly recognized that
2002. Ecologists are frequently interested in processes what is missing from the common ecological practice
that cannot be measured effectively by one single is a statistical technique with the ability to unravel
variable, and a common way to address this problem is complex interrelationships and aid generalization and
to perceive the ecological concept as a nested hierarchytheory testing by relaxing some of these restrictions.



G.B. Arhonditsis et al. / Ecological Modelling 192 (2006) 385-409 387

Structural equation modeling (SEM) is a method multiple indicator (observed) variables. An aquatic
that can address several of the above restrictions, pro-ecosystem example is the combination of several indi-
viding a robust technique for studying interdependen- cators such as photosynthetic pigments (chlorophylls,
cies among a set of correlated variables. We believe carotenoids), primary productivity, algal biovolume
that it is well suited to provide insight into the relation-  or carbon biomass, to model the latent (unobservable)
ships of the often correlated and error-contaminated variable “phytoplankton”. HoweverBollen (1989a)
physical, chemical, and biological variables in ecolog- emphasized the need for caution when developing
ical research. To that end, we developed and testedlatent variable models and discussed several validity
a conceptual model concerning the regulatory role of tests for examining the correspondence between
abiotic conditions and biological interactions on lake concepts and observed variables. It should be noted
phytoplankton dynamics and water clarity during the that principal component analysis has also the ability
summer-stratified period in Lake Washington and in to reduce a set of correlated variables to higher-order
Lake Mendota. Our objectives are: (1) to assess the components but has a limited flexibility to specify
adequacy of this conceptual model, (2) to examine the model structure prior to the analysis and does not
the value of structural equation modeling in empiri- account for measurement erra¢Cune and Grace,
cal confirmation of scientific hypotheses, and (3) to 2002.
discuss how this multivariate statistical method can SEM is an “a priori” statistical technique, where
be combined with Bayesian analysis and assist natu-the modeler proposes and tests a hypothesized struc-
ral resource management. ture/mechanism that usually reflects existing knowl-

edge. The formulation of this initial model creates an
expected covariance structure, which is tested against

2. Methods the covariance matrix from observed data. The null
hypothesisHy that formalizes the idea of structural
2.1. Structural equation modeling equation modeling is:
SEM is a multivariate statistical methodology that Hp : ¥ = X(6) (1)

encompasses factor and path analyMeQune and

Grace, 2002; Pugesek et al., 200Bven though the  where X is the population (or sample) covariance
major advancements towards generalization of the matrix of observed variablegjs a vector that contains
method occurred after the 1970Kefsling, 1972; the model parameters, ai¥{0) is the model-implied
Joreskog, 1978 attempts to analyze multiple causal covariance matrix Bollen, 1989& In contrast with
pathways and partition direct and indirect relationships conventional statistical models where rejection of the
among variables date back approximately 80 years null hypothesis is sought, the objective of structural
(Wright, 1918; Wright, 1921 In contrast with mul- equation modeling igcceptance of the null hypothesis.
tivariate regression, SEM allows the user to explicitly Not rejectingHp, means that existing data support the
testindirect effects between two explanatory variables, proposed model (hypothesized covariance structure).
where effects between two variables can be mediated The model is fit by minimizing the differences between
by another intermediary variable (e.Bollen, 1989a; observed and model-predicted covariances. Commonly
Kline, 1998. Additionally, SEM can explicitly incor- used fitting functions include maximum likelihood
porate uncertainty due to measurement error or lack (ML), unweighted least squares (ULS) and general-
of validity of the observed variables. The latter aspect ized least squares (GLS). Finalljreskog and &bom
refers to the essential feature of allowing theoretical (1993)articulated the important issue of extracting the
uni- or multidimensional concepts to be amalgamated appropriate inferences from model results, by distin-
into single entities of variant “degrees of abstraction” guishing among three situations: {¥yictly confirma-
(e.g., phytoplankton or zooplankton community versus tory: a single model is formulated and tested against
environmental degradation or ecosystem health). More datasets, ideally after model specification. In this case,
specifically, SEM can represent variables of concep- the model can be accepted or rejected,dfigrnative

tual interest that are not directly measurable, by using models: several prespecified models are tested against a
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single set of data. In this case, one of the models should aimed to provide a predictive approach to water quality
be selected, and (iiijzodel generating: the analysis criteria.

starts with a tentative model, which is subject to eval-

uation and modification. These respecifications should 2.1.2. Benefits of Bayesian approach

provide meaningful interpretations and the finalmodel =~ The importance of considering auxiliary prior
needs further confirmatiorR@ykov, 1992; McCune information on individual parameters was recognized

and Grace, 2002 early in the SEM literatureMartin and McDonald,
1975; Bartholomew, 1981; Lee, 1981 ee (1981)
2.1.1. SEM applications in ecology used a hierarchical Bayesian approach for analyzing

SEM has been extensively applied in research areasthe confirmatory factor analytic model, which led to an
including social science, psychology, chemistry, and improvement of the factor loading, factor covariance,
biology (e.g.,Bollen, 1989a; Hair et al., 1995; Hay- and unique variance estimates in comparison with
duk, 1996; Kline, 1998 Applications in ecology and  the maximum likelihood method. Subsequent studies
environmental sciences, however, are still limited (e.g., considered prior information in the form of stochastic
Mitchell, 1992; Smith, 1995; Shipley, 1997; Grace and functional relationships among the parameters, i.e.,
Pugesek, 1998; Shipley, 20060r exampleGGrace and the classical identifiability constraints were restated as
Pugesek (1997provided an example of exploratory stochasticl(ee, 1992; Lee and Ho, 1993They found
analysis in ecology by developing a general SEM that that the Bayesian approach with stochastic constraints
examined the relative effects of abiotic conditions performed equally well with the classical approach
(e.g., soil salinity, elevation, nutrient content), distur- when prior information was available, and provided
bances (e.g., herbivory) and biomass density on plant more robust results when population parameters were
species richnes&a Peyre et al. (2001)sed SEM for misspecified.Scheines et al. (1999)demonstrated
evaluating a hypothesized model for national wetland how the Bayesian estimation along with informative
management effort, which explained 60% of the priors can assist for obtaining posterior distributions
observed variability in 90 nations and highlighted the for parameters of underidentified models; he replaced
role of social development for more effective wetland a regression model with a SEM where the predictors
protection. were measured with substantial error and the available

Even less common is SEM application in aquatic prior information was not sufficient to associate the
ecosystems and limited number of relevant studies canrespective parameters with unique values. An inter-
be found in the literature. In an illustrative application, esting finding of the same study was the ability of the
Malaeb et al. (2000ested a conceptual model toiden- Bayesian approach to identify the existence of more
tify the relationships between four latent (unobserved) than one local maximum value (multimodality) in the
variables: sediment contamination (e.g., total PCBs, likelihood surface, which were not detectable by the
total pesticides, silt/clay percent), natural variability standard procedures (see their example with Wheaton's
(e.g., salinity, water clarity), biodiversity, and growth model). Recent developments in Markov Chain Monte
potential (benthic abundance). Besides the good fit of Carlo (MCMC) methods (e.g., s&aap (2002Jor an
the model, another interesting finding of this study was extensive discussion about the computational advan-
the positive total effect of natural variability on growth  tages of MCMC application on latent variable models)
potential, as a result of a negative direct effect and a have increased the application of Bayesian inference
higher positive indirect mediated through biodiversity. in non-linear factor analysis modelé&rninger and
The importance of path analysis when trying to eluci- Muthen, 1998; Zhu and Lee, 19Pthat also account
date patterns of causal association was also indicatedfor polytomous [Lee and Zhu, 2000and dichotomous
by Stow and Borsuk (2003)the use of graphical data (ee and Song, 2003or assess the contribution
models provided evidence that toxicity Bfiesteria- of incomplete datasets to model selectidred and
like organisms was the effect rather than the cause of Song, 2003 Generally, the advantages of the Bayesian
fishkills. Structural equation modeling was also the approach over the classical methods are the ability to
major component of a recently introduced method- incorporate prior knowledge about the parameters and
ological framework byReckhow et al. (2005which the fact that the modeling process does not rely on



G.B. Arhonditsis et al. / Ecological Modelling 192 (2006) 385-409 389

asymptotic theoryQongdon, 2008 The latter issue  delineating general abstract theories/hypotheses and
is particularly important when the sample size is small transform them into controllable-scale entities that
(commonly experienced in environmental studies), can be incorporated in experimental/observational
and thus the classical estimation methods (maximum frameworks. This is particularly important in the field
likelihood, generalized and weighted least squares) of ecology where the directions of the dependence
are not robust. MCMC samples are taken from the relationships are largely known and prior knowledge
posterior distribution, and as a result the procedure can be easily translated in models testable against
works for all sample sizes and various sources of non- present and future dataset®qCune and Grace,
normality. 2002.

We formulated a structural model that describes
epilimnetic phytoplankton dynamics as the interplay 2.2. Case study sites
between physical, chemical, and biological factors.

The latent and observed variable selection and the 2.2.1. Lake Washington

model temporal resolution were based on data available  Lake Washingtonisthe second largest natural lake in
from routine monitoring programs (bimonthly sam- the State of Washington, with a surface area of 87.6 km
plings, standard limnological variables). This model and a total volume of 2.9 kin The mean depth of the
specification allowed us to assess the adequacy of thelake is 32.9 m (maximum depth 65.2 m), the summer
underlying information to give plausible results with  epilimnion depth is typically 10 m with a epilimnion:
SEM and identify the relative role of several ecological hypolimnion volume ratio of 0.39. The retention time
processes known to regulate water quality variables of of the lake is 2.4 years on average. Lake Washington
management interest. The model is tested in two lakesis a mesotrophic ecosystem after a successful lake
with different trophic status (i.e., the mesotrophic restoration by sewage diversioBdmondson, 1994
Lake Washington and the eutrophic Lake Mendota). The limnological processes are strongly dominated
We also introduced a Bayesian hierarchical framework by a recurrent spring diatom bloom with epilimnetic
and tested its results against the classical likelihood chlorophyll concentration peaks of i@/L on average,
approach. Using the same identification conditions which is 3.2 times higher than the summer-stratified
and uninformative priors, we firstly compared the con- period concentrations Agfhonditsis et al., 2003
sistency between Bayesian, maximum likelihood, and Generally, the strongly phosphorus limiting conditions
bootstrap estimates. The sensitivity of the structural along with the zooplankton grazing pressure sustain
model results was then evaluated by treating these iden-summer phytoplankton at an approximate level pf3
tification restrictions as stochastic. A brief description chl a/L. In its current restored state, Lake Washington
of the SEM terminology and typical notation along has not experienced major cyanobacteria blooms and
with the matrix representation of the Lake Washington the summer phytoplankton assemblage on average
model is provided iMppendix 1 while the Bayesian ~ comprises 26% diatomaglacoseira, Stephanodiscus,
SEM configuration is presented A&ppendix 2 Asterionella, Fragilaria), 37% chlorophytes@ocystis,

We recognize that a single example can only Sphaerocystis), and 25% cyanobacteriagAfabaena,
partially cover the general principles of this statistical Anacystis, Microcystis) (Arhonditsis et al., 2003
technique. Thus, our intention is at least to show that Thus, Lake Washington provided an environmental set
SEM'’s ability to estimate both direct and indirect up where we tested the ability of our conceptual model
effects between variables, to account for measure- to describe phytoplankton patterns under mesotrophic
ment error, and to simultaneously evaluate several conditions.
cause-effect relationships warrant its consideration for ~ The dataset for SEM development was based on a
ecological pattern description. The addition of latent recent (1994-2001), spatially intensive (12 stations)
variables enables the linkage between theoretical limnological sampling program carried out by King
concepts and observed variables, which provides a County/ Metro bttp:/dnr.metrokc.gov/wlir/waterres/
defensible method to quantify natural properties of lakes/Wash.HTNl Detailed description of this sam-
interest measured with uncertaintBdllen, 1989 pling network along with the analytical methods used
Most importantly, SEM can serve as a useful tool for is provided elsewheréfhonditsis etal., 2003, 200%a
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For this project, we selected data from the deeper partswisc.edu/index.jsp?projead=LTER1 SEM develop-

of the lake and sampling dates that spanned from the ment was based on a 5-year period (1997-2001), when
onset of thermal stratification until the fall overturn consistent measurements for all the observed variables

(n=57).

2.2.2. Lake Mendota

Lake Mendota (12.7 m mean depth, surface area
of 38.95kn? and flushing rate of 0.15 per year) is a
culturally eutrophic lake located in south-central Wis-
consin, USA. The lake is relatively deep (maximum
depth of 25.3m) and is characterized by a dimictic
circulation pattern. Agricultural areas cover a large por-
tion (~85%) of the lake’s watershed (604 knotal

of the conceptual model existed in the dataset.

2.2.3. Statistical assumptions and data
transformations

The datasets used for SEM development were col-
lected from conventional monitoring programs with
moderate sampling intensity during the summer period
(i.e., once or twice a month), which was also the tem-
poral resolution of our study (no time-averaging was
considered). For maximum likelihood estimation, the

surface area), while urban and forested areas and wet-, 2 test is the commonly used goodness-of-fit mea-

lands account for the remaining 15%. Agricultural
and urban non-point loadings are the dominant exter-
nal nutrient (mostly P) inputs and have maintained
the lake’s eutrophic character, despite the diversion
of sewage effluents in 1971 4throp et al., 1998

In addition, nutrient intrusions from the hypolimnion
(internal loading) play a significant role in the epilim-
netic P budget, albeit the high interannual variability
in the relative contribution of the various (exogenous
versus endogenous) sourcexfanno et al., 1997

sure where the observed variables are assumed to fol-
low a multivariate normal distribution. We tested for
both univariate and multivariate normality (skewness
and kurtosis) and applied transformations when neces-
sary. Multivariate kurtosis was examined with Mardia’s
coefficient Mardia, 1974. We also examined for influ-
ential observations and outliers before and after trans-
formations were applied. The squared Mahalanobis
distance was used as a screening test for detecting mul-
tidimensional outliersl(egendre and Legendre, 1983

The lake has been characterized by the occurrence ofaccording to this distance measure, the deviatign

cyanobacteria blooms during the summer, while the

of the i-th observation from the centroid of all obser-

unsuccessful implementation of several managementyations, is given by the formulation:
programs necessitated the adoption of more aggressive

non-point pollution reduction strategieBgtz et al.,
1997. The summer cyanobacteria assemblage is dom-
inated by colonial and filamentous specidghani-
zomenon flos-aquae, Oscillatoria agardhii, andMicro-
cystis aeruginosa, capable of surface scum formation
under appropriate weather and water quality condi-
tions (Lathrop and Carpenter, 1992a; Soranno, 3997
Hence, in contrast with Lake Washington, the eutrophic
Lake Mendota provides an alternative environment to
detect differences in the relative importance of the var-
ious pathways of the hypothesized modelFof. 1
and its ability to illuminate epilimnetic phytoplankton
dynamics.

df = (i =057 — 3) @
where x; is the i-th observation on the observed
variables,xis the vector of their means, arfti? is

the unbiased estimate of their population covariance
matrix. The overall mean of each observed variable was
also usedtofillgapsinthe dataset due to missing values.
The number of missing values was less than 2% of the
existing data, and thus the use of the respective means
did not cause distortions (shrinking) of the variances
(Malaeb et al., 2000 Finally, no significant problems

of temporal autocorrelation were found in the datasets,
and thus the independent observations assumption was

The dataset used for this analysis was assemblednot violated.

from the Northern Temperate Lakes Long Term Eco-
logical Research (LTER) program (Center for Limnol-
ogy, University of Wisconsin, Madison). The data were
collected approximately twice amonth from one station
at the deepest part of the lake (for further sampling and
methodological details, séwtp://lterquery.limnology.

2.2.4. The conceptual model

Our conceptual model considers the regulatory role
of abiotic conditions and biological interactions on
lake phytoplankton dynamics and water clarity during
the summer-stratified periodFig. 1). Abiotic condi-
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Fig. 1. (a) The hypothesized conceptualization and (b) the actual structural equation model used for predicting epilimnetic phytoplankton
dynamics. The use of a rectangular box for the epilimnion depth and the water clarity implies that the variable was considered as directly
observable with no measurement errof £ g = 1.0, ands; =¢3 =0). The metrics of the latent variables were set by fixiag A5 =Ag=1.0.

The notation is similar to that iAppendix 1

tions refer to the physical and chemical properties of changes of the epilimnion depth (defined as the depth
the epilimnetic environment, and our intention is to where the temperature change wa$°C m—1). For
examine the relative importance of their effects on simplicity, we did not include other surrogate vari-
the phytoplankton community. We hypothesized that ables of the physical environment (e.g., the Schmidt
the physical environment will be represented by the stability index), although we recognize that the present
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indicator does not reflect the entire range of macro- of simplicity, we adopted a recursive approach (i.e., all
and microscale advection and diffusion processes thatcausal effects were unidirectional and the disturbances
can occur in a lake’s epilimnion. The latent variable were uncorrelated), but we recognize that some of the
nutrients along with the two indicator variables solu- considered ecological pathswould be more realistically
ble reactive phosphorus (SRP) and dissolved inorganic represented by a non-recursive model.

nitrogen (DIN) concentrations comprised the measure-

ment model for the chemical environment. Zooplank-

ton grazing pressure on phytoplankton represented the3. Results and discussion

food—web interactions. We used the latent variable her-

bivory and two surrogate variables: the first, referred 3.1. Lake Washington

to as total zooplankton included all the herbivorous

zooplankton species, while the second included only  Variance resolution for phytoplankton (24%), her-
Daphnia species. Both herbivory indicator variables bivory (31%) and water clarity (32%)F{g. 2 was
were formed as the sum of the species abundancesrelatively low. They?-test statistic value was 27.795
(expressed as organisms per litre) weighted by the with 17 d.f. with ap-value of 0.047. [Note that a sig-
respective mean length€drpenter et al., 1996Sec- nificant x? value calls for rejection of the proposed
chi transparency was considered as a perfect measuranodel.] The root mean square error of approximation
(no measurement error) of water clarity, and thus we (RMSEA) was 0.106, which under the null hypothe-
only considered the latent (structural) error in the equa- sis of “close fit” (i.e., RMSEA is no greater than 0.05
tion that relates phytoplankton to water clarity. Due to in the population) corresponds tgravalue of 0.108.
differences in data availability, the physical interpreta- Based on their experienddtowne and Cudeck (1993)
tion of the latent variable phytoplankton were different argued that a value of about 0.08 or less for the RMSEA
between the two case studies because different indica-would indicate a close fit, while a model witha RMSEA
tors were used (Lake Washington and Lake Mendota). greater than 0.1 would not be satisfactory. The values
For the Lake Mendota SEM, we included two measures of the incremental fit index (IFIBollen, 1989h and

of phytoplankton (i.e., chlorophyll a and total algal bio- comparative fit index (CFiBentler, 1999 were 0.858
volume), which resulted in a quantitative configuration and 0.834, respectively. These indices provide infor-
of the phytoplankton latent variable. In contrast, the mation for the comparison between the hypothesized
Lake Washington SEM development was based on the and the baseline model and a value close to 1 indicates
combination of two variables, chlorophyllaand a poly- agood fit. The baseline model is defined as the simplest
tomous characterization of cyanobacteria abundance.model that is a reasonable standard for comparison
Therefore, the respective latent variable was labeled with the tested one. For example, a baseline model
as phytoplankton community to stress the dual nature can suggest that no common factors underlie the indi-
(phytoplankton abundance and composition) of this cators and that the correlations between the observed
measurement model. Aside from this difference, the variables are zero. Generally, the baseline model has
application and evaluation of the model was strictly a very constrained structure (i.e., many restrictions on
confirmatory; the model was constructed in advance the population moments), and thus it is expected to pro-
to accommodate current knowledge of the epilimnetic vide a poor fit to the dataseB¢llen, 1989a; Arbuckle,
phytoplankton dynamics, no changes (i.e., number of 1995. Finally, Hoelter’s criticalV test (i.e., the largest
latent variables, direct or indirect effects between latent sample size for accepting the model) indicated a
and observed variables) were made during the appli- marginal model rejection (CN =56) and model accep-
cation, and the prespecified model’s fit was assessedtance (CN =68) at the 0.05 and 0.01 significance levels
against the two dataset8dllen, 1989 Thus, our (Hoelter, 1983. The observed variables dissolved inor-
strategy differs from the usual two-step approach, ganic nitrogen and soluble reactive phosphorus were
where SEM development starts with testing the fit of moderately correlated with the latent variable nutri-
the measurement models to the data and then proceedgnts ¢~ 0.46). Chlorophyll a was strongly correlated
to the structural equation moddifderson and Gerb-  with phytoplankton £~ 0.75), while cyanobacteria
ing, 1992; Malaeb et al., 20Q0Finally, for the sake ~ abundance showed a relatively weak negative corre-
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Fig. 2. Structural equation model for Lake Washingt¥i(57). The numbers correspond to the standardized path coefficients addbared
values (numbers in rectangleg¥, d.f. andp correspond to the chi-square test values, the degrees of freedom and the probability level for rejecting
the null hypothesis, respectively.

lation (r~ —0.27). BothDaphnia (r~0.72) and total The standardized direct paths from phytoplankton to
zooplankton £~ 0.89) length weighted biomass were herbivory (0.554) and water clarity—(0.567) were
strongly correlated with the latent variable herbivory. nearly equal in magnitude, but opposite in sign.
Generally, there was a good agreement between Interpreting these results, we highlight the absence
observed and model-implied values in 30 out of 36 of significant linkage between the inorganic nutrient
moments of the covariance matridable 1. Six stock and phytoplankton variability in the Lake
residual covariances were large and the respective Washington summer epilimnion. The epilimnion also
standardized estimates (i.e., the residual covarianceslacks significant replenishments from the hypolimnion
divided by their standard error) were above one. All (non-significant covariance between nutrients and
the paths between the latent variables of the initial epilimnion depth) probably due to the low nutri-
hypothesized structural model were significant with ent levels below the thermocline (DHI300ug/L
the only exception being the direct path from nutrients and SRP<15ug/L; see Lehman, 1988 The two
to phytoplankton£=0.427; sedable 2. In addition, regulatory factors for the phytoplankton community
the covariance between epilimnion depth and nutrients structure are the mixing processes and grazing pressure
was positive but non-significantp €0.251). The imposed by the zooplankton community. While the
standardized direct effect (i.e., the unstandardized negative path from epilimnion depth to phytoplankton
partial regression coefficients multiplied by the ratio is plausible (i.e., dilution effects of epilimnetic
of the standard deviation of the explanatory variable erosion/deepening) the positive relationship with
to the standard deviation of the variable it affects) of herbivory invites further explanation. During the
the epilimnion depth on phytoplankton wa.498. summer-stratified period, a co-dependence between
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Table 1
The analyzed covariance matrix for the Lake Washington model with predicted values and residuals (study periods 1994—2001)
Epilimnion Secchi l0g(SRP) DIN Total Daphnia log(chloro- Cyanobacteria
depth depth zooplankton phyll a)
Epilimnion depth
Observed 12.646
Predicted 12.646
Residual 0
Secchi depth
Observed 1.029 1.380
Predicted 0.951 1.380
Residual 0.078 0
log(SRP)
Observed 0.262 —0.061 0.243
Predicted 0.257 -0.018 0.243
Residual 0.005 —0.043 0
+/DIN
Observed 2.593 0.569 0.489 23.900
Predicted 2.643 —0.189 0.489 23.900
Residual —0.049 0.758 0 0
Total zooplankton
Observed —2.976 -1.767 0.430 5.309 23.878
Predicted —3.438 —1.603 0.067 0.685 23.878
Residual 0.462 —0.164 0.363 4.624 0
Daphnia
Observed —0.585 —0.244 0.035 0.106 3.636 1.362
Predicted —0.663 —0.309 0.013 0.132 3.636 1.362
Residual 0.078 0.065 0.022 -0.026 0 0
log(chlorophyll a)
Observed —0.206 -0.123 —0.002 0.088 0.375 0.086 0.052
Predicted —0.244 -0.114 0.005 0.049 0.412 0.079 0.052
Residual 0.038 —0.009 —0.007 0.040 —-0.037 0.006 0
Cyanobacteria
Observed 13.498 -0.876 0.949 5.936 —7.055 —1.425 —0.539 92.039
Predicted 3.722 1.735 -0.072 —-0.742 —-6.272 —1.209 —0.446 92.039
Residual 9.775 -2.612 1.021 6.677 —0.783 -0.215 —0.093 0

the phytoplankton and zooplankton community exists nutrient inputs from thermocline migrations/external
in the Lake Washington epilimnion, when a significant sources selectively subsidize the taxonomic groups of
portion of the phosphorus supply (60-90%) in the the Lake Washington phytoplankton community with
mixed layer is provided by zooplankton excretion affinity and velocity competitive advantages (e.g.,
(Richey, 1979; Arhonditsis et al., 2004bThus, diatoms, chlorophytes) over cyanobactei&ifimer,
zooplankton nutrient recycling fuels phytoplankton 1989. The use of fully quantitative information
growth, which in turn has a positive feedback and will further assist the elucidation of the interspecific
sustains herbivore biomass. Interestingly, the standard-phytoplankton response to discrete nutrient fluxes in
ized total effects of nutrients differed in sign between mesotrophic environments during the stratified period.
cyanobacteria€0.079=—0.272x 0.292) and chloro- We used the modified bootstrap procedure proposed
phylla(0.219=0.75% 0.292). Apossible explanation by Bollen and Stine (199Zpr testing the Lake Wash-
for this difference is a pattern where small-pulsed ington SEM. The Bollen and Stine method introduces
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Table 2

Comparison of the maximum likelihood, bootstrap<2000) and Markov Chain Monte Carlo sampling estimates and standard errors of the

Lake Washington model path coefficients and error variances. The second pairs of the Bayesian estimates (medians and respective standarc
errors) correspond to a limited movement around the three fixed loading coefficients by sampling the normal distribution (1, 1). The notation is
similar to that inAppendix 1

Parameters Symbol Maximum likelihood Bootstrap Markov Chain Monte Carlo sampling
Estimate  S.E. Estimate  S.E. Median S.E. Median S.E.
Phytoplanktor— Nutrients y2 0.229 0.289 0.345 0.570 0.155 0.299 0.122  0.306
Phytoplanktor— Epilimnion y1 —0.024 0.009 —0.025 0.016 —0.020 0.010 -0.035 0.020
Herbivory < Phytoplankton B2 2.711 1.217 3.190 1.931 2.337 0.995 1.710 1.282
Cyanobacteria— Phytoplankton A4 —15.225 9.510 -17.776 24.838 —13.761 9.511 -13.710 3.046
Chlorophyll a<— Phytoplankton — As 1.000 1.000 1.000 0.527  0.215
Daphnia < Herbivory A8 1.000 1.000 1.000 0.929 0441
Zooplankton«— Herbivory A7 5.186 1.747 6.211 3.730 5.781 1.511 5.146  2.197
DIN <« Nutrients A3 10.294 9.739 14.586 17.329 15.361 12.631 10.640 3.072
SRP<« Nutrients A2 1.000 1.000 1.000 0.476  0.499
Water Clarity<— Phytoplankton 1 —3.890 1.371 —-4.179 2228 -3.841 1281 -2.251 1.095
Var(Nutrients) @22 0.047 0.055 0.088 0.172 0.029 0.026 0.037 0.071
Var(Epilimnion) ®11 12.646 2.390 12.476 2.345 12.572 2.485 12.445 2474
Covar(Nutrients, Epilimnion) $12 0.257 0.224 0.283 0.214 0.154 0.186 0.213  0.233
Var(Phytoplankton) Y11 0.022 0.013 0.019 0.024 0.029 0.010 0.060 0.051
Var(Cyanobacteria) vat() 85.248 16.854 79.194 18.640 87.260  18.642 83.403  19.026
Var(Chlorophyll a) vargs) 0.023 0.011 0.021 0.022 0.031 0.009 0.035  0.010
Var(Herbivory) V33 0.486 0.225 0.487 0.438 0.466 0.233 0.523 6.978
Var(Daphnia) var(es) 0.661 0.251 0.601 0.432 0.736 0.226 0.727  0.228
Var(Total Zooplankton) vae) 5.018 5.930 1.990 11.256 2.238 4.087 2453 4.235
Var(DIN) var(3s) 18.869 6.230 16.008 9.798 16.624 9.206 12,986  8.886
Var(SRP) vargz) 0.196 0.061 0.152 0.078 0.222 0.052 0.221  0.059
Var(Water Clarity) Y22 0.937 0.230 0.901 0.278 0.936 0.280 1.016  0.275

a transformation of the data matrix to ensure that the the maximum likelihood methodrig. 3 presents the
bootstrap samples will not be drawn from a set of obser- comparison between the observed chlorophyll a and
vations for which the null hypothesis does not hold total zooplankton abundance and the posterior pre-
(Bollen and Stine, 1992 As a result, this scheme is  dictive median, quartiles, and 95% credible sets. In
more objective than the hae bootstrapping, and thus addition, when the assumptions regarding the metrics
Hop will not be rejected regardless of whether it holds or of the latent variablesig = A5 =ig=1) were relaxed

not for the entire population. We formed 2000 bootstrap by sampling from the normal distribution (1,1), the
samples by taking independent draws with replacement interpretation of the structural model remained unal-
from the transformed dataset. Testing the null hypoth- tered. Using the posterior medians, the predicted struc-
esis that the model is correct, we foung a0.048; tural equation models were; = —0.03%1 +0.12%>,
comparing the model performance when using the full np=—2.25k,, andnz=1.710:;. By comparing the
dataset, the fit was worse 98 out of 2000 bootstrap standard error relative to the medians, we infer that
samples. Interestingly, during the bootstrap procedure the weak relationship between nutrients and phyto-
several samples resulted in singular covariance matri- plankton was also evident with the Bayesian approach,
ces, while the standard error for at least three bootstrapwhile the path between phytoplankton and herbivory
estimates (vaey), A3, A4) Was notably higher than  was still positive but weakefTéble 2. Interestingly,
those from the classical methotiaple 2. However, the DIN loading £3) over the latent variable nutri-
these discrepancies did not alter the inference regard-ents was stronger after the stochastic treatment of
ing their significance. The first pairs of Bayesian esti- the assumption, whereas the SRP loadihg) (vas
mates (medians and respective standard errors) shownot significant. This finding probably reflects the
that the Bayesian SEM provided consistent results with phosphorus-limiting conditions in Lake Washington
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Fig. 3. Comparison between the observed data and the posterior predictive distributions for (a) chlorophyll a and (b) total zooplankton abundance
of the Lake Washington SEM.

where SRP is usually below the detection limit and of the epilimnetic phytoplankton dynamics provided
the largest fraction of the phosphorus stock of the satisfactory results, which were also consistent with
system is sequestered in the phytoplankton cells. In the existing Lake Washington literature. However, it
contrast, the non-limiting DIN (mostly N§) ranges should not be neglected that the model explained a
in detectable levels (DIN 80ug/L), and thus seems  relatively low proportion of the observed variability,
to more closely portray the phytoplankton fluctua- while several tests of fit were in the marginal area
tions. Moreover, both herbivory and phytoplankton between model acceptance/rejection. We highlight two
were strongly associated with their pair of indicator possible aspects of the model that warrant reconsider-
variables. ation/enhancement:

Generally, even though there were some discrep-
ancies, both the bootstrap testing and the Bayesian (i) The inclusion of the soluble form of phoshorus
approach provided similar results to the maximum like- as a sole limiting nutrient indicator in the nutri-
lihood method. The hypothesized conceptualization ents measurement model is not sufficient to com-
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pletely capture the phytoplankton dynamics. In
a strongly phosphorus limiting epilimnetic envi-
ronment, the usually small-sized subsidies from
the hypolimnion and/or the zooplankton recycling
are rapidly uptaken by the primary producers. As
a result, the use of SRP data from a moderate
sampling intensity monitoring program provides
limited sensitivity in describing the phosphorus-
phytoplankton relationship. The incorporation of
an additional indicator variable that also accounts
for the particulate or organic phosphorus fraction
(e.g., TP) is likely to improve the model.

(i) The dual nature of the latent variable phytoplank-
ton community might be another cause of the
moderate model performance. It is possible that
the combination of chlorophyll a and cyanobac-
teria into one common factor is not the most
effective way to model phytoplankton response
because the relationship of these two variables
is not always clear in a mesotrophic environ-

0.67

ment. Even though it is reasonable to expect an
improvement after the inclusion of a fully quanti-
tative cyanobacteria characterization, the descrip-
tion of a stochastic and non-linear phenomenon
(i.e., species competition) with a linear and fairly
simple model is probably overoptimistic. There
are several physical, chemical, biological factors
that can affect the phytoplankton composition in
the summer epilimnion, which dynamically inter-
act and regulate the growth-minus-loss balance
for each phytoplankton group and determine the
“superior” competitor under any specific set of
conditions Pokulil and Teubner, 2000; Downing
et al., 200). The recognition of this model limi-
tation raises the classical “simplicity versus com-
plexity” dilemma; the realistic selection of amodel
that simply focuses on a quantitative description of
the phytoplankton community (e.g., the Lake Men-
dota SEM) or a more complicated non-linear SEM
approach that requires several additional latent and

0.79

Biovolume

Chlorophyll a

Epilimnion
depth

SRP

6 /’
0.89

Water
clarity

Daphnia

Zooplankton

x’=122.473; df =19; p = 0.261

Fig. 4. Structural equation model for Lake Menda=48). The numbers correspond to the standardized path coefficients atiddoared
values (numbers in rectanglesj?, d.f. andp correspond to the chi-square test values, the degrees of freedom and the probability level for

rejecting the null hypothesis, respectively.
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observed variables (e.g., turbulence, pH, TN/TP, culation runs, we found that the model yielded several
COy, trace elements, toxins) that can potentially negative error variances. These improper solutions —
cause cyanobacteria dominance.

3.2. Lake Mendota

also referred as “Heywood cases” — can be caused
by several factors, e.g., not “typical’ samples, out-

liers or influential observations, and fundamental faults
on model specificationBpllen, 1989 For example,

In constrast to Lake Washington, the Lake Men- Boomsma (1982jound that implausible values were
dota model accounts for a large amount of the observed possible when small sample sizes and two indicators
variability in phytoplankton (76%), herbivory (43%),
and water clarity (84%). The-test statistic value
was 22.473 with 19 d.f. and non-significggtvalue
(=0.261) Fig. 4). In initial maximum likelihood cal-

per factor were used, ardhderson and Gerbing (1984)
suggested the use of large sample size$50) and
more than three indicators per factor to avoid negative
error variances.

Table 3
The analyzed covariance matrix for the Lake Mendota model with predicted values and residuals (study periods 1997—-2001)
Epilimnion Secchi SRP /DIN /Total \/W log(chlorophyll a) log(total
depth depth zooplankton biovolume)
Epilimnion depth
Observed 16.496
Predicted 16.496
Residual 0
Secchi depth
Observed 2.666 2.923
Predicted 2.744 2.923
Residual -0.077 0
SRP
Observed 49.018 36.558 1097.123
Predicted 48.168 38.192 1097.124
Residual 0.850 —1.634 —0.001
+DIN
Observed 16.821 13.437 272.742 96.427
Predicted 16.832 13.346 272.146 96.442
Residual —-0.010 0.092 0.596 -0.014
/ Total zooplankton
Observed 0.673 0.921 17.824 5.810 1.571
Predicted 1.313 1.179 18.275 6.386 1.571
Residual —0.639 —0.259 —0.450 —0.576 0
v/ Daphnia
Observed 0.691 1.143 22.965 7.368 1.303 1.381
Predicted 1.307 1.175 18.200 6.360 1.293 1.388
Residual —-0.617 —0.032 4.765 1.008 0.010 —0.007
log(chlorophyll a)
Observed —0.730 —0.566 —-7.655 —-3.088 —0.234 —0.283 0.165
Predicted —0.630 —0.566 —8.777 -3.067 -0.271 —-0.270 0.165
Residual —0.099 0 1.122 -0.021 0.037 —0.013 0
log(total biovolume)
Observed —0.821 —0.796 —-10.639 —-4.005 -0.366 -0.431 0.177 0.369
Predicted —0.866 —0.778 —12.057 —-4.213 —-0.372 —-0.371 0.179 0.369
Residual 0.045 -0.018 1.418 0.208 0.006 —0.060 —0.002 0
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To prevent the Lake Mendota model from yielding The RMSEA was 0.062, which under the null
negative values, we added specification of two error hypothesis of “close fit” corresponds to javalue
variances (DINDaphnia), thusincreasingthe d.f.from  of 0.388. The IFl and CFI values were 0.989 and
17 to 19. To compute the prespecified error variances, 0.987, respectively. Hoelter’s criticAltest indicated a
we ran the Bayesian SEM configuration and used the model acceptance (CN=64) at the 0.05 significance
median error variances, which resulted from this model level. The latent variable nutrients was well corre-
as the prescribed values for the maximum likelihood lated with dissolved inorganic nitrogen~ 0.99) and
model. We ran the Bayesian SEM model keeping the soluble reactive phosphorus 0.84). Chlorophyll a
three loading coefficients fixed (equal to one; see below and total algal biovolume were also highly correlated
and Appendices 1 and)2and using “flat” (uninfor- with phytoplankton and the respective coefficients were
mative) priors for the rest of the model parameters. 0.89 and 0.81. Finally, botaphnia (r~0.96) and
Note that in a Bayesian framework, the use of a con- total zooplankton#(~ 0.91) length weighted biomass
jugate prior distribution specifies the variances in a were strongly correlated with the latent variable her-
region of positive values, and thus the inadmissible val- bivory.
ues are avoided_ge and Shi, 20Q0see alsdMartin Generally, there was a good agreement between
and McDonald, 197%or another Bayesian approach the observed and model-implied moments and all the
to avoid inadmissible estimates in unrestricted factor standardized estimates of the residuals were below
analysis). Researchers using SEM for environmental one (Table 3. The largest residual covariances were
data sets are likely to find that such methods may be found between the epilimnion depth and the two her-
needed in their analyses, since datasets of similar sizebivory indicators and between SRP @daphnia (Stan-
are frequent in environmental science. dardized estimates of the residual®.7). The initial

Table 4
Comparison of the maximum likelihood, bootstrap<2000) and Markov Chain Monte Carlo sampling estimates and standard errors of the
Lake Mendota model path coefficients and error variances. The second pairs of the Bayesian estimates (medians and respective standard errors

correspond to a limited movement around the three fixed loading coefficients by sampling the normal distribution (1, 1). The notation is similar

to that inAppendix 1

Parameters Symbol  Maximum likelihood  Bootstrap Markov Chain Monte Carlo sampling
Estimate S.E. Estimate S.E. Median  S.E. Median ~ S.E.
Phytoplanktor— Nutrients V2 —0.011 0.002 -0.011 0.002 -0.011 0.002 -0.037 0.024
Phytoplanktorx— Epilimnion y1 —0.006 0.008 —0.007 0.009 -0.007 0.007 —0.008 0.014
Herbivory < Phytoplankton B2 —2.074 0.416 —2.078 0.444 —-2.035 0.436 —1.452 0.854
Total biovolume« Phytoplankton A4 1.374 0.186 1.380 0.196 1.361 0.193 1.053 0.336
Chlorophyll a« Phytoplankton A5 1.000 1.000 1.000 0.756 0.237
Daphnia < Herbivory Ag 1.000 1.000 1.000 1.102 0.530
Zooplankton« Herbivory A7 1.004 0.082 1.009 0.081 1.006 0.091 1.095 0.536
DIN <« Nutrients A3 0.349 0.033 0.353 0.036 0.367 0.042 0.935 0.295
SRP<« Nutrients A2 1.000 1.000 1.000 2.553 0.748
Water Clarity<— Cyanobacteria B1 —4.352 0.464 —4.391 0.510 -4.335 0.486 —3.381 1.013
Var(Nutrients) ©22 778.817  217.263  759.919 209.328 699.311 217.721 109.322 165.721
Var(Epilimnion) 011 16.496 3.403 16.121 3.240 16.312 3.533 16.280 3.513
Covar(Nutrients, Epilimnion) ¥12 48.168 18.608 46.929 17.905 44.215 18.481 17.432 11.081
Var(Phytoplankton) Y11 0.035 0.010 0.029 0.010 0.040 0.012 0.062 0.146
Var(Total Biovolume) varf) 0.123 0.030 0.118 0.029 0.131 0.034 0.131 0.034
Var(Chlorophyll a) varg,) 0.031 0.010 0.033 0.010 0.043 0.012 0.044 0.012
Var(Herbivory) V33 0.728 0.177 0.694 0.166 0.759 0.200 0.651 1.809
Var(Daphnia) var(es) 0.100 0.100 0.100 0.059 0.083 0.059
Var(Total Zooplankton) vaeh) 0.273 0.076 0.259 0.075 0.291 0.092 0.292 0.094
Var(DIN) var(3s) 1.344 1.344 1.344 1.920 0.627 3.563
Var(SRP) vargz)  318.306 67.864  304.697 63.891 332.557 76.999  330.907 77.673
Var(Water Clarity) Y22 0.458 0.153 0.435 0.151 0.449 0.174 0.448 0.172
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hypothesized structural model was confirmed and all with adverse effects on the water clarity and the aes-
the paths between the latent variables were significant. thetic value of the lakel@throp et al., 1996; Soranno,

The only exception was the direct path from epil-
imnion depth to phytoplanktop & 0.436; sedable 4.
The standardized direct effect of nutrients on phyto-
plankton was—0.841. The standardized direct paths
from phytoplankton to herbivory-{0.659) and water
clarity (—0.918) were negative and highly significant.
Finally, the correlation{=0.425) between epilimnion
depth and nutrientgE 0.01) was also significant. The
latter result is consistent with previous studies that
emphasized the internal loading contribution to the
epilimnetic nutrient stock in Lake Mendot&oranno

et al. (1997)found that major entrainment events can
occur and result in nutrient fluxes that are significantly

1997. Our SEM approach also highlighted the control
that herbivory exerts on summer epilimnetic phyto-
plankton dynamics. Several past Lake Mendota studies
based on both shortand long-term datasets, varianttem-
poral resolution (from days to seasonal averages), and
contemporaneous or lagged measurements provided
similar evidence and underscored the role of zooplank-
ton grazing pressure (especially from the large bodied
Daphnia spp.) on phytoplankton dynamics (e.g., com-
position, abundance) and the water claritgthrop and
Carpenter, 1992b; Lathrop et al., 1996; Soranno, 1997;
Lathrop et al., 1999 Overall, the conceptual model
resulted in a good fit with the data and it provided a

higher than those from external nutrient sources. These plausible interpretation of the ecological processesin a

nutrient pulses stimulate phytoplankton (cyanobacte-

ria) blooms &30g chl a/L), surface scum formation

eutrophic environment that is consistent with the exist-
ing literature.
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Fig. 5. Comparison between the observed data and the posterior predictive distributions for (a) chlorophyll ®apkh¢b)abundance of the

Lake Mendota SEM.
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Both bootstrap estimatesTdble 4 and model
fit (»=0.367) were consistent with the maximum
likelihood results.Fig. 5 presents the comparison
between the observed chlorophyll a dhephnia abun-

401

ton to herbivory and water transparency. In contrast,
the variance of the nutrientg4>) and the covariance
between nutrients and epilimnion deptp ) were
notably lower. The lowerp;, and ¢z variance esti-

dance and the posterior predictive median, quartiles, mates were related to the assumption that determines
and 95% credible sets of the Bayesian model with the metric of the latent variable nutrients;E 1) in

the three identification restrictiongd{=As5=ig=1).

combination with the high variance of the used SRP

Moreover, interesting findings were raised when values [able 3, which in turn is indicative of the role
these three constraints were relaxed. Using the pos-of the hypolimnetic fluxes. [Also note that the best
terior medians, we have the structural equation fit to the normal distribution was provided by the raw

model ny = —0.00&'1 - 0.03E2, np=—3.38In1, and

(untransformed) SRP data for the Lake Mendota SEM.]

n3=—1.452;. Comparing these estimates with the The discrepancies were minimized when we sampled
respective standard errors, we infer that the Bayesianvalues for thei, loading from a normal distribution
approach also underlined the importance of the pathswith mean 1 and precision 5 or when keeping this

from nutrients to phytoplankton, and from phytoplank-
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Fig. 6. Posterior distributions for the two parameters associated with (a) chlorophyll a, (b) water transparency, and (c) water quality predictions
of the Lake Mendota structural equation model: each point corresponds to the mean value of the posterior predictive distribution of the water

quality index for each sampling date (study period 1997-2(3448).

satisfactory/non-satisfactory water quality conditions.

The water quality index is based on a binary characterization (0, 1) of
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found between the three latent variables and the respecprograms (moderate sampling intensity, standard lim-

tive pairs of indicators.

3.3. Application in natural resource management

To illustrate one way of how this methodological

framework can be used for assessing trophic conditions

and assist water quality management, we linked the
Bayesian configuration of the Lake Mendota SEM with
the following model:

nological variables used), and (ii) the ability to test
a single model simultaneously for multiple waterbod-
ies (multi-group analyses or stacked models), where
the use of constraints across groups enables the iden-
tification of the longitudinal difference$’(igesek and
Tomer, 1998%. Bayesian analysis can also be advanta-
geous along this line, since the stochastic treatment of
the cross-sectional constraints improves the accuracy
ofthe estimation and results in a more meaningful inter-
pretation of the modele, 1992; Lee and Ho, 1993

logit(p[i]) = ao + a1 chlorophyll af] + a2 water transparencj]

whereY = 1if chlorophyll af] > 10ug/L or Secchi depthi] < 2m elseY = 0,

Y[i]| p[i]~Bernoulli (p[i]),

The indicator variable for identifying trophic state
(referred to as “Water Quality Index” irFig. 6)
was based on a binary characterization (0, 1) of
satisfactory/non-satisfactory water quality conditions.
More specifically, the observeHi] was modeled as
a realization from a random Bernoulli process where
plil, the probability of non-satisfactory conditions, is
a function of chlorophyll a and water transparency
(coincides with Secchi depth in this model) for this
categorization. The respective cutoff points were
10pg/L and 2 m.Fig. 6@) and (b) show the posterior
distribution for the parameters associated with the
two water quality variablesrig. €(c) illustrates how
the proposed conceptualization of the Lake Mendota
epilimnetic phytoplankton dynamics can be used for
water quality predictions. The mean values of the pos-
terior predictive distribution of the water quality index
(study period 1997-2001y =48) were used for the
delineation of this surface, where the joint chlorophyll
a and water transparency SEM estimations provide
predictions —through the model (3) —on the water qual-
ity of the lake. In addition, the inclusion of surrogate
variables for watershed dynamics (e.g., nutrient load-
ings) will further elaborate the ability of the present
modeling framework to be used as management tool.
It should be noted that the combination of SEM
with Bayesian analysis offers two additional strategies
for the development of a framework that will integrate
into the model information over time and space: (i)
the sequential updating, which in this particular case

is relatively easy since the basis for the present model-

ing construction was data from conventional sampling

logit p[i] = loge(p[i]/(1 —

pli]) 3)

4. Conclusions

We presented an illustrative example that examined
the efficiency of a multivariate statistical method to
explore ecological patterns. Structural equation mod-
eling was used to formulate a simple conceptual model
regarding epilimnetic phytoplankton dynamics, which
was then tested in two lakes with different trophic status
(i.e., eutrophic Lake Mendota and mesotrophic Lake
Washington). The basic feature of the confirmation
theory is the recognition that science is a hypothetico-
deductive process and observations/experimental data
should be considered a consequence of a theory or a
general law Qreskes et al., 1994While the formula-
tion of our hypothetical model was based on existing
knowledge from the limnological literature, the use of
existing data undermines somewhat the “confirmatory”
character of our study. Ideally, ecologists when con-
ducting confirmatory analysis must design their mental
models in advance and then proceed to data collection
(McCune and Grace, 20D2Nevertheless, our inten-
tion with this simple (and very familiar to aquatic
ecologists) example was to show the flexibility of the
method to: (i) translate a fairly complicated ecological
phenomenon and express it as a function of several con-
ceptual environmental factors, (ii) link the conceptual
factors of interest with routinely measured variables
by explicitly acknowledging that none of those reflects
perfectly the underlying property, and (iii) test both
direct and indirect paths of this ecological structure
and identify the importance of their role.
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Model acceptance in two or more case studies is study showed, additional insight can be gained by the
not evidence for a general statement, but merely the stochastic treatment of the assumptions used to deter-
start of a “perpetual race” for confirmatio®feskes et  mine the latent variable metrics. Another aspect where
al., 1994. This realization might be misinterpreted as the Bayesian strategy can be particularly useful, though
a necessity for good starting models, where the ecol- it was not explored in this study, is the treatment of
ogist has to embody conceptualizations with a high unidentified initial models; the problem of exact iden-
likelihood of confirmation in a variety of conditions. tification restrictions can be overcome by exploiting
In typical SEM practice, what is needed is a tenta- existing information and defining plausible informa-
tive initial model and probably prior knowledge of tive prior distributions §cheines et al., 1999
the variety of observed variables that can reflect the It should also be stressed that SEM can be more
studied ecological conditions. The initial model can be complicated than the presented model and more infor-
respecified and effectively optimized, as long as the mation can be easily includeddcCune and Grace
modifications are done through a combination of data (2002)discussed that SEMs can become problematic
and theory-driven exploratory analysigl¢Cune and after the inclusion of more than 10 latent variables.
Grace, 200p By integrating intuition, theory, and evi-  For example, the ecological structure of our model can
dence from the data, we insure that the final model has be augmented by the inclusion of more indicators for
not only the best fit but also meaningful paths. Thus, each of the already existing latent variables (e.g., total
the resulting modeling development provides a plau- nutrient forms, silica, trace elements, primary produc-
sible framework that seeks for further confirmation. tivity, Schmidt stability index), higher predators of the
For several reasons, SEM has received criticism with food web, external nutrient loadings or concepts that
regards to its ability to serve as a methodological tool reflect recent advancements in aquatic ecology such as
in ecology and evolutionary biology (e.dRetraitis et algal food quality for zooplankton (e.g., highly unsat-
al., 1996, which however have been addressed on a urated fatty acid, amino acid, protein content, and/or
vis-a-vis basis in the SEM literature (e.fugesek and  digestibility, seeSterner and Hessen, 1994; Kilham et
Tomer, 1995; Grace and Pugesek, 193r exam- al., 1997; Brett and Nller-Navarra, 1997; Kleppel et
ple, SEM does not require larger sample sizes than al., 1999. Finally, another methodological advance-
other multivariate methods (e.g., multiple regression, ment for the analysis of complex ecological systems is
MANOVA); can account for non-linear relationships; likely to result from the delineation of the correspon-
can include categorical data and can overcome devia-dence between SEM and system dynamic modeling
tions from multinormality. and the integration of these two techniques into one

Several benefits can also be gained by a Bayesiancomprehensive tooGrace, 2001; Hovmand, 2003
approach to structural equation modeling. We argue  Holling (1978)emphasized the popular notion that
that a Bayesian SEM that subjects a realistic ecological everything in ecological systems is tightly connected
structure to sequential updating with routinely mon- to everything else is, in fact, false. Rather, there are
itored environmental variables is likely to lead to an key linkages that dominate ecosystem dynamics. SEM
effective, easily implementable framework and assist models are useful to help identify these important
natural resource managemeBofazio and Johnson, connections. Striving to elucidate ecological patterns,
2003. In the present study, we used uninformative researchers can use SEM as a tool that lends flexibility
prior parameter distributions where the posterior is pro- to compromise between generality, realism and preci-
portional to the likelihood, and thus the Bayesian and sion and obtain the optimal scale of description; the
maximum likelihood estimates did not differ. However, integration of this technique in the ecological practice
even though it was not encountered here, local max- is warranted.
ima or non-Gaussian likelihood surfaces from small
sample sizes can cause major discrepan8ebdines
et al., 1999. The adoption of a Bayesian approach, Acknowledgments
where MCMC samples are taken from the true poste-
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Appendix 1

A.l. General description

By expressing the observations as deviations from

their means, the following set of three equations pro-

matrices are: Co¥j = @(n x n): covariances between
the independent variableg; Cov(e)=06O.(p x p):
covariances between the measurement error¥;in
Cov() = ®s(g x q): covariances between the measure-
ment errors inX; Cov()=¥(m x m): covariances
between the structural errogs

The (p +4) model-implied covariance matriX'(0)
of the observed variables can be partitioned into four
matrices¥,, (0), Xy.(6), X1y(9) and X (f) that denote
the model-implied covariances between tabserved
variables, theX observed variables, and theand Y
observed variables, respectively.

Xy (0)  2yx(6)

*0=15 0 5.0

(A.2)

vides the general matrix representation of a structural Based on the previous assumptions, the ma#i®)

equation model:

() =

X =A8+4,
Y = Ayn+ ¢ (Measurement model)

n = Bn + It + ¢ (Latent variable model) (A.1)

where X is a g x 1 vector of observable indicators
of the independent latent variablés Y is ap x 1
vector of observable indicators of the dependent
latent variables;; n is am x 1 vector of dependent
(endogenous) latent variables;s an x 1 vector of
independent (exogenous) latent variableis; am x 1
vector of latent (structural) errors;is ap x 1 vector
of measurement errors fdf, § is a g x 1 vector of
measurement errors fof; A, is ap xm matrix of
coefficients relatingt to n; A, is a ¢ x n matrix of
coefficients relatingX to &; I is a m xn matrix of
coefficients for the latent exogenous variablBss a
m x m matrix of coefficients for the latent endogenous
variables.

The statistical assumptions are: (&jn)=E(§)=
E(e)=E(8) =E(¢) =0, (2)¢ is uncorrelated witly, (3)

Ay(I = By Y Ior + w)[(I - By YA, + 0, A,(I-B) oA,
A®T'[(1 - B A,

takes the following formBollen, 1989

(A.3)

A @A+ O

A.2. Lake Washington structural equation model

As an illustrative example, we present the matrices’
forms and the specific assumptions made for the Lake
Washington structural equation model. The extraction
of the Lake Mendota SEM can be obtained in a similar
way. The Lake Washington SEM included two=2)
exogenous latent variablés which were described
from three ¢ =3) indicators; i.e., SRP and DIN were
used for the latent variable “Nutrients” and the epil-
imnion depth for the respective latent variable. Thus,
the exogenous latent variable measurement model con-
sists of the following four matrices:

X1 = Epilimniondepth x 0
X =|X>,=SRP s Ax=10 Az |,
X3 =DIN 0 Az
. 81
£ &1 = Epilimniondepth s
~ | & = Nutrients 0T 2
3
(A.4)
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Five indicators f=5) were used for the represen-
tation of the threerg = 3) endogenous latent variables;
i.e., cyanobacteria counts and chlorophyll a were used
as indicators for the latent variable phytoplankton com-

The additional three matrices of the structural equation
for the latent variable model are:

. : . Y1 ¥2 000 &1
munity, the Secchi depth for the Water clariyphnia
and total zooplankton were used to characterize the r=100, B=|p00|, =2
latent variable Herbivory. Thus, the exogenous latent 00 B200 {3
variable measurement model can be described from the (A.6)

four matrices:
Y1 = Cyanobacteria
Y> = Chlorophyll a

As it can be inferred from the path diagrafid. 1) and
the form of the matrixB, the Lake Washington struc-

Y = | Y3 = Secchi depth , tural equation model is recursive (no feedback causal
Y4 = Total Zooplankto relations and uncorrelat_ed measurement or §tructura|
. errors). Thus, the associated covariance matrices are:
Ys = Daphnia
A 00 [var(e1)
A5 00 0 vary)
Ay=10 2 0}, ©:=| 0 0  vargs) ,
0 0 47 0 0 0 varks)
0 0 is 0 0 0 0  varks)
[ 1 = Phytoplankton communit [ var(s:)
n = | n2 = Water clarity , O5 = 0 vary) 7
| n3 = Herbivory 0 0 vargs)
1 Y11 "
&2 =10 2 . o=|""
e= |¢3 (A.5) 0 0 s $12 ¢22
&4 (A.7)
_85
By substituting(A.4)<A.7) into (A.3), we determine
the four sub-matrices ¢f\.2):
[22¢11 + var(sy)
(@) = | Mooz A2¢22 + var(s2)
| Mrad12 A2A3p22 22422 + var(s)
[ 22 Aaux + vares)
rarsAaux )»gAaux + var(ez)
Zyy(0) = | rareBfrAaux AsheB1Aaux )\éﬂ%Aaux + Ag‘/’zz + var(es)
Aar7B2Aaux AsA7B2Aaux AeA7B1P2Aaux A%,BgAaux + )\%1//33 + var(es)
L Aar8B2Aaux As5hgB2Aaux rergP1P2Aaux )L7)\8/3§Aaux + A7AgV¥33 AgﬂgAaux + A§¢33 + var(es)
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where Aaux = 1i(y1d11 + y2012) + v2(vid12 +
Y2¢22) + Y11, and

Mra(ig11+ ve12)  A2ha(yadiz + va¢22)  Asra(yigiz + ve22)

MAs(yidi1+ ved12)  A2ds(yigi2 + v2g22)  Asis(yidiz + ved22)
Zy(0) = [Z0(0)] ' = | AreBr(vidrr + v2p12)  A2reBr(yigiz + va¢22)  AsrePi(yidiz + v2h22)
MA7B2(v1g11 + v2¢12)  A2d7B2(vid12 + vad22)  A3r7B2(vigi2 + vog22)
ArgB2(y1p11+ v2012)  A2rgP2(yio12 + v2¢22)  AshgBa(vidiz + y2¢22)

According to the null hypothesis, this model-implied model identification Kaplan, 2000. Additional rules
8 x 8 matrix £ () is equal to the known sample covari- €Xist and can be used to establish model identification
ance matrixs. The 36 [=(1/2) (8) (9)] non-redundant  (Bollen, 19893 We used the software Amos 5 for SEM
elements of the two matrices provide 36 equations that development4rbuckle, 1993.
can be solved with one of the common fitting methods
(e.g., maximum likelihood, unweighted or generalized
least squares). Inthis study, we used the maximum like- Appendix 2
lihood (ML) method, where the fitting function that is
minimized is Bollen, 1989 Using the previous notation, the hierarchical
_ Bayesian configuration of the Lake Washington SEM
FuL = log|Z(0)] + rr(SZ~1(0)) — | —~ -
L =l0g| Z(O)] + r(SZHO) —logls| — (p+a) Y e e
(A.8)

Before evaluating the identification status of the model, X1 = 181 + 81, Xoi = Aok + 82,

it is essential to set the metric of.the Ia_tent yagables. X3 = Agéoi + 83, 8~N(0,®s), E~N(O, ®);
One way that this can be accomplished is by fixing one

loadingin each column ofy andAyto 1.0. Inthispar- Y1 = Aanw + €1, Yoi = Asnii + €2,
ticular case, we assumed that= 5= 1g = 1.0. More- Y3 = hen2i + €3, Yai = A7nzi + €a,

over, implicit in the assumption that the latent variables ,

epilimnion depth and water clarity coincide with the Y5 = *8n3i + &5, e~N(0, Oc),

pbserved variables epilimnion depth and Sgcchl depth N = yifn + yobai + 1, na = Pini + ¢2,
is:11=X1g=1.0,and’; =¢3=0. Having determined the

metric of the latent variables, there are several rules that 13 = B2n1i +¢3,  ¢~N(0, ¥) (B.1)
can be used to check SEM identification. The easiest
test to apply is the so-callgetule. If ¢ is the total num- Letw; = {y;,x;, i=1,...,n}bethejointvector of

ber of model parameters that are to be estimated, thenthe observed variables for an arbitrary observation

this number must be less than or equal to the number According to the mod€B.1), each observatiottomes

of non-redundant elements in the covariance matrix of from a multivariate normal distributiof{..(6);, X (6))

the observed (endogenous and exogenous) variables: wherew(6); is the conditional mean (expected) vector,
2(0) is the conditional covariance matrix afds the

t= @/ +a)p+q+1) (A-9) vector of the unknown model parameters both given in

In the Lake Washington SEM, the unknown model Appendix 1 The likelihood ofw = (w1, ..., w,) is:

parameters were 19, i.é= (A3, A4, A7, V1, V2, B1,

B2, var(e1), var(ez), var(a), var(es), var@z), var@s), " B 5 1

V11, Y22, ¥33, 911, 912, 22) Which left 17 (36— 19) p(wl6) = H(Zn) a2 20) Y

d.f. in the model. Even though in practice, thaeule i=1
works for the majority of models (except from very 1 , 1
complex ones), it should be noted that it isi@es- exp {_z[wi = n(O)i X(0) wi — n(61)]

sary but notsufficient condition and does not guarantee (B.2)
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whereg = 3 andp =5 are the number of exogenous an iegelhalter et al., or all the parameters was

hereg=3 5 th ber of d S Ihalter et al., 2003or all th t

endogenous manifest variables. In the context of the less than 5% of the sample standard deviation.

Bayesian statistical inference, the focus is on the pos-

terior density of) given the observed date, which is

defined as

p(w|0) p(6) References

pOlw) = s o pwl)pd) (B3

J p(w|6) p(F)de . .
Anderson, J.C., Gerbing, D.W., 1984. The effect of sampling error on

wherep(6) is the prior density of which is required to convergence, improperso_lutions, and goodness—_of—fit indexes for
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