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a b s t r a c t

Sensitivity and uncertainty analysis of contaminant fate and transport modeling have received consid-
erable attention in the literature. In this study, our objective is to elucidate the uncertainty pertaining to
micropollutant modeling in the sediment-water column interface. Our sensitivity analysis suggests that
not only partitioning coefficients of metals but also critical stress values for cohesive sediment affect
greatly the predictions of suspended sediment and metal concentrations. Bayesian Monte Carlo is used to
quantify the propagation of parameter uncertainty through the model and obtain the posterior
parameter probabilities. The delineation of periods related to different river flow regimes allowed
optimizing the characterization of cohesive sediment parameters and effectively reducing the overall
model uncertainty. We conclude by offering prescriptive guidelines about how Bayesian inference
techniques can be integrated with contaminant modeling and improve the methodological foundation of
uncertainty analysis.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Micropollutants often represent a major threat to the integrity
of surface waters, such as rivers, lakes, and estuaries (Hong et al.,
2003; Moldovan, 2006). The complex interplay between physical
and biogeochemical processes that modulates micropollutant
concentrations has received considerable attention in the recent
literature. Mathematical modeling offers a comprehensive means
to simulate fate and transport of heavy metals/organic contami-
nants and to support water quality management decisions that
effectively protect aquatic ecosystem functioning (Ongley et al.,
1992; Ji et al., 2002; Chu and Rediske, 2012). For example, mathe-
matical models are an integral component of all the total maximum
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daily load (TMDL) programs in order to determine optimal man-
agement actions that can control point and non-point pollution
sources and ultimately achieve water quality standards (National
Research Council, 2001).

The typical practices in micropollutant modeling view model
calibration as an inverse solution problem, whereby model pa-
rameters are iteratively adjusted until the discrepancy between
model outputs and observed data is minimized (Freni andMannina,
2010). This procedure may potentially offer insights into the
magnitude of ecosystem processes/causal mechanisms that shape
micropollutant concentrations, but it is frequently undermined by
the well-known equifinality (poor model identifiability) problem,
where several distinct choices of model inputs lead to the same
model outputs (many sets of parameters fit the data about equally
well) (Arhonditsis et al., 2007). A main reason for the equifinality
problem is that the processes used for understanding how the
system works internally is of substantially higher order than what
can be externally observed. Moreover, while these modeling con-
structs can be complex and contain significant mechanistic foun-
dation, their application involves uncertainty contributed by model
structure and parameters as well as measurement imprecision and
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other data uncertainties. The structural uncertainty is not surpris-
ing because all models are drastic simplifications of reality that
approximate the actual processes, i.e., essentially, all parameters
are effective (spatially and temporally averaged) values unlikely to
be represented by a fixed constant (Arhonditsis et al., 2007,
2008a,b). Furthermore, heavy metal/organic contaminant data are
expensive, scarce, and highly variable (Freni and Mannina, 2010;
Vezzaro and Mikkelsen, 2012), so individual equations which are
approximately correct in controlled laboratory environments may
not collectively yield an accurate picture of the processes that shape
micropollutant concentrations in surface waters (Reichert, 1997;
Refsgaard et al., 2005; Krysanova et al., 2007). Therefore, uncer-
tainty analysis has been a topic of increasing importance in hy-
drological andwater qualitymodeling (Freni et al., 2009; Torres and
Bertrand-Krajewski, 2008; Marsili-Libelli and Giusti, 2008;
Arhonditsis, 2008a,b; Shen et al., 2012; Ruark et al., 2011). Although
several techniques have been implemented to evaluate parametric
uncertainty (Sohn et al., 2000; Freni andMannina, 2010), the effects
of model parameters on predicted results are not well understood
and can vary depending on the characteristics of modeled con-
taminants (Sommerfreund et al., 2010; Matthies et al., 2004).

One of the most challenging processes in micropollutant
modeling is the reproduction of their adsorption on the surface of
cohesive sediments and their subsequent transport in the water
column (Ji, 2008; Trento and Alvarez, 2011; Liu et al., 2012). In this
regard, Liu et al. (2012) simulated the two-dimensional transport
and distribution of heavy metals along the tidal Keelung River es-
tuary, indicating that the partition coefficient plays an important
role in the distribution of dissolved and particulate lead concen-
trations. In the same context, Trento and Alvarez (2011) evaluated
the relative parameter sensitivity of a simple model that aimed to
simulate chromium and fine sediment transport, showing that the
characterization of the associated processes was predominantly
driven by several parameters, such as the partition coefficients in
the water column and bed sediments, the depth of the active bed
sediment layer, and themass transfer coefficient between thewater
column and sediment pore water. Along the same line of reasoning,
Franceschini and Tsai (2010) underscored the importance of the
characterization of suspended sediment processes, when modeling
total polychlorinated biphenyls (PCBs) with Environmental Fluid
Dynamics Code (EFDC) and Water Quality Analysis Simulation
Program (WASP). Many other studies similarly emphasized that the
modules that simulate toxic micropollutant concentrations are
particularly sensitive to parameters related to cohesive sediments,
such as settling velocity, critical stress values on sediment bed as
well as to the metal partitioning coefficients (Shen et al., 2010,
Fig. 1. Location of the Geum River in Korea, and the cell map with the boundaries and moni
suspended sediment concentrations (TS-1, TS-2), and total and dissolved metal concentrati
2012; Ruark et al., 2011). To make matters worse, the spatial and
temporal heterogeneity of the associated physical and chemical
processes are important confounding factors that can profoundly
inflate model uncertainty (Sohn et al., 2000; Kanso et al., 2005;
Franceschini and Tsai, 2010).

In this study, our first objective is to shed light on how the un-
certainty of the outputs of micropollutant modeling can be
apportioned to five critical parameters; namely, the settling ve-
locity (ws), critical deposition stress (tcd), critical erosion stress
(tce), metal partitioning coefficient between suspended sediment
and water column (Kd,SS), and metal partitioning coefficient be-
tween sediment bed and water column (Kd,bed). Specifically, we
evaluate the efficiency of the local or one-step-at-a-time (OAT)
sensitivity analysis method relative to the Morris Screening
method. In a subsequent exercise, we implement the Bayesian
Monte Carlo method to quantify uncertainty propagation of model
parameters and derive posterior parameter probabilities based on
the corresponding priors and observed data. Our study concludes
by offering prescriptive guidelines about how Bayesian inference
techniques can be integrated with contaminant modeling in order
to improve the methodological foundation of uncertainty analysis.

2. Methods

2.1. Model setup-data sources

The study site for this investigation is located in the middle
reach of Geum River, one of the four major rivers in Korea, where
two multipurpose dams have been built. The spatial model domain
begins from the Daecheong Regulation Dam toMaeogu, with a total
length of 36,740 m. The cell map was constructed using a SMS
(surface-water modeling system) program based on the data
modification obtained from the Korean Ministry of Land, Infra-
structure, and Transport (Fig. 1). There were a total of 273 active
cells, which were formed by 83 longitudinal and 8 lateral cells. The
average cell length and width were 429.8 m and 151.7 m, respec-
tively. Because the construction period of the Sejongbo Dam, which
included movable and fixed weirs, was from May 2009 to June
2012, different elevation data were used in 2011 and 2012 to
incorporate the changes of bottom topography over time.

In this paper, we implemented the Environmental Fluid Dy-
namics Code (EFDC) Explorer 7, a widely used model with the
capability to simulate the cohesive sediment transport and metal
behavior (Elçi et al., 2007; Ji et al., 2002), developed by Dynamic
Solutions International (DSI). Model calibration and verification
was based on water surface elevation data measured at Hyundo
toring points of the water surface elevation (WL-1, WL-2, WL-3), temperature and total
ons (M).
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(WL-1), Bugang (WL-2), and Geumnam (WL-3) stations, water
temperature and sediment concentrations from Geumbon-G (TS-1)
and Geumbon-H (TS-2) stations, and heavy metal concentrations
from Chungwon (M) station. Flow boundary conditions, including
the inflow from the main stream, Gap stream, andMiho stream and
the flow through the Sejongbo dam, were obtained from K-water's
hydrological database, as shown in Fig. S1 (K-Water, 2014). Mete-
orological data were obtained from the Daejeon weather station
(Fig. S2). The total and dissolved metal concentrations in the water
and data related to the sediment bed characteristics were compiled
from reports by the Korean Ministry of Environment (KME) (KME,
2011a, 2012a; KME, 2011b, 2012b). Details are shown in the
Supporting Information section (Tables S1eS2 & Figs. S1eS3). The
focal metal for our modeling study is cadmium (Cd). The total metal
concentration is the sum of the particulate concentration adsorbed
on the suspended cohesive sediment and the dissolved concen-
tration in water. The effect of pH was not considered because pH
variability in the study site was minimal 7.49e7.73 ± 0.25e0.41
(KME, 2014). The variation of the partitioning coefficient for cad-
mium due to pH variability is also negligible (Sauve et al., 2000).
Themodel was run for two 6-monthmonitoring periods from July 1
through December 31 in 2011 and 2012, respectively. The former
data set (2011) was used for calibration, while the latter set (2012)
was used for validation (or predictive confirmation). A 5-sec time
step was used for all simulations. For simplicity, the hydrodynamic
equations, the sediment behavior and numerical schemes of the
EFDC model will not be presented in this paper, but are detailed in
Hayter andMehta (1983), Hamrick (1992), Hamrick andWu (1997),
and Ji et al. (2002).
2.2. Sensitivity analysis

As previously mentioned, we applied two sensitivity analysis
strategies; the local or one-step-at-a-time (OAT) and the Morris
Screening or elementary effects method. Our focus was on the
impact of five input parameters on the predictions of cohesive
sediment concentrations, total and dissolved metal concentrations
in water: settling velocity (ws), critical deposition stress (tcd), crit-
ical erosion stress (tce), metal partitioning coefficient between
suspended sediment and water column (Kd,SS), and metal parti-
tioning coefficient between sediment bed and water column
(Kd,bed).

The OAT method is the most frequently applied technique in the
modeling literature (Saltelli and Annoni, 2010; Sun et al., 2012).
Output variations are evaluated with respect to fractional change of
one input parameter, while the other parameters are held constant.
In this study, each input parameter was perturbed by ±50% relative
to its reference value (see also reasoning for the range selection
provided in Table S3). The reference parameter values were based
on the calibration vector (see Section 3.1). The sensitivity of the ith
input parameter is calculated by:

Sensitivity ¼
qi � E

h���yj � y0
���i

dqi � E½y0�
� 100ð%Þ

where qi is the perturbed input parameter, yj is the output variable
after the parameter perturbation, y0 is the output obtained by the
reference (calibration) parameter value, and dqi is the variation of
the ith parameter. The outputs yj and y0 were obtained over the
entire spatial (273 cells) and temporal (July 2011 to December 2012
or 368 days) domain of our analysis; that is, the variation of the
output (yj�y0) was calculated for each cell and point in time. In
particular, the absolute discrepancies were calculated to prevent
the results from canceling each other out, and thus obtain the
averaged value of total variation E½jyi � y0j�, due to changes of the
ith input parameter over the entire simulated space and time (Freni
and Mannina, 2010).

Using the local method though, it is not always possible to
distinguish which parameters are more influential, because the
individual effects of a particular parameter are also conditional
upon the parameter values assigned to the rest elements of the
input vector (Sun et al., 2012). Even if the parameters are inde-
pendent of each other, the results may still be different due to non-
linearities in model behavior, which cannot necessarily be captured
by single-parameter perturbations (Campolongo and Saltelli, 2000;
Saltelli et al., 2007; Norton, 2009). To overcome the technical
weaknesses of the local method, we considered the Morris
screening (or elementary effects) method, as an appealing alter-
native inwhich the input vector is scrutinized to obtain the ranking
of input parameters in terms of their importance, while accom-
modating any issues of non-linearity and/or interactions with other
parameters (Morris, 1991; Saltelli et al., 2002; Neumann, 2012). The
Morris screening method is briefly described below and is detailed
elsewhere (Morris, 1991). Derived from basic statistics, this method
computes the elementary effect di by calculating the model output
variations induced by a number of incremental changes of each
input parameter qi (i ¼ 1,…,k). This is expressed as:

diðqiÞ¼
jyðq1;…;qi�1;qiþD;qiþ1;…qkÞ�yðq1;…;qi�1;qi;qiþ1;…qkÞj

D

where the vector (q1,…,qi�1,qi,qiþ1,…qk) is randomly sampled within
the quantile space of the parameters, D is the perturbation, and p is
the number of levels. The input parameter space is assumed to be
uniformly distributed and converted to a unit hypercube. Each of
the k input parameters is divided into p levels; thus, the parameter
space sampled is configured as a k-dimensional, p-level grid. The
ranges assigned to the five input parameters are explained in the
next paragraph. Because the elementary effect di depends on the
location of the random sample, the calculations at different loca-
tions are repeatedly performed r times. According to Campolongo
et al. (2007), the repetition value r is typically chosen between 10
and 50. The average elementary effect mi and standard deviation si
computed from the cumulative distribution F(di) of the r elemen-
tary effects indicates the overall influence of the input factor on the
output and the combination of the factor's higher order effects (i.e.,
non-linear and/or interaction effects), respectively. These two
measures need to be read together in order to rank the relative
importance of parameter inputs and identify those parameters
which do (or do not) influence the output variability. Low values of
both mi and si correspond to a non-influential parameter. In this
study, because the negative and positive values of di might cancel
each other out when calculating the average elementary effect mi,
the mean of the absolute value of the elementary effects m*i was
used as an indicator of the parameter sensitivity, which
Campolongo et al. (2007) proposed to accommodate any non-
monotonic patterns in model behavior. This method has been
successfully applied in water quality modeling (Sun et al., 2012;
Neumann, 2012; Gamerith et al., 2013). The required number of
simulations to compute r replicates of the elementary effects for k
parameters is N ¼ r � (kþ1) (Morris, 1991). The present case study
is based on the typical specification in which p ¼ 4, D ¼ p/
(2 � (p�1)) ¼ 2/3, and r ¼ 10, thereby requiring a total of
N ¼ 10 � (5 þ 1) ¼ 60 simulations. The outputs were obtained from
the 273 total cells and the entire 368 days; thus, the elementary
effect and standard deviation were averaged over the total number
of cells and simulation time.

Experimental data for the five input parameters were not
available, and thus literature review was used to compile the
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parameter values (Table 1). The presence of the Sejongbo Dam
rendered both river and lake characteristics in our case study and
therefore our review aimed to capture a broad range of cohesive
sediments. Hwang et al. (2006, 2008), Ryu et al. (2006), and Gunsan
Regional Oceans and Fisheries Administration (2010) reported
settling velocity and critical erosion stress values from Geum es-
tuary that ranged from 9.0 � 10�6 to 10�3 m/sec and from 0.12 to
0.41 N/m2, respectively. The corresponding values from the inter-
national literature vary considerably, ranging from 1.5 � 10�4 to
2.0 � 10�3 m/sec and 0.115e0.93 N/m2 for settling velocity and
critical erosion stress, respectively (Villaret and Paulic,1986; Ji et al.,
2002; Kim, 2002; Trento and Alvarez, 2011; Liu et al., 2012; Chu and
Rediske, 2012; Wang et al., 2013). In the case of critical deposition
stress, there were no data available from Geum estuary and the
values used were obtained from the EFDC manual and other liter-
ature sources, ranging from 0.02 to 1.1 N/m2 (Mehta, 1986; Onishi
et al., 1993; Ji et al., 2002; Kim, 2002; Tetra Tech, Inc., 2007; Liu
et al., 2012; Wang et al., 2013). In the case of metal partitioning
coefficients, the parameter ranges assigned were lying within the
±1.96 standard deviation (approximately 95% confidence intervals)
of the empirical distributions of the EPA report (Allison and Allison,
2005).

2.3. Uncertainty analysis

The Bayesian Monte Carlo method quantifies model parameter
uncertainty by updating the probabilities of model parameters
(posteriors) as a function of the corresponding prior distributions
and observed data. Simply put, the posterior probability of a spe-
cific parameter is derived as the joint effect of any knowledge
regarding the relative plausibility of its values prior to the data
collection and the likelihood of model predictions given the dataset
at hand. This is expressed as follows:

PðqjDÞ ¼ PðDjqÞPðqÞZ
PðDjqÞPðqÞdq

where q is the uncertain model parameter, D is the observation,
P(qjD) is the posterior probability, P(Djq) is the likelihood function,
and P(q) is the prior probability. The likelihood function is formu-
lated with an error model, which assumes that the residuals be-
tween the observations D and the model predictions Yare normally
Table 1
Range of values assigned to the model calibration parameters.

Input parameter

Settling velocity (ws)
Critical deposition stress (tcd)
Critical erosion stress (tce)
Cd partitioning coefficient between suspended sediment and water (Kd,SS)
Cd partitioning coefficient between sediment bed and water (Kd,bed)

aWang et al. (2013).
bJi et al. (2002).
cChu and Rediske (2012).
dLiu et al. (2012).
eTrento and Alvarez (2011).
fHwang et al. (2006).
g Kim (2002).
hHwang et al. (2008).
iRyu et al. (2006).
jVillaret and Paulic (1986).
kTetra Tech, Inc (2007).
lMehta (1986).
mOnishi et al. (1993)
nGunsan Regional Oceans and Fisheries Administration (2010).
oAllison and Allison (2005).
distributed with a zero mean and constant variance s2.

PðDjqÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

p exp

"
ðD� YÞ2
�2s2

#

Monte Carlo analysis was used to sample the prior probabilities
of the model parameters. For the purpose of the present uncer-
tainty analysis, we generated Monte Carlo sample sizes of 20, 100,
500, 1000, and 5000. Each model parameter was assumed to by
uniformly distributed within the ranges assigned during our
sensitivity analysis (Table 1). To effectively sample the prior
parameter space, we used Latin Hypercube Sampling. The standard
deviation of the residuals (s) between observations and corre-
sponding model predictions was evaluated for each iteration,
assuming homoscedasticity of the residuals (Camacho and Martin,
2013). The likelihood function considers all the independent ob-
servations for a particular modeled variable. For example, with 91
measurements of total suspended sediment concentrations (j ¼ 1,
…,91) from two monitoring points TS-1 and TS-2 in Fig. 1 (i ¼ 1, 2),
the corresponding likelihood function is:

PðDjqÞ ¼
Y2
i¼1

Y91
j¼1

1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

p exp

"
�
�
Di;j � Yi;j

�2
2s2

#

With this approach, the settling velocity, critical deposition
stress, and critical erosion stress of the cohesive sediments were
updated using the total suspended sediment concentrations. The
total metal concentrations were similarly used to update the three
parameters of the cohesive sediments and the suspended
sediment-water partitioning coefficient. Finally, the dissolved
metal concentrations were used to update the five model param-
eters. The uncertainty bands of the prior and posterior predictive
distributions of the total suspended sediment concentration, total
metal concentration, and dissolved metal concentration over each
period were calculated, and the uncertainties of each concentration
were estimated from their average and maximum values. Wider
bands indicate higher uncertainty and lower confidence in the
model outputs, whereas narrower bands indicate higher model
reliability (Freni and Mannina, 2010). For illustration purposes, our
uncertainty analysis was conducted for one model state variable at
a time, although we note that our on-going research focuses on
more complex uncertainty analysis frameworks that accommodate
Unit Range Source

m/s 9.0 � 10�6 e 2.0 � 10�3 aef, g, n
N/m2 2.0 � 10�2 e 1.1 � 100 a, b, d, g, k, l, m
N/m2 1.2 � 10�1 e 9.3 � 10�1 a, b, d, gej
L/mg 5.0 � 10�3 e 1.3 � 100 o
L/mg 3.2 � 10�6 e 4.2 � 100 o



(a-1) WL-1 (Hyundo)

Jul Aug Sep Oct Nov Dec Jul Aug Sep Oct Nov Dec

)
m(

noitavele
ecafrus

reta
W 22

23

24

25

26

27
Observed
Simulated

2011 2012

(a-2) WL-2 (Bugang)

Jul Aug Sep Oct Nov Dec Jul Aug Sep Oct Nov Dec

)
m(

noitavel ee cafrusreta
W 14

15

16

17

18

19
Observed
Simulated

2011 2012

(a-3) WL-3 (Geumnam)

Jul Aug Sep Oct Nov Dec Jul Aug Sep Oct Nov Dec

)
m(

noitaveleecafrusre ta
W 11

12

13

14

15

16
Observed
Simulated

2011 2012

(b-1) TS-1 (Geumbon G)

Jul Aug Sep Oct Nov Dec Jul Aug Sep Oct Nov Dec

C(
erutarep

metreta
W

o )

0

5

10

15

20

25

30
Observed
Simulated

2011 2012
(b-2) TS-2 (Geumbon H)

Jul Aug Sep Oct Nov Dec Jul Aug Sep Oct Nov Dec

C(erutarep
metr eta

W
o )

0
5

10
15
20
25
30
35

Observed
Simulated

2011 2012

(c-1) TS-1 (Geumbon G)

Jul Aug Sep Oct Nov Dec Jul Aug Sep Oct Nov Dec

dednepsuslatoT
)L/ g

m(
no ita rtn ecnoc tne

mi des

0

50

100

150

200

250
Observed
Simulated

2011 2012
(c-2) TS-2 (Geumbon H)

Jul Aug Sep Oct Nov Dec Jul Aug Sep Oct Nov Dec

dednepsuslatoT
)L /g

m(
noi tartn ecn octn e

m ides

0

100

200

300

400
Observed
Simulated

2011 2012

(d) 

Jul Aug Sep Oct Nov Dec Jul Aug Sep Oct Nov Dec

(late
mlato

T
Cd

) (
noitartnecnoc

g/
L

)

0.00

0.02

0.04

0.06

0.08

0.10

0.12
Observed
Simulated

2011 2012
(e)

Jul Aug Sep Oct Nov Dec Jul Aug Sep Oct Nov Dec

(late
m

devl ossi
D

Cd
) 

(
no itartnecnoc

g/
L

)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Observed
Simulated

2011 2012

μ μ

Fig. 2. Measured values and model outputs along Geum River from July to December in 2011 and 2012: (ae1)-(ae3) water surface elevation, (be1)-(be2) water temperature, (ce1)-
(ce2) total suspended sediment concentration, (d) total metal (Cd) concentration, and (e) dissolved metal (Cd) concentration.
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different assumptions about the dependence patterns among
multiple model endpoints (Ramin and Arhonditsis, 2013).
3. Results-discussion

3.1. Model calibration-sensitivity analysis

Parameter values assigned during the model calibration were
2.2 � 10�4 m/sec for settling velocity, 0.2 N/m2 for critical deposi-
tion stress, 0.4 N/m2 for critical erosion stress, 0.079 L/mg for Cd
partitioning coefficient between suspended sediment and water,
and 0.002 L/mg for Cd partitioning coefficient between sediment
bed and water. Time series comparisons between modeled and
measured water elevation, temperature, total suspended sediment,
total Cd, and dissolved Cd concentrations for the calibration and
validation periods are presented in Fig. 2. Table 2 summarizes the
error assessment based on Absolute Mean Error (AME), Root Mean
Square Error (RMSE), Relative Error (RE), and Relative Root Mean
Square Error (RRMSE) (Ji, 2008; see also error formulations in
Table S4 in our Supporting Information section). We obtained
satisfactory fit between simulated and measured values for water
surface elevation, temperature, and total suspended sediment
concentrations. It is also interesting to note that model perfor-
mance was fairly similar between the calibration and validation
domains. On the other hand, the model failed to capture several
peaks of total suspended sediment concentrations that occurred
during the high flow season (AugusteSeptember) in Geumbon H
(station in TS 2). This discrepancy likely stems from a mis-
specification of the boundary conditions, as the cohesive and non-
cohesive suspended sediment concentrations were not separately
monitored, and therefore our simulations were based on a fixed
ratio obtained from local reports (KME, 2010; KME, 2011b, 2012b).
Likewise, the model was characterized by significant discrepancy
between observed and modeled Cd concentrations; especially in
Table 2
Model error analysis: (a) water surface elevation, (b) water temperature, (c) total
suspended sediment concentration, (d) total metal concentration, and (e) dissolved
metal concentration. The locations of each sampling point are shown in Fig. 1.

(ae1) WL-1 (ae2) WL-2 (ae3) WL-3

2011 2012 2011 2012 2011 2012

AME (m) 0.0656 0.0400 0.1503 0.1935 0.5622 0.1130
RMSE (m) 0.1585 0.0601 0.2123 0.3009 0.6889 0.1622
RE (%) 0.2827 0.1723 1.0043 1.2958 4.5258 0.9524
RRMSE (%) 4.3734 2.7818 5.2835 12.9759 17.5785 7.4752

(be1) TS-1 (be2) TS-2

2011 2012 2011 2012

AME (�C) 1.0359 1.5654 1.0554 1.8353
RMSE (�C) 1.3277 1.9426 1.4709 2.2505
RE (%) 5.6344 9.4629 5.9981 10.8933
RRMSE (%) 6.9881 9.7619 6.6256 9.6588

(ce1) TS-1 (ce2) TS-2

2011 2012 2011 2012

AME (mg/L) 4.4505 4.5418 35.2332 8.7508
RMSE (mg/L) 4.8987 6.2696 99.2797 17.9352
RE (%) 34.2217 41.1735 73.3186 37.4608
RRMSE (%) 15.0267 11.5039 27.1034 11.6236

(d) (e)

2011 2012 2011 2012

AME (mg/L) 0.0070 0.0153 0.0022 0.0157
RMSE (mg/L) 0.0079 0.0167 0.0026 0.0161
RE (%) 28.4465 52.0619 13.7799 55.4465
RRMSE (%) 37.5769 53.7689 66.1123 26.3652
the extrapolation (validation) domain. The simulated total and
dissolved metal concentrations increased as a result of the high
flow rates and sediment re-suspension during JulyeSeptember
(Fig. 2), but the RRMSEs ranged from 26% to 66% and were much
higher than the error values obtained for water surface elevation,
temperature, and total suspended sediment concentrations.

The relative influence of input parameters tomodel outputs was
quantified for the entire simulation period and separately for the
high (July to September) and low flow (October to December)
seasons, as determined by the local rainfall patterns (Table 3; Fig. 3
& Fig. 4a). Critical erosion stress (tce) was identified to be a
particularly influential parameter to total suspended sediment,
total and dissolved Cd concentrations (Fig. 3). The suspended
sediment predictions are modulated by the vertical exchange
mechanisms between water column and sediment bed. According
to EFDC model, the net sediment flux (J0 ¼ Jd�Jr) is equal to the
difference between total sediment deposition (Jd) and erosion
(resuspension) fluxes (Jr) (Ziegler and Nisbet, 1994, 1995; Ji, 2008).
The former flux is a function of the critical deposition stress and
settling velocity, while the latter one is a function of the critical
erosion stress. If the critical erosion stress is lower than the bed
shear stress exerted by the flow, the sediment bed is eroded and the
suspended sediment concentration in the water column subse-
quently increases. Parameters related to the characterization of
bottom boundary conditions, i.e., the critical bed-shear stresses for
erosion and particulate settling rate, are critical to the outputs of
micropollutant modeling and this finding consistently emerges
when conducting both first-order and global sensitivity analysis
(Maa et al., 2008; Ruark et al., 2011). Interestingly, our analysis also
showed that the perturbations induced to parameters related to the
behavior of cohesive sediments had a greater impact to the total
and dissolved metal concentrations than to the suspended sedi-
ment concentrations. Because of their high adsorptive affinity,
heavymetals are attached to cohesive sediments and can be subject
to transportation, deposition, and/or erosion (Ongley et al., 1992; Ji
et al., 2002; Zaramella et al., 2006; Chu and Rediske, 2012). For
strongly adsorptive heavy metals, suspended sediments often play
a critical role in their fate and therefore sediment bed may function
as a major sink or source (Liu et al., 2012; Trento and Alvarez, 2011;
Ji, 2008; Yang et al., 2012); thus, the sensitivity of total and dis-
solved metal concentrations to changes of the corresponding pa-
rameters is not surprising.

We also found that the relative importance of model parameters
is characterized by significant variability between the two flow-
related seasons. A characteristic example is the derived sensitiv-
ities of cohesive sediment parameters, which were higher during
the low relative to the high flow season (Fig. 3bec & Table 3). East
Asian monsoons bring heavy rainfall to South Korea during a short
period of time between July and September, whereas the rest of the
year (October to December) is relatively dry (Fig. 4a). As shown in
Fig. 4b, the simulated bed shear stress was always greater than the
calibrated value of the critical stresses, caused by increased flow
due to heavy rain, and thus when the corresponding input pa-
rameters were changed, the variation in the suspended cohesive
sediment, total/dissolved Cd concentrations was fairly minimal. By
contrast, the simulated bed shear stress hovered around the critical
stress values during low flow conditions and therefore the pertur-
bations induced during the sensitivity analysis triggered regime
shifts with respect to the nature of the sediment-water column
interactions. Thus, the influence of the cohesive sediment param-
eters was generally higher in the dry (Period 2) relative to the wet
season (Period 1). For the suspended sediment concentrations, the
most sensitive parameter was the critical erosion stress, followed
by settling velocity and critical deposition stress. The same sensi-
tivity rankings were also derived for total Cd concentrations. By



Table 3
Averaged sensitivity values from the OAT method when the model input parameter was increased and decreased by 50% from its calibrated value. All reported values are
percentages, and bold numbers indicate the most sensitive parameter in that period.

Input parameter Cohesive sediment
concentration

Total metal concentration Dissolved metal
concentration

Total Period 1 Period 2 Total Period 1 Period 2 Total Period 1 Period 2

Settling velocity (ws) 3.60 2.33 5.72 14.33 2.90 24.14 22.55 2.15 35.34
Critical deposition stress (tcd) 2.96 1.69 5.07 21.96 1.74 39.32 38.82 1.36 62.29
Critical erosion stress (tce) 8.56 4.79 14.86 33.59 6.89 56.51 38.90 6.87 58.97
Cd partitioning coefficient between suspended sediment and water (Kd,SS) e e e e e e 34.85 50.50 25.04
Cd partitioning coefficient between sediment bed and water (Kd,bed) e e e 1.74 0.71 2.63 1.92 0.95 2.52

Fig. 3. Sensitivity values of the cohesive sediment and the total and dissolved metal (Cd) concentrations averaged (a) over the entire period, (b) wet season (Period 1), and (c) dry
season (Period 2) in 2011 and 2012. The black and gray bars represent the percentage variations of the concentrations after a 50% increase or decrease of the model input parameter
from the calibrated values, respectively.
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contrast, the sensitivity rankings for dissolved Cd concentrations
were more dependent on the rainfall variability. Specifically, the
critical erosion stress, suspended sediment-water Cd partitioning
coefficient, and critical deposition stress were the most influential
parameters over the entire study period, wet and low flow seasons,
respectively.

The absolute means (m*) and standard deviations (s) of the input
parameters, after the application of Morris screening method, are
presented in Fig. 5aec. A high absolute mean value indicates a
greater parameter effect on the model output, while a high stan-
dard deviation suggests non-linear model response to parameter
changes or significant interactive effects with other parameters
(Campolongo et al., 2007). The two statistics can be combined into
one single value, using the Euclidean distance ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm*Þ2 þ s2

q
, to

obtain the order of importance of the parameters. Thus, a high
Euclidean distance for a particular parameter shows both greater
parameter influence on model outputs and presence of non-
linearity and/or interactions with the rest parameters (Table 4).

Counter to the local sensitivity analysis, the Morris screening
method identified that the sensitivity ranking of settling velocity,
critical deposition and erosion stresses for the suspended sediment
concentration differed depending on the flow regime simulated
(Fig. 5a). Specifically, the critical erosion stress was the most
influential parameter when examining the entire simulation period
and the low flow season (Period 2). By contrast, the settling velocity
appears to be the most sensitive parameter during the high flow
conditions (Period 1). It is also interesting to note that the absolute
mean and standard deviation values of the settling velocity did not
vary with the flow regimes, whereas those of the critical erosion
stress were significantly changed. With the OAT method, even
though the ranking was not changed, the degree of sensitivity of
the critical erosion stress varied to a greater degree relative to the
settling velocity (Table 3). The average sensitivity of the critical
erosion stress changed from 14.86 to 4.79% between low and high
flow conditions, whereas the corresponding values for the settling
velocity changed from5.72 to 2.33%. Gamerith et al. (2013) reported
that the absolute mean and standard deviation values could be
altered by the simulated river flow conditions, and therefore the
Morris screening method provides a reliable overview of the rela-
tive importance of uncertain factors.

The results of the sensitivity analysis with respect to total Cd
concentration in water using the Morris screening method differed
from those of the local sensitivity analysis (Fig. 5b). The Cd parti-
tioning coefficient between sediment bed and water column was
the most influential parameter with the former method, while the
OAT approach gave more emphasis on the critical erosion stress
(Table 4). The difference of the results between the two methods
may stem from the wide range assigned to Cd partitioning



Fig. 5. Results of Morris screening method for (a) the cohesive sediment concentra-
tion, (b) the total metal concentration, and (c) the dissolved metal concentration ob-
tained using the Morris screening method. The black circle, red inverted triangle, and
green squares represent the values averaged over the entire period, Period 1, and
Period 2, respectively. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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coefficient between sediment bed and water (10e6 to 100) as well
as the likelihood of non-linear model response or significant in-
teractions among model parameters (Neumann, 2012). Sun et al.
(2012) compared the influence of input parameters using several
sensitivity analysis methods and found that the sensitivity ranking
of the relative volume of the slow flow response to nitrate con-
centration was in the fourth place using local sensitivity analysis,
but it was the most important parameter with the Morris screening
method. In a similar manner, the sensitivity parameter ranking
with dissolved Cd concentrations varied among the simulation
period examined (Fig. 5c). The sediment bed-water partitioning
coefficient was the most influential parameter when low flow
conditions prevailed. However, the Cd partitioning coefficient be-
tween suspended sediment and water was the most sensitive
parameter during high flow conditions, which is in agreement with
the OAT method.

3.2. Uncertainty analysis

The error bands of the predicted total suspended sediment
concentrations when propagating the prior parameter uncertainty
through the model are presented in Table 5 and Fig. 6. Most
observed data were included within the uncertainty band of the
prior predictive distribution, but this error zone was excessively
broad and therefore uninformative in the context of environment
management. To address this problem, the model was updated
with the total suspended sediment concentrations measured in
two locations (TS-1 and TS-2) during 2011 and 2012. This updating
exercise was repeated twice; we first used collectively all data from
the entire study period and then separately the subset of data
collected from the low flow season (see following discussion). Fig. 7
shows the comparison between prior and posterior distributions,
according to the number of iterations used to explore the param-
eter space. In Table 6, we also summarize the posterior average and
standard deviation values derived for the settling velocity, critical
deposition, and erosion stresses. The delineation of the probability
distributions of the cohesive sediment parameters significantly
improved with as the iteration number increased; especially when
we used greater than 1000 parameter sets. To generate more pre-
cise estimates of the parameter posteriors with the Bayesian Monte
Carlo method, a larger number of iterations is required; otherwise,
the parameter distributions can appear to be irregular (Dilks et al.,
1992; Qian et al., 2003). In this regard, when the iteration number
was 5,000, we found that the posterior distributions of the settling
velocity and critical deposition stress became right-skewed, i.e., the
mass of the distribution is concentrated on small values while the
right tail is longer.

The posterior uncertainty bands of the predicted total sus-
pended sediment concentrations were not greatly changed in re-
gard to their (average and maximum) width, when the entire data
set was used to update the model (Table 5). The existence of large
uncertainties in estimating the total suspended sediment concen-
trations may be explained by the fact that the measured data re-
flected both cohesive and non-cohesive sediment. As previously
mentioned, the public data available for suspended solids in the
water column are summarized as the total suspended sediment
values, and therefore their use was not appropriate to update the
cohesive sediment parameters. To overcome this problem, we
developed another strategy to use the observed data and more
effectively update the cohesive sediment parameters. The sus-
pended non-cohesive sediment increases with heavy rainfall and
high flow rate. The amount of cohesive and non-cohesive sedi-
ments was around 10% and 90% in the high flow season, but
switched to 88% and 12%when low flowconditions prevailed (KME,
2010; KME, 2011b, 2012b). Therefore, data from the former period
would contain little information for estimating the posteriors of the
cohesive sediment parameters.

Model updating based on data collected from the low-flow
season allowed obtaining parameter posteriors and predictive



Table 4
Euclidean distance of the parameters using the Morris screening method. Bold numbers indicate the most sensitive parameter in each period.

Input parameter Cohesive sediment
concentration

Total metal concentration Dissolved metal
concentration

Total Period 1 Period 2 Total Period 1 Period 2 Total Period 1 Period 2

Settling velocity (ws) 2.26 2.31 2.23 0.010 0.006 0.015 0.007 0.001 0.013
Critical deposition stress (tcd) 1.23 1.27 1.21 0.008 0.004 0.015 0.007 0.001 0.013
Critical erosion stress (tce) 2.37 1.81 2.98 0.031 0.008 0.054 0.020 0.005 0.034
Cd partitioning coefficient between suspended sediment and water (Kd,SS) e e e e e e 0.050 0.044 0.056
Cd partitioning coefficient between sediment bed and water (Kd,bed) e e e 0.071 0.053 0.090 0.046 0.029 0.064

Table 5
Average and maximum uncertainty bands of total suspended sediment concentrations of the prior and posterior predictive distributions when the entire dataset or data
collected during the Period 1 and 2 were used for updating the model. TS-1 and TS-2 indicate the monitoring points as shown in Fig. 1.

TS-1 (Geumbon G) TS-2 (Geumbon H)

Prior Posterior Prior Posterior

Total Period 1 Period 2 Total Period 1 Period 2

Avg. band width 9.12 9.02 9.88 0.50 10.29 11.22 11.08 1.89
Max. band width 90.32 92.54 98.89 4.20 44.21 38.46 42.28 7.35
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distributions that were characterized by significantly reduced
standard deviations; Fig. 7be1, be2, be3 & Table 6b. In particular,
when using 5000 parameter samples, we found that the un-
certainties of settling velocity and critical deposition stress were
reduced and predominantly became right-skewed. The same
pattern held true for the critical erosion stress which became left-
skewed, i.e., greater likelihood was assigned to the upper end of the
values ascribed to that parameter. When inspecting the posterior
predictive distributions of the total suspended sediment concen-
trations, we can infer that the model updating with observed data
from low flow conditions improved the performance and reduced
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Fig. 6. Prior and posterior predictive distributions of total suspended sediment concentratio
Period 2 were used for updating the model.
the corresponding uncertainties (Fig. 7b & Table 5). Importantly,
not only did the uncertainties of the total suspended sediment
concentrations in Period 2 decrease, but also those in Period 1. In
other words, the uncertainties of the total suspended sediment
concentrations for the entire period were significantly reduced. On
the other hand, when observed data solely from high-flow condi-
tions were used for calculating the likelihood function, the
parameter posteriors and the uncertainty bands of the predictive
distributions of the total suspended sediment concentrations
remained practically unaltered (Figs. S4eS5). Therefore, one may
conclude that the observed data derived during the low rainfall
(a-2) TS-2 (Geumbon H)
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Fig. 7. Prior and posterior parameter distributions according to the iteration numbers (ae1)-(ae3) when the entire dataset or (be1)-(be3) data collected only during the Period 2
were used for updating the model. (1) settling velocity, (2) critical deposition stress, and (3) critical erosion stress.
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Table 6a
(a): Average and standard deviation values obtained from the posterior parameter distributions when total suspended sediment concentration collected during the entire
study period were used for updating the model.

Iteration Settling velocity (m/s) Critical deposition stress (N/m2) Critical erosion stress (N/m2)

Avg. (�10�4) Std. (�10�4) Avg. (�10�1) Std. (�10�1) Avg. (�10�1) Std. (�10�1)

20 8.05 5.73 5.29 3.28 5.38 2.30
100 7.73 5.60 4.92 3.17 5.23 2.29
500 7.74 5.74 4.88 3.15 5.08 2.33
1000 7.75 5.74 4.92 3.17 5.02 2.32
5000 7.72 5.73 4.90 3.19 5.02 2.33

Table 6b
(b): Average and standard deviation values obtained from the posterior parameter distributions when total suspended sediment concentration collected during the low-flow
season (Period 2) were used for updating the model.

Iteration Settling velocity (m/s) Critical deposition stress (N/m2) Critical erosion stress (N/m2)

Avg. (�10�4) Std. (�10�4) Avg. (�10�1) Std. (�10�1) Avg. (�10�1) Std. (�10�1)

20 5.96 4.25 1.08 0.48 7.64 1.16
100 4.94 4.95 1.62 1.21 8.27 1.09
500 1.17 1.68 3.62 2.45 7.68 0.68
1000 0.99 1.08 2.37 2.85 8.03 0.64
5000 1.18 0.91 1.28 1.59 8.37 0.57
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period with high amount of cohesive sediments possess high in-
formation value, resulting in a substantial uncertainty reduction in
the cohesive sediment parameters relative to the entire data set.
Thus, greater data sample sizes do not necessarily entail greater
information content for model updating, as there are many factors
that determine their suitability to effectively guide model
parameterization.

The probability distributions of the cohesive sediment param-
eters and the metal partitioning coefficient between suspended
sediment and water columnwere jointly updated using total metal
concentrations measured at location M (Fig. 1). It is interesting to
note that the parameter posteriors remained practically unaltered
(see critical erosion stress in Fig. 8a & and rest parameters in
Fig. S6). When the entire observed data set was used to update the
model, the prior and posterior uncertainty bands captured the
measured total Cd concentrations from 2011, whereas the observed
data from 2012 differed significantly from the corresponding pre-
dictions (Fig. 8b). Regarding the latter finding, we hypothesize that
this discrepancy may stem from the model structural error, e.g.,
missing key adsorption processes or misspecification of boundary
conditions, which cannot be quantified by the present parameter
uncertainty analysis exercise (Refsgaard et al., 2006; Matott et al.,
2009; Ramin and Arhonditsis, 2013). For example, the effects of
algal blooms and the spatial and temporal variation of organic
sediment content are not explicitly considered by the present
model. In Korea, there are many reports about the occurrence of
algal blooms, especially when the water temperature rises, which
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Fig. 8. (a) Posterior distribution of the critical erosion stress and (b) prior and posterior pred
for updating the model.
induce biosorption of heavy metals from aqueous solutions
(AbdeleAty et al., 2013; Tekile et al., 2015). In addition, the content
of organic matter can significantly modulate the degree of metal
adsorption onto sediments (Lee et al., 1996). For illustrative pur-
poses, we also updated the model using total metal concentration
data solely from 2011. The shape of the derived posterior for the
critical erosion stress was significantly changed and clearly left-
skewed (Fig. 9a & Fig. S7). The average value of the posterior crit-
ical erosion stress was 0.726 N/m2, which was similar to the value
obtained when total suspended sediment concentrations from low
flow season were used to update the model. By contrast, the other
parameters were not updated in the same fashion. Additionally, the
uncertainty band of the posterior predictive distribution, when
observed data from 2011 were used, was smaller than the error
estimates from the entire data set (Fig. 9b & Table 7).

As a final exercise, we updated the model using dissolved metal
concentrations from 2011 to 2012, while the parameter vector
comprised the cohesive sediment parameters and Cd partitioning
coefficient between suspended sediment andwater column, and Cd
partitioning coefficient between sediment bed and water column.
The posterior of the suspended sediment-water partitioning coef-
ficient, the most sensitive parameter based on the Morris screening
method, was dramatically changed (Fig. 10a). The average posterior
valuewas 0.0827 L/mg, whichwas a little higher than the calibrated
value. However, except from the right-skewed posterior for critical
erosion stress, the rest parameters were not updated and remained
fairly flat (Fig. S8). The predicted average dissolved metal
(b)
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concentrations were in better agreement with the observed data
relative to the original calibration (Fig. 10b), although the average
and maximum uncertainty bands slightly increased (Table 7).
Relative to the calibration that revolved around the total suspended
sediment concentrations though, neither the quantity (number of
observations) nor the value of information characterizing the metal
concentrations allowed gaining insights into the cohesive sediment
parameter values. The total suspended sediment dataset comprised
91 measurements at two monitoring points (TS-1, TS-2 in Fig. 1),
while the Cd concentrations were only measured 6 times at one
monitoring point (M in Fig. 1) within a 2-yr period. The metal
partitioning coefficient between sediment bed and water column,
which was the most influential parameter to the predicted total
metal concentration based on the Morris screening method, was
not updated by the observed data. In addition, the settling velocity
and critical deposition stress were not updated by the observed
metal concentration, suggesting that the available data likely do not
contain all of the information needed to constrain these parameters
(Kanso et al., 2005).
4. Conclusions-future perspectives

Environmental models are subject to substantial uncertainty
contributed from a variety of sources, including model structural
error, input and calibration data uncertainty, and model parameter
uncertainty. Uncertainty analysis refers to evaluating all these
sources of potential bias during the application of a model in order
to ensure that any conclusions drawn are robust. Sensitivity anal-
ysis is typically considered as the first step to accomplish this
assessment. Nonetheless, despite the compelling reasons to
becoming an integral part of the model development process, a
thorough sensitivity analysis entails an excessively high number of
model runs that was historically deemed an impediment for its
broader application (Arhonditsis and Brett, 2004; Sun et al., 2012).
The advent of fast computing though coupled with the develop-
ment of sophisticated sensitivity analysis techniques has spawned a
Table 7
Average and maximum uncertainty bands of total and dissolved metal concentra-
tions of the prior and posterior predictive distributions when the entire dataset or
data collected only in 2011 were used for updating the model.

Total metal concentration Dissolved metal
concentration

Prior Posterior Prior Posterior

Total 2011 Total

Avg. band width 0.0083 0.0049 0.0012 0.0247 0.0276
Max. band width 0.0257 0.0185 0.0116 0.0661 0.0739
number of peer-reviewed studies that aimed to shed light on
different facets of environmental models (Saltelli, 2008). Parameter
identification has been a focal point in environmental modeling
research in an effort to optimize complexity and achieve parsi-
monious model constructs (Freni et al., 2011). In this study, we
focused on a critical component of micropollutant modeling con-
cerning the parameterization of the processes that modulate the
exchange of contaminants between sediment and water column.
We first used an OAT method aiming to investigate the response of
output variables to fractional changes of input parameters (Saltelli,
2008), followed by the Morris screening method that relies on a
local sensitivity measure, the elementary effect, but the final
evaluation is obtained by averaging these elementary effects
computed at different points to evenly spaced values of each
parameter over its entire range (Norton, 2009).

Notwithstanding their conceptual differences, the two methods
(almost) consistently identified the critical erosion stress as the
most influential parameter for the predictions of total suspended
sediment concentrations. In case of total Cd concentration, the
critical erosion stress was similarly the most sensitive parameter
with the OAT method, reflecting the covariance between sus-
pended cohesive sediments and contaminants adsorbed on their
surface. However, the capacity of Morris screening method to
accommodate patterns of non-linearity or interactive effects
among parameters offered additional insights, highlighting the
critical role of metal partitioning coefficient between sediment bed
and water column. A novel “take-home-message” from our work is
the importance of delineating periods of distinct flow dynamics
that may profoundly shape contaminant fate and transport, such as
the relative distribution of the total suspended sediment pool be-
tween cohesive and non-cohesive material. According to this clas-
sification, the variability associated with the settling velocity
during high flow conditions can be another influential factor in
regard to the predictions of total suspended particles. In a similar
manner, the assumptions made about the metal partitioning coef-
ficient between suspended sediments and water column are
strongly related to model outputs for dissolved Cd concentration.
By contrast, when focusing on river flow regime associatedwith dry
conditions, our analysis gave greater weight to the sediment bed-
water partitioning coefficient for effectively predicting the
amount of dissolved-phase metals.

Quantifying the uncertainty in the multidimensional parameter
space of environmental models involves two critical decisions: i)
selection of the sampling scheme for generating parameter input
vectors, which are then evaluated with regards to the model per-
formance, and ii) selection of the model error description, i.e.,
which likelihood measure should we use and why? The former
decision addresses the sampling efficiency of the approach
(Random sampling, Latin hypercube, Markov Chain Monte Carlo),
while the latter one entails conceptual dilemmas involving the
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selection of generalized (e.g., Root Mean Square Error, Reliability
Index, U-uncertainty) or purely probabilistic (e.g., Normal,
Lognormal or Poisson error) likelihood functions that can signifi-
cantly alter the results (Qian et al., 2003; Arhonditsis et al.,
2008a,b). In this study, we opted for a formal (Gaussian) likeli-
hood coupled with a Latin hypercube sampling scheme, which
allowed drawing samples uniformly from plausible parameter
ranges. When using data collected from the low flow season, our
Bayesian Monte Carlo approach led to parameter posteriors and
predictive distributions that were characterized by significantly
reduced standard deviations. The value of information of sus-
pended sediment data dominated by cohesive material was clearly
sufficient to effectively delineate the posteriors of the cohesive
sediment parameters, such as settling velocity, critical deposition
stress, and critical erosion stress. Given also the low number (3) of
parameters considered in this exercise, it took approximately
1000e5000 runs to reach a satisfactory degree of updating.
Following the same reasoning though, both the quantity (sampling
frequency) and value of information of total and dissolved Cd
concentrations were not adequate to constrain a calibration vector
that was still fairly small (4e5 parameters). Given that micro-
pollutant models typically contain a significantly higher number of
parameters, the latter result casts doubt on the ability of the pre-
sent uncertainty analysis framework to elucidate their uncertainty
patterns.

The efficiency of the Bayesian Monte Carlo strategy was chal-
lenged in the modeling literature with respect to the parameter
priors, sampling schemes, and model error specifications typically
used (Qian et al., 2003). One of the main criticisms is that the vast
majority of Bayesian Monte Carlo applications in the literature
resembled likelihood-based inference than true Bayesian process,
as they used uniform priors with wide ranges assigned to each
unknown parameter. Counter to what Bayes' theorem stipulates
though, this practice treats the posterior parameter distribution as
proportional to the likelihood function (and not to the product of
the prior distribution and the likelihood function). The evaluation
of the posterior is merely done by substituting the prior selected
parameter samples into the likelihood function. Further, this
strategy can misrepresent regions of high model likelihood; espe-
cially, when the joint prior parameter distribution is very wide or
the parameters are highly correlated and thus the volume of the
important region of the posterior parameter space can be small
compared to the volume of the sampled space (Qian et al., 2003;
Arhonditsis et al., 2008a). One way to maximize the efficiency of
our sampling strategy is to formulate informative prior distribu-
tions from existing scientific knowledge, past experience, and re-
sults from preliminary exploratory analysis. With this
configuration, we may be able to focus on subregions of the
parameter space, where there is evidence for higher likelihood of
realistic reproduction of the observed contaminant spatiotemporal
trends. Even more effective for future applications could be the
implementation of Markov chain Monte Carlo sampling schemes;
an adaptive method specifically designed to sample directly from
the posterior distribution and to converge to the most probable
region (Gelman et al., 2013). Generally, the Markov chain Monte
Carlo procedure provides a convenient means to efficiently sample
the parameter space of varying degree of complexity models, while
treating stochastically other inputs, e.g., initial conditions, bound-
ary conditions (Gilks et al., 1998). Another problemwith the typical
Bayesian Monte Carlo applications is the specification of the model
error term s2. In this study, we did not adopt the common strategy
to assign an a priori value, based on the statistical analysis of field
sampling data and/or laboratory measurement errors (Dilks et al.,
1992). Because of the profound bias that could be introduced
with this strategy (Qian et al., 2003), we opted for the estimation of
the standard deviation of the series of residuals between our ob-
servations and the corresponding model predictions, assuming the
errors are homoscedastic. The latter assumption though may not
hold true, and thus the best way to improve the present uncertainty
analysis framework is to consider the error term as an additional
parameter to be estimated during the Bayesian inference process
(Arhonditsis et al., 2007).

The tendency to invoke complexity as ameans for improving the
learning capacity of our models is primarily prompted by the need
to address environmental management problems that often
involve complex policy decisions. As the articulation level of
micropollutant models continues to grow, an emerging imperative
is the development of novel uncertainty analysis techniques to
rigorously assess the error pertaining to model structure and input
parameters (Beven, 2006). In this context, we believe that the
Bayesian inference has several benefits, such as the expression of
model outputs as probability distributions, the rigorous assessment
of the expected consequences of different management actions, the
optimization of the sampling design of monitoring programs, and
the alignment with the policy practice of adaptive management,
that can be particularly useful for stakeholders and policy makers
when making decisions for sustainable environmental manage-
ment (Arhonditsis et al., 2007).
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Elçi, Ş., Work, P., Hayter, E., 2007. Influence of stratification and shoreline erosion on
reservoir sedimentation patterns. J. Hydraul. Eng. 133, 255e266.

Franceschini, S., Tsai, C.W., 2010. Assessment of uncertainty sources in water quality
modeling in the Niagara river. Adv. Water Resour. 33, 493e503.

Freni, G., Mannina, G., Viviani, G., 2009. Urban runoff modelling uncertainty:
comparison among Bayesian and pseudo-Bayesian methods. Environ. Modell.
Softw. 24, 1100e1111.

Freni, G., Mannina, G., 2010. Uncertainty in water quality modelling: the applica-
bility of variance decomposition approach. J. Hydrol. 394, 324e333.

Freni, G., Mannina, G., Viviani, G., 2011. Assessment of the integrated urban water
quality model complexity through identifiability analysis. Water Res. 45, 37e50.

Gamerith, V., Neumann, M.B., Muschalla, D., 2013. Applying global sensitivity
analysis to the modelling of flow and water quality in sewers. Water Res. 47,
4600e4611.

Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B., 2013. Bayesian Data Analysis, third
ed. Chapman & Hall/CRC Press.

Gilks, W.R., Roberts, G.O., Sahu, S.K., 1998. Adaptive Markov chain Monte Carlo
through regeneration. J. Amer. Stat. Assoc. 93, 1045e1054.

Gunsan Regional Oceans and Fisheries Administration, 2010. A Report of Hydro-
logical Variation on Kuem River Estuary. Korea Ministry of Land, Infrastructure
and Transport, Korea.

Hamrick, J.M., 1992. A Three-dimensional Environmental Fluid Dynamics Computer
Code: Theoretical and Computational Aspects. The College of William and Mary,
Virginia Institute of Marine Science. Special Report 317, 63.

Hamrick, J.M., Wu, T.S., 1997. Computational design and optimization of the EFDC/
HEM3D surface water hydrodynamic and eutrophication models. In: Delich, G.,
Wheeler, M.F. (Eds.), Next Generation Environmental Models and Computa-
tional Methods. Society of Industrial and Applied Mathematics, Philadelphia,
pp. 143e156.

Hayter, E.J., Mehta, A.J., 1983. Modeling Fine Sediment Transport in Estuaries. Report
EPA-600/3-83-045. U.S. Environmental Protection Agency, Athens, GA.

Hong, S.H., Yim, U.H., Shim, W.J., Oh, J.R., Lee, I.S., 2003. Horizontal and vertical
distribution of PCBs and chlorinated pesticides in sediments from Masan Bay,
Korea. Mar. Pollut. Bull. 46, 244e253.

Hwang, K.N., Ryu, H.R., Chun, M.C., 2006. A study on settling properties of fine-
cohesive sediments in Kuem estuary. J. Korean Soc. Coast. Ocean Eng. 18,
251e261.

Hwang, K.N., Yim, S.H., Ryu, H.R., 2008. Analyses on local-seasonal variations of
erosional properties of cohesive sediments in Kuem estuary. J. Korean Soc. Civ.
Eng. 28, 125e135.

Ji, Z., 2008. Hydrodynamics and Water Quality: Modeling Rivers, Lakes, and Estu-
aries, first ed. Wiley, New York.

Ji, Z., Hamrick, J., Pagenkopf, J., 2002. Sediment and metals modeling in shallow
river. J. Environ. Eng. 128, 105e119.

Kanso, A., Chebbo, G., Tassin, B., 2005. Bayesian analysis for erosion modelling of
sediments in combined sewer systems. Water Sci. Technol. 52, 135e142.

Kim, T.I., 2002. Hydrodynamics and Sedimentation Processes in the Kuem River
Estuary, West Coast of Korea. Ph.D. Thesis. Sungkyunkwan Univ., p. 204
KME, 2010. The Prediction of Riverbed Change, Sediments and Dredging Period

after Building Hydraulic Structures in the Geum River. Korea Ministry of Envi-
ronment, Korea.

KME, 2011a. Monitoring of Potentially Hazardous Compounds in the 4 River Basins
(Geum River Basin) and Risk Assessment. Korea Ministry of Environment,
Korea.

KME, 2011b. The Investigation of Sedimentary Environment Near Diversion Dam for
Developing Management Practice and Protocols. Korea Ministry of Environ-
ment, Korea.

KME, 2014. Water Information System. Water quality database. http://water.nier.go.
kr/main/mainContent.do.

Krysanova, V., Hattermann, F., Wechsung, F., 2007. Implications of complexity and
uncertainty for integrated modelling and impact assessment in river basins.
Environ. Modell. Softw. 22, 701e709.

K-Water, 2014. The Geum River Flood Control Office. Hydrological database. http://
www.geumriver.go.kr/html/index.jsp.

Lee, S., Allen, H.E., Huang, C.P., Sparks, D.L., Sanders, P.F., Peijnenburg, W.J.G.M., 1996.
Predicting soil-water partition coefficients for cadmium. Environ. Sci. Technol.
30, 3418e3424.

Liu, W., Chen, W., Chang, Y., 2012. Modeling the transport and distribution of lead in
tidal Keelung river estuary. Environ. Earth Sci. 65, 39e47.

Maa, J., Kwon, J., Hwang, K., Ha, H., 2008. Critical bed-shear stress for cohesive
sediment deposition under steady flows. J. Hydraul. Eng. 134, 1767e1771.

Marsili-Libelli, S., Giusti, E., 2008. Water quality modelling for small river basins.
Environ. Modell. Softw. 23, 451e463.

Matthies, M., Berding, V., Beyer, A., 2004. Probabilistic uncertainty analysis of the
European Union System for the evaluation of substances multimedia regional
distribution model. Environ. Toxicol. Chem. 23, 2494e2502.

Matott, L.S., Babendreier, J.E., Purucker, S.T., 2009. Evaluating uncertainty in inte-
grated environmental models: a review of concepts and tools. Water Resour.
Res. 45, W06421.

Mehta, A.J., 1986. Characterization of Cohesive Sediment Properties and Transport
Processes in Estuaries, in Anonymous Estuarine Cohesive Sediment Dynamics.
Springer-Verlag, pp. 290e325.

Moldovan, Z., 2006. Occurrences of pharmaceutical and personal care products as
micropollutants in rivers from Romania. Chemosphere 64, 1808e1817.

Morris, M.D., 1991. Factorial sampling plans for preliminary computational exper-
iments. Technometrics 33, 161e174.

National Research Council, 2001. Assessing the TMDL Approach to Water Quality
Management. National Academy Press, Washington, DC.

Neumann, M.B., 2012. Comparison of sensitivity analysis methods for pollutant
degradation modelling: a case study from drinking water treatment. Sci. Total
Environ. 433, 530e537.

Norton, J.P., 2009. Selection of Morris trajectories for initial sensitivity analysis. In:
15th IFAC Symposium on System Identification (SYSID 2009). St. Malo, France.

Ongley, E.D., Krishnappan, B.G., Droppo, I.G., Rao, S.S., Maguire, R.J., 1992. In:
Hart, B.T., Sly, P.G. (Eds.), Cohesive Sediment Transport: Emerging Issues for
Toxic Chemical Management. Springer Netherlands, pp. 177e187.

Onishi, Y., Graber, H.C., Trent, D.S., 1993. Preliminary Modeling of Wave-enhanced
Sediment and Contaminant Transport in New Bedford Harbor, in Anonymous
Nearshore and Estuarine Cohesive Sediment Transport. American Geophysical
Union, pp. 541e557.

Qian, S.S., Stow, C.A., Borsuk, M.E., 2003. On Monte Carlo methods for Bayesian
inference. Ecol. Model 159, 269e277.

Ramin, M., Arhonditsis, G.B., 2013. Bayesian calibration of mathematical models:
optimization of model structure and examination of the role of process error
covariance. Ecol. Inf. 18, 107e116.

Refsgaard, J.C., Nilsson, B., Brown, J., Klauer, B., Moore, R., Bech, T., Vurro, M.,
Blind, M., Castilla, G., Tsanis, I., Biza, P., 2005. Harmonised techniques and
representative river basin data for assessment and use of uncertainty infor-
mation in integrated water management (HarmoniRiB). Environ. Sci. Policy 8,
267e277.

Refsgaard, J.C., van der Sluijs, J.P., Brown, J., van der Keur, P., 2006. A framework for
dealing with uncertainty due to model structure error. Adv. Water Resour. 29,
1586e1597.

Reichert, P., 1997. On the necessity of using imprecise probabilities for modelling
environental systems. Water Sci. Tech. 36, 149e156.

Ruark, M., Niemann, J., Greimann, B., Arabi, M., 2011. Method for assessing impacts
of parameter uncertainty in sediment transport modeling applications.
J. Hydraul. Eng. 137, 623e636.

Ryu, H.R., Lee, H.S., Hwang, K.N., 2006. The quantitative estimation of erosion rate
parameters for cohesive sediments from Keum estuary. J. Korean Soc. Coast.
Ocean Eng. 18, 283e293.

Saltelli, A., 2008. Global Sensitivity Analysis: the Primer. John Wiley & Sons, Ltd,
Chichester.

Saltelli, A., Annoni, P., 2010. How to avoid a perfunctory sensitivity analysis. Environ.
Model. Softw. 25, 1508e1517.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M.,
Tarantola, S., 2007. Introduction to Sensitivity Analysis, in Anonymous Global
Sensitivity Analysis. The Primer. John Wiley & Sons, Ltd, pp. 1e51.

Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M., 2002. The Screening Exercise, in
Anonymous Sensitivity Analysis in Practice. John Wiley & Sons, Ltd, pp. 91e108.

Sauve, S., Hendershot, W., Allen, H.E., 2000. Solid-solution partitioning of metals in
contaminated soils: dependence on pH, total metal burden, and organic matter.

http://dx.doi.org/10.1016/j.envsoft.2016.02.026
http://dx.doi.org/10.1016/j.envsoft.2016.02.026
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref1
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref1
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref1
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref1
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref2
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref2
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref2
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref3
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref3
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref3
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref4
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref4
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref4
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref4
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref5
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref5
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref5
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref6
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref6
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref6
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref6
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref7
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref7
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref8
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref8
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref8
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref9
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref9
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref9
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref10
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref10
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref10
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref11
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref11
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref11
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref12
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref12
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref12
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref13
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref13
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref13
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref13
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref14
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref14
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref14
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref15
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref15
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref15
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref15
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref16
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref16
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref16
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref17
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref17
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref17
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref18
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref18
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref18
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref18
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref19
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref19
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref19
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref20
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref20
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref20
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref21
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref21
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref21
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref22
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref22
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref22
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref23
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref23
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref23
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref23
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref23
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref23
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref24
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref24
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref25
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref25
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref25
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref25
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref26
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref26
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref26
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref26
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref27
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref27
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref27
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref27
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref28
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref28
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref29
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref29
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref29
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref30
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref30
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref30
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref31
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref31
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref32
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref32
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref32
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref33
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref33
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref33
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref34
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref34
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref34
http://water.nier.go.kr/main/mainContent.do
http://water.nier.go.kr/main/mainContent.do
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref36
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref36
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref36
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref36
http://www.geumriver.go.kr/html/index.jsp
http://www.geumriver.go.kr/html/index.jsp
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref38
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref38
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref38
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref38
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref39
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref39
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref39
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref40
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref40
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref40
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref41
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref41
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref41
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref42
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref42
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref42
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref42
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref43
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref43
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref43
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref44
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref44
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref44
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref44
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref45
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref45
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref45
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref46
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref46
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref46
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref47
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref47
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref48
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref48
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref48
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref48
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref49
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref49
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref50
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref50
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref50
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref50
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref51
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref51
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref51
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref51
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref51
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref52
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref52
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref52
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref53
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref53
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref53
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref53
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref54
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref54
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref54
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref54
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref54
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref54
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref55
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref55
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref55
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref55
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref56
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref56
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref56
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref57
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref57
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref57
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref57
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref58
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref58
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref58
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref58
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref59
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref59
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref59
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref60
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref60
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref60
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref61
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref61
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref61
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref61
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref61
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref62
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref62
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref62
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref62
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref63
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref63


E. Cho et al. / Environmental Modelling & Software 80 (2016) 159e174174
Environ. Sci. Technol. 34, 1125e1131.
Shen, Z., Chen, L., Chen, T., 2012. Analysis of parameter uncertainty in hydrological

and sediment modeling using GLUE method: a case study of SWAT model
applied to three gorges reservoir region, China. Hydrol. Earth Syst. Sci. 16,
121e132.

Shen, Z., Hong, Q., Yu, H., Niu, J., 2010. Parameter uncertainty analysis of non-point
source pollution from different land use types. Sci. Total Environ. 408,
1971e1978.

Sohn, M., Small, M., Pantazidou, M., 2000. Reducing uncertainty in site character-
ization using Bayes Monte Carlo methods. J. Environ. Eng. 126, 893e902.

Sommerfreund, J., Arhonditsis, G.B., Diamond, M.L., Frignani, M., Capodaglio, G.,
Gerino, M., Bellucci, L., Giuliani, S., Mugnai, C., 2010. Examination of the un-
certainty in contaminant fate and transport modeling: a case study in the
Venice lagoon. Ecotoxicol. Environ. Saf. 73, 231e239.

Sun, X.Y., Newham, L.T.H., Croke, B.F.W., Norton, J.P., 2012. Three complementary
methods for sensitivity analysis of a water quality model. Environ. Modell.
Softw. 37, 19e29.

Tekile, A., Kim, I., Kim, J., 2015. Mini-review on river eutrophication and bottom
improvement techniques, with special emphasis on the Nakdong river.
J. Environ. Sci. 30, 113e121.

Tetra Tech, Inc, 2007. The Environmental Fluid Dynamics Code Theory and
Computation. In: Sediment and Contaminant Transport and Fate, vol. 2.

Torres, A., Bertrand-Krajewski, J.L., 2008. Evaluation of uncertainties in settling
velocities of particles in urban stormwater runoff. Water Sci. Technol. 57,
1389e1396.

Trento, A., Alvarez, A., 2011. A numerical model for the transport of chromium and
fine sediments. Environ. Model. Assess. 16, 551e564.

Vezzaro, L., Mikkelsen, P.S., 2012. Application of global sensitivity analysis and
uncertainty quantification in dynamic modelling of micropollutants in storm-
water runoff. Environ. Modell. Softw. 27e28, 40e51.

Villaret, C., Paulic, M., 1986. Experiments on the Erosion of Deposited and Placed
Cohesive Sediments in an Annular Flume and a Rocking Flume. Coastal and
Oceanographic Dept., University of Florida. Report UFL/COEL-86/007, Gaines-
ville, FL.

Wang, C., Shen, C., Wang, P., Qian, J., Hou, J., Liu, J., 2013. Modeling of sediment and
heavy metal transport in Taihu Lake, China. J. Hydrodyn. Ser. B 25, 379e387.

Yang, C., Lung, W., Kuo, J., Lai, J., Wang, Y., Hsu, C., 2012. Using an integrated model
to track the fate and transport of suspended solids and heavy metals in the tidal
wetlands. Int. J. Sediment. Res. 27, 201e212.

Zaramella, M., Marion, A., Packman, A.I., 2006. Applicability of the transient storage
model to the hyporheic exchange of metals. J. Contam. Hydrol. 84, 21e35.

Ziegler, C., Nisbet, B., 1994. Fine-grained sediment transport in Pawtuxet river,
Rhode Island. J. Hydraul. Eng. 120, 561e576.

Ziegler, C., Nisbet, B., 1995. Long-term simulation of fine-grained sediment trans-
port in large reservoir. J. Hydraul. Eng. 121, 773e781.

http://refhub.elsevier.com/S1364-8152(16)30046-9/sref63
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref63
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref64
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref64
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref64
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref64
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref64
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref65
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref65
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref65
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref65
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref66
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref66
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref66
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref67
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref67
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref67
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref67
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref67
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref68
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref68
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref68
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref68
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref69
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref69
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref69
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref69
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref70
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref70
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref71
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref71
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref71
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref71
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref72
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref72
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref72
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref73
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref73
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref73
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref73
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref73
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref74
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref74
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref74
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref74
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref75
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref75
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref75
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref76
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref76
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref76
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref76
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref77
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref77
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref77
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref78
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref78
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref78
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref79
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref79
http://refhub.elsevier.com/S1364-8152(16)30046-9/sref79


 

 

MODELING METAL-SEDIMENT INTERACTION PROCESSES: 

PARAMETER SENSITIVITY ASSESSMENT AND UNCERTAINTY 

ANALYSIS 

 

SUPPORTING INFORMATION 

 

Eunju Choa, George B. Arhonditsisb, Jeehyeong Khima*, Sewoong Chungc*, 

Tae-Young Heod 

 

aSchool of Civil, Environmental and Architectural Engineering, Korea University, Seoul 136-

701, Korea 

bEcological Modeling Laboratory, Department of Physical & Environmental Sciences, 

University of Toronto, Toronto, Ontario M1C 1A4, Canada 

cDepartment of Environmental Engineering, Chungbuk National University, Cheongju 362-

763, Korea 

dDepartment of Information & Statistics, Chungbuk National University, Cheongju 362-763, 

Korea 

 

 

 

*Corresponding authors: 

1. Jeehyeong Khim 

School of Civil, Environmental and Architectural Engineering, Korea University, Anam-dong, 

Seongbuk-gu, Seoul 136-701, Korea. Tel.: +82 2 3290 3318; fax: +82 2 928 7656; e-mail 

address: hyeong@korea.ac.kr (J. Khim) 

2. Sewoong Chung 

Department of Environmental Engineering, Chungbuk National University, Chungdae-ro 1, 

Seowon-gu, Cheongju, Chungbuk 362-763, Korea. Tel.: +82 43 261 3370; fax: +82 43 272 

3370; e-mail address: schung@chungbuk.ac.kr (S.W. Chung) 

mailto:hyeong@korea.ac.kr
mailto:schung@chungbuk.ac.kr


INITIAL/ BOUNDARY CONDITIONS AND PARAMETER VALUES 

Initial/boundary conditions and parameter values were obtained from reports published by the 

Korean Ministry of Environment (KME). Daily water temperatures were calculated by 

regression equations that captured the relationship between water temperatures at 8-day 

interval with flow rates and air temperatures. The regression equations of water temperature 

at each stream are provided in Table S1, while the comparison between measured and 

modeled water temperatures is shown in Fig. S3. Total suspended sediment concentrations 

were monitored usually once a week, and therefore daily values were not available but were 

calculated by a similar regression equation. Measured and modeled total suspended sediment 

concentrations are compared in Fig. S3. Cohesive and non-cohesive sediment concentrations 

were calculated based on a literature-based ratio obtained from local reports. Two sediment 

bed layers were simulated, and the initial ratio of cohesive and non-cohesive sediment in 

sediment bed was around 95% and 5% in 2011 and 40% and 60% in 2012, respectively. 

Porosity of sediment bed and sediment specific gravity were set equal to 0.4 and 2.65, 

respectively. Metal concentrations were monitored three times per year as shown in Table S2. 

The diffusion coefficient of metals between sediment bed and water interface was set equal to 

5.7 x 10-10 m2/s. The assumption with respect to the metal adsorption was that metals are 

adsorbed solely on the surface of cohesive sediments.  

  



Table S1: Regression equations of water temperature (Tw, oC) as a function of air 

temperature (Ta, 
oC) and flow rate (Q, m3/s). 

 Equation 

Main stream Tw = 6.333+0.657Ta-0.0072Q (r2 = 0.815) 

Gap stream Tw = 8.366+0.692Ta -0.0065Q (r2 = 0.926) 

Miho stream Tw = 4.929+0.812Ta -0.0071Q (r2 = 0.931) 

 

 

Table S2: Measured total Cd concentrations (μg/L) in Geum River. 

 2011 2012 

 
Aug.12-14 Oct.14-18 Dec.10-12 Aug.13-16 Oct.12-18 Dec.11.02 

Main stream 0.014 0.009 0.011 0.107 0 0.15 

Gap stream 0.017 0.021 0.006 0.076 0.007 0.026 

Miho stream 0.013 0.042 0.016 0.091 0.02 0.024 

 

 

 

 

  



 

 

 

Fig. S1: Boundary conditions for hydrodynamics. The main stream flows from Daechung 

Regulation Dam to Maeogu that is fed by two tributaries, Gap stream, and Miho stream. 
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Fig. S2: Meteorological data during the simulation period in 2011 and 2012. (a) atmospheric 

pressure (mb), (b) air temperature (℃), (c) humidity (%/100), (d) solar radiation (J/s/m2), and 

(e) cloud cover (-).  
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(a) Main stream  

  

(b) Gap stream   

  

(c) Miho stream   

Fig. S3. Comparison of measured and simulated water temperatures and suspended sediment 

concentrations at each stream. 
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Table S3: Range of model parameters for OAT method with reference (calibrated) value (red 

zone) and for Morris screening method (blue zone).  

   Morris screening method  

  Min. ------------------------------------------- Max. 

   OAT method  

Input parameter Unit  -50% 

Reference 

(Calibrated) 

value 

+50%  

Settling velocity (w𝑠) m/s 9.0 x 10-6 1.1 x 10-4 2.2 x 10-4 3.3 x 10-4 2.0 x 10-3 

Critical deposition stress (τ𝑐𝑑) N/m2 2.0 x 10-2 1.0 x 10-1 2.0 x 10-1 3.0 x 10-1 1.1 x 100 

Critical erosion stress (τ𝑐𝑒) N/m2 1.2 x 10-1 2.0 x 10-1 4.0 x 10-1 6.0 x 10-1 9.3 x 10-1 

Cd partitioning coefficient between 

suspended sediment and water (K𝑑,𝑆𝑆) 
L/mg 5.0 x 10-3 3.95 x 10-2 7.9 x 10-2 1.19 x 10-1 1.3 x 100 

Cd partitioning coefficient between 

sediment bed and water (K𝑑,𝑏𝑒𝑑) 
L/mg 3.2 x 10-6 1.0 x 10-3 2.0 x 10-3 3.0 x 10-3 4.2 x 100 

* The main reason for selecting 50% variation for the OAT method was to effectively cover 

the parameter ranges as reported in the literature. However, the range of critical erosion stress 

in the literature was admittedly narrower and therefore the coverage was not similar across all 

the parameter inputs. 

 



Table S4: Formulations for quantifying the discrepancy between model outputs and 

measured concentrations. 

Index Equation 

Absolute Mean Error (AME) 𝐴𝑀𝐸 =
1

𝑁
∑|𝑂𝑛 − 𝑃𝑛|

𝑁

𝑛=1

 

Root Mean Square Error 

(RMSE) 
𝑅𝑀𝑆𝐸 = √

1

𝑁
∑(𝑂𝑛 − 𝑃𝑛)2
𝑁

𝑛=1

 

Relative Error (RE) 𝑅𝐸 =
𝐴𝑀𝐸

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑀𝑒𝑎𝑛
× 100 =

1
𝑁
∑ |𝑂𝑛 − 𝑃𝑛|𝑁
𝑛=1

�̅�
× 100 

Relative Root Mean Square 

Error (RRMSE) 𝑅𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐶ℎ𝑎𝑛𝑔𝑒
× 100 =

√1
𝑁
∑ (𝑂𝑛 − 𝑃𝑛)2𝑁
𝑛=1  

𝑂𝑚𝑎𝑥 − 𝑂𝑚𝑖𝑛
× 100 

 

  



 

(a)                                   (b) 

  

(c) 

Fig. S4: Prior and posterior parameter distributions when data collected only in Period 1 were 

used for updating the model: (a) settling velocity, (b) critical deposition stress, and (c) critical 

erosion stress. 
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Fig. S5: Prior and posterior predictive distributions of the total suspended sediment 

concentrations when data collected only in Period 1 were used for updating the model.  
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Jul Aug Sep Oct Nov Dec Jul Aug Sep Oct Nov DecT
o

ta
l 

su
sp

e
n

d
ed

 

se
d

im
en

t 
c
o

n
ce

n
tr

a
ti

o
n

 (
m

g
/L

)

0

100

200

300

400
Observed

Prior

Posterior (# = 5000)

2011 2012



 

(a)                                   (b) 

 

(c)                                   (d) 

Fig. S6: Prior and posterior parameter distributions when total metal (Cd) concentration data 

were used for updating the model: (a) settling velocity, (b) critical deposition stress, (c) 

critical erosion stress, and (d) sediment bed-water Cd partitioning coefficient. 
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Fig. S7. Prior and posterior distributions of the critical erosion stress using total metal 

concentration data collected only in 2011 for updating the model. 
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(e) 

Fig. S8: Prior and posterior parameter distributions when the entire dissolved metal (Cd) 

concentration data were used for updating the model: (a) settling velocity, (b) critical 

deposition stress, (c) critical erosion stress, (d) suspended sediment-water Cd partitioning 

coefficient, and (e) sediment bed-water Cd partitioning coefficient. 


