
Using statistical methods in R: a how-to guide

Ken Butler
Lecturer (Statistics), UTSC
butler@utsc.utoronto.ca

February 9, 2013

2

Contents

1 Getting R and R Studio 9

1.1 Introduction . 9

1.2 Getting R . 9

1.3 Getting R Studio . 10

2 To begin at the beginning 11

2.1 Baby steps . 11

2.2 Measures of centre . 13

2.3 Measures of spread, part 1 . 14

2.4 Pretty pictures and help files . 16

2.4.1 Histograms . 16

2.4.2 Stemplots and boxplots 21

2.4.3 Spread part 2 . 23

2.5 Reading in real data . 24

2.6 More pretty pictures . 26

2.7 Selecting stuff . 33

2.8 Numerical summaries by subgroup 44

3 Statistical Inference 53

3.1 Introduction . 53

3

4 CONTENTS

3.2 Confidence intervals . 53

3.3 Hypothesis tests . 56

3.3.1 Matched pairs . 59

3.4 About that P-value . 63

3.5 Power and sample size . 65

3.5.1 The power.t.test function 65

3.5.2 Power by simulation . 70

3.6 Assessing normality . 73

3.7 Inference for proportions . 80

3.8 Comparing several proportions 84

3.9 Connecting tests and confidence intervals 91

3.10 The sign test . 95

4 Regression 103

4.1 Introduction . 103

4.2 Simple regression . 104

4.2.1 Correlation . 113

4.2.2 Regression preliminaries 114

4.2.3 Fitting a regression line 114

4.2.4 Quality control . 116

4.3 Multiple regression . 125

4.4 Predictions, prediction intervals and extrapolation 133

4.5 Quality control for multiple regression 136

5 Designing and running experiments 153

5.1 Introduction . 153

5.2 Comparison, control and randomization 153

5.2.1 Comparison . 153

CONTENTS 5

5.2.2 Control . 155

5.2.3 Randomization . 155

5.2.4 Replicate . 162

6 Analysis of standard experimental designs 163

6.1 One-way ANOVA . 163

6.2 Randomized blocks design . 176

6.3 Two-way ANOVA . 182

6.4 2k factorials and fractional factorials 194

6.4.1 2k factorial designs . 194

6.4.2 Fractional factorial designs 199

6.4.3 Blocking and fractional factorials 210

6.5 Other experimental designs . 213

6.5.1 Latin square designs . 213

6.5.2 Split-plot designs . 219

6.6 Analysis of covariance . 225

6.7 Random effects . 233

6.8 Transformations . 251

6.8.1 Transformations for regression 252

6.8.2 Transformations for ANOVA 260

6.8.3 Mathematics of transformations 265

7 Rolling your own 269

7.1 Do you need to roll your own? 269

7.2 The function . 272

7.3 The power of functions . 275

7.4 Lists . 282

6 CONTENTS

8 R Studio, and serious work with it 289

8.1 R Studio . 289

8.2 Projects . 291

9 Literate programming and Sweave 293

9.1 Introduction . 293

9.2 Code chunks . 294

9.3 More code chunk options . 304

9.4 Producing a document . 306

10 Logistic regression 309

10.1 Introduction . 309

10.2 Odds and log-odds . 310

10.3 Example 1: the rats . 311

10.4 Example 2: more rats . 315

10.5 Multiple logistic regression . 319

10.6 Multiple response categories: ordered response 327

10.7 Multiple response categories: unordered response 336

11 Cluster analysis 345

11.1 Introduction . 345

11.2 Hierarchical cluster analysis . 345

11.3 K-means cluster analysis . 359

12 Multi-dimensional scaling 367

12.1 Introduction . 367

12.2 Metric multi-dimensional scaling 367

12.3 Non-metric multidimensional scaling 376

CONTENTS 7

13 Discriminant analysis 381

13.1 Introduction . 381

13.2 Example: two groups . 381

13.3 Example: three groups . 396

13.4 Cross-validation . 401

14 Survival analysis 405

14.1 Introduction . 405

14.2 Example 1: still dancing? . 406

14.3 Example 2: lung cancer . 412

15 Multivariate ANOVA and repeated measures 419

15.1 Multivariate analysis of variance 419

15.2 Repeated measures . 424

16 Principal components 435

17 Factor analysis 437

18 Time series 439

19 Spatial data and kriging 441

8 CONTENTS

Chapter 1

Getting R and R Studio

1.1 Introduction

R is a free, open-source program for doing Statistics. It is what statisticians
use. It looks a bit peculiar at first, but you’ll find that it’s very powerful, and,
with practice, you can harness that power. Because it is open-source, anyone
can work on it, and a lot of people do, including a number of statisticians, who
are taking care that it behaves properly. (Unlike Excel!)

1.2 Getting R

The central website where R lives is r-project.org. There, you can read a
good deal more about what R is, read its (copious) documentation, and so on.
There is a lot of R stuff, and it is stored in various sites around the world called
mirrors, so that you can always download R and R-related stuff from somewhere
near you.

The first thing to do, then, is to choose a mirror. Below the pretty pictures,
click on the “CRAN mirror” link, and on the resulting page, scroll down the list
until you find http://probability.ca/cran/. Click on that, and the top box
invites you to download R, according to whether you run Windows, a Mac or
Linux.

Say you’re running Windows: then select that, select “Install R for the first
time”, then click Download in the top box. R installs the same way as any other
Windows program, and you end up with a big R on your desktop. Double-
clicking that will run R.

9

10 CHAPTER 1. GETTING R AND R STUDIO

See Section 2.1 for what to do next.

1.3 Getting R Studio

The default interface to R doesn’t look very pretty, and though it is perfectly
usable, I recommend R Studio, which is a front end to R that allows you to keep
things together, deal with output and graphs, check out help files and so on.

The RStudio web site is rstudio.org. The main page shows you some screen-
shots, links to a video showing its features, and has a Download link top right.
To download, click on that, then select Download RStudio Desktop, then select
your operating system (Windows, Mac, Linux). The webpage decides which
operating system you have, and offers a recommended choice at the top. If you
are running Windows, this downloads and installs in the usual fashion (actually,
it does for other operating systems too).

Chapter 2

To begin at the beginning

2.1 Baby steps

OK, so now we have R installed and running. When we run R, it gives us
Figure 2.1, or something like it:

Now what? (If you are running RStudio, this will appear in the bottom left
Console window, which is the only one to be concerned with right now.)

That > is called a prompt. R is waiting for you to type something, and when
you do (and hit Enter) it will do what you ask it to, including producing any
output, and then give you another prompt.

What to type? Well, we can enter a small amount of data into a variable x,
using the c function, as in Figure 2.2. The c means “join together the things
in the brackets”. R just accepts that and doesn’t give any output. This means
“everything worked”. (If it didn’t work, you’d get an error message describing
what didn’t work, and you could try again.)

How do we know that R stored those values in the variable x? Type a variable’s
name at the prompt to have a look at it, as in Figure 2.3. All there, in the same
order that we entered them. The [1] means that x is being listed starting at
its first value.

If a variable is longer than would fit on one line, you see something like Fig-
ure 2.4. The first line generates all the values from 4 to 40 inclusive. The first
value on the second line, 29, is the 26th value of y, as evidenced by the [26] at
the beginning of the line.

11

12 CHAPTER 2. TO BEGIN AT THE BEGINNING

R version 2.13.1 (2011-07-08)

Copyright (C) 2011 The R Foundation for Statistical Computing

ISBN 3-900051-07-0

Platform: i486-pc-linux-gnu (32-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or

'help.start()' for an HTML browser interface to help.

Type 'q()' to quit R.

>

Figure 2.1: What you see on starting R

> x=c(8,9,11,7,13,22,6,14,12)

Figure 2.2: Entering a little data

> x

[1] 8 9 11 7 13 22 6 14 12

Figure 2.3: Seeing the contents of a variable

> y=4:40

> y

[1] 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

[26] 29 30 31 32 33 34 35 36 37 38 39 40

Figure 2.4: Displaying a longer variable

2.2. MEASURES OF CENTRE 13

> x

[1] 8 9 11 7 13 22 6 14 12

> summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.

6.00 8.00 11.00 11.33 13.00 22.00

Figure 2.5: Summary of x

> sum(x)

[1] 102

> length(x)

[1] 9

> sum(x)/length(x)

[1] 11.33333

Figure 2.6: Calculations for the mean

2.2 Measures of centre

Let’s remind ourselves of what x was, and produce a summary of it, as shown in
Figure 2.5. What’s in this? Some of the things you can guess. Min. and Max.

are the smallest and largest, and Mean is the mean (duh!).

To convince yourself that the mean is correct, you can do the calculation in 2.6.
The values in x add up to 102, there are 9 of them, and the mean is 102 divided
by 9, or 11.33.

To see what the rest of the output from summary is, let’s sort x into ascending
order, as in Figure 2.7. There are 9 values, so the middle one is the 5th (5 =
(9 + 1)/2), which is 11. That’s the median. Also, the value labelled 1st Qu.

> sort(x)

[1] 6 7 8 9 11 12 13 14 22

Figure 2.7: Sorted data

14 CHAPTER 2. TO BEGIN AT THE BEGINNING

> w=4:9

> w

[1] 4 5 6 7 8 9

> summary(w)

Min. 1st Qu. Median Mean 3rd Qu. Max.

4.00 5.25 6.50 6.50 7.75 9.00

Figure 2.8: Summary of 4:9

is 8, and note that 2 of the data values are less than 8 and 6 are more than
8. 8 is called the first quartile, since a quarter of the values (not counting 8
itself) are below it. Similarly, 13 is the third quartile, since three-quarters of
the data values other than 13 are below it and a quarter above.

I had nine data values, which meant that the median and quartiles were actually
data values (9 is one more than a multiple of 4).

If you have, say, 6 data values, the median and quartiles come out in between
the data values. For example, what are the median and quartiles for 4, 5, 6, 7,
8, 9? See Figure 2.8 for what R thinks. The median here has to be between
6 and 7 to get half the data values on each side. Any value between 6 and 7
would work, but by convention we go halfway between.

If the first quartile were 5, we’d have 1/5 = 20% of the data values below it, not
enough, and if the median were between 5 and 6, we’d have 2/6 = 33% of the
data values below it, which is too many. We can’t hit exactly 25%, so a sensible
answer is between 5 and 6 but closer to 5.

2.3 Measures of spread, part 1

The mean and median are measures of “centre”: what are the data values typ-
ically near? We also want to know about how spread out the data values are:
are they all close to the centre, or are some of them far away?

A measure of spread that goes with the median is called the interquartile
range. It’s just the 3rd quartile minus the 1st one. For x, you get it as shown
in Figure 2.9. For reference, I’ve shown you the summary again there. The
interquartile range is indeed 13− 8 = 5.

Or you can obtain the quartiles individually as in Figure 2.10. Note that the
function you need is called quantile with an “n”. q is a list (in R terms, a

2.3. MEASURES OF SPREAD, PART 1 15

> summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.

6.00 8.00 11.00 11.33 13.00 22.00

> IQR(x)

[1] 5

Figure 2.9: Interquartile range of x

> q=quantile(x)

> q

0% 25% 50% 75% 100%

6 8 11 13 22

> q[2]

25%

8

> q[4]

75%

13

> q[4]-q[2]

75%

5

> q["75%"]-q["25%"]

75%

5

Figure 2.10: Quartiles of x

16 CHAPTER 2. TO BEGIN AT THE BEGINNING

vector) of 5 things. The second one is the 1st quartile, and the fourth one is the
3rd quartile. You can extract the second and fourth things in q as shown. (If
you know about “arrays” in programming, it’s the same idea.)

See those percentages above the values in q in Figure 2.10? These are called
the names attribute of q, and if a vector has a names attribute, you can also
get at the values in it by using the names. You might argue that q["75%"] is
a more transparent way of getting the 3rd quartile than q[4] is. (The names
attribute of q[4] seems to have gotten carried over into the calculation of the
inter-quartile range.)

The output from quantile(x) is sometimes known as the “five-number sum-
mary”: the minimum, 1st quartile, median, 3rd quartile and maximum of the
data values.

2.4 Pretty pictures and help files

2.4.1 Histograms

Enough calculation for a moment. Let’s have a look at some pictures. Pictures
are one of R’s many strengths, and they can be configured in all sorts of ways.
But that’s for later. Let’s start with a histogram, as shown in Figure 2.11. Four
of x’s values are between 5 and 10, four more are between 10 and 15, none are
between 15 and 20, and one is between 20 and 25. The height of the bars, on
the scale labelled Frequency, tells you how many values fall into each interval.

R chose the intervals itself, but it can be changed if you want. To find out how,
and also to find out how R decides whether a value of exactly 10 goes into the
5–10 bar or the 10–15 bar, we can have a look at the Help for hist. This can
be done by typing ?hist (or a question mark followed by the name of any other
function, like ?summary or even ?mean.

Help files have a standard format:

Description of what the function does

Usage: how you make it go

Arguments or options that you can feed into the function. This list is often
rather long, but R has defaults for most things, so you won’t need to
specify most of these.

Details of the computation (something conspicuously missing from Excel’s doc-
umentation!)

2.4. PRETTY PICTURES AND HELP FILES 17

> hist(x)

Histogram of x

x

F
re

qu
en

cy

5 10 15 20 25

0
1

2
3

4

Figure 2.11: Histogram of x

18 CHAPTER 2. TO BEGIN AT THE BEGINNING

> example("sd")

sd> sd(1:2) ^ 2

[1] 0.5

Figure 2.12: Example for sd

Value: what comes back from the function. For hist, this is (predictably) a
picture of a histogram, but it also returns some values, which you can look
at by storing them in a variable.

References to where the ideas for the function came from.

See Also: since you need to specify R commands/functions by name, you can
look at the help for functions you do know by name to get ideas of which
other functions you might look at.

Examples for you to copy and paste.

As for the last thing: the easiest way to run the examples is to type exam-

ple("hist") (where the thing inside the brackets, in quotes, is what you want
the examples for). The help examples for hist have a lot of pictures, but the
example for sd (there is only one) looks like Figure 2.12, showing that the num-
bers 1 and 2 have standard deviation 0.707, so that when you square it you get
0.5.

As I said, Help files are typically long and detailed. If you want to find some-
thing, it’ll probably be in there. Let me just pick out some excerpts from the
help for hist. First, in the Arguments section:

breaks: one of:

- a vector giving the breakpoints between histogram cells,

- a single number giving the number of cells for the

histogram,

- a character string naming an algorithm to compute the

number of cells (see Details),

- a function to compute the number of cells.

In the last three cases the number is a suggestion only.

This is how you specify which intervals to use for the histogram. Going back to
Usage reveals:

2.4. PRETTY PICTURES AND HELP FILES 19

> hist(x,breaks=10)

Histogram of x

x

F
re

qu
en

cy

10 15 20

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Figure 2.13: Histogram with (about) 10 bars

hist(x, breaks = "Sturges",

and a lot of other stuff. This means that the default for breaks is “Sturges”,
which is “a character string naming an algorithm to compute the number of
cells” (which depends on how much data you have).

We could choose to use (about) 10 bars, as in Figure 2.13. We got 8 bars,
including the 3 missing ones, because R “prettifies” the intervals to be 6–8,
8–10, 10–12 etc.

Or we could choose to have breakpoints 4, 8, 12, etc, as in Figure 2.14. Here we
got exactly what we asked for.

To answer the other question we had, about which bar a value exactly on the
boundary goes into, we find:

hist(x, breaks = "Sturges",

freq = NULL, probability = !freq,

20 CHAPTER 2. TO BEGIN AT THE BEGINNING

> hist(x,breaks=c(4,8,12,16,20,24))

Histogram of x

x

F
re

qu
en

cy

5 10 15 20

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Figure 2.14: Histogram with breakpoints 4, 8, 12,. . .

2.4. PRETTY PICTURES AND HELP FILES 21

> x

[1] 8 9 11 7 13 22 6 14 12

> stem(x)

The decimal point is 1 digit(s) to the right of the |

0 | 6789

1 | 1234

1 |

2 | 2

Figure 2.15: Stemplot for x

include.lowest = TRUE, right = TRUE,...

right: logical; if TRUE, the histogram cells are right-closed

(left open) intervals.

Undoing the mathy-speak, this means a value on the boundary by default goes
into the interval for which it is on the right side. (Thus 10 would fall in 6–10,
not 10–14.)

2.4.2 Stemplots and boxplots

There are some other kinds of pictures for variables like x. Two of these are the
stemplot and the boxplot. A stemplot for our variable x looks like Figure 2.15.

The digits to the left of the | are called“stems”. For example, the stems here are
tens. The digits to the right of the | are called“leaves”, and each digit represents
one data point. Thus the largest data value is 22 (2 tens and 2 units), and the
smallest are 6, 7, 8, and 9 (0 tens and respectively 6, 7, 8 and 9 units).

How do we know the stems are 10s? The line about “the decimal point is 1 digit
to the right of the |”. That means the smallest value is not 0.6 (which it would
be if the decimal point were at the |), but 10 times bigger, 6. If the line had
said “the decimal point is 1 digit to the left of the |”, the lowest value would
have been not 0.6 but 0.06.

Note the similarity between a stemplot and a sideways histogram. As it happens,
the first histogram, with bars 4, 4, 0 and 1 high, is exactly this stemplot sideways.
But a stemplot conveys extra information: because the leaves contain values,
we can see from the stemplot that the largest value is 22, not just “between 20
and 25”.

22 CHAPTER 2. TO BEGIN AT THE BEGINNING

> boxplot(x)

●
10

15
20

Figure 2.16: Boxplot of x

Note that in all these plots, there’s a gap between 22 and the other values, as if
to say “22 is noticeably higher than the other values”.

Another graphical display worth knowing about is the boxplot. This depends on
the median and quartiles. For our data, it looks like Figure 2.16.

The plot consists of a “box” and two “whiskers”, one either side of the box. The
line across the box marks the median (11). The box goes up to the 3rd quartile
(13) and down to the 1st quartile (8). There is a procedure that determines
whether a value is an “outlier” or unusual value. The whiskers extend to the
most extreme non-unusual value, and outliers are plotted separately. The most
extreme non-unusual values are 6 at the bottom and 14 at the top. The value
22 is an outlier; in fact, the graph shows you how much of an outlier it is.

2.4. PRETTY PICTURES AND HELP FILES 23

> summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.

6.00 8.00 11.00 11.33 13.00 22.00

> sd(x)

[1] 4.84768

> mean(x)

[1] 11.33333

Figure 2.17: Standard deviation of x

2.4.3 Spread part 2

One of the things you see from a graph is that data values are typically not all
the same: there is some variability attached to them.

One way of measuring this is the interquartile range (3rd quartile minus 1st).
On a boxplot, this is the height of the box. One way of understanding the
inter-quartile range is as the spread specifically of the middle half of the data.
The quarters of the data above the 3rd quartile and below the 1st don’t enter
into it. This is, in some ways, a good thing, because “off” values like 22 are not
affecting our assessment of what kind of variability we have. But there can be
a fine line between “typical” variability and “off” values.

In the same way that the mean uses all the data values, there is a measure
of spread called the standard deviation that does the same. This, roughly
speaking, says how far away your data values might get from the mean. It
doesn’t come with the output from summary, but is not too hard to get. You
can also get the mean by itself if you don’t want the other output from summary.
See Figure 2.17.

So why do we have two measures of centre and two measures of spread? I
hinted at this above, when I said that the mean and standard deviation use all
the data, and the median and interquartile range don’t use the extreme high
and low values. In choosing which pair to use, the issue is whether you believe
you have any “off” values. If you don’t, it’s a good idea to use everything (mean
and standard deviation), but if you have any outliers, it’s better not to let them
have an undue influence, in which case median and interquartile range will be
better. In the case of our x, the boxplot (especially) reveals 22 to be an outlier,
which should scare us away from the mean and SD. We should describe these
data using the median and interquartile range.

24 CHAPTER 2. TO BEGIN AT THE BEGINNING

Figure 2.18: Spreadsheet of cars data

2.5 Reading in real data

Enough toy data. How do we read in serious data sets, ones that live in a
spreadsheet or other kind of text file?

Figure 2.18 is a screenshot of some data I have in a spreadsheet. There are
38 rows of data altogether, of 38 different cars. For each car, 5 variables are
recorded: gas mileage (miles per US gallon), weight (US tons), cylinders in
engine, horsepower of engine, and which country the car comes from.

First step is to save the spreadsheet in .csv format. (This stands for “comma-
separated values”, and is a way of writing the data in a spreadsheet to a text
file that other software, such as R, can read. Formulas don’t translate, just the
values that the formulas evaluate to.) I called the file cars.csv.

Figure 2.19 shows how to read this into R. read.csv requires at least one input:
the name of the .csv file containing the data. In our spreadsheet had a top row
naming the columns, which we’d like R to respect. (If you don’t have a header
row, use header=F. I get the best results specifying header= either way.)

If read.csv doesn’t work for you, there is a more complicated command read.table

that reads delimited data from a text file. You might have a smallish data set
that you can type into Notepad (or a text file in R Studio), and you can arrange
things so that values are separated by spaces and text stuff is single words. This
is exsctly what read.table reads in. Give it a file name and an indication of

2.5. READING IN REAL DATA 25

> cars=read.csv("cars.csv",header=T)

> cars

Car MPG Weight Cylinders Horsepower Country

1 Buick Skylark 28.4 2.670 4 90 U.S.

2 Dodge Omni 30.9 2.230 4 75 U.S.

3 Mercury Zephyr 20.8 3.070 6 85 U.S.

4 Fiat Strada 37.3 2.130 4 69 Italy

5 Peugeot 694 SL 16.2 3.410 6 133 France

6 VW Rabbit 31.9 1.925 4 71 Germany

7 Plymouth Horizon 34.2 2.200 4 70 U.S.

8 Mazda GLC 34.1 1.975 4 65 Japan

9 Buick Estate Wagon 16.9 4.360 8 155 U.S.

10 Audi 5000 20.3 2.830 5 103 Germany

11 Chevy Malibu Wagon 19.2 3.605 8 125 U.S.

12 Dodge Aspen 18.6 3.620 6 110 U.S.

13 VW Dasher 30.5 2.190 4 78 Germany

14 Ford Mustang 4 26.5 2.585 4 88 U.S.

15 Dodge Colt 35.1 1.915 4 80 Japan

16 Datsun 810 22.0 2.815 6 97 Japan

17 VW Scirocco 31.5 1.990 4 71 Germany

18 Chevy Citation 28.8 2.595 6 115 U.S.

19 Olds Omega 26.8 2.700 6 115 U.S.

20 Chrysler LeBaron Wagon 18.5 3.940 8 150 U.S.

21 Datsun 510 27.2 2.300 4 97 Japan

22 AMC Concord D/L 18.1 3.410 6 120 U.S.

23 Buick Century Special 20.6 3.380 6 105 U.S.

24 Saab 99 GLE 21.6 2.795 4 115 Sweden

25 Datsun 210 31.8 2.020 4 65 Japan

26 Ford LTD 17.6 3.725 8 129 U.S.

27 Volvo 240 GL 17.0 3.140 6 125 Sweden

28 Dodge St Regis 18.2 3.830 8 135 U.S.

29 Toyota Corona 27.5 2.560 4 95 Japan

30 Chevette 30.0 2.155 4 68 U.S.

31 Ford Mustang Ghia 21.9 2.910 6 109 U.S.

32 AMC Spirit 27.4 2.670 4 80 U.S.

33 Ford Country Squire Wagon 15.5 4.054 8 142 U.S.

34 BMW 320i 21.5 2.600 4 110 Germany

35 Pontiac Phoenix 33.5 2.556 4 90 U.S.

36 Honda Accord LX 29.5 2.135 4 68 Japan

37 Mercury Grand Marquis 16.5 3.955 8 138 U.S.

38 Chevy Caprice Classic 17.0 3.840 8 130 U.S.

Figure 2.19: Reading in a .csv file

26 CHAPTER 2. TO BEGIN AT THE BEGINNING

> cars$MPG

[1] 28.4 30.9 20.8 37.3 16.2 31.9 34.2 34.1 16.9 20.3 19.2 18.6 30.5 26.5 35.1

[16] 22.0 31.5 28.8 26.8 18.5 27.2 18.1 20.6 21.6 31.8 17.6 17.0 18.2 27.5 30.0

[31] 21.9 27.4 15.5 21.5 33.5 29.5 16.5 17.0

> cars$Country

[1] U.S. U.S. U.S. Italy France Germany U.S. Japan U.S.

[10] Germany U.S. U.S. Germany U.S. Japan Japan Germany U.S.

[19] U.S. U.S. Japan U.S. U.S. Sweden Japan U.S. Sweden

[28] U.S. Japan U.S. U.S. U.S. U.S. Germany U.S. Japan

[37] U.S. U.S.

Levels: France Germany Italy Japan Sweden U.S.

Figure 2.20: Referencing variables in a data frame

whether you have column headers, and you are good to go. The read.table

function has lots of options, but in this simple situation you won’t need to use
them. Look at the read.table help if you want to be bamboozled!

The object cars is a table laid out the same way as the spreadsheet. The
technical name for it is a data frame.

You can reference variables as shown in Figure 2.20.

A timesaver is the attach command, shown in Figure 2.21. Just MPG gets you
all the MPG figures, without the need to prefix cars$ every time; the same
applies to all the other columns.

This stays in effect until you type detach(cars), after which you’ll need to type
cars$MPG again.

2.6 More pretty pictures

Thus, a histogram of the MPG figures, once you’ve done the attach thing, is as
simple as shown in Figure 2.22. Histograms normally have one peak, but this
one has two: a primary one for 15–20 MPG, and a secondary one for 25–30. This
often suggests that two (or more) different types of data have been combined
into the one variable.

Figure 2.23 shows a variation on the histogram in Figure 2.22. We have added
a smooth curve to show the two-peakiness of the histogram. This is kind of
a smoothed-out version of the histogram, showing its essential shape without

2.6. MORE PRETTY PICTURES 27

> attach(cars)

> MPG

[1] 28.4 30.9 20.8 37.3 16.2 31.9 34.2 34.1 16.9 20.3 19.2 18.6 30.5 26.5 35.1

[16] 22.0 31.5 28.8 26.8 18.5 27.2 18.1 20.6 21.6 31.8 17.6 17.0 18.2 27.5 30.0

[31] 21.9 27.4 15.5 21.5 33.5 29.5 16.5 17.0

> Country

[1] U.S. U.S. U.S. Italy France Germany U.S. Japan U.S.

[10] Germany U.S. U.S. Germany U.S. Japan Japan Germany U.S.

[19] U.S. U.S. Japan U.S. U.S. Sweden Japan U.S. Sweden

[28] U.S. Japan U.S. U.S. U.S. U.S. Germany U.S. Japan

[37] U.S. U.S.

Levels: France Germany Italy Japan Sweden U.S.

Figure 2.21: Attaching a dataframe

> hist(MPG)

Histogram of MPG

MPG

F
re

qu
en

cy

15 20 25 30 35 40

0
2

4
6

8
10

12

Figure 2.22: Histogram of MPG

28 CHAPTER 2. TO BEGIN AT THE BEGINNING

> hist(MPG,freq=F)

> lines(density(MPG))

Histogram of MPG

MPG

D
en

si
ty

15 20 25 30 35 40

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Figure 2.23: MPG histogram with density curve

2.6. MORE PRETTY PICTURES 29

> summary(MPG)

Min. 1st Qu. Median Mean 3rd Qu. Max.

15.50 18.52 24.25 24.76 30.38 37.30

> summary(Country)

France Germany Italy Japan Sweden U.S.

1 5 1 7 2 22

Figure 2.24: Summaries for MPG and Country

getting bogged down by details. To get the smooth curve to show up, we had
to add an extra option to hist. This gets an appropriate1 vertical scale.

Figure 2.24 shows an odd one. The summary for MPG is just like the summary
for x above. But Country is just the name of the country each car comes from:
categorical (nominal) rather than quantitative (numeric). summary() does an
appropriate kind of summary for the thing it is fed. About the only appropriate
summary for Country is a list of the countries and how many times they appear.

An appropriate picture for a categorical variable would be a bar plot, which you
can get as shown in Figure 2.25. This counts up how many times each country
appears in the data frame.

plot is, like summary, a command that does different things according to what
you feed it. For example, feeding plot two quantitative variables makes a
scatterplot. But more of that later.

Another use of a categorical variable is to divide data up into groups. For
example, we can divide the cars up into 4, 6 and 8-cylinder engines, and we
might then see how the MPG figures for the groups compare.

First, though, a boxplot of MPG (Figure 2.26). This shows that the median MPG
is just under 25, and that the MPG figures are rather variable. Note that the
boxplot didn’t show the two peaks. We need a histogram (or stemplot) for that.

Boxplots are most useful for comparing distributions of different groups. You
make a boxplot for MPG grouped by Cylinders as in Figure 2.27.

You see a couple of things: first, the typical gas mileage declines quite sharply
as the number of cylinders increases, and second, the variability of gas mileage
within each number of cylinders is quite a bit smaller than for the data as a
whole (compare the heights of the boxes on this boxplot with the box on the

1If you care, the vertical scale is “density”. The density times the width of the bar gives the
proportion of all observations in that bar. For example, the 35–40 bar has density (height)
0.01 and width 5, so it has about 0.01 × 5 = 0.05 or 5% of all the observations.

30 CHAPTER 2. TO BEGIN AT THE BEGINNING

> plot(Country)

France Germany Italy Japan Sweden U.S.

0
5

10
15

20

Figure 2.25: Barplot of Country

2.6. MORE PRETTY PICTURES 31

> boxplot(MPG)

15
20

25
30

35

Figure 2.26: Boxplot of MPG

32 CHAPTER 2. TO BEGIN AT THE BEGINNING

> boxplot(MPG~Cylinders)

●

4 5 6 8

15
20

25
30

35

Figure 2.27: Boxplot of MPG grouped by cylinders

2.7. SELECTING STUFF 33

> cars[3,]

Car MPG Weight Cylinders Horsepower Country

3 Mercury Zephyr 20.8 3.07 6 85 U.S.

> cars[,4]

[1] 4 4 6 4 6 4 4 4 8 5 8 6 4 4 4 6 4 6 6 8 4 6 6 4 4 8 6 8 4 4 6 4 8 4 4 4 8 8

Figure 2.28: Selecting a whole row or column

previous boxplot). That is, if you know how many cylinders a car’s engine has,
you can make a more informed guess at its gas mileage (compared to not having
that knowledge).

The syntax MPG ~ Cylinders is known in R as a model formula. You can read it
as “MPG as it depends on Cylinders”. That is, do a separate boxplot of MPG
for each value of Cylinders. The same idea is used later for specifying the
response (dependent) and explanatory (independent) variables in a regression,
or the response variable and factors in an ANOVA model. But not now.

2.7 Selecting stuff

How do you select individuals and variables? You can actually do some sophis-
ticated things, but we’ll start at the beginning. We’ll illustrate with the cars
data. First, data frames have rows (individuals) and columns (variables) that
you can refer to by number. For example, the entry in the third row and fourth
column is:

> cars[3,4]

[1] 6

Sometimes it’s useful to select a whole row or a whole column. Do that by
leaving whichever you want “all” of blank. Selecting all of the third row and
then all of the fourth column is shown in Figure 2.28. The third row is all the
data for the Mercury Zephyr, and the 4th column is the number of cylinders
for all the cars. Thus cars[3,4] is the number of cylinders for the Mercury
Zephyr.

You can also select variables by name. There is a special notation, Figure 2.29,
for this, which is the same as cars[,4] above.

34 CHAPTER 2. TO BEGIN AT THE BEGINNING

> cars$Cylinders

[1] 4 4 6 4 6 4 4 4 8 5 8 6 4 4 4 6 4 6 6 8 4 6 6 4 4 8 6 8 4 4 6 4 8 4 4 4 8 8

Figure 2.29: Selecting a variable

> cars[6:9,c(3,5)]

Weight Horsepower

6 1.925 71

7 2.200 70

8 1.975 65

9 4.360 155

> cars[6:9,c("Car","Cylinders")]

Car Cylinders

6 VW Rabbit 4

7 Plymouth Horizon 4

8 Mazda GLC 4

9 Buick Estate Wagon 8

Figure 2.30: Selecting several rows and columns

You can also select several rows (or columns). This is shown in Figure 2.30.
The notation 6:9 means “6 through 9”, and if you want some not-joined-up
collection of things, you use c: c(3,5) means “just 3 and 5”. Thus the first part
of Figure 2.30 selects cars 6 through 9 and columns (variables) 3 and 5, and the
second part selects Car and Cylinders for those same rows.

If you’re going to be referring to the variables (column names) a lot, you can
attach a data frame as in Figure 2.31, and then refer to the variables by their
own names. This works until you explicitly un-attach a data frame by detaching
it, Figure 2.32, and then you have to refer to this variable by cars$Cylinders

again, since Cylinders now gives an error.

> attach(cars)

> Cylinders

[1] 4 4 6 4 6 4 4 4 8 5 8 6 4 4 4 6 4 6 6 8 4 6 6 4 4 8 6 8 4 4 6 4 8 4 4 4 8 8

Figure 2.31: Attaching a data frame

2.7. SELECTING STUFF 35

> detach(cars)

> cars$Cylinders

[1] 4 4 6 4 6 4 4 4 8 5 8 6 4 4 4 6 4 6 6 8 4 6 6 4 4 8 6 8 4 4 6 4 8 4 4 4 8 8

Figure 2.32: Detaching a data frame

The attach command is nice, and I use it a lot, but there is one thing to
be aware of: if you already had a variable named Cylinders, you wouldn’t
(easily) be able to access it, because Cylinders, after attach, would refer to
cars$Cylinders and not the original Cylinders. If you see what I mean.

Suppose now I wanted to know which cars had 8 cylinders. R has a concept
called a “logical vector” which works like this:

> has8=(cars$Cylinders==8)

> has8

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE

[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE

[25] FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

[37] TRUE TRUE

The thing inside the brackets is a condition that is either true or false for each
car (either it has 8 cylinders or it doesn’t). Note the == to denote a logical
equals. To the left of the brackets is an ordinary = to denote that we’re saving
the result of this condition in the variable called has8. has8 is a string of trues
and falses, indicating that cars number 9, 11, 20, 26, 28, 33, 37, 38 have 8
cylinders. This is kind of hard to read, so you can use a logical vector to pick
out which cars have 8 cylinders, as in Figure 2.33. Note that has8 picks out the
rows I want, and I’m selecting all the columns, since my selection of columns is
empty.

cars is a data frame, so cars[has8,] is a data frame as well. This means that
you can select the countries where the 8-cylinder cars come from in any of the
four ways shown in Figure 2.34. Any of those ways, we see right away that the
8-cylinder cars all come from the US.

Another idea: how do we find which car has the maximum horsepower? Two
steps: first find the maximum horsepower, and then select the car(s) whose
horsepower is equal to that. These are the first two lines of Figure 2.35. Another
way is shown in the last two lines: which.max selects the numbers of the car(s)
whose horsepower is equal to the maximum, and then we select those rows out
of cars.

36 CHAPTER 2. TO BEGIN AT THE BEGINNING

> cars[has8,]

Car MPG Weight Cylinders Horsepower Country

9 Buick Estate Wagon 16.9 4.360 8 155 U.S.

11 Chevy Malibu Wagon 19.2 3.605 8 125 U.S.

20 Chrysler LeBaron Wagon 18.5 3.940 8 150 U.S.

26 Ford LTD 17.6 3.725 8 129 U.S.

28 Dodge St Regis 18.2 3.830 8 135 U.S.

33 Ford Country Squire Wagon 15.5 4.054 8 142 U.S.

37 Mercury Grand Marquis 16.5 3.955 8 138 U.S.

38 Chevy Caprice Classic 17.0 3.840 8 130 U.S.

Figure 2.33: Selecting the cars that have 8 cylinders

> cars[has8,]$Country

[1] U.S. U.S. U.S. U.S. U.S. U.S. U.S. U.S.

Levels: France Germany Italy Japan Sweden U.S.

> cars[has8,"Country"]

[1] U.S. U.S. U.S. U.S. U.S. U.S. U.S. U.S.

Levels: France Germany Italy Japan Sweden U.S.

> cars$Country[has8]

[1] U.S. U.S. U.S. U.S. U.S. U.S. U.S. U.S.

Levels: France Germany Italy Japan Sweden U.S.

> cars[cars$Cylinders==8,"Country"]

[1] U.S. U.S. U.S. U.S. U.S. U.S. U.S. U.S.

Levels: France Germany Italy Japan Sweden U.S.

Figure 2.34: Countries of the cars that have 8 cylinders

2.7. SELECTING STUFF 37

> maxhp=max(cars$Horsepower)

> cars[cars$Horsepower==maxhp,]

Car MPG Weight Cylinders Horsepower Country

9 Buick Estate Wagon 16.9 4.36 8 155 U.S.

> which.max(cars$Horsepower)

[1] 9

> cars[which.max(cars$Horsepower),]

Car MPG Weight Cylinders Horsepower Country

9 Buick Estate Wagon 16.9 4.36 8 155 U.S.

Figure 2.35: Finding the car with maximum horsepower

What about the 6-cylinder cars? In Figure 2.36, we first find the horsepower of
those cars, and then we draw a histogram of the values.

But Country is a categorical variable. What can we do with that?

plot is one of R’s multi-coloured commands: the kind of plot that’s produced
is different, depending on what kind of thing that’s being produced. What
plotting a categorical variable does is the same as this:

> tbl=table(cars[cars$Cylinders==6,"Country"]);

> tbl

France Germany Italy Japan Sweden U.S.

1 0 0 1 1 7

> barplot(tbl)

38 CHAPTER 2. TO BEGIN AT THE BEGINNING

> hpsix=cars[cars$Cylinders==6,"Horsepower"]

> hpsix

[1] 85 133 110 97 115 115 120 105 125 109

> hist(hpsix)

Histogram of hpsix

hpsix

F
re

qu
en

cy

80 90 100 110 120 130 140

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Figure 2.36: Drawing a histogram of the horsepowers of the cars that have six
cylinders

2.7. SELECTING STUFF 39

> csix=cars[cars$Cylinders==6,"Country"]

> csix

[1] U.S. France U.S. Japan U.S. U.S. U.S. U.S. Sweden U.S.

Levels: France Germany Italy Japan Sweden U.S.

> plot(csix)

France Germany Italy Japan Sweden U.S.

0
1

2
3

4
5

6
7

Figure 2.37: Plotting a categorical variable

40 CHAPTER 2. TO BEGIN AT THE BEGINNING

> attach(cars)

> tbl=table(Cylinders,Country)

> detach(cars)

> tbl

Country

Cylinders France Germany Italy Japan Sweden U.S.

4 0 4 1 6 1 7

5 0 1 0 0 0 0

6 1 0 0 1 1 7

8 0 0 0 0 0 8

Figure 2.38: Table of cylinders by country

France Germany Italy Japan Sweden U.S.

0
1

2
3

4
5

6
7

This is making a bar chart in two steps: first counting up how many of the cars
come from each country, and then making a chart with bars whose heights are
those how-manys.

Whichever way you get the bar chart, you see that most of the 6-cylinder cars
are also American, with single examples from France, Japan and Sweden.

2.7. SELECTING STUFF 41

Now suppose we want to get a barplot of how many cars of each number of
cylinders come from each country. Two things are happening here:

1. we are treating cylinders as a categorical variable,

2. we are not doing any selection of rows from cars, so we can use the
variables as is.

The first item doesn’t really make any difference, except that with two categor-
ical (or treated-as-categorical) variables, we seem to have to go via table and
barplot. table can be fed two variables, and the output from that is interesting
in itself. See Figure 2.38.

If you feed the variables to table in the other order, the table comes out with
rows and columns interchanged, with a corresponding effect on the barplot,
which you can investigate. (I also re-used the variable tbl, since I didn’t need
the old one any more.)

The table shows how many of the cars fall in each combination of country and
number of cylinders. For example, 6 of the Japanese cars had 4 cylinders.

The plot in Figure 2.39 shows “stacked bars”: for each country, the bars for
different numbers of cylinders are stacked on top of each other. The darker the
colour of the sub-bar, the fewer cylinders it corresponds to. I’m not a huge fan
of stacked bars, so I went looking in the help for barplot to see if I could get
the bars side by side.

beside: a logical value. If 'FALSE', the columns of 'height' are

portrayed as stacked bars, and if 'TRUE' the columns are

portrayed as juxtaposed bars.

horiz: a logical value. If 'FALSE', the bars are drawn vertically

with the first bar to the left. If 'TRUE', the bars are

drawn horizontally with the first at the bottom.

So I need to include a beside=T in my call to barplot, as in Figure 2.40. (If
you like your bars to be acrossways, you could similarly include horiz=T.)

Above each country is an array of bars showing how many cars from that country
have respectively 4, 5, 6, and 8 cylinders. Most of the countries have the majority
of their cars having 4-cylinder engines, except for the US, which has about an
equal number of cars with each size of engine. This is, I suppose, visible in the
stacked bar chart too, but I’d rather have the bars side by side so that I can
compare directly how tall they are.

42 CHAPTER 2. TO BEGIN AT THE BEGINNING

> barplot(tbl)

France Germany Italy Japan Sweden U.S.

0
5

10
15

20

Figure 2.39: Barplot of cylinders by country

2.7. SELECTING STUFF 43

> barplot(tbl,beside=T)

France Germany Italy Japan Sweden U.S.

0
2

4
6

8

Figure 2.40: Barplot of cylinders by country with bars beside each other

44 CHAPTER 2. TO BEGIN AT THE BEGINNING

> attach(cars)

> boxplot(MPG~Cylinders)

●

4 5 6 8

15
20

25
30

35

Figure 2.41: Boxplot of MPG by cylinders

2.8 Numerical summaries by subgroup

Recall our boxplot of MPG by cylinders? No? Well, Figure 2.41 shows it again.

We see that cars with more cylinders have worse gas mileage (no great surprise).
What if we wanted to find the mean (or median or IQR or standard deviation)
of the cars classified by number of Cylinders?

If you’re a programmer, you might think of doing this with a loop, and you
could probably do that in R as well. But R encourages you to think in terms of
matrices and vectors: getting all the results at once.

There is a family of R functions with apply in their names. The one that does
what we want here is tapply. You feed it three things: the variable you want
to summarize, then the variable that divides your individuals into groups, and
then finally what you want to calculate, like Figure 2.42.

2.8. NUMERICAL SUMMARIES BY SUBGROUP 45

> tapply(MPG,Cylinders,mean)

4 5 6 8

30.02105 20.30000 21.08000 17.42500

Figure 2.42: Use of tapply

> tapply(MPG,Cylinders,sd)

4 5 6 8

4.182447 NA 4.077526 1.192536

> tapply(MPG,Country,median)

France Germany Italy Japan Sweden U.S.

16.2 30.5 37.3 29.5 19.3 20.7

Figure 2.43: tapply for SDs and medians

As we saw in the boxplot, the typical MPG values go down pretty sharply as
the number of cylinders increases (except for 5-cylinder engines, and there was
only one of those). To find the standard deviations, replace mean by sd, as
in Figure 2.43, which also shows how you’d make a table of median MPG by
country.

The third argument to tapply is a function, one that takes a list of numbers
(vector) and produces a result. This can even be a function you write yourself
(see Chapter 7 for more on this). For example, suppose I write a function that
takes a vector x and calculates the number of observations, mean, SD, median
and IQR at once, as in Figure 2.44. First we calculate what we want to calculate
and glue it together into a vector. Then — remember the names attribute? This
will print out what each thing is next to its value. Let’s test it on the MPG
values, all of them (not subdivided by anything yet). See Figure 2.45.

Now, how do we calculate all of these things for each number of cylinders?

> mystats=function(x)

+ {

+ result=c(length(x),mean(x),sd(x),median(x),IQR(x))

+ names(result)=c("n","Mean","SD","Median","IQR")

+ result

+ }

Figure 2.44: A function to calculate sample statistics

46 CHAPTER 2. TO BEGIN AT THE BEGINNING

> mystats(MPG)

n Mean SD Median IQR

38.000000 24.760526 6.547314 24.250000 11.850000

Figure 2.45: Testing mystats

> tapply(MPG,Cylinders,mystats)

$`4`

n Mean SD Median IQR

19.000000 30.021053 4.182447 30.500000 5.250000

$`5`

n Mean SD Median IQR

1.0 20.3 NA 20.3 0.0

$`6`

n Mean SD Median IQR

10.000000 21.080000 4.077526 20.700000 3.750000

$`8`

n Mean SD Median IQR

8.000000 17.425000 1.192536 17.300000 1.475000

Figure 2.46: Calculating statistics for each number of cylinders

2.8. NUMERICAL SUMMARIES BY SUBGROUP 47

> mylist=split(MPG,Cylinders)

> mylist

$`4`

[1] 28.4 30.9 37.3 31.9 34.2 34.1 30.5 26.5 35.1 31.5 27.2 21.6 31.8 27.5 30.0

[16] 27.4 21.5 33.5 29.5

$`5`

[1] 20.3

$`6`

[1] 20.8 16.2 18.6 22.0 28.8 26.8 18.1 20.6 17.0 21.9

$`8`

[1] 16.9 19.2 18.5 17.6 18.2 15.5 16.5 17.0

> sapply(mylist,mystats)

4 5 6 8

n 19.000000 1.0 10.000000 8.000000

Mean 30.021053 20.3 21.080000 17.425000

SD 4.182447 NA 4.077526 1.192536

Median 30.500000 20.3 20.700000 17.300000

IQR 5.250000 0.0 3.750000 1.475000

Figure 2.47: Another way of calculating statistics for each number of cylinders

mystats is, as far as R is concerned, as good a function as mean or median, so
we just feed that into tapply as the third thing, as in Figure 2.46.

This isn’t the prettiest (it’s what R calls a list), but you can see what it says.
The measures of centre decrease as the number of cylinders increases, and so do
the measures of spread. There’s only one 5-cylinder car, which in MPG looks
more like the 6-cylinder cars.

Let’s try and pretty it up a bit by coming at it another way, as in Figure 2.47.
split makes an R list of the MPG values separated out by Cylinders. sapply

takes a list (which mylist is), and applies mystats to each element of it. This,
as you see, makes a nice table with Cylinders as columns and the statistics as
rows.

Suppose we wanted to calculate the mean MPG for each subgroup of Cylinders
and Country? (We don’t really have enough data for this to be meaningful, but
we’re not worrying about that right now.) We make a list out of all the
categorical variables, like Figure 2.48.

48 CHAPTER 2. TO BEGIN AT THE BEGINNING

> tapply(MPG,list(Country,Cylinders),mean)

4 5 6 8

France NA NA 16.20000 NA

Germany 28.85000 20.3 NA NA

Italy 37.30000 NA NA NA

Japan 30.86667 NA 22.00000 NA

Sweden 21.60000 NA 17.00000 NA

U.S. 30.12857 NA 22.22857 17.425

Figure 2.48: Table of mean MPG by country and cylinders

> tapply(MPG,list(Country,Cylinders),mystats)

4 5 6 8

France NULL NULL Numeric,5 NULL

Germany Numeric,5 Numeric,5 NULL NULL

Italy Numeric,5 NULL NULL NULL

Japan Numeric,5 NULL Numeric,5 NULL

Sweden Numeric,5 NULL Numeric,5 NULL

U.S. Numeric,5 NULL Numeric,5 Numeric,5

Figure 2.49: Trying to make a two-way table with mystats

This produces a nice table showing all the values. NA means that the mean
couldn’t be calculated (because there was no data). For example, all the 8-
cylinder cars were American, so there are no means for any of the other countries
for 8 cylinders.

This doesn’t work for mystats because that function returns five values instead
of just one. See Figure 2.49.

Because there are now three ways to classify things (Country, Cylinders and
the statistic values), we’d need three dimensions to see it. But we can do
something sensible by using sapply on a list like we did before with mystats,
as in Figure 2.50.

Now we want to split MPG by both Country and Cylinders, so as to get all the
combinations. The output from sapply isn’t quite as nice as before, but it’s
still readable enough. R concocted names for the columns by gluing together
Country and Cylinders and then put the statistics as rows.

I think the distinction between NA and NaN is that NAs cannot be calculated (not
enough data), but NaN, which stands for “not a number”, is an arithmetic error
(caused in this case by trying to divide a total, 0, by a number of values, also

2.8. NUMERICAL SUMMARIES BY SUBGROUP 49

> list2=split(MPG,list(Country,Cylinders))

> head(list2)

$France.4

numeric(0)

$Germany.4

[1] 31.9 30.5 31.5 21.5

$Italy.4

[1] 37.3

$Japan.4

[1] 34.1 35.1 27.2 31.8 27.5 29.5

$Sweden.4

[1] 21.6

$U.S..4

[1] 28.4 30.9 34.2 26.5 30.0 27.4 33.5

> sapply(list2,mystats)

France.4 Germany.4 Italy.4 Japan.4 Sweden.4 U.S..4 France.5

n 0 4.000000 1.0 6.000000 1.0 7.000000 0

Mean NaN 28.850000 37.3 30.866667 21.6 30.128571 NaN

SD NA 4.935247 NA 3.343451 NA 2.948284 NA

Median NA 31.000000 37.3 30.650000 21.6 30.000000 NA

IQR NA 3.350000 0.0 5.525000 0.0 4.300000 NA

Germany.5 Italy.5 Japan.5 Sweden.5 U.S..5 France.6 Germany.6 Italy.6

n 1.0 0 0 0 0 1.0 0 0

Mean 20.3 NaN NaN NaN NaN 16.2 NaN NaN

SD NA NA NA NA NA NA NA NA

Median 20.3 NA NA NA NA 16.2 NA NA

IQR 0.0 NA NA NA NA 0.0 NA NA

Japan.6 Sweden.6 U.S..6 France.8 Germany.8 Italy.8 Japan.8 Sweden.8

n 1 1 7.000000 0 0 0 0 0

Mean 22 17 22.228571 NaN NaN NaN NaN NaN

SD NA NA 4.063953 NA NA NA NA NA

Median 22 17 20.800000 NA NA NA NA NA

IQR 0 0 4.750000 NA NA NA NA NA

U.S..8

n 8.000000

Mean 17.425000

SD 1.192536

Median 17.300000

IQR 1.475000

> detach(cars)

Figure 2.50: A second attempt

50 CHAPTER 2. TO BEGIN AT THE BEGINNING

> 0/0

[1] NaN

> 2/0

[1] Inf

Figure 2.51: Dividing by zero

0). R also has an Inf, for “infinity”, for when you divide something else by 0.
See Figure 2.51.

I want to show you one more member of the apply family, which is just plain
apply. This takes a matrix (such as a data frame) and applies a function to
the rows or to the columns. Let’s remind ourselves of what variables we had
in cars (first line of Figure 2.52). There were six, including the identifier for
the cars, but only the second, third, fourth and fifth are numeric. If you try
to calculate a mean on Country, R will give you an error, and we don’t want
that! So let’s just look at the four numeric variables by selecting out only those
columns (second line of Figure 2.52).

Let’s find the means of all those columns. apply needs three things: the name
of the matrix (or data frame), which is the one we just constructed, then the
“dimension” (1 is rows, 2 is columns), then the name of the function to apply,
such as mean. See Figure 2.52. It doesn’t matter whether your function returns
one value (like mean) or five values (like mystats). apply handles it just fine,
as you see in the last line of Figure 2.52.

The first one is just a list of all the means, arranged by variable, and the second
one is a table with variables in the columns and statistics in the rows.

2.8. NUMERICAL SUMMARIES BY SUBGROUP 51

> head(cars)

Car MPG Weight Cylinders Horsepower Country

1 Buick Skylark 28.4 2.670 4 90 U.S.

2 Dodge Omni 30.9 2.230 4 75 U.S.

3 Mercury Zephyr 20.8 3.070 6 85 U.S.

4 Fiat Strada 37.3 2.130 4 69 Italy

5 Peugeot 694 SL 16.2 3.410 6 133 France

6 VW Rabbit 31.9 1.925 4 71 Germany

> cars.numeric=cars[,2:5]

> apply(cars.numeric,2,mean)

MPG Weight Cylinders Horsepower

24.760526 2.862895 5.394737 101.736842

> apply(cars.numeric,2,mystats)

MPG Weight Cylinders Horsepower

n 38.000000 38.0000000 38.000000 38.00000

Mean 24.760526 2.8628947 5.394737 101.73684

SD 6.547314 0.7068704 1.603029 26.44493

Median 24.250000 2.6850000 4.500000 100.00000

IQR 11.850000 1.2025000 2.000000 45.25000

Figure 2.52: Using apply

52 CHAPTER 2. TO BEGIN AT THE BEGINNING

Chapter 3

Statistical Inference

3.1 Introduction

Displaying data is all very well, but sometimes we need to draw some conclusions
about a larger population from which our data is a sample. (The assumption
for most inference is that your data are a simple random sample from the pop-
ulation: that is, each element of the population is equally likely to be chosen
in the sample, independently of other elements, like drawing from a hat or a
lottery machine.)

3.2 Confidence intervals

Under the (probably unreasonable) assumption that the cars in our data set
are a simple random sample of all cars, what might the mean MPG, say, of all
cars be? To answer that, we can find a confidence interval for the mean. This
comes from the R function t.test that also does hypothesis tests for the mean
(coming up in Section 3.3).

Just read the bit that says “confidence interval”. A 95% confidence interval for
the mean MPG of all cars is from 22.61 to 26.91.

Perusal of the help for t.test reveals that you can get other confidence levels
like 99% or 90% by passing the level in as shown in Figure 3.2. This confidence
interval is longer than the previous one because we are “more confident” in it.
(Precisely, in as much as 99%, as compared to 95%, of all possible samples, will
the confidence interval contain the population mean.)

53

54 CHAPTER 3. STATISTICAL INFERENCE

> cars=read.csv("cars.csv",header=T)

> attach(cars)

> tt=t.test(MPG)

> tt

One Sample t-test

data: MPG

t = 23.3125, df = 37, p-value < 2.2e-16

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

22.60848 26.91257

sample estimates:

mean of x

24.76053

Figure 3.1: Confidence interval for mean MPG

> tt99=t.test(MPG,conf.level=0.99)

> tt99

One Sample t-test

data: MPG

t = 23.3125, df = 37, p-value < 2.2e-16

alternative hypothesis: true mean is not equal to 0

99 percent confidence interval:

21.87645 27.64460

sample estimates:

mean of x

24.76053

Figure 3.2: 99% confidence interval

3.2. CONFIDENCE INTERVALS 55

> is.american=(Country == "U.S.")

> twot=t.test(MPG~is.american)

> twot

Welch Two Sample t-test

data: MPG by is.american

t = 2.0009, df = 30.748, p-value = 0.0543

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.08229979 8.46639070

sample estimates:

mean in group FALSE mean in group TRUE

27.18750 22.99545

Figure 3.3: Two-sample t-test on MPG of American vs. other cars

> names(twot)

[1] "statistic" "parameter" "p.value" "conf.int" "estimate"

[6] "null.value" "alternative" "method" "data.name"

> twot$conf.int

[1] -0.08229979 8.46639070

attr(,"conf.level")

[1] 0.95

Figure 3.4: Getting out just the CI

Reading the help file for t.test is a bit daunting because t.test also does
inference for two samples, depending on what you pass into it. Let’s illustrate
that by dividing our cars into American and non-American ones, and see how
their gas mileage compares. See Figure 3.3. This output tells you about the
difference in means between American cars and non-American ones. The im-
ported cars have a higher MPG by somewhere between 0 and about 8.5 miles
per gallon. The confidence interval does include zero, though, so even though
the suggestion is that imported cars are more fuel-efficient, it is plausible that
there is actually no difference overall, and the difference we observed in our
samples is just chance.

There is a way to get just the confidence interval out of this. As ever with R,
you need to know the name of the thing you’re asking for, which is what the
first line of Figure 3.4 does. It looks as if conf.int does the thing we want. Or
you can look at the help for t.test, and read down to where it says “Value:”,

56 CHAPTER 3. STATISTICAL INFERENCE

where it says what those things returned from t.test (the things that twot

actually contains) really are.

3.3 Hypothesis tests

A confidence interval answers a question like “what is the population mean” (or
“what is the difference between the population means”). To answer a question
like “could the population mean be x” or “is there a real difference between these
two populations”, we need a hypothesis test.

A hypothesis test has some ingredients:

� a null hypothesis that says“there is no difference between the population
means” or “the population mean is given by some theory to be this.”

� an alternative hypothesis that says that the null hypothesis is wrong:
“there is a difference between the population means” or “the theory is
wrong and the population mean is not what it says”. We are trying to
prove that the null hypothesis is wrong by collecting sufficiently good
evidence against it (at which point we can reject the null hypothesis).

� A significance level α, the importance of which will become apparent in
a moment. α = 0.05 is a common choice.

� Some data, collected via a simple random sample.

Out of the test comes a P-value, which summarizes the strength of evidence
against the null hypothesis (in favour of the alternative). We’ll see that more
in the examples below.

If you struggle with the logic here, bear in mind that it is analogous to a (legal)
trial in court. The accused actually is either innocent or guilty, and the point
of the trial is to make a decision about which of those the accused is. The
Canadian legal system has a “presumption of innocence”, which means that only
if the evidence is such that the accused is proven guilty “beyond a reasonable
doubt”, can the court return a verdict of “guilty”. If the evidence is not strong
enough, the verdict has to be “not guilty”.

Note that it is not the legal system’s business to prove that an accused person is
innocent. The job of a defence lawyer is to demonstrate a “reasonable doubt” by
poking a sufficient number of holes in the prosecution’s case. The presumption
of innocence means that we are willing to let some actually guilty people go
free, because imprisoning someone innocent is considered to be far worse.

The analogy here is that actual innocence corresponds to the null hypothesis
being true, and actual guilt corresponds to the alternative hypothesis being true.

3.3. HYPOTHESIS TESTS 57

> twot=t.test(MPG~is.american)

> twot

Welch Two Sample t-test

data: MPG by is.american

t = 2.0009, df = 30.748, p-value = 0.0543

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.08229979 8.46639070

sample estimates:

mean in group FALSE mean in group TRUE

27.18750 22.99545

Figure 3.5: Two-sample t-test comparing American and other cars’ MPG

Making a decision to reject the null hypothesis is like declaring the accused
guilty: it is a big deal, requiring strong evidence to do so. Making a decision
not to reject the null hypothesis is like declaring the accused not guilty. Note
the parallelism in wording: we don’t “accept the null hypothesis” in the same
way that the accused is never declared “innocent”.

The last part is the assessment of the evidence against the null hypothesis, which
is where the P-value comes in. Let’s see this in an example.

We’ll compare the American and imported cars’ MPG first. Let’s suppose we’ve
chosen the default α = 0.05. The null hypothesis is that American and import
cars have the same mean MPG, while the alternative is that the means are
different. The P-value, as shown in Figure 3.5, is 0.0543. A small P-value
means strong evidence against the null hypothesis. To assess this, you compare
the P-value against α. In our case, the P-value is not smaller than α, so we
cannot (quite) reject the null hypothesis. We have not been able to prove that
the population mean MPG figures are different for domestic and imported cars.

You might say that the null hypothesis is declared to be “not guilty” here.

Now, you might be thinking: the only reason those American cars came out to
have worse gas mileage is that they tended to have bigger engines. Couldn’t we
adjust for size of engine somehow? Well, there’s a straightforward way, which
is to compare the US and other 4-cylinder engines only. This is probably as
good as anything here, because there aren’t many import engines bigger than 4
cylinders anyway. (A more sophisticated method is the analysis of covariance,
which we’ll have a look at after we’ve studied regression and analysis of variance,
from which it derives.)

Figure 3.6 shows how that one comes out. Once you compare cars with the

58 CHAPTER 3. STATISTICAL INFERENCE

> twot4=t.test(MPG[Cylinders==4]~is.american[Cylinders==4])

> twot4

Welch Two Sample t-test

data: MPG[Cylinders == 4] by is.american[Cylinders == 4]

t = -0.0947, df = 16.927, p-value = 0.9257

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-3.963921 3.623445

sample estimates:

mean in group FALSE mean in group TRUE

29.95833 30.12857

Figure 3.6: Comparing MPG for 4-cylinder cars

same-sized engines, there is effectively no difference between the MPG figures.

Let’s do another one. Suppose, in the last similar survey, the mean MPG figure
had been 20. Is there evidence that the mean MPG of all cars has changed from
20, based on the results of this survey? Let’s again take α = 0.05. The null
hypothesis is that the population mean is equal to 20, while the alternative is
that it is not equal to 20. This is a one-sample t-test; we are assessing a given
value based on one sample of data, rather than comparing two samples’ worth
of data. This time we have to specify the null-hypothesis mean, as in Figure 3.7.

The P-value is 0.00007, which is comfortably less than 0.05. This time, we can
reject our null hypothesis, and conclude that the mean has indeed changed from
20. The confidence interval contains only values above 20, so it looks as if the
mean MPG has increased.

Sometimes we have prior reasons to be interested in only one kind of change
or difference. For instance, we might be interested only in whether MPG has
increased since the last survey, and if it’s decreased we don’t care about that.
(You might be testing a new drug, for example, and you only care about whether
it works better than the current treatment. If it’s worse you know it’s not worth
following up.) The point is that you have to have prior reasons for suspecting
that things will increase. You can’t do it by looking at the data first. That
would be cheating!

When you’re only searching for a difference one way, it’s called a one-sided
test and the P-value is figured a different way. For our cars, for example, you
might feel (before looking at any numbers) that gas mileages are improving over
time, so you might be interested in testing that mean MPG is now greater than
20 as in the last survey (the alternative) against a null hypothesis that logically
ought to be that the mean is less than or equal to 20 (so that either the null or

3.3. HYPOTHESIS TESTS 59

> tt=t.test(MPG,mu=20)

> tt

One Sample t-test

data: MPG

t = 4.4821, df = 37, p-value = 6.895e-05

alternative hypothesis: true mean is not equal to 20

95 percent confidence interval:

22.60848 26.91257

sample estimates:

mean of x

24.76053

Figure 3.7: One-sample t-test

the alternative is true).

Let’s make this happen for the car MPG. R does two-sided tests by default, so
we have to specify the alternative that we want. The results are in Figure 3.8.

3.3.1 Matched pairs

Sometimes two samples is not two samples. Take a look at Figure 3.9. These
are data on the foreleg and hindleg length of deer. But these are the same 10
deer that have both legs measured (2 measurements for each), rather than one
lot of 10 deer that had their front legs measured, and a different 10 deer that
had their hind legs measured, which is what we require for a two-sample t test.
To get the right analysis, we need the paired option to t.test. (The analysis
actually works on the differences between foreleg and hindleg length for each
deer.) The analysis is shown in Figure 3.10. The P-value is small, so that we
conclude that mean leg lengths differ; the confidence interval suggests that the
foreleg is longer by between 1 and 5.5 centimetres.

Now let’s do the incorrect two-sample analysis, as in Figure 3.11. This time the
P-value is larger, and the confidence interval for difference in mean leg lengths
is longer; there appears to be less information in the data. In fact, there is;
nowhere in this (incorrect) analysis have we used the pairing, the fact that we
have two measurements from each deer.

One way to understand what has happened is to plot the foreleg lengths against
the corresponding hindleg lengths, as shown in Figure 3.12. I’ve put a lowess
curve on there to guide the eye. The story is that deer with longer forelegs tend
to have longer hindlegs as well. The two-sample analysis has failed to allow for

60 CHAPTER 3. STATISTICAL INFERENCE

> tt=t.test(MPG,mu=20,alternative="greater")

> tt

One Sample t-test

data: MPG

t = 4.4821, df = 37, p-value = 3.448e-05

alternative hypothesis: true mean is greater than 20

95 percent confidence interval:

22.96864 Inf

sample estimates:

mean of x

24.76053

> detach(cars)

Figure 3.8: One-sided test

> deer=read.csv("deer.csv",header=T)

> deer

Foreleg Hindleg

1 142 138

2 140 136

3 144 147

4 144 139

5 142 143

6 146 141

7 149 143

8 150 145

9 142 136

10 148 146

Figure 3.9: Matched pair data

3.3. HYPOTHESIS TESTS 61

> deer.paired=t.test(deer$Foreleg,deer$Hindleg,paired=T)

> deer.paired

Paired t-test

data: deer$Foreleg and deer$Hindleg

t = 3.4138, df = 9, p-value = 0.007703

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

1.113248 5.486752

sample estimates:

mean of the differences

3.3

Figure 3.10: Paired t-test output

> deer.two=t.test(deer$Foreleg,deer$Hindleg)

> deer.two

Welch Two Sample t-test

data: deer$Foreleg and deer$Hindleg

t = 1.978, df = 17.501, p-value = 0.06389

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.2122142 6.8122142

sample estimates:

mean of x mean of y

144.7 141.4

Figure 3.11: Incorrect two-sample test for deer data

62 CHAPTER 3. STATISTICAL INFERENCE

> plot(deer$Foreleg,deer$Hindleg)

> lines(lowess(deer$Foreleg,deer$Hindleg))

●

●

●

●

●

●

●

●

●

●

140 142 144 146 148 150

13
6

13
8

14
0

14
2

14
4

14
6

deer$Foreleg

de
er

$H
in

dl
eg

Figure 3.12: Scatterplot of deer leg lengths

3.4. ABOUT THAT P-VALUE 63

the fact that some deer are just long-legged. As far as that analysis is concerned,
foreleg length varies, and hindleg length varies, without acknowledging that they
vary together as well. The paired analysis works on the differences, foreleg minus
hindleg, so that if a particular deer has longer-than-average leg lengths, these
will cancel each other out when taking the difference.

Another way to handle this analysis is as a repeated measures, or to treat deer as
a random effect. We’ll see more of that in Section 6.7. This line of thinking says
that our deer are just a random sample of all possible deer, and we don’t particu-
larly care about differences between deer, just in the foreleg-hindleg comparison.
This is the same attitude that we take towards blocks in Section 6.2.

3.4 About that P-value

One way of thinking about hypothesis testing is as a black box: to turn your
data and hypotheses into a P-value, from which you make your decision. But
what is a P-value exactly?

The definition is this: the P-value is the probability of observing a value as
extreme or more extreme than the one observed, if the null hypothesis
is true. That’s a bit of a mouthful, but if we pull it apart, starting at the end,
we get at the logic.

The end part says “if the null hypothesis is true”. All of the logic behind the
P-value is based on what might happen if the null hypothesis is true. There is
nothing here about what might happen if the null hypothesis isn’t true. That’s
got nothing to do with P-values.

Suppose you do a test and get a P-value of 0.20. Roughly speaking, that says
that if the null is true, you have a 1-in-5 chance of getting a result like the one
you observed. This is small, but not terrifically small, in that your result is the
kind of thing that might occur by chance. Since we’re giving the null hypothesis
the benefit of the doubt, this isn’t really strong enough evidence to reject it
with. It’s hardly “beyond all reasonable doubt”.

Now suppose your P-value is 0.0000001. This is literally one in a million. That
means (roughly) that if the null hypothesis were true, you would have a one in a
million chance of observing a result like the one you observed. So now you have
a choice: is the null hypothesis true and you observed something fantastically
unlikely, or is it false? Most of us would opt for the latter.

Now how about if the P-value is 0.04? This is one in 25. So if we get this
P-value, we observed something that, if the null hypothesis is true, is unlikely
but far from impossible. So if we reject the null hypothesis here, we might be
making a mistake and rejecting it when it’s actually true. What to do?

64 CHAPTER 3. STATISTICAL INFERENCE

The thing about hypothesis testing is that there is always the risk of making
a mistake, which we have to live with. There is no way of eliminating the
possibility of error. Think back to the court of law analogy: there, there are
two kinds of mistake you can make: a “type 1 error”, to declare a person guilty
when they are in fact innocent, and a “type 2 error”, to declare a person not
guilty when they are in fact guilty.

Now, in a court of law, you could eliminate type 1 errors by declaring everyone
not guilty. But by so doing, you will let a lot of guilty people go free (make a
lot of type 2 errors). Likewise, you could eliminate type 2 errors by declaring
everyone guilty, but you will lock up a lot of innocent people (make a lot of type
1 errors). The best course of action lies somewhere in between: to decide on the
basis of the evidence as best you can, but to accept that mistakes will be made.

The terms “type 1 error” and “type 2 error” are actually statistical ones. A type
1 error is to reject the null hypothesis when it is actually true, and a type 2
error is to fail to reject the null hypothesis when it is actually false (ie. when you
want to reject it). As in the legal analogy, if you eliminate one type of error,
you’ll make a lot of the other type. If you never reject the null hypothesis, you’ll
make a lot of type 2 errors, and if you always reject the null hypothesis, you’ll
make a lot of type 1 errors.

Your statistical training might have included the injunction to “reject the null
hypothesis whenever the P-value is less than 0.05”. You might have wondered
what was so special about 0.05. This is a historical accident. One of the founders
of Statistics was Sir Ronald Fisher, who was both influential and opinionated.
He said:

... it is convenient to draw the line at about the level at which we can
say: “Either there is something in the treatment, or a coincidence has
occurred such as does not occur more than once in twenty trials.”...

If one in twenty does not seem high enough odds, we may, if we
prefer it, draw the line at one in fifty (the 2 per cent point), or one
in a hundred (the 1 per cent point). Personally, the writer prefers to
set a low standard of significance at the 5 per cent point, and ignore
entirely all results which fail to reach this level. A scientific fact
should be regarded as experimentally established only if a properly
designed experiment rarely fails to give this level of significance.

He produced a famous set of statistical tables, “Statistical Tables for Biological,
Agricultural, and Medical Research”. To save space, instead of giving compre-
hensive tables, as others had done before him, he gave critical values for which
the P-value would equal a small set of values (such as 0.01 and 0.05 and maybe
0.10), which made it easy to see whether the P-value was less than 0.05. The
tables in textbooks, to this day, follow this format.

3.5. POWER AND SAMPLE SIZE 65

So the answer to“why 0.05?” is“because that’s what Fisher said”. But with soft-
ware like R available that can calculate the exact P-value for any test, the right
thing to do is to quote the P-value you got, so that your readers can judge for
themselves whether the evidence is sufficiently compelling and therefore whether
they agree with your conclusion.

Most people would say that a P-value is 0.04 is evidence (though not strong
evidence) with which to reject a null hypothesis. But it depends on the con-
sequences of rejecting the null hypothesis. It might be that rejecting a null
hypothesis means buying a bunch of expensive new machinery, in which case
you’d want a very low P-value (0.04 might not be low enough), or you might be
only tentatively believing the null hypothesis in the first place, in which case a
P-value of 0.04 would be plenty small enough. It all depends on how serious it
is to make an error.

3.5 Power and sample size

3.5.1 The power.t.test function

P-values, as we saw before, only depend on what happens if the null hypothesis
is true. What if the null is not true? This is where we worry about how likely a
type 2 error is, or more positively, the power of a test, which is the probability
of not making a type 2 error: that is, the probability of correctly rejecting the
null hypothesis when it is false.

To think about things a little more carefully: suppose the null hypothesis is way
wrong (eg. null hypothesis says the population mean is 20, but it’s actually 30).
Then you are very likely to reject it, even if you only have a small sample, so the
power will be large. On the other hand, if the null hypothesis is only a tiny bit
wrong (null mean is 20, true mean is 20.01), you’ll have a hard time rejecting
the null hypothesis, even though it’s wrong, so the power will be small. Also,
the larger the sample size you have, the more easily you’ll be able to reject the
null hypothesis.

So power depends on two things: the sample size and how wrong the null hy-
pothesis is. So you’ll need to specify them both. Also, your best guess at the
population standard deviation.

R has a function power.t.test that works out these things for you.

By way of example: let’s go back to our one-sample t-test for the cars. We
were testing a null hypothesis that the mean MPG for all cars was 20, against
the alternative that it had changed. We had a sample of 38 cars, which had a
sample SD of 6.5, so we’ll take that as our best guess at the population SD. How
likely are we to be able to conclude that the population mean MPG is not 20,

66 CHAPTER 3. STATISTICAL INFERENCE

> pp=power.t.test(n=38,delta=25-20,sd=6.5,type="one.sample")

> pp

One-sample t test power calculation

n = 38

delta = 5

sd = 6.5

sig.level = 0.05

power = 0.9960424

alternative = two.sided

> names(pp)

[1] "n" "delta" "sd" "sig.level" "power"

[6] "alternative" "note" "method"

Figure 3.13: Power of t-test

when it is really 25, at α = 0.05? We have to specify that this is a one-sample t
test, since the default is for it to be a two-sample test. Figure 3.13 has the gory
details.

The power is 0.9960424. We are pretty much assured of being able to correctly
reject the null of the mean MPG being 20 if it’s really 25.

Notice that there is no data in this calculation. The time to think about power
is before you collect any data. You can answer questions like:

� what kind of departures from the null do I have a reasonable chance of
detecting with my planned sample size?

� what kind of sample size do I need to have a reasonable chance of detecting
a departure from the null of interest to me?

Let’s take the second question first. You can feed power.t.test a desired power
and leave the sample size unknown, and R will figure it out for you. What sample
size do we need to have a 70% chance of correctly rejecting the null hypothesis
that the population mean is 20, if the true mean is 21? Figure 3.14 has the
answer.

The required sample size is 262.6963, which we round off to 263. In general,
we round up always, because rounding down would give us not quite as large
a power as we would like. This is how many cars we’d need to sample. If this
exceeds our budget, we have to be aim lower!

3.5. POWER AND SAMPLE SIZE 67

> pp=power.t.test(delta=21-20,power=0.70,sd=6.5,type="one.sample")

> pp

One-sample t test power calculation

n = 262.6963

delta = 1

sd = 6.5

sig.level = 0.05

power = 0.7

alternative = two.sided

Figure 3.14: Sample size calculation

> mypower=function(true.mean)

+ {

+ pp=power.t.test(n=38,delta=true.mean-20,sd=6.5,type="one.sample")

+ pp$power

+ }

> mypower(25)

[1] 0.9960424

Figure 3.15: Function for computing power at a given true mean

Now let’s think about the first question. We have a fixed sample size of 38,
our null is that the population mean is 20, and the thing that varies is the true
population mean; we want to find out the power for a number of different true
population means. (“If the true population mean is this, how much power do I
have?”)

The first step is to write a function that accepts the true mean, computes the
power for our situation, and returns it, as Figure 3.15. That seems to work.
Now we make a vector of population means that we’d like to know power for,
and compute the power for each one. This is a job for sapply. Figure 3.16
shows you how it works.

You can eyeball this, but it’s nice to have these on a graph, so that you can see
how the power increases as the true mean and null mean move farther apart.
Such a graph is called a power curve. I’ll put a smooth curve1 on here as well
to guide the eye, and a dashed horizontal line at power 1, since that’s as high as
power gets. abline is a handy command for drawing lines on graphs; you can
use it to draw horizontal or vertical lines, or lines with a given intercept and

1If you want to plot a smooth trend on a scatterplot, use lowess, but if you want a smooth
curve to go through some points, spline is the one to choose.

68 CHAPTER 3. STATISTICAL INFERENCE

> means=seq(from=20,to=25,by=0.5)

> powers=sapply(means,mypower)

> cbind(means,powers)

means powers

[1,] 20.0 0.02500000

[2,] 20.5 0.06707312

[3,] 21.0 0.15009258

[4,] 21.5 0.28290838

[5,] 22.0 0.45520936

[6,] 22.5 0.63649367

[7,] 23.0 0.79120643

[8,] 23.5 0.89831818

[9,] 24.0 0.95848228

[10,] 24.5 0.98590211

[11,] 25.0 0.99604239

Figure 3.16: Calculating power for each sample size

slope. grid draws a grid on the plot, for ease of reading off values. The default
colour for grid is a very light grey that is hard to see, so I made it black. The
final result of all that is shown in Figure 3.17.

So with our sample of size 38, we have a reasonable chance to correctly reject a
null mean of 20 when the true population mean is about 23 or higher.

You can also do power curves as they depend on sample size, for a fixed true
mean (or a fixed difference between the true mean and the hypothesized mean).
A larger sample will give your test more power. If you do this for a departure
from the null of interest to you, you can see what kind of sample size will give
you the power that you want.

power.t.test also works for two-sample and matched pairs t tests. This is done
by specifying type="two.sample" (or one.sample or paired). You can control
the α that all the tests use (we used the default alpha of 0.05), by specifying
for example sig.level=0.01, and if your alternative hypothesis is one-sided,
you specify that with alternative="one.sided". For a two-sample test, the
sample size you feed in or get out is the size of each group (the groups are
assumed to be the same size); likewise, for matched pairs n is the number of
pairs.

3.5. POWER AND SAMPLE SIZE 69

> plot(means,powers)

> lines(spline(means,powers))

> abline(h=1,lty=2)

> grid(col="black")

●

●

●

●

●

●

●

●

●
● ●

20 21 22 23 24 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

means

po
w

er
s

Figure 3.17: Plot of power curve

70 CHAPTER 3. STATISTICAL INFERENCE

> set.seed(457299)

> xx=rnorm(38,23,6.5)

> t.test(xx,mu=20)

One Sample t-test

data: xx

t = 4.2354, df = 37, p-value = 0.000145

alternative hypothesis: true mean is not equal to 20

95 percent confidence interval:

22.23882 26.34547

sample estimates:

mean of x

24.29215

Figure 3.18: Drawing a random sample and running t.test on it

3.5.2 Power by simulation

power.t.test provides a kind of “magic” answer to “what is the power of my
test?”. But to understand why it works as it does, we can come at power another
way: take a random sample whose mean is whatever we think the true mean
is (say 23), and do a test that the population mean is, say, 20. Based on the
P-value that comes from that test, we decide whether to (correctly) reject the
null, or whether we don’t, and make a type 2 error.

The first step is to decide what population we are sampling from. In our case,
since we don’t really know any better, let’s make this a normal distribution,
whose mean is 23 and whose SD is 6.5. (This is the same thing R does in
calculating power exactly.) rnorm is the tool we want. It needs to be fed three
things: how big the sample is (38), what the mean is (23) and what the SD is
(6.5). Having drawn our random sample, we run t.test on it, as in Figure 3.18.
I’m using set.seed so that my random number generation doesn’t change from
one compilation of this text to the next, and so the conclusions I draw don’t
change.

In this case, the sample mean came out to be 24, and the null value of 20 was
resoundingly rejected.

Let’s put this all into a function that generates a random sample and returns a
decision: do we reject the null or not? Just for checking I’m going to print out
the results of the t test, but not return them. See Figure 3.19.

Notice that nothing gets fed into my.sample, hence the pair of brackets with
nothing between them. Make sure to include these brackets when you use the

3.5. POWER AND SAMPLE SIZE 71

> my.sample=function()

+ {

+ x=rnorm(38,23,6.5)

+ tt=t.test(x,mu=20)

+ print(tt)

+ tt$p.value<0.05

+ }

> my.sample()

One Sample t-test

data: x

t = 1.949, df = 37, p-value = 0.0589

alternative hypothesis: true mean is not equal to 20

95 percent confidence interval:

19.92059 24.09129

sample estimates:

mean of x

22.00594

[1] FALSE

> my.sample()

One Sample t-test

data: x

t = 2.0816, df = 37, p-value = 0.04435

alternative hypothesis: true mean is not equal to 20

95 percent confidence interval:

20.06786 25.02653

sample estimates:

mean of x

22.5472

[1] TRUE

Figure 3.19: Function to see whether we reject or not

72 CHAPTER 3. STATISTICAL INFERENCE

> my.sample=function()

+ {

+ x=rnorm(38,23,6.5)

+ tt=t.test(x,mu=20)

+ tt$p.value<0.05

+ }

> res=replicate(100,my.sample())

> res

[1] FALSE FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE

[13] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE

[25] TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE

[37] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE

[49] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[61] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE FALSE

[73] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE

[85] TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE

[97] TRUE TRUE TRUE TRUE

> tt=table(res)

> tt

res

FALSE TRUE

17 83

Figure 3.20: Simulated power for t-test

function, or else things will get very confusing!

For my two tests, the first sample had a mean of 22, and the null hypothesis
(that the mean was 20) was not quite rejected. In the second one, the sample
mean was 22.5, and the mean of 20 was (just) rejected.

The nice thing about doing simulations in R is that you write a function to do
your simulation once, and then you use replicate to do it as many times as
you like, gluing the results together.

Let me tidy up my function by taking out the print statement, and then do 100
simulations. In how many of my simulated samples is a mean of 20 rejected?
See Figure 3.20 for the answer.

The last line of my code counts up how many of my simulated samples rejected
a mean of 20 (TRUE) or failed to reject it (FALSE). I had 83 rejections out of 100,
for an estimated power of 0.83.

3.6. ASSESSING NORMALITY 73

> res=replicate(10000,my.sample())

> tt=table(res)

> tt

res

FALSE TRUE

2084 7916

Figure 3.21: 10,000 samples

100 random samples isn’t very many. 10,000 would be a lot better. That’s easy
enough to arrange. See Figure 3.21. This time I had 7916 rejections out of
10,000, so my estimated power is 0.7916. This is alarmingly close to the exact
power, calculated above as 0.7912 for a true mean of 23. (I think I was lucky to
get this close!)

3.6 Assessing normality

The t procedures were based on an assumption that the sample came from a
normally-distributed population. That is, the distribution of values from which
we have a sample is bell-shaped, with no outliers — indeed, the kind of thing
for which using the mean and SD is sensible.

You might be thinking “what if the values in my sample have a skewed shape or
outliers? What then? Well, the short answer is that the t procedures will often
work surprisingly well. But to see whether we have cause to worry, we need to
decide whether it is plausible that our data come from a normal distribution.

One way to do this is to make a histogram and see whether we have a sufficiently
bell-like shape. But this is hard to judge. (How bell-like is bell-like?) A QQ
plot makes the judgement easier to make, because you compare the plot to a
straight line.

To see what to expect, let’s first generate some random data from a normal
distribution, then take a look at it, first with a histogram, and then with a QQ
plot. qqnorm draws the plot, and qqline draws a line on it. See Figure 3.22.
The histogram looks not too badly normal. We’re looking for some random
wiggles around the line, no systematic curves or anything. That’s about what
we have.

Now we’ll try something skewed. The histogram in Figure 3.23 looks seriously
skewed right. Below that, you see how it shows up on a QQ plot, which is big-
time curved. The clear departure from the line says that a normal distribution
is no good. Imagine the circles moved across onto the data (vertical) scale. At

74 CHAPTER 3. STATISTICAL INFERENCE

> random.normal=rnorm(100,mean=10,sd=3)

> hist(random.normal)

Histogram of random.normal

random.normal

F
re

qu
en

cy

5 10 15

0
5

10
15

20
25

> qqnorm(random.normal)

> qqline(random.normal)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

4
6

8
10

12
14

16

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 3.22: QQ plot for normal data

3.6. ASSESSING NORMALITY 75

> random.exp=rexp(100,rate=1)

> hist(random.exp)

Histogram of random.exp

random.exp

F
re

qu
en

cy

0 1 2 3 4 5 6 7

0
10

20
30

40
50

60

> qqnorm(random.exp)

> qqline(random.exp)

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

−2 −1 0 1 2

0
1

2
3

4
5

6

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 3.23: QQ plot for skewed data

76 CHAPTER 3. STATISTICAL INFERENCE

> random.t=rt(100,df=2)

> qqnorm(random.t)

> qqline(random.t)

● ●

●

●
● ●

●

●

● ● ●

●

●

●

● ●

●

●
●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●●
●●

●

●

●

●

● ●●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●
●

●

●

● ●●●
●

●

●

●

● ● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

−2 −1 0 1 2

−
20

−
15

−
10

−
5

0
5

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 3.24: Another QQ plot

the low end, you have a lot of data bunched up together, while at the high end,
the values are too spaced out to be normal. Spaced-out at the high end means
that the long straggle is at the high end: skewed to the right.

A QQ plot that has a curve with data bunched up at the top end and spread
out at the bottom end indicates a left-skewed distribution.

Figure 3.24 shows an odd one. Never mind about exactly what kind of data
that first line is generating. Take a look at the plot. In the middle, the points
follow the line pretty well. But at the ends, they drift away: down on the left,
up on the right. Looking at the data (vertical) scale, the low values are too low
for a normal and the high values are too high. The distribution is like a normal,
but with more extreme (high and low) values than you’d expect.

Going back to our car data: are those MPG values normal? Figure 3.25 shows
a curious S-bend shape. The data are not normal: both the high and low

3.6. ASSESSING NORMALITY 77

> attach(cars)

> qqnorm(MPG)

> qqline(MPG)

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

−2 −1 0 1 2

15
20

25
30

35

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 3.25: QQ plot for car MPG data

78 CHAPTER 3. STATISTICAL INFERENCE

> mpg4=MPG[Cylinders==4]

> qqnorm(mpg4)

> qqline(mpg4)

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

25
30

35
Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 3.26: QQ plot for 4-cylinder engines

values are actually less extreme than the normal. Rather than agonizing over
this, recall that our cars were a mixture of 4-, 6- and 8-cylinder engines, with
different characteristics of fuel consumption.

So let’s break things down by number of cylinders. First the 4-cylinder engines.
Note, in Figure 3.26, how we select out the gas mileages for those cars with 4
cylinders. I’d say these are acceptably normal-looking.

There are only 8 8-cylinder engines; how do they look? Figure 3.27 tells the
story. I’d say those are acceptably normal also, though with such a small amount
of data it’s hard to be sure. In other words, the MPG data are a mixture
of normally-distributed stuff with different means (and probably different SDs
also), and a mixture of normals isn’t normal.

So now we know how to decide if things are normal. What to do if our data are
not? First off, we might consider basing our inference on the median instead,

3.6. ASSESSING NORMALITY 79

> mpg8=MPG[Cylinders==8]

> qqnorm(mpg8)

> qqline(mpg8)

> detach(cars)

●

●

●

●

●

●

●

●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

16
17

18
19

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 3.27: QQ plot for 8-cylinder engines

80 CHAPTER 3. STATISTICAL INFERENCE

> pp=binom.test(389,1023)

> pp

Exact binomial test

data: 389 and 1023

number of successes = 389, number of trials = 1023, p-value = 1.788e-14

alternative hypothesis: true probability of success is not equal to 0.5

95 percent confidence interval:

0.3503987 0.4108009

sample estimates:

probability of success

0.3802542

Figure 3.28: Confidence interval for population proportion

which is not affected by skewness or outliers. This is the domain of the sign
test, for which see Section 3.10.

3.7 Inference for proportions

Opinion polls say things like this:

38% of Canadians would vote Liberal if there were a federal election
tomorrow. 1,023 Canadians were sampled. The poll has a margin of
error of 3 percentage points, 19 times out of 20.

What does that all mean?

The problem is that we cannot know about the political opinions of “all Cana-
dians” without asking them. So we have to take a sample (the 1,023 Canadians
mentioned above). If the sample is a simple random sample (or some other kind
involving chance), the results can be very close to the truth, but the basic prob-
lem is, if you were to take another sample, you’d probably get different results.
So the best we can do is to get a confidence interval for the proportion of all
Canadians who would vote Liberal, which will express our uncertainty.

As for means, this can be done in two ways: via a confidence interval, and via
a test. The confidence interval answers a question like “what is the population
proportion of people who would vote Liberal”, while the hypothesis test would
answer something like “is the proportion of people who would vote Liberal in
the entire population 50%?”.

3.7. INFERENCE FOR PROPORTIONS 81

38% of 1023 is 389. We can get a confidence interval for the population propor-
tion p like this. Note the similarity with t.test: you’ll get a 95% confidence
interval and a two-sided test unless you ask for something different: Figure 3.28
shows that the confidence interval goes from 0.35 to 0.411. So that’s what we
think the proportion of all Canadians who would vote Liberal is.

Our single best guess at the proportion of Liberal supporters is 389/1023 = 38%.
Notice that the interval goes up and down 3 percentage points from that. This
is the margin of error, and it reflects how uncertain we are about our estimation
of the proportion of all Canadians who would vote Liberal.

Now, as in our estimation of a population mean, there’s no way to give an
interval that we are certain contains the population proportion. So we have to
accept a certain chance of being wrong. Hence the “95” of the 95% interval, or,
stating the same thing another way, the “19 times out of 20” in the poll.

Why funny numbers like “1,023” for the sample size? Well, the margin of error
depends mostly on sample size (the bigger the sample, the smaller the margin
of error). It depends on the actual proportion too, but only if that proportion
is close to 0 or 1, which, for the kinds of things polls study, it usually isn’t.

Let’s investigate the effect of sample size on margin of error. First, we pretend
that the 38% came from a sample of only 100 people, which would mean 38
Liberal supporters in the poll. This is the first line of Figure 3.29. This gives
a margin of error of about 10 percentage points: not even close enough for
Government work!

The second line of Figure 3.29 shows a sample of size 10,000 (3800 Liberal
supporters). Now the margin of error is about 1 percentage point.

As you’d guess, the larger sample does give a more accurate result, but the
issue is whether it is worth interviewing ten times as many people for the gain
of going from 3 percentage points to 1. Pollsters don’t generally think so; they
think 3 percentage points is accurate enough, and so a sample size of about 1000
is generally used.

As with means, we can use a hypothesis test to see whether there is evidence
that a population proportion is different from a null value. For example, suppose
you toss a coin 70 times, and you get 45 heads (and 25 tails). Is that evidence
that the coin is biased (that is, the proportion of heads in “all possible” tosses
of that coin isn’t 0.5)?

I admit that I made these data up.

To set this up: let p be the proportion of heads in all possible tosses of this coin.
The null hypothesis is that p = 0.5 (coin fair), while the alternative is that
p 6= 0.5 (biased). I think a two-sided alternative makes sense, since a bias either
way would be worth knowing about. Let’s also get a 90% confidence interval

82 CHAPTER 3. STATISTICAL INFERENCE

> binom.test(38,100)

Exact binomial test

data: 38 and 100

number of successes = 38, number of trials = 100, p-value = 0.02098

alternative hypothesis: true probability of success is not equal to 0.5

95 percent confidence interval:

0.2847675 0.4825393

sample estimates:

probability of success

0.38

> binom.test(3800,10000)

Exact binomial test

data: 3800 and 10000

number of successes = 3800, number of trials = 10000, p-value < 2.2e-16

alternative hypothesis: true probability of success is not equal to 0.5

95 percent confidence interval:

0.3704727 0.3895972

sample estimates:

probability of success

0.38

Figure 3.29: Effect of sample size on margin of error

> pp=binom.test(45,70,p=0.5,conf.level=0.90)

> pp

Exact binomial test

data: 45 and 70

number of successes = 45, number of trials = 70, p-value = 0.02246

alternative hypothesis: true probability of success is not equal to 0.5

90 percent confidence interval:

0.5382159 0.7381169

sample estimates:

probability of success

0.6428571

Figure 3.30: Test for proportion of heads

3.7. INFERENCE FOR PROPORTIONS 83

> binom.test(7,25,p=0.20,alternative="greater")

Exact binomial test

data: 7 and 25

number of successes = 7, number of trials = 25, p-value = 0.22

alternative hypothesis: true probability of success is greater than 0.2

95 percent confidence interval:

0.1394753 1.0000000

sample estimates:

probability of success

0.28

Figure 3.31: ESP testing

for p. Figure 3.30 shows the results.

The P-value here is 0.022, so this is evidence that the coin is biased (though not
the strongest evidence). We can look at the confidence interval to assess how
biased the coin is. The interval goes from 0.54 to 0.74, indicating that we know
very little about how biased the coin might be. We need a bigger sample size
to get a shorter confidence interval.

Making coins biased is actually very difficult, as least when you toss them.
Spinning coins can be a different matter. If you take an old US penny (with
the Lincoln Memorial on the “tails” side) and spin it, it will land tails up most
of the time.

Dice, on the other hand, can be made biased. Adding a little extra weight to
the 1-spot will make that face land downwards more often and make the 6-spot
land upwards more often. Or you can just cheat. I have one die that has 5 on
every side, and another that has 2 on three sides and 6 on the other three. Roll
those dice together and you are guaranteed to get 7 or 11!

I just did an on-line ESP test, http://www.psychicscience.org/esp3.aspx,
in fact. One way of testing for extra-sensory perception is via so-called Zener
cards: this has an equal number of cards of each of five different symbols: circle,
cross, wavy lines, square, star. You have to figure out what the next card will
be. If you’re just guessing, you’ll get about 20% right, so p = 0.20 is the null,
and p > 0.20 is the alternative hypothesis. I got 7 out of 25 right. Do I have
ESP? What does Figure 3.31 say?

No way. I could easily get as many as 7 just by guessing. In fact, I was guessing.

84 CHAPTER 3. STATISTICAL INFERENCE

3.8 Comparing several proportions

Instead of having one sample proportion that we are testing against some null
value, we might have several proportions that we want to test against one an-
other : are the population proportions all the same (null) or are any of them
different (alternative)?

The most natural way of presenting data in this kind of context is as a con-
tingency table. For example, I found a survey on Americans’ attitudes towards
abortion at different times, at http://pewresearch.org/pubs/1361/support-for-abortion-slips.

Let’s look at this table:

These are percentages, but we want the actual counts for this. In the accom-
panying writeup, it says that 4,013 adults took part in the latest survey. Let’s
assume that 4,013 different adults took part in the 2008 survey. That means
the actual numbers corresponding to those percentages were these, abbreviating
the rows to “Abortion should be” plus the word shown:

2008 2009

Illegal 1645 1809

Legal 2167 1886

Unknown 201 321

To ask whether views on abortion have changed over time, one way to proceed is
to ask “Is there an association between opinion and year?”. This brings us into
the domain of the chi-squared test for independence. The null hypothesis
is that there is no association between opinion and year (or your two categorical
variables in general), and the alternative is that there is some association (form
unspecified).

I copied that table into a file I called pew1.txt (you can use Notepad for this),
and read it into a data frame as in Figure 3.32. I had to use read.table because
this was just a text file with the values separated by whitespace. (Alternatively,
you could type the values into a spreadsheet, save the result as a .csv file, then
read them in using read.csv.) read.table in its simplest form requires the
name of the file, and whether or not you have column headers (we do).

3.8. COMPARING SEVERAL PROPORTIONS 85

> pew1=read.table("pew1.txt", header=T)

> pew1

X2008 X2009

Illegal 1645 1809

Legal 2167 1886

Unknown 201 321

Figure 3.32: Reading in the abortion data

> ct=chisq.test(pew1)

> ct

Pearson's Chi-squared test

data: pew1

X-squared = 54.8541, df = 2, p-value = 1.226e-12

Figure 3.33: Test for association

R treats the names of the columns as variables, and variables starting with a
number are not allowed, hence the X glued onto the beginning of the years.

The test for association is shown in Figure 3.33. The P-value is 0.000000000001226251,
which is extraordinarily small. We can reject the null hypothesis of no associ-
ation, so there is definitely an association. Even though the change over the
year looked small, there were enough people surveyed for it to be statistically
significant.

When a hypothesis of no association is rejected, we usually want to find out
where the association is. This can be done by comparing what we observed to
what we would have expected under no association. The stuff returned to us
from chisq.test includes the expected frequencies (these will be familiar to
you if you have ever done this test by hand), and the “residuals”, which, when
far from zero, indicate where “no association” fails. Figure 3.34 shows those.

The top one is the actual data we had. The second table says, for example, that
if there were no association (difference between years) we would have expected
to see just over 2000 “legal”s both years. In the bottom table, look for the
values farthest from zero. These are in the third row (indicating an increase in
“don’t know”s) and in the second (indicating that the proportion of “legal”s has
decreased).

The interpretation of the residuals is that, compared to what you would have
expected under no association, you saw more than that (positive residual) or

86 CHAPTER 3. STATISTICAL INFERENCE

> ct$observed

X2008 X2009

Illegal 1645 1809

Legal 2167 1886

Unknown 201 321

> ct$expected

X2008 X2009

Illegal 1726.3547 1727.6453

Legal 2025.7428 2027.2572

Unknown 260.9025 261.0975

> ct$residuals

X2008 X2009

Illegal -1.958023 1.957291

Legal 3.138473 -3.137301

Unknown -3.708563 3.707178

Figure 3.34: Observed and expected frequencies, with residuals

fewer than that (negative). This gives you an idea of why the chi-squared test
for independence was significant.

The chi-squared test doesn’t naturally produce a confidence interval, because
there isn’t usually anything to produce a confidence interval of. The one excep-
tion is when you are comparing exactly two proportions. That can be handled
using prop.test, which is like binom.test that we used for one proportion.
But when you have more than two proportions, a confidence interval doesn’t
make much sense because what are you comparing with what?

To make that fly with our data, we’ll have to throw away the “don’t knows”,
and also turn the table around so that the years are on the rows. This is done
in the first four lines of Figure 3.35. The last line gets the interval.

Leaving aside those who didn’t express an opinion, the proportion of people
thinking abortion should be illegal was between 3.5 and 8 percentage points
lower in 2008 than in 2009 (ie. it has gone up between the two times). For R,
the first column of the transposed table, here Illegal, is counted as “success”.

But when you have something other than 2 proportions being compared, you’ll
need to do the chi-squared test and look at the residuals.

There are other things on the website I cited, including classifications of how
many people think “abortion is a critical issue” by year and political viewpoint.

3.8. COMPARING SEVERAL PROPORTIONS 87

> pew1

X2008 X2009

Illegal 1645 1809

Legal 2167 1886

Unknown 201 321

> pu=pew1[1:2,]

> pu

X2008 X2009

Illegal 1645 1809

Legal 2167 1886

> t(pu)

Illegal Legal

X2008 1645 2167

X2009 1809 1886

> prop.test(t(pu))

2-sample test for equality of proportions with continuity correction

data: t(pu)

X-squared = 25.2186, df = 1, p-value = 5.119e-07

alternative hypothesis: two.sided

95 percent confidence interval:

-0.08083175 -0.03526527

sample estimates:

prop 1 prop 2

0.4315320 0.4895805

Figure 3.35: Confidence interval for difference in proportions

88 CHAPTER 3. STATISTICAL INFERENCE

> pew2=read.table("pew2.txt",header=T)

> ct2=chisq.test(pew2)

> ct2

Pearson's Chi-squared test

data: pew2

X-squared = 121.0359, df = 4, p-value < 2.2e-16

Figure 3.36: Association between agreeing and political view

But this is a three-way table (year, viewpoint and agree/disagree), and an anal-
ysis of that takes us into the murky waters of log-linear analysis.

Let’s do a partial analysis of this table:

We’ll just look at the 2009 survey and ask “is the proportion in favour the same
for all five political groups?” Again, I need actual counts, so I’ll assume those
4000 people are 1000 in each of the middle 3 groups and 500 in each of the
extreme ones. (Just to show you that the totals don’t all have to be the same.)
That gives this table:

Agree Disagree

ConRep 220 280

LibRep 710 290

Ind 610 390

ConDem 640 360

LibDem 355 145

I saved that into pew2.txt, and did the analysis of Figure 3.36. That P-value
is tiny. There is definitely an association between political viewpoint and agree-
ment with“the country should find a middle ground”. What kind of association?
Look at the residuals, Figure 3.37.

It’s them Republicans! The ones on the right of the party are less likely to agree

3.8. COMPARING SEVERAL PROPORTIONS 89

> ct2$residuals

Agree Disagree

ConRep -5.4421152 7.1587615

LibRep 3.0288716 -3.9842908

Ind -0.9434190 1.2410086

ConDem 0.2482682 -0.3265812

LibDem 2.1417356 -2.8173191

Figure 3.37: Residuals

> attach(cars)

> tbl=table(Cylinders,Country)

> tbl

Country

Cylinders France Germany Italy Japan Sweden U.S.

4 0 4 1 6 1 7

5 0 1 0 0 0 0

6 1 0 0 1 1 7

8 0 0 0 0 0 8

> ct=chisq.test(tbl)

> ct

Pearson's Chi-squared test

data: tbl

X-squared = 22.2649, df = 15, p-value = 0.101

Figure 3.38: Constructing table and testing association for cylinders and country

and more likely to disagree than expected. Curiously, though, the Republicans
on the left of that party are more likely to agree than expected. A look back at
the original source puts them on a par with the most left-leaning Democrats,
with the other categories rather in the middle.

Sometimes you don’t have a table to begin with, and you have to construct
it. For example, for our cars data, you might be interested in the association
between the number of cylinders a car’s engine has and which country it comes
from. Remember the table command? Do that first, and feed its output
into chisq.test, as in Figure 3.38. Even though there appears to be a strong
association, the test does not give a significant result. This is because there isn’t
much data.

90 CHAPTER 3. STATISTICAL INFERENCE

> ct$expected

Country

Cylinders France Germany Italy Japan Sweden U.S.

4 0.50000000 2.5000000 0.50000000 3.5000000 1.00000000 11.0000000

5 0.02631579 0.1315789 0.02631579 0.1842105 0.05263158 0.5789474

6 0.26315789 1.3157895 0.26315789 1.8421053 0.52631579 5.7894737

8 0.21052632 1.0526316 0.21052632 1.4736842 0.42105263 4.6315789

Figure 3.39: Expected values for cylinders by country

> not5=cars[Cylinders!=5,]

> attach(not5)

The following object(s) are masked from 'cars':

Car, Country, Cylinders, Horsepower, MPG, Weight

> isUS=(Country=="U.S.")

> tbl=table(Cylinders,isUS)

> detach(not5)

> tbl

isUS

Cylinders FALSE TRUE

4 12 7

6 3 7

8 0 8

Figure 3.40: Cylinders by country with categories combined

In fact, we might not even be able to trust that P-value we did get, because we
should be suspicious of small expected values, especially ones smaller than 1.
What do we have? Figure 3.39 says we have lots of trouble. When the expected
frequencies are too small, we have to combine categories in some way.

Let’s try this: we’ll simply classify Country as US and “other”, and we’ll take
out the 5-cylinder car, as in Figure 3.40. I began by creating a data frame not5

that contains all the cars except the one that had 5 cylinders. Then I wanted to
refer to the variables in not5 rather than the ones in cars, hence that farting
around with detach and attach. Then I created a new variable that determines
whether a car is from the US or not. Finally I made a table and displayed it.

There is now a strongly significant association (Figure 3.41). We should check
the expected frequencies, though. They are not too bad. Nothing smaller than

3.9. CONNECTING TESTS AND CONFIDENCE INTERVALS 91

> ct=chisq.test(tbl)

> ct

Pearson's Chi-squared test

data: tbl

X-squared = 9.9475, df = 2, p-value = 0.006917

> ct$expected

isUS

Cylinders FALSE TRUE

4 7.702703 11.297297

6 4.054054 5.945946

8 3.243243 4.756757

Figure 3.41: Chi-squared test with categories combined

> ct$residuals

isUS

Cylinders FALSE TRUE

4 1.5483667 -1.2785218

6 -0.5235017 0.4322673

8 -1.8009007 1.4870448

Figure 3.42: Cylinders-country residuals

1, and nothing too much smaller than 5. (R will give you a warning if it thinks
the expected frequencies are too small.)

So let’s check the residuals to see why we found a significant association (as if
we didn’t know). Figure 3.42 says that there are fewer import 8-cylinder cars
than we would have expected (actually, none at all) and more import 4-cylinder
cars.

3.9 Connecting tests and confidence intervals

You might feel that tests and confidence inrervals cover mostly the same ground.
A confidence interval says something like “what is my population mean”, and a
test says “could my population mean be 20?” These are really two sides of the
same coin, so if you know something about the test result (P-value) you know
something about the confidence interval, and vice versa.

92 CHAPTER 3. STATISTICAL INFERENCE

Let’s illustrate with the two-sample t-test comparing gas mileage of American
and imported cars. We’ll start with the test and default 95% CI, and then we’ll
get 90% and 99% CIs as well:

> attach(cars)

The following object(s) are masked from 'cars (position 3)':

Car, Country, Cylinders, Horsepower, MPG, Weight

> t.test(MPG~is.american)

Welch Two Sample t-test

data: MPG by is.american

t = 2.0009, df = 30.748, p-value = 0.0543

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.08229979 8.46639070

sample estimates:

mean in group FALSE mean in group TRUE

27.18750 22.99545

> t.test(MPG~is.american,conf.level=0.90)$conf.int

[1] 0.6389167 7.7451742

attr(,"conf.level")

[1] 0.9

> t.test(MPG~is.american,conf.level=0.99)$conf.int

[1] -1.559980 9.944071

attr(,"conf.level")

[1] 0.99

In the second and third cases, I didn’t need to see the test results again, so I
just took the confidence interval out of the result.

In the first case, the P-value is just a bit bigger than 0.05, so we couldn’t quite
reject the null hypothesis that the mean MPG values were equal for the two
populations. This is echoed by the confidence interval, where 0 is just inside the
interval, so it is a “plausible” value for the difference in means.

3.9. CONNECTING TESTS AND CONFIDENCE INTERVALS 93

The second interval, a 90% one, goes from 0.64 to 7.75. 0 is not inside that
interval, so at this level 0 is not a plausible difference between the means.

The last interval, 99%, again does include zero. So at this level, the difference
between the two means could be zero.

So what’s the connection? You need to be doing a two-sided test (an alternative
of “not equal”), because a confidence interval is a two-sided thing (it goes up
and down from the sample mean). Then the connection is between the P-value
and one minus the confidence level:

� If the P-value is greater than 0.01, the hypothesized mean will be inside
the 99% confidence interval.

� If the P-value is greater than 0.05, the hypothesized mean will be inside
the 95% confidence interval.

� If the P-value is greater than 0.10, the hypothesized mean will be inside
the 90% confidence interval.

Otherwise the hypothesized mean will be inside the appropriate confidence in-
terval.

In our example, the P-value was 0.0543, greater than 0.01 and 0.05, but less
than 0.10. So 0 was inside the 99% and 95% confidence intervals, but outside
the 90% one.

You might suspect that we could make a confidence interval for which 0 was right
on the end. We can. To do that, work out 1 − 0.0543 = 0.9457, and conclude
that 0 would be right on the end of a 94.57% confidence interval. Were we right?

> tc=t.test(MPG~is.american,conf.level=0.9457)$conf.int

> tc

[1] 4.960726e-05 8.384041e+00

attr(,"conf.level")

[1] 0.9457

> detach(cars)

What do you think? (If you don’t like the scientific notation, that interval goes
from 0.00005 to 8.4.)

The correspondence between tests and confidence intervals is what mathemati-
cians call “if and only if”; it works the other way around as well:

94 CHAPTER 3. STATISTICAL INFERENCE

� If a value µ0 is inside a 99% confidence interval for µ, then, for testing the
null hypothesis µ = µ0 against µ 6= µ0, the P-value is greater than 0.01.

� If a value µ0 is inside a 95% confidence interval for µ, then, for testing the
null hypothesis µ = µ0 against µ 6= µ0, the P-value is greater than 0.05.

� If a value µ0 is inside a 90% confidence interval for µ, then, for testing the
null hypothesis µ = µ0 against µ 6= µ0, the P-value is greater than 0.10.

Checking this one out for our example, 0 is inside the 99% and 95% confidence
intervals and outside the 90% one. So the P-value for testing that the mean
difference is zero is greater than 0.01, greater than 0.05, but less than 0.10. As
indeed it is.

The same ideas work for any confidence interval and test, whenever both of
them make sense. For example, we were assessing the evidence for a coin being
fair if we observed 45 heads in 70 tosses:

> pp=binom.test(45,70,p=0.5,conf.level=0.90)

> pp

Exact binomial test

data: 45 and 70

number of successes = 45, number of trials = 70, p-value = 0.02246

alternative hypothesis: true probability of success is not equal to 0.5

90 percent confidence interval:

0.5382159 0.7381169

sample estimates:

probability of success

0.6428571

The P-value being less than 0.10 corresponds to 0.5 being outside the 90% confi-
dence interval. Would 0.5 be inside a 99% confidence interval for the probability
of heads? Try it and see:

> binom.test(45,70,p=0.5,conf.level=0.99)$conf.int

[1] 0.4824399 0.7833028

attr(,"conf.level")

[1] 0.99

It’s inside. Which makes sense because the P-value, small though it is at 0.022,
is not smaller than 0.01. However, the P-value is pretty close to 0.01, which is
supported by 0.5 being pretty close to the end of the confidence interval.

3.10. THE SIGN TEST 95

3.10 The sign test

When you don’t believe your data come from a normal distribution — in fact, the
distribution appears to be sufficiently non-normal for you to be more interested
in testing the median rather than the mean — you can use the sign test. This
is more or less free of assumptions; as long as you have a simple random sample
from your population, whatever it is, you’re good to go.

Let’s take our x from right back at the beginning:

> x=c(8,9,11,7,13,22,6,14,12)

and suppose for some reason we’re interested in testing whether or not the
population median is 7.5 (null hypothesis) against the alternative that it is not.

The logic is: if the population median really were 7.5, you’d expect to see about
half the data values above 7.5 and about half below. So what you can do is
relabel your data as “success” if the value is above 7.5 and “failure” if it’s below.
Then, you have a population of successes and failures, and you can test whether
the proportion of successes in the population is a half, 0.5.

But to do that, you’re just using a test for a proportion as in Section 3.7. The
null hypothesis is that the proportion of successes is equal to 0.5 (against the
alternative that it’s not), and the data are how many “successes” (values above
7.5) you observed in your sample, and the number of values in your sample
altogether.

Let’s see if we can get R to do the heavy lifting:

> g=(x>7.5)

> x

[1] 8 9 11 7 13 22 6 14 12

> g

[1] TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE

> y=sum(g)

> y

[1] 7

96 CHAPTER 3. STATISTICAL INFERENCE

> n=length(g)

> n

[1] 9

g is a logical vector (the logical statement x>7.5 is either true or false for each
value of x). Now, R counts each TRUE as 1 and each FALSE as 0, so if you add
up the logical values in g, you’ll get the total number of TRUEs, which here is
the number of values greater than 7.5.

Now we feed y and n into binom.test, taking advantage of the fact that testing
p = 0.5 is the default, so we don’t need to say that:

> binom.test(y,n)

Exact binomial test

data: y and n

number of successes = 7, number of trials = 9, p-value = 0.1797

alternative hypothesis: true probability of success is not equal to 0.5

95 percent confidence interval:

0.3999064 0.9718550

sample estimates:

probability of success

0.7777778

The P-value 0.18 is not small, so there’s no reason to reject the null hypothesis
that the median is 7.5.

What if the hypothesized median were exactly equal to one of the data values?
Then we’d throw that data value away, since it doesn’t contribute to the test.
For example, testing median equal to 7 goes like this, with a first step of getting
rid of those values equal to 7:

> xx=x[x!=7]

> xx

[1] 8 9 11 13 22 6 14 12

> g=(xx>7)

> y=sum(g)

> y

3.10. THE SIGN TEST 97

[1] 7

> n=length(g)

> n

[1] 8

> binom.test(y,n)

Exact binomial test

data: y and n

number of successes = 7, number of trials = 8, p-value = 0.07031

alternative hypothesis: true probability of success is not equal to 0.5

95 percent confidence interval:

0.4734903 0.9968403

sample estimates:

probability of success

0.875

x!=7 means “x is not equal to 7”, so x[x!=7] means “those values of x that are
not equal to 7”, which are the ones we want. Note that there are only 8 data
values now, since we threw one away. The P-value is now 0.07, which is closer
to significance than it was before.

Let’s see if we can dress this up as a function. We need to feed in two things: the
data and the hypothesized median, and all we need to get back is the P-value
(since the other output from binom.test doesn’t help us much):

> sign.test=function(mydata,median)

+ {

+ xx=mydata[mydata!=median]

+ gg=(xx>median)

+ y=sum(gg)

+ n=length(gg)

+ bt=binom.test(y,n)

+ bt$p.value

+ }

Let’s go through that.

� The function line says that what comes in to the function is called mydata

and median as far as the function is concerned, no matter what it was
called outside.

98 CHAPTER 3. STATISTICAL INFERENCE

� First line below the curly bracket defines xx as the values in mydata that
are not equal to the hypothesized median.

� Then we make a vector of TRUE and FALSE according to whether the values
in xx are greater than the fed-in median or not. (They can’t be equal, since
we got rid of those).

� Then we count how many ”successes” we had and how many ”trials”, and
feed them into binom.test, saving the results.

� Finally, we extract the P-value and return it, so that if we run the function,
we’ll see just that.

Let’s test it out:

> sign.test(x,7.5)

[1] 0.1796875

> sign.test(x,7)

[1] 0.0703125

Did it work? Yep.

Now, how do we get a confidence interval for the population median? What we
have to do is to use that idea from Section 3.9, which says here that:

to get the confidence interval for the median, find all the values
for the hypothesized median that are not rejected in a two-sided
hypothesis test with the corresponding α. (That is, to get a 95%
confidence interval, reject when P-value less than 0.05; to get a 90%
interval, reject when P-value less than 0.10.)

So what we can do is to make a list of values to hypothesize for the median
(we no longer have a null hypothesis to guide us), and then run our sign.test
function on the same data for each of those hypothesized medians.

Our data values go from 6 to 22, so let’s go from 5 to 23 in steps of 0.5, which
is what the first line below does. Then we have to go through our hypothesized
medians and run the sign test with our data on each one. I’ll do it with a loop
this time, partly for the variety, and partly because I realize that I didn’t struc-
ture the sign.test function properly to use sapply without jumping through
additional hoops:

3.10. THE SIGN TEST 99

> hmed=seq(from=5,to=23,by=0.5)

> for (i in hmed)

+ {

+ p=sign.test(x,i)

+ print(c(i,p))

+ }

[1] 5.00000000 0.00390625

[1] 5.50000000 0.00390625

[1] 6.0000000 0.0078125

[1] 6.5000000 0.0390625

[1] 7.0000000 0.0703125

[1] 7.5000000 0.1796875

[1] 8.0000000 0.2890625

[1] 8.5000000 0.5078125

[1] 9.0000000 0.7265625

[1] 9.5 1.0

[1] 10 1

[1] 10.5 1.0

[1] 11 1

[1] 11.5 1.0

[1] 12.0000000 0.7265625

[1] 12.5000000 0.5078125

[1] 13.0000000 0.2890625

[1] 13.5000000 0.1796875

[1] 14.0000000 0.0703125

[1] 14.5000000 0.0390625

[1] 15.0000000 0.0390625

[1] 15.5000000 0.0390625

[1] 16.0000000 0.0390625

[1] 16.5000000 0.0390625

[1] 17.0000000 0.0390625

[1] 17.5000000 0.0390625

[1] 18.0000000 0.0390625

[1] 18.5000000 0.0390625

[1] 19.0000000 0.0390625

[1] 19.5000000 0.0390625

[1] 20.0000000 0.0390625

[1] 20.5000000 0.0390625

[1] 21.0000000 0.0390625

[1] 21.5000000 0.0390625

[1] 22.0000000 0.0078125

[1] 22.50000000 0.00390625

[1] 23.00000000 0.00390625

100 CHAPTER 3. STATISTICAL INFERENCE

(A technicality: I can’t just name a variable inside a loop to print it; I have to
use the print function explicitly.)

All right, what do we have?

Let’s start with a 95% confidence interval. We want all the values of the median
for which the P-value is greater than 0.05. Notice that the P-values (second
column of the output) go up and then down, so there’ll be two places where
they pass 0.05. Those are: between 6.5 and 7.0, and between 14.0 and 14.5.
So 7.0 and 14.0 are inside the confidence interval, and 6.5 and 14.5 are outside.
Hence the 95% CI for the median goes from 7.0 to 14.0.

Similarly, we can find the 90% confidence interval for the population median,
which is all those values for the median where the P-value is bigger than 0.10:
from 7.5 to 13.5.

The 90% interval is a smidgen narrower than the 95% one, as it should be. The
reader can verify (I hope) that the 99% confidence interval goes from 6.5 all the
way up to 21.5.

All of these confidence intervals are pretty wide, for a couple of reasons:

1. We don’t have much data: only 9 observations, and sometimes we have to
throw one of them away.

2. The sign test makes rather wasteful use of the data: only whether each
value is above or below the hypothesized median. Contrast that with a t-
test: the exact value of each observation is used in calculating the sample
mean and sample SD. But, when your population isn’t normal, maybe
using all the data values is not what you want to do.

In case you care, here is the easiest way I could find to do it with sapply:

> st2=function(m,x)

+ {

+ sign.test(x,m)

+ }

> pvals=sapply(hmed,st2,x)

> cbind(hmed,pvals)

hmed pvals

[1,] 5.0 0.00390625

[2,] 5.5 0.00390625

[3,] 6.0 0.00781250

[4,] 6.5 0.03906250

[5,] 7.0 0.07031250

3.10. THE SIGN TEST 101

[6,] 7.5 0.17968750

[7,] 8.0 0.28906250

[8,] 8.5 0.50781250

[9,] 9.0 0.72656250

[10,] 9.5 1.00000000

[11,] 10.0 1.00000000

[12,] 10.5 1.00000000

[13,] 11.0 1.00000000

[14,] 11.5 1.00000000

[15,] 12.0 0.72656250

[16,] 12.5 0.50781250

[17,] 13.0 0.28906250

[18,] 13.5 0.17968750

[19,] 14.0 0.07031250

[20,] 14.5 0.03906250

[21,] 15.0 0.03906250

[22,] 15.5 0.03906250

[23,] 16.0 0.03906250

[24,] 16.5 0.03906250

[25,] 17.0 0.03906250

[26,] 17.5 0.03906250

[27,] 18.0 0.03906250

[28,] 18.5 0.03906250

[29,] 19.0 0.03906250

[30,] 19.5 0.03906250

[31,] 20.0 0.03906250

[32,] 20.5 0.03906250

[33,] 21.0 0.03906250

[34,] 21.5 0.03906250

[35,] 22.0 0.00781250

[36,] 22.5 0.00390625

[37,] 23.0 0.00390625

First I had to define a new function with the hypothesized median and data
x the other way around, so that it fits the template for sapply. Then I also
had to pass the data x into sapply. Then cbind prints out two vectors (the
hypothesized medians and P-values returned from sapply) side by side.

102 CHAPTER 3. STATISTICAL INFERENCE

Chapter 4

Regression

4.1 Introduction

Regression and ANOVA have the common goal that you have a numerical re-
sponse or outcome variable, and one or more other things that might make
a difference to the outcome. Then you want to find out whether those other
things really do make a difference to the outcome.

Some examples, going back to the cars data and taking MPG as our response:

� Does MPG depend on the weight of the car? (Simple regression.)

� Does MPG depend on which country the car comes from? (One-way
ANOVA)

� Does MPG depend on the weight and/or the horsepower of the car? (Mul-
tiple regression.)

� Does MPG depend on country and/or the number of cylinders? As long
as we treat number of cylinders as a categorical variable dividing the cars
into groups, this is a two-way ANOVA.

� Does MPG depend on country and/or the horsepower of the engine?
(Analysis of covariance.)

The distinction is this: if you have all quantitative explanatory variables, it’s a
regression; if you have all categorical explanatory variables, it’s an ANOVA; if
you have a mixture, it’s an analysis of covariance.

In some ways, this is an artificial distinction, because these are all “linear mod-
els”, and in R, lm can be used to fit them all and test them for significance.

103

104 CHAPTER 4. REGRESSION

But they come from different historical places, and it is often useful to treat the
methods in different ways.

You might have encountered ANOVA as a way of testing for differences between
groups. This is true, but I never really understood what it was doing until I
realized that we were really looking to see whether knowing what group an
observation was in helped you predict what its response variable might be.

4.2 Simple regression

Simple regression is not especially simple; it’s just called that because you have
only one explanatory variable. For example, you might be predicting MPG from
weight.

The first step in a proposed regression analysis is to draw a picture. The appro-
priate picture is a scatterplot, which is just a xy-plot of the data, like Figure 4.1.

The first variable you give is the explanatory, or x, variable. The second one is
the response, or y, variable. (If you just want to assess the relationship between
two variables without thinking of one of them as a response, you can plot them
either way around.)

So now we look at this plot. What do we see? When the weight is smaller, on
the left, the gas mileage is usually higher, but when the weight is larger, the
MPG is usually smaller. It’s not a perfect relationship — it usually isn’t — but
there seems to be enough of a trend to be interesting.

Next, a couple of things you might want to add to the plot. These get added
to the “current plot”, the last plot statement you issued. The first is called a
“scatterplot smoother”, and gives you a sense of what kind of trend there is, as
shown in Figure 4.2. This looks like a straight line trend, at least up until a
weight of 3 tons or so, when it seems to level off a bit.

Another thing you might want to plot is the points with a different symbol
according to another variable, such as Cylinders. R has a list of characters
that it uses for plotting (see the help for points). These are characters 4, 6
and 8 in the list. See Figure 4.3. I also added a legend, which involved a little
jiggery-pokery to pick out the unique different values for Cylinders and the
points to plot with them.

Another way, plotting the actual symbols 4, 6, and 8, is as in Figure 4.4. Note
the two-step process where we first draw the plot with nothing on it, and then
we use text to put the right thing in the right places.

Note, in both cases, that the 4-cylinder cars are top and left (low weight, good
MPG) while the 8-cylinder cars are bottom and right (high weight, bad MPG).

4.2. SIMPLE REGRESSION 105

> cars=read.csv("cars.csv",header=T)

> attach(cars)

The following object(s) are masked from 'cars (position 3)':

Car, Country, Cylinders, Horsepower, MPG, Weight

> plot(Weight,MPG)

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

2.0 2.5 3.0 3.5 4.0

15
20

25
30

35

Weight

M
P

G

Figure 4.1: Scatterplot of weight and MPG

106 CHAPTER 4. REGRESSION

> plot(Weight,MPG)

> lines(lowess(Weight,MPG))

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

2.0 2.5 3.0 3.5 4.0

15
20

25
30

35

Weight

M
P

G

Figure 4.2: Scatterplot with lowess curve

4.2. SIMPLE REGRESSION 107

> plot(Weight,MPG,pch=Cylinders)

> legend("topright",legend=unique(Cylinders),pch=unique(Cylinders))

2.0 2.5 3.0 3.5 4.0

15
20

25
30

35

Weight

M
P

G

4
6
8
5

Figure 4.3: Scatterplot with points identified by cylinders

108 CHAPTER 4. REGRESSION

> plot(Weight,MPG,type="n")

> text(Weight,MPG,labels=Cylinders)

2.0 2.5 3.0 3.5 4.0

15
20

25
30

35

Weight

M
P

G

4

4

6

4

6

4

44

8

5
8
6

4

4

4

6

4

6

6

8

4

6

6
4

4

8
6

8

4

4

6

4

8

4

4

4

88

Figure 4.4: Plotting actual numbers of cylinders

4.2. SIMPLE REGRESSION 109

> plot(Weight,MPG,type="n")

> text(Weight,MPG,labels=Country)

2.0 2.5 3.0 3.5 4.0

15
20

25
30

35

Weight

M
P

G

U.S.

U.S.

U.S.

Italy

France

Germany

U.S.Japan

U.S.

Germany
U.S.
U.S.

Germany

U.S.

Japan

Japan

Germany

U.S.

U.S.

U.S.

Japan

U.S.

U.S.
Sweden

Japan

U.S.
Sweden

U.S.

Japan

U.S.

U.S.

U.S.

U.S.

Germany

U.S.

Japan

U.S.U.S.

Figure 4.5: Using countries as labels

The latter plotting approach works best when you have single-character values
to plot. Figure 4.5 shows what happens if you try to plot by country. The
labels for Country overwrite each other, making a messy-looking plot. (The
actual points are at the centre of the country names.)

A couple of fixes: make the country names smaller, like Figure 4.6. cex stands
for “character expansion”.

Or we could abbreviate the country names. There is a handy command abbreviate

that produces guaranteed-unique abbreviations of at least a given length, as
shown in Figure 4.7. The first two lines demonstrate how abbreviate works by
testing it on a list of Greek letters.

Finally, we could label each point by which car it represents. This time we want
to actually plot the points, and put the labels not on top of the points, but (say)
to the right of them, which is what pos=4 does, using small characters so the
labels don’t overlap too much. See Figure 4.8.

110 CHAPTER 4. REGRESSION

> plot(Weight,MPG,type="n")

> text(Weight,MPG,labels=Country,cex=0.5)

2.0 2.5 3.0 3.5 4.0

15
20

25
30

35

Weight

M
P

G

U.S.

U.S.

U.S.

Italy

France

Germany

U.S.Japan

U.S.

Germany

U.S.
U.S.

Germany

U.S.

Japan

Japan

Germany

U.S.

U.S.

U.S.

Japan

U.S.

U.S.

Sweden

Japan

U.S.
Sweden

U.S.

Japan

U.S.

U.S.

U.S.

U.S.

Germany

U.S.

Japan

U.S.
U.S.

Figure 4.6: Countries as smaller labels

4.2. SIMPLE REGRESSION 111

> greeks=c("alpha","beta","epsilon","eta","eta","epsilon")

> abbreviate(greeks,1)

alpha beta epsilon eta eta epsilon

"a" "b" "ep" "et" "et" "ep"

> country1=abbreviate(Country,1)

> country1

U.S. U.S. U.S. Italy France Germany U.S. Japan U.S. Germany

"U" "U" "U" "I" "F" "G" "U" "J" "U" "G"

U.S. U.S. Germany U.S. Japan Japan Germany U.S. U.S. U.S.

"U" "U" "G" "U" "J" "J" "G" "U" "U" "U"

Japan U.S. U.S. Sweden Japan U.S. Sweden U.S. Japan U.S.

"J" "U" "U" "S" "J" "U" "S" "U" "J" "U"

U.S. U.S. U.S. Germany U.S. Japan U.S. U.S.

"U" "U" "U" "G" "U" "J" "U" "U"

> plot(Weight,MPG,type="n")

> text(Weight,MPG,labels=country1)

2.0 2.5 3.0 3.5 4.0

15
20

25
30

35

Weight

M
P

G

U

U

U

I

F

G

UJ

U

G
U
U

G

U

J

J

G

U

U

U

J

U

U
S

J

U
S

U

J

U

U

U

U

G

U

J

UU

Figure 4.7: Abbreviated country names

112 CHAPTER 4. REGRESSION

> plot(Weight,MPG)

> text(Weight,MPG,Car,pos=4,cex=0.5)

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

2.0 2.5 3.0 3.5 4.0

15
20

25
30

35

Weight

M
P

G

Buick Skylark

Dodge Omni

Mercury Zephyr

Fiat Strada

Peugeot 694 SL

VW Rabbit

Plymouth HorizonMazda GLC

Buick Estate Wagon

Audi 5000

Chevy Malibu Wagon
Dodge Aspen

VW Dasher

Ford Mustang 4

Dodge Colt

Datsun 810

VW Scirocco

Chevy Citation

Olds Omega

Chrysler LeBaron Wagon

Datsun 510

AMC Concord D/L

Buick Century Special

Saab 99 GLE

Datsun 210

Ford LTD
Volvo 240 GL

Dodge St Regis

Toyota Corona

Chevette

Ford Mustang Ghia

AMC Spirit

Ford Country Squire Wagon

BMW 320i

Pontiac Phoenix

Honda Accord LX

Mercury Grand Marquis
Chevy Caprice Classic

Figure 4.8: Scatterplot with cars labelled

4.2. SIMPLE REGRESSION 113

> cor(Weight,MPG)

[1] -0.9030708

> cars.numeric=cars[,2:5]

> cor(cars.numeric)

MPG Weight Cylinders Horsepower

MPG 1.0000000 -0.9030708 -0.8055110 -0.8712821

Weight -0.9030708 1.0000000 0.9166777 0.9172204

Cylinders -0.8055110 0.9166777 1.0000000 0.8638473

Horsepower -0.8712821 0.9172204 0.8638473 1.0000000

Figure 4.9: Correlation matrix for cars

Another thing you might want to do is to put the best straight line on the
scatter plot, but we’ll get to that in a minute.

4.2.1 Correlation

Enough pictures for a moment. One of the numerical ways you can summarize
a scatter plot is by a correlation. This can take two or more variables, or
even a data frame. (It’s an error to ask for the correlation of a data frame that
contains any categorical variables, so I created one with just the quantitative
ones, in columns 2 through 5.)

The correlation is a number between −1 and 1. −1 means a perfect straight
line going downhill, 1 means a perfect straight line going uphill, and 0 means
no straight-line association at all. In our case, we got −0.903, which indicates a
pretty strong and straight relationship going downhill. This is what we saw on
the scatter plot. If the association were stronger or straighter, the correlation
would be closer to −1.

When you feed cor more than two variables, you get a correlation matrix, show-
ing the correlation between the variable in the row and the variable in the col-
umn. Our correlation matrix is in Figure 4.9. You can see the −0.903 again
in the first row (of numbers) and second column, and also in the second row
and first column. The correlation between a variable and itself is always 1. The
correlations here are all pretty close to 1 or −1; for example, a car with more
cylinders is likely to be heavier (correlation 0.917) and to have more horsepower
(0.864). Since high on MPG goes with low on everything else, all the correlations
with MPG are negative.

So the process is:

114 CHAPTER 4. REGRESSION

1. Look at a scatterplot to decide whether you have any kind of relationship,
and if so, what kind of relationship you have.

2. Once you’ve decided a straight line describes what’s going on, the corre-
lation summarizes how strong the relationship is.

3. To find out which straight line describes the relationship, you need re-
gression (coming up below).

4.2.2 Regression preliminaries

There are only two things that you need to describe a straight line: where it
starts from (called the intercept) and how fast it goes up or down (called the
slope). There’s nothing else to it. If you’re trying to describe a curve, you have
to capture its curviness somehow, but a straight line just keeps on going the
same for ever, so once you have the intercept and slope, you are done.

So which intercept and slope do we need? There is a principle called least
squares that produces good lines when you don’t have any points too far from
the trend. (If you do, there can be weirdness, but we won’t worry about that
for now.) The R function lm fits least squares regressions, and actually analyses
of variance as well.

4.2.3 Fitting a regression line

The starting point for lm is a “model formula”. We saw this when we were
drawing side-by-side boxplots and wanted to divide our data up into groups.
The response variable (the one you’re trying to predict) goes on the left side,
then a , the the explanatory variable (the one you’re predicting the response
from) on the right.

lm calculates a lot of stuff that you might need later, so it’s a good idea to save
the output in a variable, and then you can look at what you want to look at a
bit at a time. Let’s predict MPG from Weight. Off we go, Figure 4.10.

Printing the output from lm just gives you what the regression was of (next to
“Call”) and the estimated intercept and slope. Here, the intercept says that a
car that weighs nothing would go 48.7 MPG (which doesn’t make much sense),
and the slope says that for each additional ton of weight, the MPG decreases
by 8.4 miles per gallon on average (which does make sense).

That’s all fine and well, but if we are going to be good statisticians, we want to
know at least a couple more things: how confident are we in our estimate of the
slope, and is the trend reproducible (thinking of our cars as a random sample
from all possible cars)? That’s what summary (also in Figure 4.10) shows us.

4.2. SIMPLE REGRESSION 115

> ans=lm(MPG~Weight)

> ans

Call:

lm(formula = MPG ~ Weight)

Coefficients:

(Intercept) Weight

48.707 -8.365

> summary(ans)

Call:

lm(formula = MPG ~ Weight)

Residuals:

Min 1Q Median 3Q Max

-5.4595 -1.9004 0.1686 1.4032 6.4091

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 48.708 1.954 24.93 < 2e-16 ***

Weight -8.365 0.663 -12.62 8.89e-15 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.851 on 36 degrees of freedom

Multiple R-squared: 0.8155, Adjusted R-squared: 0.8104

F-statistic: 159.2 on 1 and 36 DF, p-value: 8.889e-15

> confint(ans)

2.5 % 97.5 %

(Intercept) 44.745245 52.669745

Weight -9.709267 -7.019932

Figure 4.10: Regression for cars

116 CHAPTER 4. REGRESSION

The accuracy of the slope is summarized by its standard error, here 0.663 (look
in Coefficients). The confint command gets confidence intervals for parameters
(intercept and slope(s)) in a regression. This is shown in Figure 4.10 as well.
By default it gives you 95% intervals (for all the parameters); use level= or
investigate parm= if you want something else. Here, we are pretty sure that the
slope is between −7 and −10.

If the slope were zero, there would be no dependence of MPG on Weight (since
the predicted MPG would be the same all the way along). R tests whether the
slope is zero: in the Coefficients table, look along to the end of the Weight line.
The last number is the P-value for testing that the slope is zero. Here, it is very
small indeed, indicating that we have way more of a trend than we’d expect by
chance. The three stars on the end of the line indicate a P-value less than 0.001.
This is something that should be reproducible.

The F test for a regression (at the bottom of the summary output) tells us
whether none of the explanatory variables have any effect on the response (the
null) or whether one or more of them do (the alternative). Since we only have
one explanatory variable here, this tells us the same as the test for the slope.
The P-value is identical.

When you are doing a multiple regression with more than one x-variable (coming
up), this is your starting point, answering the initial question of “is anything
helping?”.

4.2.4 Quality control

How do we know that the regression line we fitted makes any sense? Looking at
the scatterplot is a start, but sometimes things are a little harder to see. Here’s
an example where the right picture makes things obvious.

If you eyeball Figure 4.11, you’ll see that y goes up by steps of 2 until halfway
along, and then it goes up by steps of 1. In other words, the rate of increase
isn’t constant, so a straight line shouldn’t work here.

But the regression output looks pretty good, as shown in Figure 4.12. The slope
is accurately estimated, and is significantly different from zero. The “multiple
R-squared” is the square of the correlation between x and y, 0.9694, so the actual
correlation must be over 0.98. What’s not to like?

Let’s have a look at the data, the “fitted values” or y-values predicted from the
line, and the “residuals”, the differences between what we observed and what
we predicted. This is the first line in Figure 4.13. The first two and last two
predicted values are too big, and the ones in the middle are too small, with the
prediction for x = 4 being the worst of all. Plotting the fitted values against
the residuals, as in Figure 4.13, is the standard way of looking at things.

4.2. SIMPLE REGRESSION 117

> x=1:8

> y=c(3,5,7,9,10,11,12,13)

> plot(x,y)

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7 8

4
6

8
10

12

x

y

Figure 4.11: Is this straight?

118 CHAPTER 4. REGRESSION

> lmxy=lm(y~x)

> summary(lmxy)

Call:

lm(formula = y ~ x)

Residuals:

Min 1Q Median 3Q Max

-0.83333 -0.36310 -0.04762 0.40476 0.95238

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.4286 0.5148 4.717 0.00327 **

x 1.4048 0.1019 13.779 9.09e-06 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.6607 on 6 degrees of freedom

Multiple R-squared: 0.9694, Adjusted R-squared: 0.9643

F-statistic: 189.9 on 1 and 6 DF, p-value: 9.087e-06

Figure 4.12: Regression of non-linear data

The clear pattern, up and down, of the residuals means that you can predict
how far off the line you are, and which way, from how far along you are. This
is bad news, because if something predictable is happening, we should be able
to predict it, in the model, and what’s left over from the regression should have
no pattern.

I’m going to cheat now, and fit a multiple regression model that should make
things better. Don’t worry too much about what I’m doing; just have a look at
the residual plot that comes out the other end, which is Figure 4.14.

Much better. Can you predict the residual from the fitted value now?

With that in mind, let’s go back to our cars. The original scatterplot is shown
in Figure 4.15 with a hint of a curve in the trend (the decrease in MPG is less
for larger weights). The residual plot is shown in Figure 4.15. The trend has
been removed, making any pattern in the residuals easier to see. It’s not as
clear as the one we saw just now, but look: the residuals are located top left,
bottom middle, top right, with nothing much anywhere else. This indicates also
a curved trend.

If you want to guide the eye, you can use a scatterplot smoother like lowess, as
we did before. See Figure 4.17. This brings out the curve rather more clearly.
We’ll attack these data again later, when we come to look at transformations.

4.2. SIMPLE REGRESSION 119

> cbind(x,y,fitted.values(lmxy),residuals(lmxy))

x y

1 1 3 3.833333 -0.8333333

2 2 5 5.238095 -0.2380952

3 3 7 6.642857 0.3571429

4 4 9 8.047619 0.9523810

5 5 10 9.452381 0.5476190

6 6 11 10.857143 0.1428571

7 7 12 12.261905 -0.2619048

8 8 13 13.666667 -0.6666667

> plot(fitted.values(lmxy),residuals(lmxy))

●

●

●

●

●

●

●

●

4 6 8 10 12 14

−
0.

5
0.

0
0.

5
1.

0

fitted.values(lmxy)

re
si

du
al

s(
lm

xy
)

Figure 4.13: Residual plot

120 CHAPTER 4. REGRESSION

> xsq=x*x

> lmxy2=lm(y~x+xsq)

> plot(fitted.values(lmxy2),residuals(lmxy2))

●

●

●

●

●

●

●

●

4 6 8 10 12

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

fitted.values(lmxy2)

re
si

du
al

s(
lm

xy
2)

Figure 4.14: Residual plot

4.2. SIMPLE REGRESSION 121

> plot(Weight,MPG)

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

2.0 2.5 3.0 3.5 4.0

15
20

25
30

35

Weight

M
P

G

Figure 4.15: Scatterplot of weight and MPG

122 CHAPTER 4. REGRESSION

> plot(fitted.values(ans),residuals(ans))

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

15 20 25 30

−
4

−
2

0
2

4
6

fitted.values(ans)

re
si

du
al

s(
an

s)

Figure 4.16: Residual plot for cars

4.2. SIMPLE REGRESSION 123

> plot(fitted.values(ans),residuals(ans))

> lines(lowess(fitted.values(ans),residuals(ans)))

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

15 20 25 30

−
4

−
2

0
2

4
6

fitted.values(ans)

re
si

du
al

s(
an

s)

Figure 4.17: Residual plot with lowess

124 CHAPTER 4. REGRESSION

> par(mfrow=c(2,2))

> plot(ans)

15 20 25 30

−
6

−
2

2
4

6

Fitted values

R
es

id
ua

ls

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●●

●

●

●

●
●

Residuals vs Fitted

435

34

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●●

●

●

●

●
●

−2 −1 0 1 2

−
2

−
1

0
1

2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

435

34

15 20 25 30

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

Scale−Location
435

34

0.00 0.05 0.10 0.15

−
2

−
1

0
1

2

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●
●

Cook's distance
0.5

0.5

Residuals vs Leverage

9

435

Figure 4.18:

Plotting a regression fit gives you four useful plots, of which I’ll explain two.
The first command in Figure 4.18 puts the four plots together on one page.

The top left plot in Figure 4.18 is the residual plot we just had. The normal
QQ plot (here top right) is testing the residuals for normality (the assumption
behind the fitting and tests is that the residuals should be normally distributed).
The residuals follow the dotted line pretty well, except perhaps at the top end,
where there are some larger-than-expected residuals, especially cars 4 and 35.
The stuff in square brackets below is to pick out the data values and residuals
for just those cars:

> highres=c(4,35)

> fv=fitted.values(ans)

> cbind(cars[highres,c("Car","MPG","Weight")],fv[highres])

Car MPG Weight fv[highres]

4.3. MULTIPLE REGRESSION 125

> pairs(cars.numeric)

MPG

2.0 3.0 4.0

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●●

80 120

15
20

25
30

35

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●●

2.
0

3.
0

4.
0

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

Weight
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●

● ●●

●

●

●

●

●● ●

●

●

●●

●

●

● ●

● ●

●

●

●

● ●

●

●

●

● ●●

●●

●●

●

●

●

● ●●

●

●

●

●

● ●●

●

●

●●

●

●

●●

●●

●

●

●

●●

●

●

●

●●●

●●

Cylinders

4
5

6
7

8

●●

●

●

●

●●●

●

●

●

●

● ●●

●

●

●●

●

●

●●

●●

●

●

●

●●

●

●

●

●●●

●●

15 20 25 30 35

80
12

0

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

4 5 6 7 8

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

Horsepower

Figure 4.19: Scatterplot matrix of car numeric variables

4 Fiat Strada 37.3 2.130 30.89090

35 Pontiac Phoenix 33.5 2.556 27.32758

These cars both have higher MPG than you’d otherwise expect. The Fiat Strada
has the highest MPG of all the cars, including some that weigh less than its 2.3
tons, and the Pontiac Phoenix has very good gas mileage for a car that weighs
over 2.5 tons. A look at the original scatterplot suggests that its gas mileage of
33.5 is typical of a car weighing maybe 2.2 tons.

You can study the other plots and decide what they tell you!

4.3 Multiple regression

A multiple regression is like a simple regression, but with more than one ex-
planatory variable.

126 CHAPTER 4. REGRESSION

Perhaps a good place to start is with a “scatterplot matrix”: all the scatterplots
for all the pairs of variables. See Figure 4.19. This shows the same kind of thing
that the correlation matrix showed: all the variables are pretty well correlated
with each other, positively or negatively. But the multiple regression tells a
different story, as we’ll see.

Fitting a multiple regression is simplicity itself: just put all the explanatory
variables on the right-hand side of the model formaula, separated by plus signs:

> ans2=lm(MPG~Weight+Cylinders+Horsepower)

> ans2

Call:

lm(formula = MPG ~ Weight + Cylinders + Horsepower)

Coefficients:

(Intercept) Weight Cylinders Horsepower

49.3802 -7.3898 0.7459 -0.0736

We get one intercept, plus a slope for each explanatory variable. But we are
getting ahead of ourselves. We should first check that this regression has any
predictive value at all. Let’s start at the bottom of the output from summary:

> summary(ans2)

Call:

lm(formula = MPG ~ Weight + Cylinders + Horsepower)

Residuals:

Min 1Q Median 3Q Max

-4.4522 -1.5929 -0.3554 1.1088 6.6481

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 49.3802 1.9690 25.078 < 2e-16 ***

Weight -7.3898 2.0797 -3.553 0.00114 **

Cylinders 0.7459 0.7252 1.029 0.31097

Horsepower -0.0736 0.0441 -1.669 0.10433

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.796 on 34 degrees of freedom

Multiple R-squared: 0.8324, Adjusted R-squared: 0.8176

F-statistic: 56.28 on 3 and 34 DF, p-value: 2.838e-13

4.3. MULTIPLE REGRESSION 127

Look at the F -test on the last line: the P-value is 0.0000000000003. Something
here definitely helps to predict MPG. Now we can look at the rest of the output
to find out what.

Take a look at those slope estimates. The one for Weight is -7.39, which is
similar to before. The one for Cylinders is 0.746, positive, which seems to
mean that a car with more cylinders gets better MPG. How can that be? Also,
the slope for Horsepower is -0.0736, close to zero, which seems to mean that
there’s almost no change in MPG as the horsepower increases.

The key to interpreting slopes in multiple regression is to say that they assess the
contribution of a variable after all the other variables in the regression have been
adjusted for. So, if you think of two cars with the same weight and horsepower,
the one with more cylinders is predicted to get better MPG. Likewise, if you have
two cars of the same weight and number of cylinders, increasing the horsepower
will decrease the MPG only slightly.

If you are familiar with the term, slopes in a multiple regression describe“marginal”
changes: a change just in that one variable while leaving everything else the
same.

Another way of assessing the value of the variables in predicting MPG is to
look at their P-values. The way to assess these is to ask “does this variable
help in predicting the response, over and above the contributions of the other
variables?”. The null hypothesis is that it doesn’t, and the alternative is that it
does, so you are again looking for small P-values.

Let’s reproduce our summary table from above, so we can have a look at that:

> summary(ans2)

Call:

lm(formula = MPG ~ Weight + Cylinders + Horsepower)

Residuals:

Min 1Q Median 3Q Max

-4.4522 -1.5929 -0.3554 1.1088 6.6481

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 49.3802 1.9690 25.078 < 2e-16 ***

Weight -7.3898 2.0797 -3.553 0.00114 **

Cylinders 0.7459 0.7252 1.029 0.31097

Horsepower -0.0736 0.0441 -1.669 0.10433

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

128 CHAPTER 4. REGRESSION

Residual standard error: 2.796 on 34 degrees of freedom

Multiple R-squared: 0.8324, Adjusted R-squared: 0.8176

F-statistic: 56.28 on 3 and 34 DF, p-value: 2.838e-13

The P-value for Weight is 0.00114. Weight definitely has an impact on MPG,
even allowing for the other variables. But the P-value for Cylinders is 0.311,
which is definitely not small. That’s why the slope came out with the “wrong”
sign: it was just chance. Cylinders definitely has nothing to add. The P-value
for Horsepower is 0.104 is only smallish, so that variable doesn’t have much to
say either. R doesn’t even put any stars on the end of that line.

So what do we do now?

One way of tackling a regression is to do as we did: start with all the variables
that might be useful, and see which are significant. Then take out the ones
that are not significant, and repeat until everything is significant. This is called
backward elimination. Other ways are to start with nothing, and add the vari-
able(s) that are most significant. Or you can do a mixture of the two, called
stepwise regression, but that is not recommended.

I’m going to show you two different approaches. The first is to take out the
least significant variables one at a time, and the second is to take out everything
nonsignificant and see what happens.

For the first approach, take out Cylinders:

> ans3=lm(MPG~Weight+Horsepower)

> summary(ans3)

Call:

lm(formula = MPG ~ Weight + Horsepower)

Residuals:

Min 1Q Median 3Q Max

-4.5754 -1.7809 -0.0461 1.5237 6.0916

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 48.94199 1.92398 25.438 < 2e-16 ***

Weight -6.06455 1.63381 -3.712 0.000712 ***

Horsepower -0.06703 0.04367 -1.535 0.133815

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.799 on 35 degrees of freedom

4.3. MULTIPLE REGRESSION 129

Multiple R-squared: 0.8272, Adjusted R-squared: 0.8173

F-statistic: 83.76 on 2 and 35 DF, p-value: 4.554e-14

The P-value for Horsepower has actually gotten bigger. Because Cylinders is
no longer there, the slopes and P-values have moved around a bit. (They will
because the three explanatory variables are correlated with each other; a heavy
car is likely to have more cylinders and more horsepower in its engine).

So Horsepower comes out too, and we are left with our simple regression model:

> summary(ans)

Call:

lm(formula = MPG ~ Weight)

Residuals:

Min 1Q Median 3Q Max

-5.4595 -1.9004 0.1686 1.4032 6.4091

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 48.708 1.954 24.93 < 2e-16 ***

Weight -8.365 0.663 -12.62 8.89e-15 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.851 on 36 degrees of freedom

Multiple R-squared: 0.8155, Adjusted R-squared: 0.8104

F-statistic: 159.2 on 1 and 36 DF, p-value: 8.889e-15

The second way of doing things is to pull out both Cylinders and Horsepower

at once. We have to be a little careful about this, since taking out one might
make the other one significant. But there is a way to test this all in one go.
Recall that ans was the regression with only Weight in it, and ans2 was the
regression with all 3 x’s in it. Feed these two into the anova function, with the
smallest (fewest x’s) model first, to get:

> a=anova(ans,ans2)

> a

Analysis of Variance Table

Model 1: MPG ~ Weight

130 CHAPTER 4. REGRESSION

Model 2: MPG ~ Weight + Cylinders + Horsepower

Res.Df RSS Df Sum of Sq F Pr(>F)

1 36 292.57

2 34 265.85 2 26.722 1.7087 0.1963

The interpretation is “is ans2 an improvement over ans?” The null is that it
is not, and the alternative is that is. So we are looking for a small P-value. Is
0.196 small? No way. So the other variables have nothing to add over Weight.

When we were doing simple regression, we noticed (perhaps by looking at the
residual plot) that the relatinship between MPG and Weight looked a bit curved
rather than linear. There are basically two ways around that: fix up the re-
sponse, or fix up the explanatory variables. The first of those is the domain
of Transformations, which we look at in Section 6.8. The second we can think
about now. What we are going to to is to fit a parabola, which is a particular
(simple) kind of curve. This will give us some insight as to whether a curve is
really better than a straight line.

First we define a new variable to be the explanatory variable squared (multiplied
by itself). Then we add this to the regression (making it a multiple regression
again) and test the squared term for significance. If it is significant, a curve
really does fit better than a straight line.

> wsq=Weight*Weight

> ans3=lm(MPG~Weight+wsq)

> summary(ans3)

Call:

lm(formula = MPG ~ Weight + wsq)

Residuals:

Min 1Q Median 3Q Max

-4.4017 -1.6442 -0.0489 1.1502 7.1115

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 75.3716 8.2133 9.177 7.64e-11 ***

Weight -27.1279 5.6807 -4.775 3.16e-05 ***

wsq 3.1158 0.9383 3.321 0.00211 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.521 on 35 degrees of freedom

Multiple R-squared: 0.8597, Adjusted R-squared: 0.8517

F-statistic: 107.3 on 2 and 35 DF, p-value: 1.18e-15

4.3. MULTIPLE REGRESSION 131

> par(mfrow=c(2,2))

> plot(ans3)

20 25 30 35

−
4

0
2

4
6

8

Fitted values

R
es

id
ua

ls ●

●

●

●

● ●

●

●
●

●

●
●

●
● ●

●
●

●
●●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●●

Residuals vs Fitted

35

4

34

●

●

●

●

●●

●

●
●

●

●
●

●
●●

●
●

●
●●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●●

−2 −1 0 1 2

−
1

0
1

2
3

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

35

4

34

20 25 30 35

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●
●

●

● ●
●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

Scale−Location
35

4

34

0.0 0.1 0.2 0.3 0.4

−
2

0
1

2
3

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●

●

●

● ●

●

●
●

●

●
●

●
● ●

●
●

●
● ●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●●

Cook's distance
1

0.5

0.5

1

Residuals vs Leverage

35

4

6

Figure 4.20: Diagnostic plots for curved regression

132 CHAPTER 4. REGRESSION

OK, so the quadratic (squared) term is indeed significant. The curve is real; the
curve really is a better description of the data than the straight line is. Let’s
check the plots. Are there any other problems?

The residuals look nicely random now, though two of the cars (#4 and #35)
still have positive residuals that are maybe a bit large (look at the normal QQ
plot top right). Comparison with the corresponding plots from the regression
with just Weight reveals that things are a bit better.

I thought I would produce a scatterplot with both the line and the curve on it,
so that you can see how the curve conforms better to the data.

> plot(Weight,MPG)

> lines(spline(Weight,fitted.values(ans3)))

> lines(spline(Weight,fitted.values(ans)))

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

2.0 2.5 3.0 3.5 4.0

15
20

25
30

35

Weight

M
P

G

One word of warning with curves like this, though; they always curve down and
then up (or up and then down), so you need to be careful that they are actually
behaving according to the data.

4.4. PREDICTIONS, PREDICTION INTERVALS AND EXTRAPOLATION133

4.4 Predictions, prediction intervals and extrap-
olation

Now would be a good place to mention the perils of extrapolation, that is,
predicting outside the range of the data. In our case, that would be cars with
weight between 2 and about 4.5 tons. Let’s see what happens when we predict
the gas mileage for a car with weight 6 tons, from the linear regression ans and
the curved one ans3.

First I need to create a mini data frame of values to predict. The data frame
I create has to have a thing called Weight, which I can do as below. Also, for
doing the prediction from the curve, I need a thing called wsq which is the weight
squared. This is a bit complicated, so let’s take it steps. First, the creation of
the data frame:

> w.pred=6

> wsq.pred=w.pred*w.pred

> pred.df=data.frame(Weight=w.pred,wsq=wsq.pred)

> pred.df

Weight wsq

1 6 36

Now the actual predictions. The workhorse for this is predict, which is another
multi-coloured R function; whatever you feed it, it will try to do a prediction
for it. Within reason.

predict needs two things: a regression fit, and a data frame of values to predict
for. The latter we created just above, and the former can be ans (the straight
line) or ans3 (the curve). (There was an ans2, which, if you recall, was the
multiple regression predicting MPG from everything else. But we decided that
was no better than just using Weight.)

Below, I’m saving each of the predictions in a variable, and then using cbind

to glue the predictions as extra “columns” on the end of the data frame. In a
moment, you’ll see why I’m doing this rather than just using c, which, for this
prediction, would be just as good. Also, bear in mind that for the cars we had,
the predictions from the line and the curve were quite similar. Here we go:

> ans.pred=predict(ans,pred.df)

> ans3.pred=predict(ans3,pred.df)

> cbind(pred.df,ans.pred,ans3.pred)

Weight wsq ans.pred ans3.pred

1 6 36 -1.480104 24.77174

134 CHAPTER 4. REGRESSION

The predicted MPG values for a car of weight 6 tons were -1.48 from the line
and 24.77 from the curve. These are completely different, and, what’s more,
neither of them make much sense. An MPG figure cannot possibly be negative,
and also the figure of 24.77 shows a higher gas mileage than the heaviest cars
in our data set. What’s going on?

To shed some light, let’s do not just one prediction but a bunch. Let’s predict
from 2 tons all the way up to 6. I structured my code above so that I could just
copy and paste, changing a very few things along the way. Can you see what’s
happening below?

> w.pred=2:6

> wsq.pred=w.pred*w.pred

> pred.df=data.frame(Weight=w.pred,wsq=wsq.pred)

> pred.df

Weight wsq

1 2 4

2 3 9

3 4 16

4 5 25

5 6 36

Notice now that R knows that when you want to multiply a vector of numbers
by itself, you want to multiply each number by itself and make a vector out of
the results. (This is not the same as matrix multiplication, if you know about
that, which R can also do, but differently from this.)

All right, the predictions:

> ans.pred=predict(ans,pred.df)

> ans3.pred=predict(ans3,pred.df)

> cbind(pred.df,ans.pred,ans3.pred)

Weight wsq ans.pred ans3.pred

1 2 4 31.978296 33.57890

2 3 9 23.613696 22.02984

3 4 16 15.249096 16.71229

4 5 25 6.884496 17.62626

5 6 36 -1.480104 24.77174

For weights up to 4 tons (where our data ends), the predictions are very similar,
but after that, things start to go crazy. The straight line just keeps on going

4.4. PREDICTIONS, PREDICTION INTERVALS AND EXTRAPOLATION135

down and down. It doesn’t know it’s “supposed” to stop at zero! The predicted
MPG figures just keep on decreasing by about 8 MPG per ton. For ever. That’s
what straight lines do.

The predictions from the curve level off around the end of our data, which is
what the data suggest, and then — start going up again! This is what parabolas
do: they turn the corner and start going the other way. This is a mathematical
feature of this kind of curve, but is entirely unsupported by our data! (You
might imagine that if we had some heavier vehicles in our data set, the MPG
figures would go down at a decreasing rate, never reaching zero. Then the curve
we fitted might not do such a good job.)

Now I’m going to add something to the predictions, a so-called “prediction
interval”. This is saying, suppose I had another car, of weight 2, 3, 4, 5 or 6
tons. Then what would be a (95%) confidence interval for the predicted MPG
each time? I just add an interval="p" to each call to predict to get this:

> ans.pred=predict(ans,pred.df,interval="p")

> ans3.pred=predict(ans3,pred.df,interval="p")

> cbind(pred.df,ans.pred,ans3.pred)

Weight wsq fit lwr upr fit lwr upr

1 2 4 31.978296 26.0071938 37.949397 33.57890 28.203076 38.95473

2 3 9 23.613696 17.7535136 29.473878 22.02984 16.752425 27.30725

3 4 16 15.249096 9.1955288 21.302663 16.71229 11.279126 22.14545

4 5 25 6.884496 0.3602431 13.408749 17.62626 8.880822 26.37169

5 6 36 -1.480104 -8.6982988 5.738091 24.77174 7.497564 42.04592

The first pair of lwr and upr columns are the lower and upper limits of the pre-
diction intervals from the line. As you go off the end of the data, these intervals
get gradually wider, and at least the upper ends of the intervals haven’t gone
below zero yet. (These intervals are valid if the straight line model continues to
hold, which we don’t believe.)

The last two columns give us the prediction intervals for the curve. Within the
data, they are not much different from the predictions for the line, but once you
go off the end of the data, the intervals get way wider, reflecting that even if
that curve continued, we would be almost completely ignorant about the MPG
of a car that weighed 6 tons. When you get a prediction interval like that, you
know you are extrapolating!

So we’ve learned that this curve models the data we have quite well, but it soon
starts to make no sense beyond that. Is there anything else we can do? Yes,
instead of adding a curved part to the explanatory variable, we can incorporate
the curve into the response by making a transformation, which is the subject

136 CHAPTER 4. REGRESSION

of Section 6.8. In the case of our cars data, we end up with what I think is quite
a satisfying model for gas consumption.

4.5 Quality control for multiple regression

Let’s have a look at some data on salaries of mathematicians. There are four
variables: the salary (response) in thousands of dollars, an index of work quality
(workqual), the number of years of experience (experience), and an index of
publication success (pubsucc). The aim is to use the other variables to predict
salary.

Figure 4.21 shows an analysis. All three explanatory variables are worth keeping,
in that their small P-values say that it would be a bad idea to take any of them
out. (Each variable has something to contribute over and above the others.)

The first step in doing quality control is to look at the output from plotting the
regression object, the plot at the bottom of Figure 4.21. The first question to
ask is whether there is any relationship between the residuals and fitted values.
There shouldn’t be. The plot shows that there really isn’t. The residuals look
acceptably normal, as shown in the QQ plot of residuals, and the third plot
shows whether the residuals tend to vary in size as the fitted values get bigger
(they really don’t).

Any problems in these plots suggest that there is something wrong with the
response that needs fixing (eg. by transformation, Section 6.8).

The other kinds of plots that ought to be looked at are of the residuals against
the explanatory variables individually. These are shown in Figure 4.22. I’ve
added a lowess curve to each one. There appears to be no relationship between
residuals and any of the explanatory variables. So we are good.

Let’s have a look at some data that I tinkered with to make something fail. I’ll
spare you the details of how I made up the data (first two lines of Figure 4.23),
and concentrate on what I got.

The story is shown in Figure 4.23. First, some of the data. There are 24
observations on two x-variables x1 and x2, with a response variable y. Then
a multiple regression predicting y from x1 and x2, with a look at the results.
Nothing strange here, just a very strong dependence of y on the two explanatory
variables.

The diagnostic plots are shown in Figure 4.24. Are there any problems here?
You bet. What is happening is most clearly shown on the plot of residuals
against fitted values. There is a clear curve, so there is a curve in the relation-
ship. A problem here generally indicates a problem with the response, rather
than the explanatory variables, but we can plot the residuals against them too,

4.5. QUALITY CONTROL FOR MULTIPLE REGRESSION 137

> mathsal=read.table("mathsal.txt",header=T)

> ms1.lm=lm(salary~workqual+experience+pubsucc,data=mathsal)

> summary(ms1.lm)

Call:

lm(formula = salary ~ workqual + experience + pubsucc, data = mathsal)

Residuals:

Min 1Q Median 3Q Max

-3.2463 -0.9593 0.0377 1.1995 3.3089

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 17.84693 2.00188 8.915 2.10e-08 ***

workqual 1.10313 0.32957 3.347 0.003209 **

experience 0.32152 0.03711 8.664 3.33e-08 ***

pubsucc 1.28894 0.29848 4.318 0.000334 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.753 on 20 degrees of freedom

Multiple R-squared: 0.9109, Adjusted R-squared: 0.8975

F-statistic: 68.12 on 3 and 20 DF, p-value: 1.124e-10

> par(mfrow=c(2,2))

> plot(ms1.lm)

30 35 40 45 50

−
4

−
2

0
2

4

Fitted values

R
es

id
ua

ls

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●
●

●

●

Residuals vs Fitted

4

1912

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

19 12

4

30 35 40 45 50

0.
0

0.
4

0.
8

1.
2

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

Scale−Location
1912 4

0.00 0.10 0.20 0.30

−
2

−
1

0
1

2

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●
●

●

●

●
●

●

●

Cook's distance 0.5

0.5

Residuals vs Leverage

1912

8

Figure 4.21: Analysis of mathematician salary data

138 CHAPTER 4. REGRESSION

> par(mfrow=c(2,2))

> plot(mathsal$workqual,resid(ms1.lm))

> lines(lowess(mathsal$workqual,resid(ms1.lm)))

> plot(mathsal$experience,resid(ms1.lm))

> lines(lowess(mathsal$experience,resid(ms1.lm)))

> plot(mathsal$pubsucc,resid(ms1.lm))

> lines(lowess(mathsal$pubsucc,resid(ms1.lm)))

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

3 4 5 6 7 8

−
3

−
1

1
2

3

mathsal$workqual

re
si

d(
m

s1
.lm

)

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

10 20 30 40

−
3

−
1

1
2

3

mathsal$experience

re
si

d(
m

s1
.lm

)

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

4 5 6 7 8

−
3

−
1

1
2

3

mathsal$pubsucc

re
si

d(
m

s1
.lm

)

Figure 4.22: Plots of residuals against explanatory variables

4.5. QUALITY CONTROL FOR MULTIPLE REGRESSION 139

> madeup=expand.grid(x1=0:4,x2=0:4,KEEP.OUT.ATTRS=F)

> madeup$y=3*(madeup$x1+2*madeup$x2+3+rnorm(25,0,0.5))^2

> head(madeup)

x1 x2 y

1 0 0 38.09906

2 1 0 42.48683

3 2 0 91.24105

4 3 0 112.38970

5 4 0 104.16102

6 0 1 50.00597

> madeup.lm=lm(y~x1+x2,data=madeup)

> summary(madeup.lm)

Call:

lm(formula = y ~ x1 + x2, data = madeup)

Residuals:

Min 1Q Median 3Q Max

-77.75 -25.39 -14.60 19.81 123.70

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -58.260 22.216 -2.622 0.0156 *

x1 53.687 7.025 7.642 1.25e-07 ***

x2 108.504 7.025 15.445 2.73e-13 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 49.68 on 22 degrees of freedom

Multiple R-squared: 0.931, Adjusted R-squared: 0.9247

F-statistic: 148.5 on 2 and 22 DF, p-value: 1.683e-13

Figure 4.23: Made-up data to illustrate regression quality control

140 CHAPTER 4. REGRESSION

> par(mfrow=c(2,2))

> plot(madeup.lm)

0 100 300 500

−
10

0
0

50

Fitted values

R
es

id
ua

ls

●

● ●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●
● ●

●

●

●

Residuals vs Fitted

25

1
24

●

●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

● ●

●

●●

●

●

●

−2 −1 0 1 2

−
1

0
1

2
3

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

25

1
24

0 100 300 500

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

● ● ●

●

●

Scale−Location
25

1
24

0.00 0.05 0.10 0.15 0.20

−
2

0
1

2
3

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●●

●

●

●

●

●

●
●

●

●
● ●

●
●

●

● ●

●

●●

●

●

●

Cook's distance

0.5

Residuals vs Leverage

25

1
24

Figure 4.24: Diagnostic plots for made-up data

4.5. QUALITY CONTROL FOR MULTIPLE REGRESSION 141

> par(mfrow=c(1,2))

> r=resid(madeup.lm)

> x1=madeup$x1

> x2=madeup$x2

> plot(x1,r)

> lines(lowess(x1,r))

> plot(x2,r)

> lines(lowess(x2,r))

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

0 1 2 3 4

−
50

0
50

10
0

x1

r

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

0 1 2 3 4

−
50

0
50

10
0

x2

r

Figure 4.25: Plots of residuals against explanatory

142 CHAPTER 4. REGRESSION

> shingles=read.table("shingles.txt",header=T)

> head(shingles)

sales promotion active competing potential

1 79.3 5.5 31 10 8

2 200.1 2.5 55 8 6

3 163.2 8.0 67 12 9

4 200.1 3.0 50 7 16

5 146.0 3.0 38 8 15

6 177.7 2.9 71 12 17

Figure 4.26: (Part of) roofing shingles data

as in Figure 4.25.

Note that I first made simpler names for the variables, then I made a one-row by
two-column plotting area, and made the two plots with lowess curves on them.
There is some evidence of curvature on both of these. This further suggests that
fixing up y1 is the thing to try first. As it happens, replacing y with

√
y fixes

everything up nicely.

Let’s look at another example. This one is about sales of roofing shingles, and
what that might depend on. The response is sales last year (in thousands of
squares), and the explanatory variables are:

� promotional expenditures (thousands of dollars)

� number of active accounts

� number or competing brands

� district potential (measured somehow)

The data (some of it, anyway) are shown in Figure 4.26. The first thing to think
about is a plot. Plotting the entire data frame produces Figure 4.27. (All the
variables are numerical ones.) Look along the top row: it looks as if sales has an
upward linear relationship with the number of accounts, and a downward linear
one with the number of competing brands, and not much of a relationship with
anything else. Let’s see whether a regression bears this out.

The regression in Figure 4.28 does indeed support our guess from the scatter-
plots. The first thing to look at is the F -test at the bottom, which is strongly
significant. Something is helping to predict sales. Now we can look at the P-
values in the last column of the table of coefficients. The P-values for active

and competing are very small, and those for promotion and potential are not.

4.5. QUALITY CONTROL FOR MULTIPLE REGRESSION 143

> plot(shingles)

sales

3 5 7 9

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

4 6 8 12

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

50
15

0
30

0

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

3
5

7
9

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

● promotion ●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

● ●

●

●

● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●
●

● ●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

active

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

30
50

70

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

4
6

8
12

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

● ●

●●

●●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●●

●●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

● ●

●●

●●

●

● ●

●

competing
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

● ●

●●

● ●

●

● ●

●

50 150 300

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

30 50 70

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

5 10 15

5
10

15

potential

Figure 4.27: Scatterplot matrix of shingles data

144 CHAPTER 4. REGRESSION

> shingles.lm1=lm(sales~promotion+active+competing+potential,data=shingles)

> summary(shingles.lm1)

Call:

lm(formula = sales ~ promotion + active + competing + potential,

data = shingles)

Residuals:

Min 1Q Median 3Q Max

-19.0906 -5.9796 0.8968 6.5667 14.7985

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 178.3203 12.9603 13.759 5.62e-12 ***

promotion 1.8071 1.0810 1.672 0.109

active 3.3178 0.1629 20.368 2.60e-15 ***

competing -21.1850 0.7879 -26.887 < 2e-16 ***

potential 0.3245 0.4678 0.694 0.495

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 9.604 on 21 degrees of freedom

Multiple R-squared: 0.9892, Adjusted R-squared: 0.9871

F-statistic: 479.1 on 4 and 21 DF, p-value: < 2.2e-16

Figure 4.28: Regression of sales on everything

4.5. QUALITY CONTROL FOR MULTIPLE REGRESSION 145

Sometimes looking at the scatterplots is too simple-minded in that number of
active accounts and number of competing brands might be highly related with
each other, so that you really need only one of them in the regression. But if
you look back at Figure 4.27, you’ll see (in the third row and fourth column)
that active and competing have nothing to do with each other. So they both
have something to contribute.

On the other hand, there appears in Figure 4.27 to be a weak upward rela-
tionship between sales and potential (first row, last plot). So potential

is potentially (ha!) a useful variable. But potential also has something of a
relationship with active, so that whatever potential has to say about sales

is also said by active, and therefore potential has nothing to add. Hence its
non-significance.

The next step is to take out the non-significant promotion and potential. This
is done in Figure 4.29. Before we actually look at the summary from this model,
we should check that taking out these two variables hasn’t somehow made the
fit significantly worse. That’s the purpose of the anova. The P-value there is
large, so the fit is not significantly worse, and we are good to go on.

Looking at the summary of shingles.lm2, both variables active and competing

are as significant as they could be (the P-values are both 0 to at least 15 deci-
mals!). So we’ve arrived at a good model, and the R-squared is very high indeed.
But we are not done yet: we need to do our quality control and make sure that
nothing funny is happening with the residuals.

We plot the fitted model object in Figure 4.30. Before doing that, however, we
have to make room for four plots, or else we’ll only see the first one!

The top left plot is of residuals against fitted values. We want to see randomness
here, and no trend for the residuals to change as the fitted values get bigger.
That’s what we’ve got. Three or so of the observations are off in sales by about
20 thousand dollars, but these residuals are not out of line with the rest. The
red lowess curve on this plot is more or less horizontal. At the top right is a
normal QQ plot of the residuals; they are about as normally-distributed as you
could wish to see. The most positive and most negative residuals are right on
the dotted line.

The only plot I have any concerns with at all is the bottom left one. This shows
the size of the residuals against the fitted values. The residuals, looking at the
lowess curve, are smallest in size on average when the fitted value is about 150,
and larger otherwise. But I’m willing to believe this is just coincidence.

Not quite done yet. In a multiple regression, we should also plot the residuals
against each of the explanatory variables, just in case there are any problems
with those that didn’t show up yet. I’m plotting these side by side, as shown
in Figure 4.31. There was a lot of copying and pasting in constructing those

146 CHAPTER 4. REGRESSION

> shingles.lm2=lm(sales~active+competing,data=shingles)

> anova(shingles.lm2,shingles.lm1)

Analysis of Variance Table

Model 1: sales ~ active + competing

Model 2: sales ~ promotion + active + competing + potential

Res.Df RSS Df Sum of Sq F Pr(>F)

1 23 2210.4

2 21 1937.1 2 273.31 1.4814 0.2501

> summary(shingles.lm2)

Call:

lm(formula = sales ~ active + competing, data = shingles)

Residuals:

Min 1Q Median 3Q Max

-18.4136 -6.1499 -0.5683 6.2472 20.3185

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 186.6940 12.2587 15.23 1.66e-13 ***

active 3.4081 0.1458 23.37 < 2e-16 ***

competing -21.1930 0.8028 -26.40 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 9.803 on 23 degrees of freedom

Multiple R-squared: 0.9876, Adjusted R-squared: 0.9866

F-statistic: 918.3 on 2 and 23 DF, p-value: < 2.2e-16

Figure 4.29: Model 2, taking out the non-significant variables

4.5. QUALITY CONTROL FOR MULTIPLE REGRESSION 147

> par(mfrow=c(2,2))

> plot(shingles.lm2)

50 150 250 350

−
20

0
10

20

Fitted values

R
es

id
ua

ls

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●
● ●

Residuals vs Fitted

8

21

19

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●● ●

−2 −1 0 1 2

−
2

−
1

0
1

2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

8

21

19

50 150 250 350

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

● ● ●

Scale−Location
8

21
19

0.00 0.05 0.10 0.15 0.20

−
2

−
1

0
1

2

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●

●

●

●

●● ●

Cook's distance
0.5

0.5

Residuals vs Leverage

8

21

26

Figure 4.30: Fitted model plot for Model 2

148 CHAPTER 4. REGRESSION

> attach(shingles)

> plot(active,residuals(shingles.lm2))

> lines(lowess(active,residuals(shingles.lm2)))

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

30 40 50 60 70

−
10

0
10

20

active

re
si

du
al

s(
sh

in
gl

es
.lm

2)

Figure 4.31: Plots of residuals against active

commands! I’ve added a lowess curve to each plot.

The plot of residuals against active is in Figure 4.31 and against competing is
in Figure 4.32.

I’m a little worried by the curves in these plots. There’s a hint of an up-and-
down (or down-and-up) in each. I’m willing to believe that the lowess trend
is curved in the active plot because the first three residuals happened to be
negative, but the curve on the competing plot seems a little more substantial.

One way to see whether this is real or happenstance is to add squared terms in
the two explanatory variables to the model and see whether they are significant.
This is done in Figure 4.33. The anova tests whether the two squared terms
together offer any improvement, and the t tests in the summary output say
whether either of them individually have anything to say.

4.5. QUALITY CONTROL FOR MULTIPLE REGRESSION 149

> plot(competing,residuals(shingles.lm2))

> lines(lowess(competing,residuals(shingles.lm2)))

> detach(shingles)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

4 6 8 10 12

−
10

0
10

20

competing

re
si

du
al

s(
sh

in
gl

es
.lm

2)

Figure 4.32: Plot of residuals against competing

150 CHAPTER 4. REGRESSION

> attach(shingles)

> actsq=active*active

> compsq=competing*competing

> detach(shingles)

> shingles.lm3=lm(sales~active+competing+actsq+compsq,data=shingles)

> anova(shingles.lm2,shingles.lm3)

Analysis of Variance Table

Model 1: sales ~ active + competing

Model 2: sales ~ active + competing + actsq + compsq

Res.Df RSS Df Sum of Sq F Pr(>F)

1 23 2210.4

2 21 1991.8 2 218.65 1.1527 0.335

> summary(shingles.lm3)

Call:

lm(formula = sales ~ active + competing + actsq + compsq, data = shingles)

Residuals:

Min 1Q Median 3Q Max

-21.8491 -5.2099 -0.2234 5.5086 16.0810

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 159.98513 34.72340 4.607 0.000152 ***

active 4.95488 1.04609 4.737 0.000112 ***

competing -23.37219 5.56428 -4.200 0.000402 ***

actsq -0.01518 0.01010 -1.503 0.147618

compsq 0.11325 0.30870 0.367 0.717394

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 9.739 on 21 degrees of freedom

Multiple R-squared: 0.9889, Adjusted R-squared: 0.9867

F-statistic: 465.8 on 4 and 21 DF, p-value: < 2.2e-16

Figure 4.33: Regression including squared terms

4.5. QUALITY CONTROL FOR MULTIPLE REGRESSION 151

The anova has a P-value of 0.335, which is far from significant. The two individ-
ual P-values, from the summary table, 0.148 and 0.717, are also neither nearly
significant. In other words, the squared terms add nothing to the regression,
and we don’t do any better by including them. Including them in the regression,
therefore, was a bit of an overreaction to the residual plots. But it was a good
idea to check.

152 CHAPTER 4. REGRESSION

Chapter 5

Designing and running
experiments

5.1 Introduction

A statistical experiment is not something done in a lab by people in white coats
(though it could be). The aim of a statistical experiment is to do something un-
der more-or-less controlled conditions to find out something about what causes
what. An example of this is to find out whether a new drug works in treating a
disease. You take one group of people who have this disease, and you give them
the new drug. At the same time, you take another group of disease sufferers and
give them the current standard treatment. Then you assess the improvement
of the people in each group, and if the new group comes out sufficiently better,
you declare the new drug to be better than the standard treatment.

Why “sufficiently better”? Well, the new drug might have come out better by
chance (this is a 50-50 proposition if there was really no difference in effectiveness
between new and old). So you want the new drug to be “more better” than that.
This is where statistical significance, small P-values and all that comes in.

5.2 Comparison, control and randomization

5.2.1 Comparison

There are three major aspects to statistical experimentation, and why it looks
as it does. The first is comparison. Let’s pursue our drug example a bit.

153

154 CHAPTER 5. DESIGNING AND RUNNING EXPERIMENTS

One way to test our new drug is to test it out on a group of people who have
the disease, and see whether they get better. If they do, at least on average,
you declare the drug a success.

The problem is, how do you know these people wouldn’t have gotten better on
their own (eg. if the disease is the common cold), or whether the standard treat-
ment would have been just as good? The thing is, you don’t, unless you include
this in your experiment. There needs to be some element of comparison, and
demonstration that what you’re really testing is better than the competition.

The statistical word for the new drug (or new procedure or whatever it is) is
treatment, even if it’s not a treatment in the medical sense. So you need to
have a treatment group of people who get the treatment. You also need a
group of people who don’t get the treatment (the standard drug, or nothing at
all). These people are called the control group.

The other part of “comparison” is that whatever you’re testing needs to be not
just better than the competition, but significantly better. Why is this? Well,
suppose your new drug and the standard drug are equally good. In the jargon,
there is no treatment effect. Then, people being people, the results won’t be
absolutely identical between the new drug and the standard one. One of them,
and it might be the new drug, will come out better just by chance. But we are
looking for more than that: we want the new drug to come out better because
it is better. This is exactly what statistical significance tells you. It says, “if
the two drugs were actually equally good, how likely am I to observe this kind
of difference?” This is the P-value. If the answer is “not very”, ie. the P-value
is small, then we are entitled to conclude that the new drug is better.

The other thing about comparison, when your individuals are people, is called
the “placebo effect”. People who receive something that looks like a treatment,
or who take part in an experiment, even if they’re actually in the control group,
will tend to show some kind of effect. This is well documented. For people,
anyway. Animals or inanimate objects tend not to react this way. If you’re
dealing with people, you try to make the control non-treatment look as much
like the real treatment as possible. This might mean giving a pill that contains
no active ingredient, or designing an exercise program that does not include
what you are testing the effect of. Also, you might want to organize things
(where possible) so that the people administering the treatment don’t know
whether it’s the real one or a fake one. This is a way of avoiding all kinds of
bias from people who know what’s going on and could influence the results. It’s
called blinding.

5.2. COMPARISON, CONTROL AND RANDOMIZATION 155

5.2.2 Control

The idea of doing science experiments in a lab means that you don’t have to
deal with the messy real world. The benefit of this is that you have control over
what happens in your experiment: your results are not going to get affected so
much by things outside your experiment.

Statistical experiments have a“protocol”, for the people running the experiment,
and (if they are human) for the individuals in the experiment as well. For
example, if you are testing out a new treatment for the common cold, you don’t
want the individuals in your experiment taking other cold remedies while your
experiment is going on. If they did, you wouldn’t know whether an individual
got better because of your new treatment, or because of whatever else they were
taking.

The bottom line here is that any other variable that might make a difference to
your results should be controlled. Or, if it’s impossible to do that, you randomize
over it, which is dealt with in Section 5.2.3.

There’s a distinction between two kinds of factors in this kind of work. For the
factor we’re interested in (like the new drug vs. the standard drug, or doing
laundry at different temperatures to see which is best), we want to try differ-
ent values or levels, such as “new drug”, “standard drug”, “nothing” or “cold”,
“warm”, “hot”, to see what difference they make. Other factors, the ones we
don’t care about, such as the severity of the cold or the kind of fabric being
washed, we should try to control, so that all the individuals (people or items to
be washed) are held constant.

Holding other things constant can be difficult, and besides, it can make it diffi-
cult to generalize our results to “all fabrics” or “all severities of cold”. There are
a couple of ways around this, one of which is randomization (again), and the
other is to include these other things that you can measure into the design of
the experiment as additional factors — not because you care about them, but
because they might make a difference to the results. Other things like age and
gender, which you can measure but not control, fall into this category.

So the story is “control what you can, and randomize the rest”. What is this
randomization that I speak of? Coming up next.

5.2.3 Randomization

The point of randomization is that who ends up in your different groups has
nothing to do with anything else (and is totally unpredictable ahead of time). Is
this a good thing?

Well, imagine a study of a new treatment of a serious disease. The doctor

156 CHAPTER 5. DESIGNING AND RUNNING EXPERIMENTS

running the study decides that all the most severe cases should get the old
treatment “because the new treatment isn’t proven yet”. Lo and behold, at the
end of the study, the new treatment comes out best. What does this prove?
Not much. The new treatment could have come out better because it actually
was better. Or because the old treatment was handicapped by being given all
the most severe cases. We can’t tell which. The variables “disease severity” and
“treatment new/old” are, in the jargon, confounded: we cannot disentangle
their effects, and therefore we have no way to know which deserves the credit.

So what can we do that’s better? We can assign the cases to the new treatment
or not at random (for example, by flipping a coin). That way, getting the new
treatment or the old one has nothing to do with anything else, and so if the
new treatment comes out better, you can be more confident that it came out
better because it is better, not because of anything else. Another way to look at
this: if the individuals going into the two groups are chosen at random, the two
groups should be about the same going in (with regard to any other variables,
including any you did not think of. So if they come out different at the end, it
must be because of the thing you changed: namely, the treatment.

This is a little bit too bold, because the groups could have come out different
at the end by chance: for example, you might have happened to get some of the
more serious cases in one group just by chance. But that is taken care of by the
test of significance: “is the difference we saw greater than would have expected
by chance?”

All right, how do we get R to do the randomization? Let’s imagine we have
20 individuals, numbered 1 through 20, and we have a new treatment and a
standard treatment.

Let’s start with the coin-tossing idea, and then think about how we can do
better. This is shown in Figure 5.1. First we set up our people. The function
rbinom takes random samples from binomial distributions. We want single
successes or failures (in the new treatment group or not (this is the variable r),
and when we want to use this, we want them to be TRUE and FALSE, which is
what the variable sel is (“selected for new treatment”). To get a list of which
people are in each group, we use our logical vector sel to pick out the people
respectively in and not-in the new-treatment group. So people, so people 1, 4,
6, 9 and so on get the new treatment, and people 2, 3, 5, 7 and so on get the
old one. This would work just the same if people contained a list of names;
people[sel] would pick out the names of the people getting the new treatment.

The last line indicates a problem with the coin-tossing method. We happened
to get 11 people in the new-treatment group. There is, in general, no guarantee
that the groups will be the same size, because there is no guarantee that you
will get 10 heads when you toss a coin 20 times. But you get the best (most
powerful) tests if your groups are the same size. How to arrange this?

5.2. COMPARISON, CONTROL AND RANDOMIZATION 157

> people=1:20

> r=rbinom(20,1,0.5)

> r

[1] 1 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 1 0 1 1

> sel=as.logical(r)

> sel

[1] TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE FALSE

[13] FALSE FALSE TRUE TRUE TRUE FALSE TRUE TRUE

> people[sel]

[1] 1 4 6 9 10 11 15 16 17 19 20

> people[!sel]

[1] 2 3 5 7 8 12 13 14 18

> table(sel)

sel

FALSE TRUE

9 11

Figure 5.1: Choosing individuals by coin-tossing

158 CHAPTER 5. DESIGNING AND RUNNING EXPERIMENTS

> sample(people,10)

[1] 1 7 3 11 15 10 12 17 18 9

> s=sample(people)

> s[1:10]

[1] 11 4 17 8 18 13 9 15 1 10

> s[11:20]

[1] 14 20 6 5 7 2 12 19 16 3

> s4=sample(people)

> s4[1:5]

[1] 16 13 14 2 9

> s4[6:10]

[1] 4 7 5 17 15

> s4[11:15]

[1] 6 10 3 18 20

> s4[16:20]

[1] 12 1 8 19 11

Figure 5.2: Using sample to select groups

5.2. COMPARISON, CONTROL AND RANDOMIZATION 159

> females=1:15

> males=16:30

> f.sampled=sample(females)

> m.sampled=sample(males)

> c(f.sampled[1:5],m.sampled[1:5])

[1] 14 2 12 9 11 27 17 26 24 18

> c(f.sampled[6:10],m.sampled[6:10])

[1] 1 3 13 5 6 29 23 19 25 30

> c(f.sampled[11:15],m.sampled[11:15])

[1] 8 15 10 4 7 28 16 22 20 21

Figure 5.3: Randomly selecting males and females for each of 3 groups

The key is the R function sample. The basic usage is shown on the first line of
Figure 5.2. You feed sample a list of things to sample from (could be numbers
or names) and how many of them to sample, and you get back the sampled
numbers or people. In this case, people 1, 7, 3, 11 and so on get the new
treatment, and the rest get the old one.

Another way of doing this is shown in the next three lines of Figure 5.2. If you
run sample without specifying a size of sample, R will “sample” everyone; that
is, it will shuffle the list of individuals into a random order. Then you can pick
out the first 10 people to get the new treatment and people 11 through 20 to get
the old one, as shown. (These groups are different because I ran sample again,
and thus used a new bunch of random numbers.)

This idea can be used no matter how many groups you want to divide your
individuals into. The end of Figure 5.2 shows how you can use sample to
randomly divide those individuals 1 through 20 into four groups of size 5. First
shuffle the entire list, and then pick out the ones you want for each group.

Now, what about if your individuals are (equally) split into males and females,
and you want to assign individuals randomly to treatment groups of the same
size, with the same number of males and females in each group? This is known
in the jargon as “stratified sampling”. What you do is first to sample the males
and females separately, and then combine them into the groups. Let’s suppose
we now have 30 individuals, 15 females and 15 males, and we want to randomly
assign them to 3 treatment groups (of size 10) with the same number (5) of
males and females in each group.

Figure 5.3 shows the way. Let’s number the females 1 through 15 and the males

160 CHAPTER 5. DESIGNING AND RUNNING EXPERIMENTS

16 through 30. Then we shuffle both lists (independently), and glue together
the shuffled individuals we want for each group. You can see that we do indeed
have 5 females and 5 males in each group.

Another way is to make a data frame with all the combinations of variables you
want, and then shuffle it. This is shown in Figure 5.4. The steps are: first create
vectors containing the levels of each factor (the treatments, numbered 1 through
3, and the genders). These need to be factors, so we turn them into factors.
Then we use expand.grid to create a data frame with all 3×2 = 6 combinations.
Now, we have 30 individuals at our disposal, so we have to replicate this data
frame 5 times (6× 5 = 30). The data frame exp.df2 is the original data frame
repeated 5 times. Next, we shuffle the numbers 1 through 30 (the number of
rows in exp.df2, or the number of individuals we have), and create the actual
experimental protocol in my.df by taking the rows of ex.df2 in shuffled order.
Since the rows are already shuffled, you just read off the first female on your
list to get treatment 2, the second female to get treatment 1, the first male on
your list to get treatment 1, and so on.

The row names need not concern you, but you might be able to work out how R
constructed them. The single numbers are from the last replication of the data
frame produced by expand.grid, and the two-part row names are the row of
exp.df and the replication number.

The factors in an experiment can be of two types: ones that you can control,
like “treatment” above, and ones that you cannot control, like “gender”. The
reason for including ones that you cannot control is that you think they might
make a difference, so you are controlling for them: making the groups come out
more similar than they otherwise would.

Any number of factors work just the same way here. Use expand.grid on all
the factors, and “replicate” the resulting data frame as many times as you need
to take care of all the individuals you have at your disposal.

I used the word “replicate” on purpose, to look ahead to the next section.

It’s actually easier if you have only factors that you can control. Figure 5.5
shows an experiment on two controllable factors temperature and pressure.
We have 8 individuals (presumably machines in this case), and there are 2×2 = 4
combinations of temperature and pressure, so we can replicate this twice,
shuffle it, and get the design shown. (I’m using the same data frame design

that I am constructing step by step.) Now you take your 8 machines in the
order they come, and assign them to the lines in the final design.

The curious thing about my randomization is that you get those repeats of, for
example, temperature 70 and pressure 8. This just happened to come out that
way; if you do it again, you are unlikely to get those repeats. If this bothers you,
you take the design from line 3 of Figure 5.5, shuffle it first and then replicate

5.2. COMPARISON, CONTROL AND RANDOMIZATION 161

> treatments=c("T1","T2","T3")

> gender=c("M","F")

> exp.df=expand.grid(trt=treatments,g=gender)

> exp.df

trt g

1 T1 M

2 T2 M

3 T3 M

4 T1 F

5 T2 F

6 T3 F

> r=rep(1:6,5)

> exp.df2=exp.df[r,]

> shuf=sample(1:30)

> my.df=exp.df2[shuf,]

> my.df

trt g

5.4 T2 F

4 T1 F

1.1 T1 M

4.2 T1 F

5.1 T2 F

1.3 T1 M

6 T3 F

5 T2 F

1.2 T1 M

6.2 T3 F

3.4 T3 M

2.1 T2 M

3 T3 M

1.4 T1 M

4.3 T1 F

2.4 T2 M

5.2 T2 F

5.3 T2 F

3.2 T3 M

4.4 T1 F

1 T1 M

3.3 T3 M

4.1 T1 F

2.3 T2 M

6.3 T3 F

6.4 T3 F

6.1 T3 F

3.1 T3 M

2.2 T2 M

2 T2 M

Figure 5.4: Creating a randomized data frame

162 CHAPTER 5. DESIGNING AND RUNNING EXPERIMENTS

> temperature=factor(c(50,70))

> pressure=factor(c(8,10))

> design=expand.grid(temperature,pressure)

> r=rep(1:4,2)

> design=design[r,]

> shuf=sample(1:8)

> design=design[shuf,]

> design

Var1 Var2

1.1 50 8

2 70 8

2.1 70 8

3 50 10

3.1 50 10

4.1 70 10

4 70 10

1 50 8

Figure 5.5: Temperature and pressure experiment

it. This would go through all the combinations of temperature and pressure
once (in some randomized order), and then repeat that.

5.2.4 Replicate

The experimental designs in the previous section have a feature in common:
repeated measurements under the same experimental conditions on different in-
dividuals. This is useful, statistically speaking, because different individuals,
even under the same conditions, are not likely to give exactly the same results.
There is going to be a certain amount of variability among individuals, no mat-
ter how careful we are, and repeating things under identical conditions will give
us a sense of how big that variability is. This kind of repetition is what replica-
tion is. (“Replicate” really means “copy”, where what you are “copying” is the
experimental conditions; you can’t hope to copy the results!)

The other virtue of replication is that by doing it, you end up with more data
than you had before. Having more data is a good thing, statistically speaking,
because you can expect to get closer to the “true” situation (that you can never
know for sure) — for example, with more data, your sample mean is likely to
be closer to the population mean (whatever it is). Of course, getting more data
costs money, so you have a tradeoff between your budget and the quality of
results you are likely to get. It’s the old story of “no free lunch!”.

Chapter 6

Analysis of standard
experimental designs

6.1 One-way ANOVA

The theory is that exercise stresses bones (in a good way) and helps them grow
stronger. So an experiment was done on rats to test this. 30 rats were used, and
they were randomly assigned to one of three groups, to receive varying amounts
of exercise. These groups are usually called treatments in Statistics, even if
they aren’t what you would think of as medical treatments. At the end of the
experiment, the rats’ bone density was measured (this is the response variable),
and the research question was“is the bone density different, on average, between
treatment groups?”. This is our alternative hypothesis, with the null hypothesis
being that there is no difference in bone density between the groups.

OK, so what were the treatments here? Amounts of jumping required of the
rats (8 jumps per day). The high-jumping group had to jump 60 cm, the low-
jumping group had to jump 30 cm, and the no-jumping group didn’t have to
jump at all. The last group is known in the jargon as a control group; this
serves as a baseline comparison so that the researchers would know something
about bone density in rats that didn’t jump at all, and could then get a handle
on how much of an effect the jumping had.

Most experiments have a control group of some kind, so that you can see whether
the treatment you are really testing has an effect after all. In medical trials,
most people react favourably to any kind of thing that looks like a drug (this
is called the placebo effect) and so these trials routinely include a drug that
does nothing, and the research question is “does the new drug do better than
placebo?”.

163

164CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

The reason for randomization is to ensure that who ends up in which group has
nothing to do with anything else that might make a difference. In the jumping
rats example, the experimenter might otherwise (consciously or unconsciously)
put the healthiest-looking rats in the high-jump group and thereby make the
jumping look more effective than it really is.

Here’s the way the jumping rats data looks. For some reason the groups are
also indicated by number (which we ignore):

Control 1 611

Control 1 621

Control 1 614

Control 1 593

Control 1 593

Control 1 653

Control 1 600

Control 1 554

Control 1 603

Control 1 569

Lowjump 2 635

Lowjump 2 605

Lowjump 2 638

Lowjump 2 594

Lowjump 2 599

Lowjump 2 632

Lowjump 2 631

Lowjump 2 588

Lowjump 2 607

Lowjump 2 596

Highjump 3 650

Highjump 3 622

Highjump 3 626

Highjump 3 626

Highjump 3 631

Highjump 3 622

Highjump 3 643

Highjump 3 674

Highjump 3 643

Highjump 3 650

The variables are separated by spaces rather than commas, so read.table is
what we need. Also, we don’t have a header row naming the variables, so we’d
better say that:

> rats=read.table("jumping.txt",header=F)

6.1. ONE-WAY ANOVA 165

> head(rats)

V1 V2 V3

1 Control 1 611

2 Control 1 621

3 Control 1 614

4 Control 1 593

5 Control 1 593

6 Control 1 653

I just discovered the head command yesterday. It prints out the first few rows
of a data frame. Here it’s the same as rats[1:6,], only easier to type.

Note also that since we didn’t have any variable names, R created some for us.
They’re not very mnemonic, though. But we can fix that:

> names(rats)

[1] "V1" "V2" "V3"

> names(rats)=c("group","group.number","density")

> head(rats)

group group.number density

1 Control 1 611

2 Control 1 621

3 Control 1 614

4 Control 1 593

5 Control 1 593

6 Control 1 653

Now we’re good to go.

One point of view here is that we are predicting the (numeric) variable density

from the categorical variable group. This sounds like a regression (kind of), so
we can use lm, as indeed we can:

> #detach(cars)

> attach(rats)

> rats.lm=lm(density~group,data=rats)

> rats.lm

166CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

Call:

lm(formula = density ~ group, data = rats)

Coefficients:

(Intercept) groupHighjump groupLowjump

601.1 37.6 11.4

This isn’t the kind of output we were expecting, but it does make some kind
of sense, read the right way. The group that’s missing (which, happily, is the
control group), is used as a baseline; here the intercept is the mean of the
control group. Then the “slopes” for the other groups say how the means for
those groups compare to the mean of the baseline group. Here, the mean for
the high jump group is 37.6 higher than for the no-jump group, and the mean
for the low jump group is 11.4 higher than for the no-jump group. But is that
significant? We don’t know yet.

> anova(rats.lm)

Analysis of Variance Table

Response: density

Df Sum Sq Mean Sq F value Pr(>F)

group 2 7433.9 3716.9 7.9778 0.001895 **

Residuals 27 12579.5 465.9

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

This is testing the null hypothesis that the groups all have the same mean,
against the alternative that they are not all the same. Here, the null should be
rejected (this is a two-star rejection). So there are some differences somewhere.
But where? To find out which groups are different from which, we have to do a
second stage. But to do that, it’s better to do the first stage differently:

> rats.aov=aov(density~group,data=rats)

> anova(rats.aov)

Analysis of Variance Table

Response: density

Df Sum Sq Mean Sq F value Pr(>F)

group 2 7433.9 3716.9 7.9778 0.001895 **

Residuals 27 12579.5 465.9

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

6.1. ONE-WAY ANOVA 167

To find out which groups differ from which, we need a multiple comparisons
method. There are lots of them. The problem is that by comparing all the
groups with each other, you’re (potentially) doing a large number of tests, thus
giving yourself a large chance to (possibly incorrectly) reject a null hypothesis
that the groups you’re comparing have equal means. With three groups, as here,
you’re doing three comparisons (1 vs 2, 1 vs 3, 2 vs 3). With five groups, you’d
be doing 10 comparisons. Thus you get 3 (or 10) chances to make a mistake.

The different multiple comparisons methods allow for this. They organize things
so that you get a “familywise error rate” of 0.05, or whatever you want, no
matter how many comparisons you’re doing. My favourite is Tukey’s method,
also known as “honestly significant differences” (Tukey liked catchy names). It’s
based on the idea that if all the group means are really the same, in your data
the largest will be a little bigger than the smallest, and you (well, he) can work
out how much bigger it’s likely to be. Then you say that group means in your
data that differ by more than this value are significantly different.

Here’s how you make it go in R, having used aov first. You can also plot the
results, as shown:

> rats.tukey=TukeyHSD(rats.aov)

> rats.tukey

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = density ~ group, data = rats)

$group

diff lwr upr p adj

Highjump-Control 37.6 13.66604 61.533957 0.0016388

Lowjump-Control 11.4 -12.53396 35.333957 0.4744032

Lowjump-Highjump -26.2 -50.13396 -2.266043 0.0297843

> plot(rats.tukey)

168CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

−40 −20 0 20 40 60

Lo
w

ju
m

p−
H

ig
hj

um
p

Lo
w

ju
m

p−
C

on
tr

ol
H

ig
hj

um
p−

C
on

tr
ol 95% family−wise confidence level

Differences in mean levels of group

The output shows the appropriately adjusted P-values for comparing each pair
of groups (in the last column). This shows that the mean for high jumping is
significantly different (larger) than for both low jumping and no jumping at all,
but that there is no significant difference between low jumping and control.

To the left of the P-values are 95% (by default) confidence intervals for the true
difference in means between the groups. We are confident that the mean for high
jumping is higher than the mean for control (the interval contains only positive
differences in means), and, likewise, we are confident that the mean for low
jumping is lower than the mean for high jumping. The interval for low jumping
and control includes both positive and negative values, so the comparison could
go either way (we don’t have enough evidence to decide).

Like t.test, TukeyHSD can be fed a conf.level if you want, say, 90% (0.90)
or 99% (0.99) confidence intervals instead.

The plot displays those intervals graphically. The dotted line marks a mean
difference of zero, so if the interval crosses that line, the difference in means
could be zero (we have no evidence of a difference). If the interval is all one side
of the zero line, one mean is significantly larger than the other.

The conclusion we draw from this analysis is that it is not the actual fact
of jumping that makes a difference. It has to be high jumping rather than

6.1. ONE-WAY ANOVA 169

low jumping to make a difference. (The conclusion might be that there is a
“threshold” level of jumping, or exercise generally, that has an impact on bone
density.)

Before we leave this example, we should do some quality control. The major
assumption hiding behind ANOVA is that all the groups should have the same
spread, even if they have different means. (There is also an assumption of
normality, but that is less crucial. Only outliers need to concern us.)

One way to assess that is with side-by-side boxplots, which you can produce like
this:

> boxplot(density~group,data=rats)

●

●

Control Highjump Lowjump

56
0

58
0

60
0

62
0

64
0

66
0

The low-jump group has a somewhat higher spread, and the control group has
a couple of outliers, including one value above 650. For myself, I would be more
concerned about the outliers than the unequal spread; the spreads are never
going to be exactly the same.

Numerically, it is often useful to give the means and standard deviations of each
group. Way back, I wrote a function called mystats that gives these, and we
learned how to do this with groups (using split and sapply):

170CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

> mystats=function(x)

+ {

+ result=c(length(x),mean(x),sd(x),median(x),IQR(x))

+ names(result)=c("n","Mean","SD","Median","IQR")

+ result

+ }

> mylist=split(density,rats$group)

> mylist

$Control

[1] 611 621 614 593 593 653 600 554 603 569

$Highjump

[1] 650 622 626 626 631 622 643 674 643 650

$Lowjump

[1] 635 605 638 594 599 632 631 588 607 596

> sapply(mylist,mystats)

Control Highjump Lowjump

n 10.0000 10.00000 10.00000

Mean 601.1000 638.70000 612.50000

SD 27.3636 16.59351 19.32902

Median 601.5000 637.00000 606.00000

IQR 20.2500 22.25000 35.00000

I can live with those unequal SDs. Note, though, how the outliers in the control
group show up: the control group SD is the biggest, even though its interquartile
range is the smallest.

If the spreads are really too unequal, then a transformation (Section 6.8) may
help. What commonly happens is that as the mean gets larger, the spread gets
larger too; that is the case where a transformation is most useful.

From a strategic point of view, the time to do this quality control is right at
the beginning, since none of it depends on a model being fitted. (This is unlike
regression.) Thus, if you see any problems, you can fix them, or express your
reservations about them, before you do any analysis.

Now we’re done with the rats:

> detach(rats)

6.1. ONE-WAY ANOVA 171

One more thing: sometimes your data come to you like this, with the groups
separately:

> Alcohol=c(51,5,19,18,58,50,82,17)

> AB.Soap=c(70,164,88,111,73,119,20,95)

> Soap=c(84,51,110,67,119,108,207,102)

> Water=c(74,135,102,124,105,139,170,87)

These data came from a handwashing experiment. The response is bacteria
growth, with the groups being different ways of washing hands. The alcohol
was an ethanol spray, and the second one is antibacterial soap. A lower amount
of bacteria is better!

To do an ANOVA, we have to create a data frame to run aov on. This is done by
combining the separate vectors of response values into an R list, and then using
the function stack to put them together into a data frame. The odd-looking
construction of the list, with the variable names twice, is to ensure that those
variable names make it into the data frame. I had to do a bit of playing around
to get this, since the stack help page is not especially helpful. It just says “this
works for lists”, but I had to find out how!

> hw.list=list(Alcohol=Alcohol,AB.Soap=AB.Soap,Soap=Soap,Water=Water)

> hw.list

$Alcohol

[1] 51 5 19 18 58 50 82 17

$AB.Soap

[1] 70 164 88 111 73 119 20 95

$Soap

[1] 84 51 110 67 119 108 207 102

$Water

[1] 74 135 102 124 105 139 170 87

> hw.df=stack(hw.list)

> hw.df

values ind

1 51 Alcohol

2 5 Alcohol

3 19 Alcohol

172CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

4 18 Alcohol

5 58 Alcohol

6 50 Alcohol

7 82 Alcohol

8 17 Alcohol

9 70 AB.Soap

10 164 AB.Soap

11 88 AB.Soap

12 111 AB.Soap

13 73 AB.Soap

14 119 AB.Soap

15 20 AB.Soap

16 95 AB.Soap

17 84 Soap

18 51 Soap

19 110 Soap

20 67 Soap

21 119 Soap

22 108 Soap

23 207 Soap

24 102 Soap

25 74 Water

26 135 Water

27 102 Water

28 124 Water

29 105 Water

30 139 Water

31 170 Water

32 87 Water

First you see how the list comes out, and then, once you have that, there’s no
great difficulty in using stack to make a data frame.

The data frame that comes out has two columns. The first, values, is all the
response values joined together. The second, ind, labels the group that those
response values came from. This is exactly what we need for aov.

Since we now have the data in the right format, let’s speed through an analysis.
First, the quality control:

> attach(hw.df)

> sapply(hw.list,mystats)

Alcohol AB.Soap Soap Water

n 8.00000 8.00000 8.00000 8.00000

6.1. ONE-WAY ANOVA 173

Mean 37.50000 92.50000 106.00000 117.00000

SD 26.55991 41.96257 46.95895 31.13106

Median 34.50000 91.50000 105.00000 114.50000

IQR 35.00000 40.75000 32.50000 37.75000

> boxplot(values~ind)

●

AB.Soap Alcohol Soap Water

0
50

10
0

15
0

20
0

I cunningly used the list that I created before running stack, because you can
use sapply to run a function (here mystats) on all the elements of a list. The
group standard deviations could be more similar, though I think I can live
with them. I don’t think the SD increases with the mean, although the group
(Alcohol) with the smallest mean does also have the smallest SD.

The boxplots reveal that the interquartile ranges are very similar indeed, though
the Soap group has one clear outlier and the AB.Soap group, though it has no
outliers, must have high and low values that are very close.

So, with a few reservations, we proceed to the analysis:

> values

174CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

[1] 51 5 19 18 58 50 82 17 70 164 88 111 73 119 20 95 84 51 110

[20] 67 119 108 207 102 74 135 102 124 105 139 170 87

> ind

[1] Alcohol Alcohol Alcohol Alcohol Alcohol Alcohol Alcohol Alcohol AB.Soap

[10] AB.Soap AB.Soap AB.Soap AB.Soap AB.Soap AB.Soap AB.Soap Soap Soap

[19] Soap Soap Soap Soap Soap Soap Water Water Water

[28] Water Water Water Water Water

Levels: AB.Soap Alcohol Soap Water

> hw.aov=aov(values~ind)

> anova(hw.aov)

Analysis of Variance Table

Response: values

Df Sum Sq Mean Sq F value Pr(>F)

ind 3 29882 9960.7 7.0636 0.001111 **

Residuals 28 39484 1410.1

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

There are definitely some differences among the forms of handwashing. The
boxplots suggest that the alcohol spray is the most effective, but are there any
other significant differences? (My guess is not, since the data overall are rather
variable and we only have 8 observations per group.)

> hw.tukey=TukeyHSD(hw.aov)

> hw.tukey

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = values ~ ind)

$ind

diff lwr upr p adj

Alcohol-AB.Soap -55.0 -106.26415 -3.735849 0.0319648

Soap-AB.Soap 13.5 -37.76415 64.764151 0.8886944

Water-AB.Soap 24.5 -26.76415 75.764151 0.5675942

Soap-Alcohol 68.5 17.23585 119.764151 0.0055672

Water-Alcohol 79.5 28.23585 130.764151 0.0012122

Water-Soap 11.0 -40.26415 62.264151 0.9355196

6.1. ONE-WAY ANOVA 175

> plot(hw.tukey)

−100 −50 0 50 100W
at

er
−

S
oa

p
S

oa
p−

A
lc

oh
ol

S
oa

p−
A

B
.S

oa
p

95% family−wise confidence level

Differences in mean levels of ind

My guess was correct. (Yes, I did make the guess before doing the computa-
tions!) Only the three differences involving Alcohol were significant, with the
rest being comfortably non-significant. The plot conveys the same information,
though it’s a bit confusing since three of the labels didn’t get printed. They are
in the same order as in hw.tukey.

This business of disappearing labels bugged me. So I did some investigation,
and got them to appear. There is an enormous number of adjustable “graphical
parameters”. One of them is las, which controls how the numbers on the axes
get printed. las=1 means all the axis stuff is horizontal. You might remember
cex from when we were making plots of the cars’ gas mileages by weight, and
wanted to label the points by which cars they were. cex=0.5 makes characters
within the plot half the regular size. It turns out that there is a corresponding
thing for the characters on the axis, called cex.axis. So I tried setting that to
0.5 to see what would happen. (I found out all of this from the help for par,
which describes all the graphical parameters.)

Graphical parameters can be specified on the plot line, or beforehand by some-
thing like par(las=1,cex.axis=0.5). We did that when we did those four
plots on one page for regression.

176CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

So here we go:

> plot(hw.tukey,las=1,cex.axis=0.5)

> detach(hw.df)

−100 −50 0 50 100

Water−Soap

Water−Alcohol

Soap−Alcohol

Water−AB.Soap

Soap−AB.Soap

Alcohol−AB.Soap

95% family−wise confidence level

Differences in mean levels of ind

Much better. Whether it was worth all that trouble is another question.

6.2 Randomized blocks design

The people, animals or things on which an experiment is run are called exper-
imental units. (Usually, if they’re people, they are called subjects instead —
would you like to be called an “experimental unit”?) In the last example, the
experimental units were hands; in the bone density example, they were rats.
In a one-way analysis, we are assuming that the experimental units are all a
priori equal; we have no reason to suspect that particular units will be better
(in terms of the response) than others.

But imagine this: a study is comparing the effectiveness of four different skin
creams for treating a certain skin disease. There are 60 subjects available. But

6.2. RANDOMIZED BLOCKS DESIGN 177

some of them have more severe cases of the disease than others. (You might
expect the treatments to be less effective on more severe cases.) So the subjects
can be arranged in blocks: the 20 most severe cases in block 1, the 20 next
most severe in block 2, and the 20 least severe in block 3. Then 5 subjects from
each block are randomly chosen to get each of the four skin creams.

This deserves a picture, but I couldn’t find one online. I may have to draw one.

The point of all of this is that without the blocking, the most severe cases might
all get cream A, which would make cream A look bad (even if it really isn’t).
The least severe cases might all get cream D, making cream D look good.

But with the blocking, some of the most severe cases are guaranteed to receive
each of the four creams, and some of the least severe cases are likewise guaran-
teed to receive each of the creams. So we should have a fair comparison of the
creams.

I’m going to make up some data for this. Let’s imagine we have just 12 subjects.
We have 4 creams and 3 blocks, so that only leaves one observation per cream-
block combination. We’ll imagine the response variable is a score out of 100
which reflects how well the skin disease has cleared up.

Skin cream

Block A B C D

Most severe 12 14 22 17

Middle 51 55 61 54

Least severe 80 83 92 88

The response variable seems to be all over the place, but let’s forget our statistics
for a moment and just try to make sense of this. We do best to compare apples
with apples, so let’s look first at the most severe cases (first row). None of the
creams are much good, but C is better than the rest.

Now look at the middling-severe cases. The scores are all higher, but once again
C comes out best. Likewise, with the least severe cases, the scores are higher
again, but again C comes out best. So cream C ought to be the best overall.
We would hope that our analysis would bear this out.

First, the data. Let me put all the response values into a vector first:

> yy=c(12,14,22,17,51,55,61,54,80,83,92,88)

> yy

[1] 12 14 22 17 51 55 61 54 80 83 92 88

and then we use a trick to get all the combinations of factor and block. I think
if you see it in action you’ll be able to work out how to use it:

178CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

> handcreams=expand.grid(cream=c("A","B","C","D"),severity=c("Most","Middle","Least"))

> handcreams

cream severity

1 A Most

2 B Most

3 C Most

4 D Most

5 A Middle

6 B Middle

7 C Middle

8 D Middle

9 A Least

10 B Least

11 C Least

12 D Least

This is a data frame. Let’s glue our response onto it:

> handcreams$bacteria=yy

> handcreams

cream severity bacteria

1 A Most 12

2 B Most 14

3 C Most 22

4 D Most 17

5 A Middle 51

6 B Middle 55

7 C Middle 61

8 D Middle 54

9 A Least 80

10 B Least 83

11 C Least 92

12 D Least 88

and you can check that the response values did indeed get matched up to the
right combinations of cream and severity.

Now we can attach the data frame and go ahead and do our analysis. We’ll start
with some quality control which will look a bit silly because there’s only one
observation per cream-severity combination, and they are not really boxplots at
all. As with my Tukey plot earlier, some of the group labels disappeared, and
the fix is the same as before: adjust las and cex. This time I want the labels
perpendicular to the axis, so I set las accordingly:

6.2. RANDOMIZED BLOCKS DESIGN 179

> attach(handcreams)

> boxplot(bacteria~cream*severity,las=2,cex=0.5)

A
.M

os
t

B
.M

os
t

C
.M

os
t

D
.M

os
t

A
.M

id
dl

e

B
.M

id
dl

e

C
.M

id
dl

e

D
.M

id
dl

e

A
.L

ea
st

B
.L

ea
st

C
.L

ea
st

D
.L

ea
st

20

40

60

80

Take a look at the one-two-three-four patterns. Within each severity level, cream
C is highest and A lowest (no matter what the overall level). Also, the “least”
values are consistently higher than the “middle” values which are consistently
higher than the “most” values.

This consistency of pattern means that it is sensible to talk about a “cream
effect” regardless of severity, and sensible to talk about a “severity effect” re-
gardless of cream. This property of the data is called additivity, and is an
assumption hidiing behind this kind of ANOVA.

Notice how the model formula in aov below looks like a multiple regression.

> handcream.aov=aov(bacteria~cream+severity)

> anova(handcream.aov)

Analysis of Variance Table

Response: bacteria

180CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

Df Sum Sq Mean Sq F value Pr(>F)

cream 3 182.9 61.0 32.279 0.0004248 ***

severity 2 9708.7 4854.3 2569.941 1.585e-09 ***

Residuals 6 11.3 1.9

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

There is a strongly significant effect of severity (2nd line of table). This is
no surprise, since it’s the reason we made blocks in the first place. Generally
speaking, we expect there to be a differences among blocks, so we shouldn’t get
too excited about that.

The interesting thing is the test for differences among creams. This is strongly
significant too. The interpretation is as in multiple regression: after you’ve
accounted for differences among blocks, there is a significant difference between
creams. If you don’t allow for differences among blocks, like this:

> handcream.aov2=aov(bacteria~cream)

> anova(handcream.aov2)

Analysis of Variance Table

Response: bacteria

Df Sum Sq Mean Sq F value Pr(>F)

cream 3 182.9 60.97 0.0502 0.9841

Residuals 8 9720.0 1215.00

you don’t get any significance at all. The moral of the story is, if you think it’ll
make a difference, put it in the model (even if you’re not primarily interested
in it).

So there are differences among creams. Let’s see if we can figure out what
they are. Note the use of which to tell TukeyHSD that we only want to look
for differences among creams. Differences among blocks are expected and not
interesting.

> handcream.tukey=TukeyHSD(handcream.aov,which="cream")

> handcream.tukey

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = bacteria ~ cream + severity)

6.2. RANDOMIZED BLOCKS DESIGN 181

$cream

diff lwr upr p adj

B-A 3.000000 -0.884619 6.884619 0.1274284

C-A 10.666667 6.782048 14.551286 0.0003227

D-A 5.333333 1.448714 9.217952 0.0124296

C-B 7.666667 3.782048 11.551286 0.0019796

D-B 2.333333 -1.551286 6.217952 0.2597878

D-C -5.333333 -9.217952 -1.448714 0.0124296

> plot(handcream.tukey)

−10 −5 0 5 10 15

D
−

C
D

−
B

C
−

B
D

−
A

C
−

A
B

−
A

95% family−wise confidence level

Differences in mean levels of cream

This one takes a little untangling. Cream C is significantly better than all the
others. D is better than A but not B. A and B are not significantly different
either. In the old days (when I was an undergrad), people used to draw a “lines”
picture to summarize the differences, like this:

Cream A B D C

182CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

This means that cream B occupies a kind of middle ground between D and A,
and we don’t have enough data to resolve the situation unambiguously. But I
think we’ve done pretty well out of only 12 observations.

Finally,

> detach(handcreams)

Another example of a randomized blocks design is our matched-pairs example
of deer leg lengths, laid out in Figure 6.1. We have to re-organize the data first.
The original data frame has the foreleg lengths in one column (for the 10 deer)
and the hindleg lengths in another. So we have to arrange all the leg lengths in
one column, and then have a second column that says whether it was a foreleg
or a hindleg. That’s a job for stack. The problem with stack is that it gives
the columns silly names, so we’ll give them more reasonable ones. The first
column is the leg length, and the second is which leg it was. We also need to
know which deer we’re talking about. The data are the foreleg measurements
for the 10 deer, then the hindleg measurements. The rep command here takes
the list 1 through 10, and then that is repeated enough times (twice) to make
indiv have length 20. Then we glue that to our data frame s, and take a look
at it.

Next, we take a look at the randomized blocks ANOVA for our re-formatted
data frame, as in Figure 6.2. The P-value for leg is identical to the P-value for
the matched pairs t test. This is not a coincidence; both analyses are testing
for a difference in mean leg length, allowing for possible differences among deer.
You can do the analysis either way.

6.3 Two-way ANOVA

Let’s proceed right away to an example:

Nitrogen dioxide is a known pollutant, but its effects are not well known. A
study was carried out of protein leakage in the lungs of mice exposed to nitrogen
dioxide for 10, 12, and 14 days. Half the mice were exposed to the nitrogen
dioxide; the other half were not, and served as a control group. The response
variable is the percent of serum fluorescence, with high values indicating more
protein leakage. One third of the animals in the exposed and control groups
had their serum fluorescence measured at 10, 12 and 14 days.

I typed the data into a file and read it in like this:

> no2=read.table("fluor.txt",header=T)

> no2

6.3. TWO-WAY ANOVA 183

> deer=read.csv("deer.csv",header=T)

> deer

Foreleg Hindleg

1 142 138

2 140 136

3 144 147

4 144 139

5 142 143

6 146 141

7 149 143

8 150 145

9 142 136

10 148 146

> s=stack(list(Foreleg=deer$Foreleg,Hindleg=deer$Hindleg))

> names(s)

[1] "values" "ind"

> names(s)[1]="length"

> names(s)[2]="leg"

> indiv=rep(1:10,length=20)

> s$indiv=indiv

> s

length leg indiv

1 142 Foreleg 1

2 140 Foreleg 2

3 144 Foreleg 3

4 144 Foreleg 4

5 142 Foreleg 5

6 146 Foreleg 6

7 149 Foreleg 7

8 150 Foreleg 8

9 142 Foreleg 9

10 148 Foreleg 10

11 138 Hindleg 1

12 136 Hindleg 2

13 147 Hindleg 3

14 139 Hindleg 4

15 143 Hindleg 5

16 141 Hindleg 6

17 143 Hindleg 7

18 145 Hindleg 8

19 136 Hindleg 9

20 146 Hindleg 10

Figure 6.1: Organizing the deer data

184CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

> s.aov=aov(length~leg+indiv,data=s)

> anova(s.aov)

Analysis of Variance Table

Response: length

Df Sum Sq Mean Sq F value Pr(>F)

leg 1 54.450 54.450 4.7136 0.04437 *

indiv 1 54.123 54.123 4.6853 0.04494 *

Residuals 17 196.377 11.552

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> deer.t=t.test(deer$Foreleg,deer$Hindleg,paired=T)

> deer.t

Paired t-test

data: deer$Foreleg and deer$Hindleg

t = 3.4138, df = 9, p-value = 0.007703

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

1.113248 5.486752

sample estimates:

mean of the differences

3.3

Figure 6.2: Randomized blocks ANOVA for deer data

6.3. TWO-WAY ANOVA 185

group days fluor

1 c 10 143

2 c 12 179

3 c 14 76

4 c 10 169

5 c 12 160

6 c 14 40

7 c 10 95

8 c 12 107

9 c 14 99

10 c 10 111

11 c 12 115

12 c 14 72

13 c 10 132

14 c 10 150

15 c 12 171

16 c 12 166

17 c 14 143

18 c 14 128

19 e 10 152

20 e 10 83

21 e 10 91

22 e 10 86

23 e 10 150

24 e 10 108

25 e 12 141

26 e 12 152

27 e 12 201

28 e 12 242

29 e 12 209

30 e 12 134

31 e 14 119

32 e 14 104

33 e 14 125

34 e 14 147

35 e 14 200

36 e 14 178

> attach(no2)

A plot to kick things off. With two factors, we do boxplots of fluorescence against
the exposure/group combinations. Note the syntax to get the combinations.
This syntax is going to appear again later. It’s the same syntax we used to get
the hand cream “boxplots”.

186CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

> rm(days)

> boxplot(fluor~days*group,data=no2)

10.c 12.c 14.c 10.e 12.e 14.e

50
10

0
15

0
20

0
25

0

Let’s try to compare like with like, group first. For the control group (on the
left), fluorescence goes up a bit between 10 and 12 days, then down a lot between
12 and 14. For the exposed group, fluorescence goes up a lot between 10 and 12
days, then down a bit between 12 and 14. In both cases, 12 days is the highest,
but for one group 10 is the lowest and for the other 14.

Turning it around: comparing the days for each group, at 10 days the fluores-
cence is higher for the control group, but at 12 and 14 days, the fluorescence is
slightly higher for the exposed group.

We don’t have anything like the consistency of pattern we saw with the hand
creams. Additivity doesn’t seem to work; which number of days gives the lowest
fluorescence depends on which group you’re in.

When additivity fails, you have to look at the interaction between the two
factors. In fact, any time you have a two-factor ANOVA with more than one
observation per combination, you fit an interaction and then throw it away if
it’s not significant. Here’s what we get here. I have to do some shenanigans
first, in that days is actually a numeric variable; when we come to do Tukey,

6.3. TWO-WAY ANOVA 187

we need an actual categorical factor in there, which d is:

> d=factor(days)

> d

[1] 10 12 14 10 12 14 10 12 14 10 12 14 10 10 12 12 14 14 10 10 10 10 10 10 12

[26] 12 12 12 12 12 14 14 14 14 14 14

Levels: 10 12 14

> fluor.aov=aov(fluor~d*group,data=no2)

> anova(fluor.aov)

Analysis of Variance Table

Response: fluor

Df Sum Sq Mean Sq F value Pr(>F)

d 2 15464 7731.8 6.2584 0.005351 **

group 1 3721 3721.0 3.0120 0.092916 .

d:group 2 8686 4343.1 3.5155 0.042495 *

Residuals 30 37062 1235.4

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The interaction is significant (3rd line of the table), so the fluorescence depends
not just on group or days, but on the combination of them.

Before we go to Tukey, let me describe R’s notation for ANOVA. Suppose we
have two factors a and b. Then a+b describes the model with “main effects” for
a and b only, as in randomized blocks. In that case, we are assuming that a and
b act additively: the effect of a is the same over all levels of b. Go back and
look at the “boxplot” for the randomized blocks example, where you see that
the creams come out in (more or less) the same order whether the severity was.
This is additivity, and for the fluorescence data we don’t have that. If things
look additive, you can fit a model like this: response=a+b.

If not, you need to include the interaction. In R terms, the interaction is called
a:b, but you won’t often use this notation, because the correct procedure is to
fit the main effects and the interaction. The notation for that is a*b. (If you’ve
ever used SAS, you’ll probably find that confusing, by the way.) So you can fit
an ANOVA with interaction either as response~a*b or response~a+b+a:b.

Now, when it comes to Tukey, you need the bit of the output that compares all
the factor-level combinations, which in our case is the bit labelled d:group at
the end of the output below.

188CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

> fluor.tukey=TukeyHSD(fluor.aov)

Since we’re ignoring part of the Tukey output, we can just ask for the bit we
want as below, with the quotes being necessary as : has special meaning to R:

> fluor.tukey$"d:group"

diff lwr upr p adj

12:c-10:c 16.333333 -45.389578 78.056245 0.964396970

14:c-10:c -40.333333 -102.056245 21.389578 0.372626293

10:e-10:c -21.666667 -83.389578 40.056245 0.890203500

12:e-10:c 46.500000 -15.222911 108.222911 0.228832871

14:e-10:c 12.166667 -49.556245 73.889578 0.990264722

14:c-12:c -56.666667 -118.389578 5.056245 0.086447851

10:e-12:c -38.000000 -99.722911 23.722911 0.437597887

12:e-12:c 30.166667 -31.556245 91.889578 0.675065824

14:e-12:c -4.166667 -65.889578 57.556245 0.999943947

10:e-14:c 18.666667 -43.056245 80.389578 0.938281125

12:e-14:c 86.833333 25.110422 148.556245 0.002227027

14:e-14:c 52.500000 -9.222911 114.222911 0.131781533

12:e-10:e 68.166667 6.443755 129.889578 0.023727072

14:e-10:e 33.833333 -27.889578 95.556245 0.562783705

14:e-12:e -34.333333 -96.056245 27.389578 0.547401314

> tapply(fluor,list(no2$d,no2$group),mean)

c e

10 133.3333 111.6667

12 149.6667 179.8333

14 93.0000 145.5000

There is typically rather a lot of output to study from one of these. Here, we
have 2 groups and 3 numbers of days, so there are 2×3 = 6 combinations (the 6
groups we saw on the boxplot), and 6(6−1)/2 = 15 pairs of groups to compare.

The tapply thing at the bottom says “for the variable fluor, make me a table
cross-classified by d and group containing the means.”

If you cast your eye down the Tukey output, you’ll see only 2 P-values less than
0.05: the comparison between 12:e and 14:c (that is, fluorescence at 12 days
for the exposed group and fluorescence at 14 days for the control group), and
also the comparison between 12:e and 10:e. (Notice how R is constructing
names for the groups using :.)

6.3. TWO-WAY ANOVA 189

What does that mean? Look at the output from tapply. 12:e has the highest
mean of all the groups, and 14:c and 10:e have the lowest means of all the
groups. Only these differences are significant; all the other differences between
groups could be chance.

How you make sense of that is, as we statisticians like to say, “subject-matter
dependent”, meaning “it’s your problem, not mine!”

Finally,

> detach(no2)

Let me show you now how to handle a case where the interaction is not signifi-
cant. It’ll end up looking a lot like the hand-creams randomized blocks example
we did.

This is a study of using “scaffolds” made of extra-cellular material to repair
serious wounds. Three types of scaffolds were tested (on mice). The response
variable was percent glucose phosphated isomerase in the cells in the region of
the wound, a higher value being better. The response variable, called gpi in
the analyses below, was measured 2, 4 and 8 weeks after the tissue repair. This
required a different mouse for each number of weeks. Three mice were tested
at each combination of scaffold type (labelled material below) and number of
weeks, for a total of 27 mice.

The first step is to read in the data and make some boxplots. Days in the data
file is a number, so we want to create a factor out of it, which I called df. I also
had to do the las thing to get all the labels to show up:

> scaffold=read.table("scaffold.txt",header=T)

> scaffold$df=factor(scaffold$days)

> scaffold

material days gpi df

1 ecm1 2 70 2

2 ecm1 2 75 2

3 ecm1 2 65 2

4 ecm1 4 55 4

5 ecm1 4 70 4

6 ecm1 4 70 4

7 ecm1 8 60 8

8 ecm1 8 65 8

9 ecm1 8 65 8

10 ecm2 2 60 2

11 ecm2 2 65 2

190CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

12 ecm2 2 70 2

13 ecm2 4 60 4

14 ecm2 4 65 4

15 ecm2 4 65 4

16 ecm2 8 60 8

17 ecm2 8 70 8

18 ecm2 8 60 8

19 ecm3 2 80 2

20 ecm3 2 60 2

21 ecm3 2 75 2

22 ecm3 4 75 4

23 ecm3 4 70 4

24 ecm3 4 75 4

25 ecm3 8 70 8

26 ecm3 8 80 8

27 ecm3 8 70 8

> attach(scaffold)

> boxplot(gpi~material*df,las=3)

ec
m

1.
2

ec
m

2.
2

ec
m

3.
2

ec
m

1.
4

ec
m

2.
4

ec
m

3.
4

ec
m

1.
8

ec
m

2.
8

ec
m

3.
8

55
60

65
70

75
80

Some of the boxplots look odd because each one is based on only three obser-

6.3. TWO-WAY ANOVA 191

vations. But, given that, additivity looks pretty good: for any number of days,
ecm3 is highest and ecm2 is lowest. Also, for each of the materials, the gpi for
2 and 4 days is about the same, and the one for 8 days is less. Also, with only
three observations per combo, the equal-group-SD assumption is hard to assess.

Anyway, we wouldn’t expect the interaction to be significant. Are we right?

> scaffold1.aov=aov(gpi~material*df)

> anova(scaffold1.aov)

Analysis of Variance Table

Response: gpi

Df Sum Sq Mean Sq F value Pr(>F)

material 2 385.19 192.593 5.3333 0.01517 *

df 2 24.07 12.037 0.3333 0.72086

material:df 4 59.26 14.815 0.4103 0.79891

Residuals 18 650.00 36.111

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Very much so. In fact, it doesn’t look as if there’s an effect of days either. So
let’s take out the interaction and think about taking out df as well:

> scaffold2.aov=aov(gpi~material+df)

> anova(scaffold2.aov)

Analysis of Variance Table

Response: gpi

Df Sum Sq Mean Sq F value Pr(>F)

material 2 385.19 192.593 5.9739 0.008467 **

df 2 24.07 12.037 0.3734 0.692691

Residuals 22 709.26 32.239

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

OK, so df can come out too. What actually happens is that its sum of squares
and degrees of freedom get transferred to the Residuals line, so we end up with
a better test for materials, both in the ANOVA and in the Tukey that follows.

> scaffold3.aov=aov(gpi~material)

> anova(scaffold3.aov)

192CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

Analysis of Variance Table

Response: gpi

Df Sum Sq Mean Sq F value Pr(>F)

material 2 385.19 192.593 6.303 0.006308 **

Residuals 24 733.33 30.556

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> scaffold3.tukey=TukeyHSD(scaffold3.aov)

> scaffold3.tukey

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = gpi ~ material)

$material

diff lwr upr p adj

ecm2-ecm1 -2.222222 -8.7296194 4.285175 0.6744928

ecm3-ecm1 6.666667 0.1592695 13.174064 0.0439208

ecm3-ecm2 8.888889 2.3814917 15.396286 0.0062543

> plot(scaffold3.tukey)

6.3. TWO-WAY ANOVA 193

−5 0 5 10 15ec
m

3−
ec

m
2

ec
m

3−
ec

m
1

ec
m

2−
ec

m
1

95% family−wise confidence level

Differences in mean levels of material

So we end up concluding that there is a significant difference among materials
(from the ANOVA). The nature of that difference is perhaps best seen from the
Tukey plot: there’s no significant difference between ecm1 and ecm2, but ecm3

is better than both, if only marginally significant against ecm1.

What we’ve come down to is a one-way ANOVA with 9 observations per material
group (since days had no significant effect), so maybe now we can assess our
equal-SD assumption by drawing boxplots just by material and calculating the
SDs by group:

> tapply(gpi,list(material),sd)

ecm1 ecm2 ecm3

6.009252 4.166667 6.180165

> boxplot(gpi~material)

194CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

●

●

ecm1 ecm2 ecm3

55
60

65
70

75
80

The SDs look pretty similar, with that of ecm2 being smallest, which is what
you see from the boxplot also. There is a tiny suspicion that groups with larger
means also have larger SDs, but I’m not going to worry about that.

Tidying up after ourselves:

> detach(scaffold)

6.4 2k factorials and fractional factorials

6.4.1 2k factorial designs

In industrial settings (and others as well), there can be lots of factors that might
affect a response, but typically only a few of them actually do. Also, with many
factors, there are in principle a lot of interactions to worry about, but typically
only a few of them are actually relevant.

Another thing we’ve seen is that if the factors have a lot of levels, a lot of data
needs to be collected. One way of limiting the data required is to insist that
each of the k factors has only two levels, “low” and “high” if you will. Since the

6.4. 2K FACTORIALS AND FRACTIONAL FACTORIALS 195

> hl=c("+","-")

> des=expand.grid(A=hl,B=hl,C=hl)

> des

A B C

1 + + +

2 - + +

3 + - +

4 - - +

5 + + -

6 - + -

7 + - -

8 - - -

> r=sample(1:8)

> des[r,]

A B C

1 + + +

7 + - -

6 - + -

5 + + -

3 + - +

2 - + +

4 - - +

8 - - -

Figure 6.3: Designing a 23 factorial experiment

levels of the factors are (usually) under our control, this is something that can
be arranged. The advantage of this is that you don’t need too much data: for
example, with 3 factors at two levels each, you have 23 = 8 observations.

Designing one of these things contains ideas we’ve seen before. The example in
Figure 5.5 is actually a (replicated) 22 factorial experiment, since temperature
and pressure there have only two possible values.

The key is the use of expand.grid to generate all possible combinations of
factor levels. Let’s design a 23 factorial design (three factors, each at two levels.
We’ll call the factors A, B and C, and we’ll suppose each one has a “high” level,
denoted “+”, and a low level, “-”.

The design process is shown in Figure 6.3. First, we set up a variable containing
the levels. Then we do all combinations of those levels, naming the factors A,
B and C. The actual design is shown next. But before we actually use it, we’ll
want to randomize the order. The sample line shuffles the numbers 1 through

196CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

8 (since there are 8 observations that need to be collected) and then we list the
rows of des shuffled, using the variable r. If you wanted to, you could replicate
this, eg. by using the same shuffling again.

An unreplicated design like the one in Figure 6.3 allows you to assess all the
main effects and interactions up to but not including the highets-order one.
Thus, in the design of Figure 6.3, we can estimate A, B, C main effects, A:B,
A:C, B:C interactions, but not the A:B:C interaction. To get any tests at all,
we have to assume that the A:B:C interaction is zero, and use its sum of squares
for error. Then we can test anything else.

If you replicate the design (eg. do Figure 6.3 twice), you can estimate all the
interactions. But if we are in the exploratory stage, probably the highest order
interactions (and maybe even some of the main effects) will be zero.

Let’s see an example. This is an engineering experiment (from http://www.itl.nist.gov/div898/handbook/pri/section3/pri3331.htm)
to assess the influence of three factors, Pressure, Speed and Force, on a produc-
tion tool, with the aim of producing the most uniform product. (I don’t know
how “product uniformity” was measured, but that’s what the response is). Each
of the three factors has a “high” and a “low” setting, the details of which we
won’t bother with here, because they won’t affect the analysis. A replicated
23 design was used, with two observations taken at each setting of the factors.
The analysis is shown in Figure 6.4. (In the actual experiment, the order of the
settings was randomized, as in Figure 6.3.)

Let’s go through Figure 6.4. First we remind ourselves of the variable we created
to symbolize “high” and “low”. Then we use this to create a 23 factorial design
for the three variables Pressure, Speed and Force. Now, we actually wanted
to replicate this, so the creation of eng.design takes rows 1 through 8 of d1

(ie. all of it), and glues another copy of rows 1 through 8 onto the bottom. (The
function rbind could also be used). dim is just to verify that eng.design has
the right number of rows and columns, which it does: 16 rows (observations), 3
columns (variables). yy is the actual data, copied from the website (and checked
several times to make sure that each value was going with the right combination
of the three factors). I glue this onto the data frame, in the variable response.

Now comes the actual analysis. (All that work to set up the data!) You could
attach the data frame, or you can do as I did here, which is to specify data=

inside aov, which means “get the variables needed for the model formula from
this data frame”. Finally, the ANOVA table shows that the three main effects
are strongly significant. The three-way interaction is not, and it appears that
none of the two-way interactions are either. Let’s take them all out. (There
is a mathematical property called “orthogonality” happening here which means
that the sums of squares for the factors you remove just get moved into “error”,
so that the sums of squares and mean squares for the factors you keep don’t
change. But the error (residual) sum of squares does change, so the P-values
for the tests of the factors you keep will change.)

6.4. 2K FACTORIALS AND FRACTIONAL FACTORIALS 197

> hl

[1] "+" "-"

> d1=expand.grid(Pressure=hl,Speed=hl,Force=hl)

> d1

Pressure Speed Force

1 + + +

2 - + +

3 + - +

4 - - +

5 + + -

6 - + -

7 + - -

8 - - -

> eng.design=d1[c(1:8,1:8),]

> dim(eng.design)

[1] 16 3

> yy=c(-3,0,1,2,-1,2,1,6,-1,-1,0,3,0,1,1,5)

> eng.design$response=yy

> eng.design.1=aov(response~Pressure*Speed*Force,data=eng.design)

> anova(eng.design.1)

Analysis of Variance Table

Response: response

Df Sum Sq Mean Sq F value Pr(>F)

Pressure 1 25.00 25.000 40.0 0.0002267 ***

Speed 1 30.25 30.250 48.4 0.0001176 ***

Force 1 12.25 12.250 19.6 0.0022053 **

Pressure:Speed 1 2.25 2.250 3.6 0.0943498 .

Pressure:Force 1 2.25 2.250 3.6 0.0943498 .

Speed:Force 1 0.00 0.000 0.0 1.0000000

Pressure:Speed:Force 1 1.00 1.000 1.6 0.2415040

Residuals 8 5.00 0.625

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Figure 6.4: Analysis of 23 factorial

198CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

> eng.design.2=aov(response~Pressure+Speed+Force,data=eng.design)

> anova(eng.design.2)

Analysis of Variance Table

Response: response

Df Sum Sq Mean Sq F value Pr(>F)

Pressure 1 25.00 25.000 28.571 0.000175 ***

Speed 1 30.25 30.250 34.571 7.484e-05 ***

Force 1 12.25 12.250 14.000 0.002813 **

Residuals 12 10.50 0.875

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> attach(eng.design)

> tapply(response,Pressure,mean)

+ -

-0.25 2.25

> tapply(response,Speed,mean)

+ -

-0.375 2.375

> tapply(response,Force,mean)

+ -

0.125 1.875

> tapply(response,list(Pressure,Speed),mean)

+ -

+ -1.25 0.75

- 0.50 4.00

> detach(eng.design)

Figure 6.5: Analysis 2 of 23 factorial

6.4. 2K FACTORIALS AND FRACTIONAL FACTORIALS 199

Figure 6.5 shows the analysis with just the main effects included. All three of
them are very strongly significant.

Since none of the interactions were significant, we can look at tables of means for
each of the factors individually. That’s what those first three tapply commands
are doing. In each case, we see that the “low” setting produces a larger mean.

If any of the interactions had been significant, we would have had to find com-
bination means, as exemplified in the last tapply. This gives means for all
combinations of Pressure (rows) and Speed (columns). This example shows
that the mean is higher by about 2 for the low setting of Pressure compared to
the high setting, regardless of what Speed is, and the mean is 2-and-a-bit higher
for the low setting of Speed compared to the high setting, almost regardless of
of what Pressure is. (This interaction had a P-value of about 0.10, which is
why the change in means isn’t more consistent.)

Another way of designing a factorial experiment is via use of the function FrF2

from the package of the same name. Even though it was designed for fractional
factorial designs (Section 6.4.2), it can be used for complete factorial designs as
well.

6.4.2 Fractional factorial designs

Sometimes the number of factors (even with only two levels each) will require
you to collect too much data, more than your budget will allow. For example,
with 6 factors, you’d have 26 = 64 observations to collect. This might be too
many, especially in the early stages of an investigation when several of those
factors might not even be important. But you might be willing to collect half
(32) or a quarter (16) as many observations as that. The question is, what does
this mean you have to give up?

I mentioned at the end of the previous section that (unless you replicate) you
can’t test the highest-order interaction for significance. Let’s think about the
23 design. In that case, you can’t test A:B:C; it is “confounded with error” in
that unless you assume this interaction is zero, you can’t test anything.

Now, let’s consider a half-fraction of the design in 6.3. What we’re going to do
is to count up the number of plus signs in each row of des, and pick out just
those rows where there’s an odd number of them. There are four, rows 1, 4, 6,
and 7. Now, think of + as meaning +1 and - as meaning −1, and look at this
design, shown in Figure 6.6. If you multiply the “numbers” for B and C together
in Figure 6.6, you always get the same thing as A. But in the original design,
Figure 6.3, sometimes they’ll be the same and sometimes they’ll be different.
What this means is that, in the half-fraction Figure 6.6, you can’t distinguish
the effects of A and B:C. So you would assume that the B:C interaction is zero
and that when you test for A, it really is A and not B:C. So in a fractional

200CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

> odd=c(1,4,6,7)

> des[odd,]

A B C

1 + + +

4 - - +

6 - + -

7 + - -

Figure 6.6: Half-fraction of 23 design

factorial design like this half-fraction of a 23 factorial design, what you give up
is the ability to test higher-order interactions, so that you have to assume they
are zero.

It would be nice to generate a design more automatically than looking to see
whether there is an odd or even number of plus signs. Fortunately, there is
a package FrF2 that will do just this. As usual, you’ll need to install it first.
Figure 6.7 illustrates how it works.

The basic operation is the first FrF2 line. You feed in two things: the second
one is the number k of factors you have (3, as earlier), and the first one is the
number of observations you want to have to collect. This needs to be a suitable
fraction of 2k; in this case it is half of it. The design comes out with the factors
labelled A, B, C and so on, and the levels of the factors labelled 1 and −1.
Things are configurable; the second line shows how you name the levels of the
factors (the same names for all the factors); the third line shows how you give
the factors names different from A, B and C, and the fourth line shows that if
you’ve given the factors names, you don’t need to tell FrF2 how many of them
there are.

At the end, I’ve illustrated how you would randomize the rows of one of these
designs. It’s the same technique as before: figure out how many rows n you
have, shuffle the numbers from 1 to n, and use that vector of shuffled numbers
to pick out the rows you want.

Let’s look at an example: a statistics class conducted an experiment to see how
different settings on a catapult would affect the distance a projectile (a plas-
tic golf ball) would travel. The following description of the five factors was taken
from the website http://www.itl.nist.gov/div898/handbook/pri/section4/pri472.htm.
I have modified the experimental design (and eliminated some of the data) so
as to make it a fractional factorial design as we have described it.

� Factor 1 = band height (height of the pivot point for the rubber bands —
levels were 2.25 and 4.75 inches)

6.4. 2K FACTORIALS AND FRACTIONAL FACTORIALS 201

> library(FrF2)

> FrF2(4,3)

A B C

1 -1 -1 1

2 1 1 1

3 1 -1 -1

4 -1 1 -1

class=design, type= FrF2

> FrF2(4,3,default.levels=c("low","high"))

A B C

1 high high high

2 low high low

3 high low low

4 low low high

class=design, type= FrF2

> FrF2(4,3,factor.names=c("Temperature","Pressure","Smoke"),default.levels=c("low","high"))

Temperature Pressure Smoke

1 low high low

2 low low high

3 high high high

4 high low low

class=design, type= FrF2

> design=FrF2(4,factor.names=c("Temperature","Pressure","Smoke"),default.levels=c("low","high"))

> design

Temperature Pressure Smoke

1 low low high

2 high high high

3 high low low

4 low high low

class=design, type= FrF2

> r=sample(1:4)

> design[r,]

Temperature Pressure Smoke

2 high high high

3 high low low

4 low high low

1 low low high

class=design, type= FrF2

Figure 6.7: Illustrating FrF2

202CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

� Factor 2 = start angle (location of the arm when the operator releases—
starts the forward motion of the arm — levels were 0 and 20 degrees)

� Factor 3 = rubber bands (number of rubber bands used on the catapult
— levels were 1 and 2 bands)

� Factor 4 = arm length (distance the arm is extended — levels were 0 and
4 inches)

� Factor 5 = stop angle (location of the arm where the forward motion of the
arm is stopped and the ball starts flying — levels were 45 and 80 degrees)

A full factorial design with 5 factors would have 25 = 32 observations. This has
16, which is half that. So we should not expect to test higher order interactions.

Figure 6.8 shows what happens when we try to test all possible interactions for
the catapult data. The anova table shows that even if we go up only to two-way
interactions, we run out of degrees of freedom (there are 5 main effects, 10 two
way interactions, and only 16 − 1 = 15 total degrees of freedom, so there is no
sum of squares for error and no tests. We have a couple of ways to go: one way
is to take out the least significant stuff, which we’ll do next, and another way is
to look at a “half-normal plot”, which we’ll do a bit later.

Now, we don’t have any“official”way of assessing the least significant stuff, since
we have no tests. But we know how a test would go: we’d take a mean square
and divide it by the mean square for error to get an F statistic. So the smallest
mean squares are going to go with the smallest F values which will go with
the largest P-values. The two smallest mean squares go with the start:length

and height:stop interactions, so let’s get rid of those. The analysis is shown
in Figure 6.9.

There are a couple of things to note here. One of them is in the model formula.
When you see something like (stuff + morestuff)2 in the model formula, this
means “all the main effects and interactions between two of the variables in the
list”. (stuff + morestuff + yetmorestuff)3 would include three way interac-
tions, and so on. After that, there were two two-way interactions that I wanted
to remove, so the - in the model formula means “don’t include this”. You can
read the whole thing as “all the main effects and 2-way interactions except for
these two”. The other thing to note is that all the P-values are pretty small.
This, I think, is a consequence of taking out the least significant terms first, so
that the error sum of squares (which is very “flimsy” since it is based on only
2 degrees of freedom) is smaller than it really ought to be, and that is making
the F values larger. We’ll see a way around this in a minute, but to press on
with this approach, let’s (rather arbitrarily) choose to remove now all the terms
with a P-value bigger than 0.06. That’ll prune off three more terms, and get
us 5 degrees of freedom for error. Since only 5 of the 10 two-way interactions
remain, let’s just specify the model directly in the model formula. The process
is in Figure 6.10.

6.4. 2K FACTORIALS AND FRACTIONAL FACTORIALS 203

> catapult=read.table("catapult.txt",header=T)

> head(catapult)

distance height start bands length stop order

1 28.00 3.25 0 1 0 80 1

2 126.50 4.75 20 2 4 80 3

3 126.50 4.75 0 2 4 45 4

4 45.00 3.25 20 2 4 45 5

5 35.00 4.75 0 1 0 45 6

6 28.25 4.75 20 1 0 80 8

> attach(catapult)

> catapult.1=aov(distance~height*start*bands*length*stop)

> anova(catapult.1)

Analysis of Variance Table

Response: distance

Df Sum Sq Mean Sq F value Pr(>F)

height 1 2909.3 2909.3

start 1 1963.6 1963.6

bands 1 5157.0 5157.0

length 1 6490.3 6490.3

stop 1 2322.0 2322.0

height:start 1 122.4 122.4

height:bands 1 344.6 344.6

start:bands 1 161.0 161.0

height:length 1 353.9 353.9

start:length 1 19.7 19.7

bands:length 1 926.4 926.4

height:stop 1 0.2 0.2

start:stop 1 114.2 114.2

bands:stop 1 128.0 128.0

length:stop 1 157.8 157.8

Residuals 0 0.0

Figure 6.8: Analysis 1 of the catapult data

204CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

> catapult.2=aov(distance~(height+start+bands+length+stop)^2-

+ start:length-height:stop)

> anova(catapult.2)

Analysis of Variance Table

Response: distance

Df Sum Sq Mean Sq F value Pr(>F)

height 1 2909.3 2909.3 292.640 0.003400 **

start 1 1963.6 1963.6 197.517 0.005025 **

bands 1 5157.0 5157.0 518.743 0.001922 **

length 1 6490.3 6490.3 652.857 0.001528 **

stop 1 2322.0 2322.0 233.572 0.004254 **

height:start 1 122.4 122.4 12.310 0.072510 .

height:bands 1 344.6 344.6 34.660 0.027660 *

height:length 1 353.9 353.9 35.600 0.026959 *

start:bands 1 161.0 161.0 16.192 0.056569 .

start:stop 1 114.2 114.2 11.490 0.077104 .

bands:length 1 926.4 926.4 93.190 0.010561 *

bands:stop 1 128.0 128.0 12.873 0.069664 .

length:stop 1 157.8 157.8 15.875 0.057604 .

Residuals 2 19.9 9.9

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Figure 6.9: Analysis 2 of the catapult data

6.4. 2K FACTORIALS AND FRACTIONAL FACTORIALS 205

> catapult.3=aov(distance~height+start+bands+length+stop+

+ height:bands+height:length+start:stop+bands:length+length:stop)

> anova(catapult.3)

Analysis of Variance Table

Response: distance

Df Sum Sq Mean Sq F value Pr(>F)

height 1 2909.3 2909.3 33.7338 0.0021342 **

start 1 1963.6 1963.6 22.7686 0.0050075 **

bands 1 5157.0 5157.0 59.7977 0.0005778 ***

length 1 6490.3 6490.3 75.2575 0.0003365 ***

stop 1 2322.0 2322.0 26.9248 0.0034992 **

height:bands 1 344.6 344.6 3.9954 0.1020903

height:length 1 353.9 353.9 4.1037 0.0986426 .

start:stop 1 114.2 114.2 1.3245 0.3018403

bands:length 1 926.4 926.4 10.7424 0.0220137 *

length:stop 1 157.8 157.8 1.8299 0.2340877

Residuals 5 431.2 86.2

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Figure 6.10: Analysis 3 of the catapult data

206CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

> catapult.4=aov(distance~height+start+bands+length+stop+bands:length)

> anova(catapult.4)

Analysis of Variance Table

Response: distance

Df Sum Sq Mean Sq F value Pr(>F)

height 1 2909.3 2909.3 18.6794 0.0019276 **

start 1 1963.6 1963.6 12.6076 0.0062089 **

bands 1 5157.0 5157.0 33.1116 0.0002748 ***

length 1 6490.3 6490.3 41.6722 0.0001174 ***

stop 1 2322.0 2322.0 14.9090 0.0038399 **

bands:length 1 926.4 926.4 5.9484 0.0374303 *

Residuals 9 1401.7 155.7

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Figure 6.11: Analysis 4 of the catapult data

The error mean square has gone way up, and so have many of the P-values. It
seems that the only interaction worth keeping is bands:length. So let’s take
out the others and see where we are. This is Figure 6.11. Now it seems that we
can stop. There is nothing non-significant to remove1.

I hope you were a bit bothered by the arbitrary nature of the early part of the
analysis, caused by our having to “invent” degrees of freedom for error. Another
approach, which gets around this, is called the half-normal plot. The idea is
that an “effect” is calculated for each term in the ANOVA table of Figure 6.8
(the one with no P-values). If nothing is significant, these should all have a
normal distribution, so we draw a QQ plot and see whether these effects lie on a
straight line or not. Any that seem off the line are probably significant. So this
gives us a rather more direct way of deciding what to keep. That’s the basic
idea. A refinement is that the effects being positive or negative don’t matter
much, so we pretend they’re all positive and only plot the positive half of the
QQ plot. Any effect that’s large will be off the line to the top right.

The function for plotting half-normal plots is qqnorm.aov from package gplots.
Actually, if you load this package and then call qqnorm on output from aov,
that’ll be enough. The first analysis, catapult.1, with all the effects, is the one
to use. This is shown in Figure 6.12.

What you do is to start at the bottom left of the plot. These are the small,
insignificant, effects. You look to see which of those appear to lie on a straight

1or, if you hate double negatives as much as I do, “everything is signficant and so must
stay”.

6.4. 2K FACTORIALS AND FRACTIONAL FACTORIALS 207

> library(gplots)

> qqnorm(catapult.1)

●

●

● ● ●
● ●

● ●

●

●

●

●

●

●

0.0 0.5 1.0 1.5

0
20

40
60

80

Half Normal plot

E
ffe

ct
s

Figure 6.12: Half-normal plot for catapult data

208CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

Figure 6.13: Half-normal plot with effects identified

line, and where the trail of points starts curving up. This is a question of
judgement too. My judgement is that the effects up to about 20 lie on a line,
and starting with the effect that’s about 30, the effects lie above the straight
line passing through the other points.

If you’re using R Studio, you can call qqnorm.aov as

> qqnorm(catapult.1,label=T)

and then you can click on any of the effects that look large. This works a bit
counter-intuitively. When you click on a circle, nothing appears to happen, but
click all the circles you want and then press ESC. Some numbers will appear
in the console window, and on the plot will appear the names of the variables
whose effects you clicked. I got the picture shown in Figure 6.13. If you don’t
want to go that far: the effects are related to the F statistics in the ANOVA
table (large on one is large on the other); the largest 6 F statistics are the
interesting ones, which is the 5 main effects plus the bands-length interaction.
That’s the same six terms as appear in Figure 6.11, which are indeed significant.

As a second example of a half-normal plot, let’s look again at the engineering
experiment of Section 6.4.1. This is shown in Figure 6.14. I begin with the
ANOVA table (from the first analysis) as a reminder. The half-normal plot
is below. It looks to me as if the three biggest effects are significant, which
correspond to the three main effects2.

2If you draw a line through the three smallest effects, it would pass through the three

6.4. 2K FACTORIALS AND FRACTIONAL FACTORIALS 209

> anova(eng.design.1)

Analysis of Variance Table

Response: response

Df Sum Sq Mean Sq F value Pr(>F)

Pressure 1 25.00 25.000 40.0 0.0002267 ***

Speed 1 30.25 30.250 48.4 0.0001176 ***

Force 1 12.25 12.250 19.6 0.0022053 **

Pressure:Speed 1 2.25 2.250 3.6 0.0943498 .

Pressure:Force 1 2.25 2.250 3.6 0.0943498 .

Speed:Force 1 0.00 0.000 0.0 1.0000000

Pressure:Speed:Force 1 1.00 1.000 1.6 0.2415040

Residuals 8 5.00 0.625

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> qqnorm(eng.design.1)

●

●

● ●

●

●

●

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
1

2
3

4
5

Half Normal plot

E
ffe

ct
s

Figure 6.14: Half-normal plot of engineering experiment

210CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

Going back to the catapult data, we should probably do some quality control.
A kind of bare minimum is to check that the residuals are roughly normal. This
is shown in Figure 6.15. Don’t get confused by the similarity with Figure 6.12:
since we are feeding qqnorm a list of numbers rather than a fitted model object,
we get a regular normal QQ plot rather than a half-normal plot of effects.

I’d say these are approximately normal, though there is a tendency for the lowest
value(s) to be too low and the highest values to be too high. On the website
where I got these data, they tried a log transform. The motivation for that was
that there was a negative fitted value (see above the plot); since the response
variable was distance, it would have to be positive.

A final remark: when all your factors have two levels, there’s no reason to do
Tukey or any other multiple comparisons method. You know whether the two
levels have significantly different responses, so you’ve found out all you could
know about which levels differ. Use tapply or something like that to make a
table of means.

6.4.3 Blocking and fractional factorials

Your experiment might have to be run under different conditions for some of
the trials, eg. at night, where light or temperature might make a difference.
The easiest way to handle that is to include “block” in your experiment, with
two levels, so now it becomes a 2k+1 factorial, or some fraction of that. If your
block naturally has four levels, you have two “blocking variables”, each with two
levels.

For example, you might have 3 “real” factors A, B, C. You might be able to
collect all 23 = 8 observations (in which case a complete factorial design would
work). But you may be able to do only 4 runs during the day, while the other 4
have to be at night. It makes sense to have two blocks, in which case (depending
on your point of view) you use one half-fraction of a 23 factorial for the day runs
and the other half for the night runs. Or, you add “time” as another, blocking,
factor, with levels “day” and “night”, and run a half fraction of a 24 design.

Some possibilities are shown in Figure 6.16. The first is to get a half-fraction of
a 23 factorial, say that these observations belong to block 1, and the missing four
belong to block 2. The second is to declare Block an additional factor. You see
that, apart from the randomized order, Block=1 corresponds to the half-fraction
above, and Block=-1 corresponds to the missing half-fraction. The third, and
in practice best, way is to supply a blocks= argument to FrF2 which says how

largest effects as well, and you wouldn’t know what to conclude, but the fourth point would
be below the line, and you’re looking for points above. Another way to see this is that the
three biggest effects are a lot bigger than the four smallest, so drawing the line at three seems
sensible. This is a lot like a (right-to-left) scree plot. See Figure 11.12 and the accompanying
discussion for more on that.

6.4. 2K FACTORIALS AND FRACTIONAL FACTORIALS 211

> res=residuals(catapult.4)

> qqnorm(res)

> qqline(res)

> fitted.values(catapult.4)

1 2 3 4 5 6 7 8

34.45313 115.45313 113.51562 64.39062 37.32812 39.26562 86.48438 -11.79688

9 10 11 12 13 14 15 16

40.23438 35.42188 35.85938 31.04688 32.98438 82.10938 37.35938 110.64062

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

−2 −1 0 1 2

−
20

−
10

0
10

20

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 6.15: QQ plot of residuals

212CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

> FrF2(4,3)

A B C

1 -1 -1 1

2 -1 1 -1

3 1 -1 -1

4 1 1 1

class=design, type= FrF2

> FrF2(8,factor.names=c("A","B","C","Block"))

A B C Block

1 1 1 1 1

2 -1 -1 -1 -1

3 1 -1 1 -1

4 1 1 -1 -1

5 -1 -1 1 1

6 -1 1 1 -1

7 -1 1 -1 1

8 1 -1 -1 1

class=design, type= FrF2

> FrF2(8,3,blocks=2)

run.no run.no.std.rp Blocks A B C

1 1 3.1.3 1 1 -1 -1

2 2 4.1.4 1 1 1 1

3 3 1.1.1 1 -1 -1 1

4 4 2.1.2 1 -1 1 -1

run.no run.no.std.rp Blocks A B C

5 5 6.2.2 2 -1 1 1

6 6 7.2.3 2 1 -1 1

7 7 5.2.1 2 -1 -1 -1

8 8 8.2.4 2 1 1 -1

class=design, type= FrF2.blocked

NOTE: columns run.no and run.no.std.rp are annotation, not part of the data frame

Figure 6.16: Including a blocking factor

6.5. OTHER EXPERIMENTAL DESIGNS 213

> FrF2(8,3,blocks=2,replications=2)

run.no run.no.std.rp Blocks A B C

1 1 1.1.1.1 1.1 -1 -1 1

2 2 3.1.3.1 1.1 1 -1 -1

3 3 2.1.2.1 1.1 -1 1 -1

4 4 4.1.4.1 1.1 1 1 1

run.no run.no.std.rp Blocks A B C

5 5 5.2.1.1 2.1 -1 -1 -1

6 6 7.2.3.1 2.1 1 -1 1

7 7 8.2.4.1 2.1 1 1 -1

8 8 6.2.2.1 2.1 -1 1 1

run.no run.no.std.rp Blocks A B C

9 9 3.1.3.2 1.2 1 -1 -1

10 10 2.1.2.2 1.2 -1 1 -1

11 11 1.1.1.2 1.2 -1 -1 1

12 12 4.1.4.2 1.2 1 1 1

run.no run.no.std.rp Blocks A B C

13 13 7.2.3.2 2.2 1 -1 1

14 14 8.2.4.2 2.2 1 1 -1

15 15 6.2.2.2 2.2 -1 1 1

16 16 5.2.1.2 2.2 -1 -1 -1

class=design, type= FrF2.blocked

NOTE: columns run.no and run.no.std.rp are annotation, not part of the data frame

Figure 6.17: 23 design replicated 2 times in 4 blocks

many blocks you have (which has to be a power of 2, like 2 or 4). The run of
FrF2 with blocks=2 gives the exact same assignment of combinations of A, B,
C to blocks as the other two.

FrF2 is very versatile: it can handle complete or fractional 2k designs, with
blocks (use blocks=) or replications (replications=). Figure 6.17 shows a
23 design replicated twice in four blocks altogether (two blocks within each
replication, for four altogether, hence the syntax).

6.5 Other experimental designs

6.5.1 Latin square designs

One of the problems with factorial designs is that you can need a lot of data,
and ideally you want replication as well. Sometimes you can get away with less
data, if you are willing to make some extra assumptions. In the case of a Latin

214CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

Factor 2

1 2 3 4

Factor 1

1 1 2 3 4

2 2 3 4 1

3 3 4 1 2

4 4 1 2 3

Figure 6.18: Latin square design for factors with 4 levels

square design, the assumptions are these:

� You have exactly three factors.

� All the factors have exactly the same number of levels.

� There are no interactions between the factors.

If you are willing to go with these rather restrictive assumptions, you can use a
Latin square design. I’ll show you how it works with three factors, each having
four levels. Consult Figure 6.18. I’ve labelled the four levels of each factor 1,
2, 3, 4. To analyze these three factors you collect 42 = 16 observations. The
rows and columns of Figure 6.18 show what levels of factors 1 and 2 you use;
the number in the table shows what level of factor 3 you use in combination of
those levels of factor 1 and 2.

By way of example, an experiment was carried out in which the skins of rabbits’
backs were injected with a diffusing factor. Six injection sites were available
on each rabbit’s back. A Latin square design was anticipated, so therefore six
rabbits were used. Another factor was the order of injection; six orders were
used. The response variable was the area of blister in square centimetres. The
data are shown in Figure 6.19. The rabbits are labelled with numbers, the
injection sites by letters, and the order of injection by Roman numerals.

Now, we have to get these into a data frame with one observation per row. The
function expand.grid will help us some (with the rabbits and the locations),
but we’ll have to do the orders and the response values by hand. Figure 6.20
shows the process.

First, we do all the combinations of rabbit and position. I’m doing rabbit first
because expand.grid varies the first thing fastest, and by doing it this way
we can read the order and the response along the rows of Figure 6.19. Next
comes order. I used regular numbers rather than Roman numerals to save
some typing. A couple of other things to note: I didn’t have to put all those
numbers on one line, because R was waiting for the final close-bracket to know

6.5. OTHER EXPERIMENTAL DESIGNS 215

Figure 6.19: Data for Latin square example

216CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

> rabbitdata=expand.grid(rabbit=1:6,position=c("a","b","c","d","e","f"))

> rabbitdata$order=c(3,5,4,1,6,2,

+ 4,2,6,5,3,1,

+ 1,3,5,6,2,4,

+ 6,1,3,2,4,5,

+ 2,4,1,3,5,6,

+ 5,6,2,4,1,3)

> rabbitdata$blister=c(79,87,74,74,71,82,

+ 61,82,77,71,81,59,

+ 75,81,60,64,62,75,

+ 69,85,68,77,85,85,

+ 67,99,73,64,64,73,

+ 73,83,73,58,64,77)

> head(rabbitdata)

rabbit position order blister

1 1 a 3 79

2 2 a 5 87

3 3 a 4 74

4 4 a 1 74

5 5 a 6 71

6 6 a 2 82

Figure 6.20: Organizing the rabbit data

6.5. OTHER EXPERIMENTAL DESIGNS 217

> rabbit.aov=aov(blister~factor(rabbit)+position+factor(order),data=rabbitdata)

> anova(rabbit.aov)

Analysis of Variance Table

Response: blister

Df Sum Sq Mean Sq F value Pr(>F)

factor(rabbit) 5 1283.33 256.667 3.9096 0.01235 *

position 5 383.33 76.667 1.1678 0.35919

factor(order) 5 56.33 11.267 0.1716 0.97013

Residuals 20 1313.00 65.650

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Figure 6.21: ANOVA for rabbit data

that I was done. Also, storing the result as I did added a variable order to the
data frame. Lastly, we enter the responses, reading along the rows, in the same
way as order. I saved myself some work by omitting the decimal points, so that
my variable blister is 10 times the one in Figure 6.19. I need to keep that in
mind, though it shouldn’t affect the ANOVA.

Now we come to the actual analysis. This works using aov, same as any other
analysis of variance. The variables rabbit and order were numbers, but we
want them to be treated in the ANOVA as factors, hence the factors on the
aov line.

The only significant effect was that of rabbit; the position and order were not
significant. (The researchers were curious about an effect of order, but there
isn’t one.) Figure 6.22 shows what happens when you remove the non-significant
terms. The nature of the Latin square is that you get an ordinary ANOVA in
the remaining factors after you take one or two out. rabbit has become more
strongly significant. You can go a couple of ways with this: you can run a
Tukey to find which rabbits differ in blister from which, or you can think
of rabbit as a blocking factor, in which case you don’t care about differences
among rabbits. (Or you can even treat rabbit as a random effect, along the
lines of Section 6.7.)

Assuming that you were interested in differences among rabbits, the Tukey in
Figure 6.223 shows that rabbit 2 is significantly different from rabbits 3, 4 and
5, but no other differences are significant. The tapply, which comes out above
the plot, shows the mean blister areas for each rabbit; rabbit 2 had a noticeably

3The las makes the rabbit comparisons on the vertical axis come out sideways, and the
cex shrinks them so you can actually see them.

218CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

> rabbit.aov2=aov(blister~factor(rabbit),data=rabbitdata)

> anova(rabbit.aov2)

Analysis of Variance Table

Response: blister

Df Sum Sq Mean Sq F value Pr(>F)

factor(rabbit) 5 1283.3 256.667 4.3933 0.004044 **

Residuals 30 1752.7 58.422

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> rabbit.tukey=TukeyHSD(rabbit.aov2)

> plot(rabbit.tukey,las=1,cex=0.75)

> with(rabbitdata,

+ tapply(blister,factor(rabbit),mean),

+)

1 2 3 4 5 6

70.66667 86.16667 70.83333 68.00000 71.16667 75.16667

−30 −20 −10 0 10 20 30

6−5

6−4

5−4

6−3

5−3

4−3

6−2

5−2

4−2

3−2

6−1

5−1

4−1

3−1

2−1

95% family−wise confidence level

Differences in mean levels of factor(rabbit)

Figure 6.22: Second ANOVA and Tukey for rabbit data

6.5. OTHER EXPERIMENTAL DESIGNS 219

larger mean blister area than the other rabbits4.

******** set.seed, plus make sure what comes out is what’s described.

Now, let’s think about designing a Latin square experiment. We return to the 3
factors with 4 levels each that we began with. This is reproduced in Figure 6.23.
We follow the procedure using expand.grid that we used in entering the rabbit
data. Then we add the third factor by hand, shuffle the numbers 1 through 16
(since there are 16 observations to collect) and look at the shuffled data frame.
As it happens, setting all factors to level 1 is the first “run”, the second one is
factor 1 level 4, factor 2 level 1, factor 3 level 4, and so on. When you collect
the data, you glue the values for the response variable onto the data frame as
with the rabbit data, and away you go.

Under the even more unlikely conditions that you have four (or even five)
factors all with the same number of levels, with no interactions, there exist
such things as a Graeco-Latin square and a hyper-Graeco-Latin square that will
enable you to do an analysis very much like the one you saw in Figure 6.21.

6.5.2 Split-plot designs

Take a look at the data in Figure 6.24. There appears to be nothing too strange
here: we are studying the corrosion resistance of steel bars (that’s the response
variable corrres) as it depends on two variables: furnace temperature temp,
and the coating coating. So we go ahead and do a two-factor ANOVA, as
shown in Figure 6.25. This shows that there is a strong effect of temperature,
but no interaction or effect of coating. Right?

Wrong! What we have assumed in this analysis is “complete randomization”.
That is, all the combinations of temperature and coating (3× 4 = 12 of them)
were arranged in a data frame, replicated twice, and then shuffled. So each of
the 24 observations were the result of setting the furnace to the right tempera-
ture, putting the right coating on a steel bar, putting it in the furnace for the
appointed time, and then measuring its corrosion resistance.

Except that this is not what happened. Setting a furnace to a certain tem-
perature is hard to do (it’s rather like pre-heating your oven at home): you
set the temperature to what you want, you wait, and in an industrial furnace
you check that the temperature has stabilized at the value you want. This is
a time-consuming process. So what was done instead was to randomize the

4The with command, which is an alternative to attaching and then detaching again, works
like this: you supply it a data frame, and then something to do to the variables in that data
frame, in this case calculate a table of means. It looks a bit confusing all on one line, so I’ve
split it into three, taking advantage of R not caring which lines things are on. The first line is
the data frame, the second is the “what to do”, and the third is the final closing bracket, on a
line by itself so that I don’t get confused by what might otherwise be several close-brackets.

220CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

Factor 2

1 2 3 4

Factor 1

1 1 2 3 4

2 2 3 4 1

3 3 4 1 2

4 4 1 2 3

> mydesign=expand.grid(fac2=1:4,fac1=1:4)

> mydesign$fac3=c(1,2,3,4,2,3,4,1,3,4,1,2,4,1,2,3)

> shuf=sample(1:16)

> mydesign=mydesign[shuf,]

> mydesign

fac2 fac1 fac3

4 4 1 4

5 1 2 2

6 2 2 3

9 1 3 3

15 3 4 2

10 2 3 4

14 2 4 1

8 4 2 1

3 3 1 3

2 2 1 2

13 1 4 4

11 3 3 1

12 4 3 2

7 3 2 4

16 4 4 3

1 1 1 1

Figure 6.23: Latin square design

6.5. OTHER EXPERIMENTAL DESIGNS 221

> coatings=read.csv("coating.csv",header=T)

> coatings$temp=factor(coatings$temp)

> coatings

furnace.run coating temp corrres

1 1 c1 360 67

2 1 c2 360 73

3 1 c3 360 83

4 1 c4 360 89

5 2 c1 370 65

6 2 c2 370 91

7 2 c3 370 87

8 2 c4 370 86

9 3 c1 380 155

10 3 c2 380 127

11 3 c3 380 147

12 3 c4 380 212

13 4 c1 360 33

14 4 c2 360 8

15 4 c3 360 46

16 4 c4 360 54

17 5 c1 370 140

18 5 c2 370 142

19 5 c3 370 121

20 5 c4 370 150

21 6 c1 380 108

22 6 c2 380 100

23 6 c3 380 90

24 6 c4 380 153

Figure 6.24: Coatings data

> coatings.1=aov(corrres~temp*coating,data=coatings)

> summary(coatings.1)

Df Sum Sq Mean Sq F value Pr(>F)

temp 2 26519 13260 10.226 0.00256 **

coating 3 4289 1430 1.103 0.38602

temp:coating 6 3270 545 0.420 0.85180

Residuals 12 15561 1297

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Figure 6.25: Wrong analysis of coatings data

222CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

temperatures (360, 370 and 380 twice each), set the furnace to the appointed
temperature, and then put 4 steel bars, each with different coatings, all in the
furnace at the same time (randomizing their locations within the furnace). So
there were two separate randomizings going on, temperatures, and within each
temperature, the locations of coatings.

So this has to be accounted for in the analysis.

The term“split-plot design”comes from agricultural field trials, where you might
have one factor, say “irrigation method”, that is hard to restrict to small areas
(it’s easier to irrigate a whole field the same way). So you divide your experimen-
tal area into “whole plots” (like the smallest area you can restrict an irrigation
method to), and you randomize your hard-to-change factor over the whole plots.
Within each whole plot, you do a second level of randomizing, which might be
varieties of crop or fertilizers, something you can easily do within small areas
or “split plots”. For example, you might have four fields and two irrigation
methods, where you can irrigate a whole field one way, but not an area smaller
than that. So your fields are whole plots, and you randomize irrigation meth-
ods over your four fields (each method appears twice). Then, within each field
you randomize again, let’s say fertilizers, to the split plots. For instance, you
might have three fertilizers, so you create three split plots within each field and
randomly assign one fertilizer to each. (Or, you might be able to create six
split plots within a field, and then your randomization has each fertilizer appear
twice, since there are twice as many split plots as fertilizers.) See how there is
a “C within B within A” thing happening?

How does that apply to our coated steel bars? Well, what’s within what? The
coatings are randomized over locations within a furnace run, and the tempera-
tures are randomized over the six furnace runs (so that each temperature appears
twice). In the jargon, the 6 furnace runs are the whole plots. The temperatures
are randomized within these. Then the locations within the furnace are the split
plots; the coatings are randomized to those. So it’s furnace run, and within that
temperature, and within that, coatings. This is what we need to figure out to
get the analysis right.

To do a non-standard ANOVA in R, we need to add an Error term to our model
formula to get the within-ness right. This is why I needed to have that variable
furnace.run in the data frame.

Figure 6.26 shows the correct analysis for the coatings data. The Error is added
onto the end of the model formula. Inside Error is a list of things, separated
by slashes. These are the whole plots followed by whatever is inside the whole
plots. What is left is the split plots, where the coatings go (the locations within
the furnace). This doesn’t need to be specified, because the coatings are at the
lowest level and they will be correctly tested at that level anyway.

The conclusions from Figure 6.26 are exactly the opposite from what we had

6.5. OTHER EXPERIMENTAL DESIGNS 223

> coatings$furnace.run=factor(coatings$furnace.run)

> coatings.2=aov(corrres~coating*temp+Error(furnace.run/temp),data=coatings)

> summary(coatings.2)

Error: furnace.run

Df Sum Sq Mean Sq F value Pr(>F)

temp 2 26519 13260 2.755 0.209

Residuals 3 14440 4813

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

coating 3 4289 1429.7 11.480 0.00198 **

coating:temp 6 3270 545.0 4.376 0.02407 *

Residuals 9 1121 124.5

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Figure 6.26: Correct split-plot analysis for coatings data

before! This time, the interaction and coating effect are both significant, and
the temperature is not.

These analyses are very easy to mess up. One check that you have is that the
“outer” variable temp gets tested in its own ANOVA table first, and the inner
variable coating gets tested at the next level. The other problem I kept having
is that my variables kept ending up as something other than factors. The test
to see whether this has happened is that you have the wrong number of degrees
of freedom in your ANOVA table(s): it should be one less than the number of
levels of the factor.

Since the interaction between coating and temperature is significant, it would
be nice to look at a plot that indicates why the interaction might be significant.
A significant interaction here means that the effect of coating is not constant
over temperatures, but depends on which temperature you’re looking at. A
handy tool (that I hadn’t discovered when I wrote the ANOVA sections) is
interaction.plot. The plot for our data is shown in Figure 6.27. This requires
three things: first, the factor that’s going on the horizontal axis; second, the
factor that goes to make the lines; third, the response variable. The idea of
the plot is that if the effects of one factor are consistent over the effects of the
other (“additive”, in the jargon), then the lines will be parallel; if there is an
interaction, they won’t be, and looking at why they’re not parallel will give you
a sense of why there was a significant interaction.

Looking at Figure 6.27, coatings C4 and C2 seem to be in contradiction to one
another. Coating C4’s corrosion resistance keeps on going up as the temperature

224CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

> attach(coatings)

> interaction.plot(temp,coating,corrres)

> detach(coatings)

40
60

80
10

0
12

0
14

0
16

0
18

0

temp

m
ea

n
of

 c
or

rr
es

360 370 380

 coating

c4
c1
c3
c2

Figure 6.27: Interaction plot of temperature and coating

6.6. ANALYSIS OF COVARIANCE 225

> prepost=read.table("ancova.txt",header=T)

> head(prepost)

drug before after

1 a 5 20

2 a 10 23

3 a 12 30

4 a 9 25

5 a 23 34

6 a 21 40

Figure 6.28: Memory test data

goes up, while coating C2’s increases from 360 to 370, but actually goes down a
little between 370 and 380. If there were no interaction, the two coatings would
have a similar “trace” of corrosion resistance over temperature — maybe one
would be higher than the other, but the traces would be parallel.

Coatings C1 and C3 lie somewhere in between C2 and C4, in that their increase
in corrosion resistance between temperatures 370 and 380 is a bit less than
between 360 and 370, but at least it’s still going up.

This is not the most severe non-parallelism you’re ever likely to see, which is
why the interaction is not highly significant.

6.6 Analysis of covariance

This is the name given to an analysis of variance with a “covariate” or another
continuous variable attached to the analysis. In R terms there isn’t that much to
it, because it’s just another kind of lm. lm doesn’t care whether your explanatory
variables are numerical or categorical; it will handle them equally well. But there
is a change of emphasis when it comes to handling things.

Let’s imagine we are testing two new drugs that are supposed to improve mem-
ory. Let’s call them a and b. But you might imagine that some people are just
better at memorizing things than others. So the experiment is designed this
way: each subject is randomly allocated to drug a or b, but we give them a
memory test before administering the drug as well as after. Some of the data
are shown in Figure 6.28.

One way you might handle this is like a matched pairs: you measure the dif-
ference in scores, after minus before, and then you treat this difference as a
response variable. This analysis is shown in Figure 6.29. It shows a significant
effect of drug. (That is, whether or not the drugs are actually any good, there

226CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

> attach(prepost)

> diff=after-before

> prepost.0=aov(diff~drug)

> summary(prepost.0)

Df Sum Sq Mean Sq F value Pr(>F)

drug 1 180.0 180.0 22.22 0.000173 ***

Residuals 18 145.8 8.1

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Figure 6.29: “Paired differences” analysis of memory test data

is a difference between how much of a change they cause in memory test scores.)

This is all right here, since the test scores before and after are on the same scale,
but they might not have been. Another way of handling things is to predict
the after score using a linear model (a kind of mixed-up regression/ANOVA)
predicting after score from before score (numerical) and drug (categorical). This
would work regardless of the scales of the variables. Before we get to that,
though, we can plot the after scores against the before scores, labelling the drug
groups with different symbols. This is shown in Figure 6.30. The after scores
for drug A (blue circles) are generally higher than for drug B (red crosses) if
you compare values with similar before scores. This suggests that there might
be a significant drug effect, once you allow for before score. (When before is
higher, so is after regardless of drug, which confuses the issue.)

Our first analysis is shown in Figure 6.31. I’ve included the interaction between
before and drug. But before we look too closely at the results of the analysis,
let’s do some predictions, so that we can see what this model is doing. If you
compare predictions for drug A and drug B for the same before score, what you
see is that the predicted after scores are getting a little further apart: that
is to say, drug A is “more better” as the before score increases. Perhaps a
better way to see this is on a plot. We can repeat the previous plot, with the
different coloured points showing the results for the different drugs, and add
lines showing the predicted values out of prepost.1.pred. (This is why I did
two separate lots of predictions in Figure 6.31.)

Our plot is shown in Figure 6.32. Both lines show the predictions going up as
the before score goes up, but the blue line (drug A) is going up faster, so that
the difference between drugs is getting bigger as the before score increases. In
other words, the lines are not parallel.

It turns out that fitting the interaction between the numerical and categorical
variable is what allowed this non-parallelism to happen. If we look at the coef-
ficients for this model, in Figure 6.33, drug A is the “baseline”. The intercept

6.6. ANALYSIS OF COVARIANCE 227

> mycols=c("blue","red")

> mych=c(1,3)

> plot(before,after,col=mycols[drug],pch=mych[drug])

> legend("topleft",levels(drug),col=mycols,pch=mych)

●

●

●

●

●

●

●

●

●

●

5 10 15 20 25

20
25

30
35

40

before

af
te

r

● a
b

Figure 6.30: Plot of after scores against before scores, labelled by group

228CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

> prepost.1=lm(after~before*drug)

> prepost.a=expand.grid(before=c(5,15,25),drug="a")

> prepost.b=expand.grid(before=c(5,15,25),drug="b")

> prepost.a.pred=predict(prepost.1,prepost.a)

> prepost.b.pred=predict(prepost.1,prepost.b)

> cbind(prepost.a,prepost.a.pred)

before drug prepost.a.pred

1 5 a 21.29948

2 15 a 31.05321

3 25 a 40.80693

> cbind(prepost.b,prepost.b.pred)

before drug prepost.b.pred

1 5 b 18.71739

2 15 b 25.93478

3 25 b 33.15217

Figure 6.31: ANCOVA 1 with predictions

of 16 says that a person on drug A with a before score of 0 would have an
after score of 16 (about what you would guess from Figure 6.32). The before

coefficient is just less than 1, so that as before goes up by 1, for a person on
drug A, the after score is predicted to go up by just less than 1. That leaves the
−0.25 coefficient for before:drugb. That means that, for a subject on drug B,
you work out their predicted after score from the other coefficients, and then
subtract 0.25 for each point of before score. This is what makes the lines grow
(slowly, 0.25 not being very big) further apart.

The interpretation here is not too difficult, because the predicted drug A after
score is always higher than the drug B after score, for all the before scores in
the range of our data. But you could imagine that the slopes might be more
different than here, and that the lines could even cross over, so that for some
before scores, drug A might be better, and for the others, drug B might be
better. This would be troublesome to interpret.

Now, you might say that the two lines’ slopes here are not very different, and
you might wonder whether they are significantly different. This is assessed
by testing the interaction term. The process is seen in the last two lines of
Figure 6.33. The strategy is, “fit the model without, and see whether it makes
the fit a lot worse”. So we fit the model with just main effects for before and
drug, and use anova to compare the two fits. The one without the interaction
is not significantly worse (or, the one with it is not significantly better), so the
interaction can be taken out.

6.6. ANALYSIS OF COVARIANCE 229

> plot(before,after,col=mycols[drug],pch=mych[drug])

> legend("topleft",levels(drug),col=mycols,pch=mych)

> lines(prepost.a$before,prepost.a.pred,col="blue")

> lines(prepost.b$before,prepost.b.pred,col="red")

●

●

●

●

●

●

●

●

●

●

5 10 15 20 25

20
25

30
35

40

before

af
te

r

● a
b

Figure 6.32: Plot of predicted after scores from model with interaction

230CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

> summary(prepost.1)

Call:

lm.default(formula = after ~ before * drug)

Residuals:

Min 1Q Median 3Q Max

-4.8562 -1.7500 0.0696 1.8982 4.0207

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 16.4226 2.0674 7.944 6.08e-07 ***

before 0.9754 0.1446 6.747 4.69e-06 ***

drugb -1.3139 3.1310 -0.420 0.680

before:drugb -0.2536 0.1893 -1.340 0.199

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.622 on 16 degrees of freedom

Multiple R-squared: 0.8355, Adjusted R-squared: 0.8046

F-statistic: 27.09 on 3 and 16 DF, p-value: 1.655e-06

> prepost.2=lm(after~before+drug)

> anova(prepost.2,prepost.1)

Analysis of Variance Table

Model 1: after ~ before + drug

Model 2: after ~ before * drug

Res.Df RSS Df Sum of Sq F Pr(>F)

1 17 122.32

2 16 109.98 1 12.337 1.7948 0.1991

Figure 6.33: Summary of 1st model and testing interaction for significance

6.6. ANALYSIS OF COVARIANCE 231

> summary(prepost.2)

Call:

lm.default(formula = after ~ before + drug)

Residuals:

Min 1Q Median 3Q Max

-3.6348 -2.5099 -0.2038 1.8871 4.7453

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.3600 1.5115 12.147 8.35e-10 ***

before 0.8275 0.0955 8.665 1.21e-07 ***

drugb -5.1547 1.2876 -4.003 0.000921 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.682 on 17 degrees of freedom

Multiple R-squared: 0.817, Adjusted R-squared: 0.7955

F-statistic: 37.96 on 2 and 17 DF, p-value: 5.372e-07

Figure 6.34: Investigating the no-interaction model

The coefficients for the no-interaction model are shown in Figure 6.34. The
before coefficient of 0.8 says that regardless of drug, a one-point increase in
before goes with a 0.8 increase in after. The drugb coefficient of −5 says
that being on drug B rather than drug A goes with a 5-point decrease in after

score, regardless of the before score. In other words, drug A is better all the
way along, and the amount by which it is better is the same all the way along.

To see this better, we can make a plot as before (the end of Figure 6.34). The
code looks a bit complicated, but it isn’t really. We make two lots of predictions:
one for drug A at various before scores (the same ones as before), and one for
drug B ditto. Then we plot the data, and a line for each of the drug predictions.

Notice that the lines in Figure 6.35 are now parallel : the predicted difference
between drugs for a given before score is the same all the way along. This is a
consequence of taking out the interaction term.

We would imagine that the effect of before score is definitely significant, and
the effect of drug looks consistent enough to be significant. We can confirm this
by (a) fitting a model without before and comparing its fit to prepost.2 using
anova, and (b) fitting a model without drug and comparing its fit to prepost.2

using anova. There is a shortcut to this, which is the function drop1. This looks
at a model and assesses the effect of dropping things one at a time, which is

232CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

> prepost.a.pred=predict(prepost.2,prepost.a)

> prepost.b.pred=predict(prepost.2,prepost.b)

> cbind(prepost.a,prepost.a.pred)

before drug prepost.a.pred

1 5 a 22.49740

2 15 a 30.77221

3 25 a 39.04703

> cbind(prepost.b,prepost.b.pred)

before drug prepost.b.pred

1 5 b 17.34274

2 15 b 25.61756

3 25 b 33.89237

> plot(before,after,col=mycols[drug],pch=mych[drug])

> legend("topleft",levels(drug),col=mycols,pch=mych)

> lines(prepost.a$before,prepost.a.pred,col="blue")

> lines(prepost.b$before,prepost.b.pred,col="red")

●

●

●

●

●

●

●

●

●

●

5 10 15 20 25

20
25

30
35

40

before

af
te

r

● a
b

Figure 6.35: Plotting the no-interaction predictions

6.7. RANDOM EFFECTS 233

> drop1(prepost.2,test="F")

Single term deletions

Model:

after ~ before + drug

Df Sum of Sq RSS AIC F value Pr(>F)

<none> 122.32 42.218

before 1 540.18 662.50 74.006 75.074 1.211e-07 ***

drug 1 115.31 237.63 53.499 16.025 0.0009209 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Figure 6.36: Dropping terms from prepost.2

exactly what we want here. drop1 is shown in Figure 6.36. The function needs
to know which fitted model we want to drop things from, and also needs to
know what test we want to use to assess the significance of dropping things.
The right test for an lm model is test="F"5.

The P-values in Figure 6.36 are both less than 0.001 (in the case of before,
almost as small as 0.0000001). So they both have to stay. The model prepost.2
with the parallel lines is the one we stick with.

6.7 Random effects

In the analyses of variance we have seen, we have treated the explanatory vari-
ables as having “fixed effects”: that is, the levels of the variables we saw were the
only ones we were interested in. But sometimes, the levels of the variables we
observed were just a sample of the ones we might have seen. This is commonly
the case when one of the variables is “subjects”; the particular people or animals
that took part in our experiment were just typical representatives of the people
or animals that might have done.

When the variable has a random effect, we have to handle it a different way.
Instead of saying that each level has an effect on the mean, we say that there
is variation due to the random effect, with a variance specific to the variable,
which can be estimated. Now, to test that a variable has no effect, we test that
its specific variability is zero.

There can be both fixed and random effects in an experiment; if that is the case,

5This means an F test, not that the option test should be FALSE, which would be written
test=F without the quotes.

234CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

we have a mixed model.

When there is at least one random effect, we cannot rely on the F -tests in fixed-
effects ANOVA, even for fixed effects. The right tests in the presence of random
effects can be different. R handles all this, if done the right way.

Let’s start with our deer leg length data, Figure 6.37. Leg length might depend
on which leg is being measured, and on which deer we’re measuring. We ana-
lyzed this as a matched-pairs design and a randomized block ANOVA (with fixed
effects), and found that there was a significant difference in mean leg lengths
(and also a significant difference among individual deer).

There are a couple of packages that do random- and mixed-effects modelling.
The one I’m using here is called lme4; there is also nlme, which operates slightly
differently. They both do more general things than we see here, but I won’t
worry too much about that.

The basic operation of lme4 is akin to lm (or aov), with a model formula that
contains the fixed effects but with the random effects specified differently. In
our case, leg is a fixed effect (there are only two possible legs!), but indiv is
a random effect. So the model formula looks like length leg+(1|indiv). In
our “simple” case, you specify the random effect(s) as a 1| followed by a factor
that has a random effect. Here, we just have indiv as a random effect, so the
model term is 1|indiv (in brackets, for technical reasons). This is all laid out
in Figure 6.38, where you also see the output of the analysis of variance.

The ANOVA table just tests the fixed effects, here leg. In this case (though not
always), the F-value for an effect of leg is exactly the same as in the randomized
blocks analysis. So in the end it didn’t matter whether we treated indiv as a
fixed or a random effect. You see that there is no P-value here. A general way of
testing for significance of terms in a mixed model is to fit a second model without
the thing you’re testing, and then use anova to compare the two, simpler model
first.

When you have an interaction, though, it can make a difference whether you
treat a factor as fixed or random. Recall one of our two-way ANOVA examples:
some mice were exposed to nitrogen dioxide, and some were not, and the serum
fluorescence in each mouse was measured at either 10, 12 or 14 days. The
fixed-effects analysis is shown in Figure 6.40.

Now, presumably, the experimenter chose 10, 12 and 14 days for a reason. But
you might imagine these as a random sample of all possible numbers of days.
There is a (tiny) case for treating days as a random effect. Let’s see what
happens with this.

First off, we have a fixed factor, group, and a random factor, days. We also
want to fit an interaction. An interaction containing a random factor is itself
random, which means that days:group is random, not fixed. The analysis is

6.7. RANDOM EFFECTS 235

> s

length leg indiv

1 142 Foreleg 1

2 140 Foreleg 2

3 144 Foreleg 3

4 144 Foreleg 4

5 142 Foreleg 5

6 146 Foreleg 6

7 149 Foreleg 7

8 150 Foreleg 8

9 142 Foreleg 9

10 148 Foreleg 10

11 138 Hindleg 1

12 136 Hindleg 2

13 147 Hindleg 3

14 139 Hindleg 4

15 143 Hindleg 5

16 141 Hindleg 6

17 143 Hindleg 7

18 145 Hindleg 8

19 136 Hindleg 9

20 146 Hindleg 10

> anova(s.aov)

Analysis of Variance Table

Response: length

Df Sum Sq Mean Sq F value Pr(>F)

leg 1 54.450 54.450 4.7136 0.04437 *

indiv 1 54.123 54.123 4.6853 0.04494 *

Residuals 17 196.377 11.552

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Figure 6.37: Deer leg length data

236CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

> library(lme4)

> s.lme=lmer(length~leg+(1|indiv),data=s)

> anova(s.lme)

Analysis of Variance Table

Df Sum Sq Mean Sq F value

leg 1 54.45 54.45 11.654

Figure 6.38: Analysis treating deer as a random factor

> s2.lme=lmer(length~(1|indiv),data=s)

> anova(s2.lme,s.lme)

Data: s

Models:

s2.lme: length ~ (1 | indiv)

s.lme: length ~ leg + (1 | indiv)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

s2.lme 3 115.83 118.81 -54.913

s.lme 4 109.49 113.47 -50.746 8.3345 1 0.00389 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Figure 6.39: Analysis of the effect of leg

6.7. RANDOM EFFECTS 237

> head(no2)

group days fluor

1 c 10 143

2 c 12 179

3 c 14 76

4 c 10 169

5 c 12 160

6 c 14 40

> no2.aov=aov(fluor~group*factor(days),data=no2)

> anova(no2.aov)

Analysis of Variance Table

Response: fluor

Df Sum Sq Mean Sq F value Pr(>F)

group 1 3721 3721.0 3.0120 0.092916 .

factor(days) 2 15464 7731.8 6.2584 0.005351 **

group:factor(days) 2 8686 4343.1 3.5155 0.042495 *

Residuals 30 37062 1235.4

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Figure 6.40: Fixed effects analysis of fluorescence data

> ddf=factor(no2$days)

> no2.lme=lmer(fluor~group+(1|ddf)+(1|ddf:group),data=no2)

> no2.lme.2=lmer(fluor~group+(1|ddf),data=no2)

> anova(no2.lme.2,no2.lme)

Data: no2

Models:

no2.lme.2: fluor ~ group + (1 | ddf)

no2.lme: fluor ~ group + (1 | ddf) + (1 | ddf:group)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

no2.lme.2 4 374.72 381.05 -183.36

no2.lme 5 375.67 383.59 -182.83 1.047 1 0.3062

Figure 6.41: Random-effects analysis of fluorescence data

238CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

shown in Figure 6.41.

So we have to specify one fixed effect, group, and two random effects, one for
days, and one for the days-group interaction. To save myself some typing, I
defined ddf to be days turned into a factor. Then our model formula looks like

fluor group + (1|ddf) + (1|ddf : group)

and that produces the fitted model no2.lme. Normally, we’d do anova or
summary of our fitted model object, but at this point there isn’t much to see.

The fixed-effects strategy now is to test the interaction for significance. The
way that works here is to fit a second model, here labelled no2.lm3.2, without
the interaction. Then, running anova with two models tests whether the bigger
one (the one with more stuff in it) is really an improvement over the smaller
one. If it isn’t, we go with the smaller one. That’s done with the line

anova(no2.lme.2, no2.lme).

The output from this shows that the interaction doesn’t add anything significant
to the model, so we pull out Occam’s Razor and shave off the interaction term.
Note that in the fixed-effects analysis, the interaction was significant, so turning
days into a random effect has made a substantial difference to the results.

A word of caution here: the P-values that come out of this are only approximate,
and the displayed values can sometimes be twice as much as the true values.

A brief explanation of this follows. Feel free to skip. This issue is not a problem
with R, but rather a problem with the theory. It is especially a concern when
testing the significance of random effects, as we are doing here. When doing
that, recall that we are testing that the specific variance of the random effect is
zero. Now, this is as small as a variance (or standard deviation) can be, so we
are “on the edge” of the set of possible values for the variance. When you are
“on the boundary of the parameter space”, the standard theory about testing
significance doesn’t apply, but the only way you can get any P-values at all is
to pretend that it does.

All right, the interaction wouldn’t even be significant if the P-value were a half
of what we see, so the interaction stays out.

The next stage is to see whether there is a group effect. Test this in the same
way; try taking it out, and see if the fit is significantly better with it in (or worse
with it out). This part of the analysis is shown in Figure 6.42. Bear in mind
that no2.lme.2 contains groups and days, and we’ll see if we can take group

away from that.

The P-value is just less than 0.10, and, bearing in mind that we might need
to halve it, we can say that there is a marginally significant effect of groups.

6.7. RANDOM EFFECTS 239

> no2.lme.3=lmer(fluor~(1|ddf),data=no2)

> anova(no2.lme.3,no2.lme.2)

Data: no2

Models:

no2.lme.3: fluor ~ (1 | ddf)

no2.lme.2: fluor ~ group + (1 | ddf)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

no2.lme.3 3 375.32 380.07 -184.66

no2.lme.2 4 374.72 381.05 -183.36 2.6086 1 0.1063

Figure 6.42: Testing for a significant group effect

Compare that with the fixed-effects analysis, where there was a signification
interaction between groups and days. The Tukey analysis there came out with
a few group-days combinations that had significantly different mean fluorescence
than others, but it was not clear whether one group had a significantly higher
mean than the other overall, because the pattern was all mixed up.

In the same way that we are not interested in a test for blocks, we are not really
interested in the test for the random effect of days: we expect it to be there, so
it is not worth testing.

Another random-effects model: Three machines are being tested (fixed effect)
by six different people (random effect). The response variable is a rating that
measures quality and quantity of articles produced.

Unfortunately, the data look like this:

1 1 52.0 1 2 51.8 1 2 52.8 1 3 60.0 1 4 51.1 1 4 52.3

1 5 50.9 1 5 51.8 1 5 51.4 1 6 46.4 1 6 44.8 1 6 49.2

2 1 64.0 2 2 59.7 2 2 60.0 2 2 59.0 2 3 68.6 2 3 65.8

2 4 63.2 2 4 62.8 2 4 62.2 2 5 64.8 2 5 65.0 2 6 43.7

2 6 44.2 2 6 43.0 3 1 67.5 3 1 67.2 3 1 66.9 3 2 61.5

3 2 61.7 3 2 62.3 3 3 70.8 3 3 70.6 3 3 71.0 3 4 64.1

3 4 66.2 3 4 64.0 3 5 72.1 3 5 72.0 3 5 71.1 3 6 62.0

3 6 61.4 3 6 60.5

These are machine, person and rating, but with multiple measurements in a
single row. How can we get this into the form we want? Figure 6.43 shows
one way. There are three steps: read the data one value at a time from the file
into a vector, which is what scan does. Then arrange it into the right shape,
which is what matrix does. This takes a string of numbers in a vector, and
arranges it into a matrix, an array of numbers in rows and columns, like a data
frame. matrix expects some options: first, the vector of values to go into the

240CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

> raw.data=scan("machine.txt")

> raw.data

[1] 1.0 1.0 52.0 1.0 2.0 51.8 1.0 2.0 52.8 1.0 3.0 60.0 1.0 4.0 51.1

[16] 1.0 4.0 52.3 1.0 5.0 50.9 1.0 5.0 51.8 1.0 5.0 51.4 1.0 6.0 46.4

[31] 1.0 6.0 44.8 1.0 6.0 49.2 2.0 1.0 64.0 2.0 2.0 59.7 2.0 2.0 60.0

[46] 2.0 2.0 59.0 2.0 3.0 68.6 2.0 3.0 65.8 2.0 4.0 63.2 2.0 4.0 62.8

[61] 2.0 4.0 62.2 2.0 5.0 64.8 2.0 5.0 65.0 2.0 6.0 43.7 2.0 6.0 44.2

[76] 2.0 6.0 43.0 3.0 1.0 67.5 3.0 1.0 67.2 3.0 1.0 66.9 3.0 2.0 61.5

[91] 3.0 2.0 61.7 3.0 2.0 62.3 3.0 3.0 70.8 3.0 3.0 70.6 3.0 3.0 71.0

[106] 3.0 4.0 64.1 3.0 4.0 66.2 3.0 4.0 64.0 3.0 5.0 72.1 3.0 5.0 72.0

[121] 3.0 5.0 71.1 3.0 6.0 62.0 3.0 6.0 61.4 3.0 6.0 60.5

> m=matrix(raw.data,ncol=3,byrow=T)

> machine.data=data.frame(mach=factor(m[,1]),pers=factor(m[,2]),rating=m[,3])

> head(machine.data)

mach pers rating

1 1 1 52.0

2 1 2 51.8

3 1 2 52.8

4 1 3 60.0

5 1 4 51.1

6 1 4 52.3

Figure 6.43: Reading in the machine data

6.7. RANDOM EFFECTS 241

> machines.1=lmer(rating~mach+(1|pers)+(1|pers:mach),data=machine.data)

> machines.2=lmer(rating~mach+(1|pers),data=machine.data)

> anova(machines.2,machines.1)

Data: machine.data

Models:

machines.2: rating ~ mach + (1 | pers)

machines.1: rating ~ mach + (1 | pers) + (1 | pers:mach)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

machines.2 5 257.11 266.04 -123.557

machines.1 6 203.68 214.38 -95.839 55.435 1 9.659e-14 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> names(machines.1)

NULL

Figure 6.44: Random-effects analysis of machine data

matrix, and then either the number of rows (nrow) or number of columns that
the matrix should have. Here, we know that each observation consists of three
things: the machine, the person and the rating, so we specify three columns
with ncol=3. Finally, the default is to fill the matrix down the columns, but we
want to fill it along the rows, so we have to specify byrow=T. (I always seem to
want to fill matrices by rows, so I always need to say byrow=T, it seems.)

The last step is to turn the matrix into a data frame, using data.frame. While
we have the opportunity, let’s give our variables sensible names, and let’s make
them categorical so they’ll be ready for the analysis.

Now we can do our random-effects analysis. Since our persons were a random
sample of all possible people, person is a random effect. We are only interested
in these three machines, though, so machine is a fixed effect. We have enough
data to assess an interaction (there are generally two or three observations per
person-machine combination), so we’ll put an interaction in our model, bearing
in mind that the interaction has a random effect in it, so it’s random too.

The analysis is as shown in Figure 6.44. We fit the complete model, including
interaction, first. Then we try taking the interaction out, and see whether the
fit is significantly worse. It is (the P-value is very small), so we have to leave
the interaction in. This is a bit of a hindrance when it comes to interpreting
the results, because it says that relative performance on the different machines
is different for different people, and so we can’t say how the machines compare
overall. (If the interaction had not been significant, we would have had a fixed
effect of machines that we could test for significance, and if it is, we would

242CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

> attach(machine.data)

> rat.mean=tapply(rating,list(mach,pers),mean)

> rat.mean

1 2 3 4 5 6

1 52.0 52.30000 60.0 51.70000 51.36667 46.80000

2 64.0 59.56667 67.2 62.73333 64.90000 43.63333

3 67.2 61.83333 70.8 64.76667 71.73333 61.30000

> detach(machine.data)

Figure 6.45: Mean ratings by person and machine

have been able to make a statement about how the mean ratings compare by
machine. But as it is, we can’t.

Let’s try to understand this by looking at the means, as shown in Figure 6.45.
The people are in the columns, and the machines in the rows. For these six
people (which, remember, are only a sample of all people who might be using
these machines), machine 3 always produces the highest average ratings, some-
times by a little (eg. person 4), and sometimes by a lot (person 6). Likewise, the
ratings for machine 1 are usually the lowest, but the difference from machine 2
varies quite a bit. The story is inconsistent enough to say that the interaction is
significant (the model with the interaction explains the data sufficiently better
than the one without).

We might also try to display this on a plot. On the horizontal axis needs to
go the machine (1 to 3), and on the vertical goes the rating, with lines joining
the means coming from the same person. I did a bit of thinking about and
experimenting with this, with my final deliberations summarized in Figure 6.46.

Often times, when you’re constructing a graph bit by bit (and I wanted a line
for each person), the best way to start is to set up the plotting area, but not
actually plot anything in it. I wanted the horizontal axis to cover 1, 2 and 3,
which it would by feeding in 1:3 as the x-variable. Getting the y axis right
requires a bit more thought, but eventually I realized it needed to go from the
very smallest rating mean anywhere, to the very biggest one. These are the min

and max elements of the rat.mean matrix. I thought I’d calculate those first so
that the first plot line wouldn’t be more cluttered up than necessary. Then I
can plot 1:3 against, say, the first column of rat.mean (the means for person
1), setting the limits of the y scale using ylim and the min and max values I
found. I use type="n" to not actually plot anything. The problem then is that
axis labels are not very illuminating, so by explicitly setting xlab and ylab I
can make them say what I want.

Now to actually plot the means, person by person. points seems to be easiest

6.7. RANDOM EFFECTS 243

> rat.min=min(rat.mean)

> rat.max=max(rat.mean)

> plot(1:3,rat.mean[,1],type="n",ylim=c(rat.min,rat.max),ylab="mean rating",xlab="machine")

> for (i in 1:6)

+ {

+ points(1:3,rat.mean[,i],type="b")

+ }

1.0 1.5 2.0 2.5 3.0

45
50

55
60

65
70

machine

m
ea

n
ra

tin
g

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 6.46: Plot of means by machine for each person

244CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

for this, since we’re plotting points that we happen to want joined by lines,
rather than lines themselves. What we need is to plot 1:3 against each column
of rat.mean, plotting both the points and lines joining them, which is done by
type="b". So something like

points(1 : 3, rat.mean[, 1], type = ”b”)

will plot the machine means for person 1, then you can repeat for persons 2,
3,. . . . The programmer in me wouldn’t let me do that, so I used a loop, as you
see in Figure 6.46.

Looking at the plot itself, if there were no interaction, those lines would all be
(more or less) parallel to each other. For five of the people, the parallelism is
not so bad, but the person with the lowest mean rating on all the machines
definitely has a different “profile” from the others. This is person 6, who was
the one person to have a lower mean rating on machine 2 than on machine
1. My guess is that person 6 is largely responsible for making the interaction
significant, and repeating the analysis without person 6 might tell a different
story.

Concerning the interpretation, it’s always awkward when the random effect in-
teracts with the treatment, because it says that the effect of treatment (machine)
differs among people. Since our people were only a random sample of all possible
people, this doesn’t say anything much about the preferability of the machines.

An experiment was conducted to assess the effect of two different drugs on blood
histamine levels over time in dogs. 8 dogs were used, and each dog was measured
at 4 times, 0, 1, 3 and 5 minutes after taking their drug.

This is an example of a repeated measures experiment, where each dog pro-
vides four measurements to the data set. (This is the same sort of thing as the
matched pairs experiment we saw earlier.) We’d expect measurements on the
same dog to be correlated, rather than independent; also, our dogs are presum-
ably a sample of “all possible dogs”, rather than the only ones we are interested
in. So we should treat dog as a random effect.

The data come to us as shown in Figure 6.47. Let’s see if we can start by plotting
the dogs’ log-histamine levels over time. This format of data is convenient for
plotting, since the four measurements we want to plot together are all on one
line. Following the same idea as in Figure 6.46, we want times (0, 1, 3, 5) on
the horizontal axis, and log-histamine levels on the vertical. This time, though,
we want to distinguish the two drugs, which we can do with different line types.
I’m going to do this with some copying and pasting rather than a loop this time,
despite my programming instincts, because it seems that a loop would hide the
ideas rather then making them clear.

Anyway, the procedure is shown in Figure 6.48. We start by extracting the part
of dogs that has the log=histmaine values in it, finding the min and max log-

6.7. RANDOM EFFECTS 245

> dogs=read.table("dogs2.txt",header=T)

> dogs

Drug junk lh0 lh1 lh3 lh5

1 Morphine N -3.22 -1.61 -2.30 -2.53

2 Morphine N -3.91 -2.81 -3.91 -3.91

3 Morphine N -2.66 0.34 -0.73 -1.43

4 Morphine N -1.77 -0.56 -1.05 -1.43

5 Trimethaphan N -3.51 -0.48 -1.17 -1.51

6 Trimethaphan N -3.51 0.05 -0.31 -0.51

7 Trimethaphan N -2.66 -0.19 0.07 -0.22

8 Trimethaphan N -2.41 1.14 0.72 0.21

Figure 6.47: Data for dogs repeated measures experiment

histamine levels, and drawing a blank graph with the right scales and axis labels,
using type="n" so as not to plot anything. Then we do the actual plotting for
each dog using points. We plot the appropriate row of lh (which are the log-
histamine values from dogs) against days, using type="b" to plot both points
and lines. The first four dogs were given Morphine, so we plot their data with
a solid line, and the last four were given Trimethaphan, so we plot their data
with a dashed line.

The overall picture in Figure 6.48 is this: for (almost) all the dogs, the log-
histamine level rises to a maximum at 1 day and then declines after that. This
pattern is common to both drugs, so we’re not looking at a drug-time interaction.
The log-histamine level seems generally highed for the Trimethophan, so we
would expect to see an overall drug effect. The log-histamine levels look more
variable for the dogs on Morphine, and maybe we should be concerned about
that. But the eight lines look pretty near parallel.

Though this data set would be in the right format for SAS, it isn’t for the
analysis in R, because we want all the responses in one column. (Don’t worry
about the variable junk; that was part of another study.) So we have some work
to do first.

You might recognize from our previous work that this is a job for stack. It seems
to be easiest to stack the whole data frame and ignore the warning (caused by
drug not being a number). This is shown in Figure 6.49. The resulting data
frame, which I called sdogs, for “stacked dogs”, has 8 × 4 = 32 rows, some of
which are shown in Figure 6.49.

The problem now is that we don’t know which dog or Drug is associated with
each row of the new data frame. So we have to re-associate these with our
re-organized data, bearing in mind that all the lh0 measurements are first,
then all the lh1’s, and so on. So for Drug we need four Morphines and then

246CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

> days=c(0,1,3,5)

> lh=dogs[,3:6]

> min.hist=min(lh)

> max.hist=max(lh)

> plot(days,lh[1,],ylim=c(min.hist,max.hist),xlab="Days",ylab="Log-histamine",type="n")

> points(days,lh[1,],type="b",lty="solid")

> points(days,lh[2,],type="b",lty="solid")

> points(days,lh[3,],type="b",lty="solid")

> points(days,lh[4,],type="b",lty="solid")

> points(days,lh[5,],type="b",lty="dashed")

> points(days,lh[6,],type="b",lty="dashed")

> points(days,lh[7,],type="b",lty="dashed")

> points(days,lh[8,],type="b",lty="dashed")

0 1 2 3 4 5

−
4

−
3

−
2

−
1

0
1

Days

Lo
g−

hi
st

am
in

e

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 6.48: Plot of the dog histamine level data

6.7. RANDOM EFFECTS 247

> sdogs=stack(dogs)

> sdogs[c(1:4,29:32),]

values ind

1 -3.22 lh0

2 -3.91 lh0

3 -2.66 lh0

4 -1.77 lh0

29 -1.51 lh5

30 -0.51 lh5

31 -0.22 lh5

32 0.21 lh5

Figure 6.49: Reorganizing the dogs data frame

> druglist=c("Morphine","Trimethaphan")

> dr=rep(druglist,each=4,length=32)

> dr

[1] "Morphine" "Morphine" "Morphine" "Morphine" "Trimethaphan"

[6] "Trimethaphan" "Trimethaphan" "Trimethaphan" "Morphine" "Morphine"

[11] "Morphine" "Morphine" "Trimethaphan" "Trimethaphan" "Trimethaphan"

[16] "Trimethaphan" "Morphine" "Morphine" "Morphine" "Morphine"

[21] "Trimethaphan" "Trimethaphan" "Trimethaphan" "Trimethaphan" "Morphine"

[26] "Morphine" "Morphine" "Morphine" "Trimethaphan" "Trimethaphan"

[31] "Trimethaphan" "Trimethaphan"

> dg=rep(1:8,length=32)

> sdogs$drug=factor(dr)

> sdogs$dog=factor(dg)

> names(sdogs)[1]="log.histamine"

> names(sdogs)[2]="days"

> sdogs[c(1:4,29:32),]

log.histamine days drug dog

1 -3.22 lh0 Morphine 1

2 -3.91 lh0 Morphine 2

3 -2.66 lh0 Morphine 3

4 -1.77 lh0 Morphine 4

29 -1.51 lh5 Trimethaphan 5

30 -0.51 lh5 Trimethaphan 6

31 -0.22 lh5 Trimethaphan 7

32 0.21 lh5 Trimethaphan 8

Figure 6.50: Getting the data in the right format

248CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

four Trimethaphans, with the whole thing repeated until it’s of length 32. We
can use gl for this, or rep, which is perhaps easier. rep requires up to four
things: something to repeat, here the vector c("Morphine","Trimethaphan"),
the number of times each element of the vector needs to be repeated (each), the
number of times to repeat the whole thing (times), and the length of the final
list (length). This is shown in Figure 6.50.

Next, we have to know which dog each measurement comes from. If you look
at sdogs, you’ll see that it has all the lh0 measurements for all 8 dogs, then
all the lh1 measurements, and so on. So the dogs are 1 through 8, repeated 4
times (or to a length of 32). We can take care of that with another use of rep;
this time we don’t have to specify each because the default is for each value in
the list to be repeated once, which is what we want.

Two more things, (the last five lines of Figure 6.50), then we’ll be ready to go.
First, the names of the first two columns of sdogs came from stack, and aren’t
really what we want. So we’ll fix them up. Second, we glue the results of rep,
for drugs and dogs, onto the data frame, and take a look at part of it. It looks
about right.

Now, we have another thing to think about. The measurements on the same
dog are probably correlated (rather than being independent, as R will assume
unless we state otherwise). Because these are measurements over time, you’d
expect measurements closer together in time to be more highly correlated than
measurements farther apart in time. (This is as opposed to, say, measurements
for four different activities done by an individual, where you might guess that
the correlation between the score on one activity and on another might be the
same for all pairs of activities.) Now, there is a package nlme that has stuff
that will handle this, but I can’t get it to work, so we’ll stick with lme4, which
means we are not accommodating the correlation.

OK, off we go. The commands and output are in Figure 6.51. The model is
that log.histamine depends on days and drug (fixed effects) and dog (random
effect). I’m using the data= version instead of having to attach sdogs. The
dogs random effect is specified, as before, by 1|dog. We begin by fitting the
model including everything, to obtain dogs1.lme.

Next, we test days for significance by taking it out. This gives dog2.lme. To
test days for significance, we see if the model without it is significantly worse
than the model with it. This is the purpose of the first anova. The P-value
is very small, so there definitely is an effect of days, which is what the plot
suggested in Figure 6.48. That plot also suggested that there might be a drug
effect, which we test next by taking out drug, as in dogs3.lm3, and testing to
see whether taking out drug was a bad idea. The P-value for drug is less than
0.10 but greater than 0.05. So its significance is marginal. Perhaps this is not
a complete surprise, since some of the dogs on Morphine did do just as well as
the dogs on Trimethaphan, as seen in Figure 6.48.

6.7. RANDOM EFFECTS 249

> dogs1.lme=lmer(log.histamine~days+drug+(1|dog),data=sdogs)

> dogs2.lme=lmer(log.histamine~drug+(1|dog),data=sdogs)

> anova(dogs2.lme,dogs1.lme)

Data: sdogs

Models:

dogs2.lme: log.histamine ~ drug + (1 | dog)

dogs1.lme: log.histamine ~ days + drug + (1 | dog)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

dogs2.lme 4 115.199 121.062 -53.600

dogs1.lme 7 84.658 94.919 -35.329 36.541 3 5.755e-08 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> dogs3.lme=lmer(log.histamine~days+(1|dog),data=sdogs)

> anova(dogs3.lme,dogs1.lme)

Data: sdogs

Models:

dogs3.lme: log.histamine ~ days + (1 | dog)

dogs1.lme: log.histamine ~ days + drug + (1 | dog)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

dogs3.lme 6 85.945 94.739 -36.973

dogs1.lme 7 84.658 94.919 -35.329 3.2866 1 0.06985 .

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Figure 6.51: Repeated measures using a mixed model

250CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

> dogs1.lme

Linear mixed model fit by REML

Formula: log.histamine ~ days + drug + (1 | dog)

Data: sdogs

AIC BIC logLik deviance REMLdev

86.84 97.1 -36.42 70.66 72.84

Random effects:

Groups Name Variance Std.Dev.

dog (Intercept) 0.83327 0.91284

Residual 0.35069 0.59219

Number of obs: 32, groups: dog, 8

Fixed effects:

Estimate Std. Error t value

(Intercept) -3.5563 0.5129 -6.933

dayslh1 2.4413 0.2961 8.245

dayslh3 1.8713 0.2961 6.320

dayslh5 1.5400 0.2961 5.201

drugTrimethaphan 1.2000 0.6786 1.768

Correlation of Fixed Effects:

(Intr) dyslh1 dyslh3 dyslh5

dayslh1 -0.289

dayslh3 -0.289 0.500

dayslh5 -0.289 0.500 0.500

drgTrmthphn -0.661 0.000 0.000 0.000

Figure 6.52: Output from chosen model for dogs data

6.8. TRANSFORMATIONS 251

I’m going to say that we’ll stick with the model including both days and drug,
and have a look at the output from that model. This is shown in Figure 6.52.
In the table of Random Effects, there are two things: the residual SD (0.6),
and a specific SD for dogs (0.9). The fact that the SD for dogs is larger than
the residual SD suggests that the dogs were quite variable among themselves.
We rather suspected this, and in fact had no great desire to test that the dog

random effect was significant.

Moving on to the fixed effects, this tells you how, according to the model, the
effects of days and drug stack up, on average. The first number of days (0) and
the first drug (Morphine) are used as a baseline; their “estimates” are zero, and
the intercept is the predicted log.histamine for a dog on the baseline drug at
the baseline number of days (Morphine and 0). The other things in the Estimate
column say how the other levels stack up against the baseline. The estimates
for 1, 3 and 5 days are all positive, with 1 day being highest and 3 and 5 being
a bit lower (but not as low as 0 days). This pattern is consistent enough for this
effect of day to be strongly significant. For drugs, the mean log.histamine

for the dogs on Trimethaphan is 1.2 higher than the dogs on Morphine (other
things being equal), but there is a fair bit of uncertainty attached to this, which
is why its P-value doesn’t reach the 0.05 level of significance.

So, to summarize, that pattern of “high at 1 day, then decreasing” seems to be
reproducible (at least, some kind of change over time is), and the log-histamine
levels are possibly higher on Trimethaphan than on Morphine, other things
being equal.

6.8 Transformations

You might feel that all this straight line stuff is rather restrictive, since most
relationships are curves, so why not just fit a curve? The problem is that
there is only one way for a straight line to be straight, but there are infinitely
many ways for a curve to be curved. So a much easier way is to cajole a curved
relationship into being straight, and then to use our straight-line stuff. Likewise,
when doing ANOVA, we can cajole data into having constant standard deviation
across groups.

So how do we make a curved relationship straight, or make standard deviations
equal? We transform the response variable. How? Using the recipe below, called
the Ladder of Powers:

252CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

Power What to do Comments
1 Nothing The original data
0.5 Square root Try for count data
0 Logarithm Try where percent change matters
-0.5 1 over square root Rare
-1 1 over response Try when response is ratio

If you don’t have any idea what to try, go a step or two down the ladder, then
see if you’ve not gone far enough (trend still curved) or if you’ve gone too far
(trend curved the other way).

6.8.1 Transformations for regression

Let’s see how this works with our cars data for predicting gas mileage from
weight. We saw that the original relationship was curved, so something should
be done. Let’s try logs first. I’ll put a lowess curve on the scatter plot to see
if that helps. (These are actually “natural logs”, but you’ll get the same results
with different numbers if you use, say, base 10 logs.)

> log.mpg=log(cars$MPG)

> plot(cars$Weight,log.mpg)

> lines(lowess(cars$Weight,log.mpg))

6.8. TRANSFORMATIONS 253

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2.0 2.5 3.0 3.5 4.0

2.
8

3.
0

3.
2

3.
4

3.
6

cars$Weight

lo
g.

m
pg

That’s still bendy in the same way that the original relationship was bendy. So
we haven’t gone far enough.

Here’s where we can use some actual science. Miles per gallon is a ratio: miles
travelled divided by gallons used. The reciprocal transformation (power −1)
turns a ratio the other way up: that is, gallons per mile. This is a perfectly
respectable measure of fuel consumption; indeed, it’s a multiple of litres per 100
km. So not only is this further down the latter of powers, but it’s scientifically
reasonable. Does it also straighten things out? I’ll define gpm to be “gallons per
mile”, 1 over miles per gallon:

> gpm=1/cars$MPG

> plot(cars$Weight,gpm)

> lines(lowess(cars$Weight,gpm))

254CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2.0 2.5 3.0 3.5 4.0

0.
03

0.
04

0.
05

0.
06

cars$Weight

gp
m

I’d say that’s pretty straight, though there is a teeny bit of a bend the other
way. (This relationship goes up rather than down because a larger weight goes
with a smaller gallons per mile.) Let’s try a regression or two. First, we’ll
see if a parabola fits better than a straight line, remembering that wsq was
weight-squared:

> gpm.1=lm(gpm~Weight+wsq,data=cars)

> summary(gpm.1)

Call:

lm.default(formula = gpm ~ Weight + wsq, data = cars)

Residuals:

Min 1Q Median 3Q Max

-0.0095370 -0.0033971 0.0004451 0.0021991 0.0101275

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.020807 0.014144 -1.471 0.15020

Weight 0.029746 0.009782 3.041 0.00445 **

wsq -0.002424 0.001616 -1.500 0.14252

6.8. TRANSFORMATIONS 255

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.004342 on 35 degrees of freedom

Multiple R-squared: 0.8666, Adjusted R-squared: 0.8589

F-statistic: 113.7 on 2 and 35 DF, p-value: 4.917e-16

No, we don’t need the weight-squared term (its P-value of 0.143 is not small).
So let’s take it away:

> gpm.2=lm(gpm~Weight,data=cars)

> summary(gpm.2)

Call:

lm.default(formula = gpm ~ Weight, data = cars)

Residuals:

Min 1Q Median 3Q Max

-0.0088064 -0.0029074 0.0000633 0.0019049 0.0113197

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.0000623 0.0030266 -0.021 0.984

Weight 0.0151485 0.0010271 14.748 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.004416 on 36 degrees of freedom

Multiple R-squared: 0.858, Adjusted R-squared: 0.854

F-statistic: 217.5 on 1 and 36 DF, p-value: < 2.2e-16

That looks good. We should check the residuals:

> par(mfrow=c(2,2))

> plot(gpm.2)

256CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

0.03 0.04 0.05 0.06

−
0.

01
0

0.
00

0
0.

01
0

Fitted values

R
es

id
ua

ls

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●
●

●

●
●

●

●

● ●

●

●●

●
●

●

●

●

●

●
●●

Residuals vs Fitted

27
5

35

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●
●●

−2 −1 0 1 2

−
2

−
1

0
1

2
3

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

27
5

35

0.03 0.04 0.05 0.06

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

Scale−Location
27

5
35

0.00 0.05 0.10 0.15

−
2

0
1

2
3

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●
●

●

●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●
●●

Cook's distance
0.5

0.5

Residuals vs Leverage

9

5
27

Two of the cars, #5 and #27, have larger positive residuals than we might
expect. This might be the reason that the plot of residuals vs. fitted values (top
left) still looks a bit curved. Take those away and you’d have a more or less
random pattern of points, I think. I can live with that.

Also, in the bottom left point, there should be no association between size of
residual and fitted value. We saw two of those points just now; the other one,
#35, has a large negative residual. I think it’s those three observations that are
making the red lowess curve on the lower left plot wiggle. I can live with that
too.

Let’s remind ourselves of what the regression is:

> summary(gpm.2)

Call:

lm.default(formula = gpm ~ Weight, data = cars)

Residuals:

Min 1Q Median 3Q Max

-0.0088064 -0.0029074 0.0000633 0.0019049 0.0113197

6.8. TRANSFORMATIONS 257

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.0000623 0.0030266 -0.021 0.984

Weight 0.0151485 0.0010271 14.748 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.004416 on 36 degrees of freedom

Multiple R-squared: 0.858, Adjusted R-squared: 0.854

F-statistic: 217.5 on 1 and 36 DF, p-value: < 2.2e-16

The intercept is very close to 0 (indeed, not significantly different from zero).
This is nice, because it says that a car weighing nothing uses no gas. So it’s
a very simple relationship; ignoring the intercept, it says that the predicted
gallons per mile is the car’s weight in tons mutiplied by 0.0151.

We did a bunch of predictions earlier. To do that, we constructed a data frame:

> pred.df

Weight wsq

1 2 4

2 3 9

3 4 16

4 5 25

5 6 36

which allows us to do predictions of gas mileage for cars of weight 2 through 6
tons. Even though this data frame contains values for weight squared, that’s
OK, because we’re just not going to use those:

> predict.gpm=predict(gpm.2,pred.df,interval="p")

> predict.gpm

fit lwr upr

1 0.03023461 0.02098428 0.03948493

2 0.04538306 0.03630457 0.05446155

3 0.06053152 0.05115344 0.06990959

4 0.07567997 0.06557271 0.08578723

5 0.09082842 0.07964612 0.10201072

These are predicted gallons per mile, so we have to undo our transformation to
get things back in miles per gallon. That means taking reciprocals of everything

258CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

again. Taking the reciprocals of the confidence interval endpoints is at least
approximately correct. Let’s also make a nicer display:

> predict.mpg=1/predict.gpm

> cbind(pred.df$Weight,predict.mpg)

fit lwr upr

1 2 33.07468 47.65472 25.326117

2 3 22.03465 27.54474 18.361578

3 4 16.52032 19.54903 14.304188

4 5 13.21354 15.25025 11.656747

5 6 11.00977 12.55554 9.802891

Because we took reciprocals, the ends of the confidence intervals came out the
wrong way around. But no matter. Everything looks, to my mind, entirely
sensible: a predicted gas mileage of 11 miles per gallon for a car of weight 6
tons looks reasonable. Of course, assuming that this straight line relationship
is going to go on is shakier than actually having data to support that it does go
on beyond 4 tons.

One rather curious thing about these intervals is that they get narrower as the
weight gets bigger, when we have less data. What is happening is that the
predictions for gallons per mile are getting less accurate as the weight increases
beyond 4 tons, which is to say that the gpm numbers are all getting bigger and
further apart. Undoing the transformation means that the predicted miles per
gallon numbers are getting smaller and closer together.

But I think we can be very happy with this model.

Another way to handle transformations in regression is via “Box-Cox transfor-
mations”, which is a semi-automatic way to find a good transformation of the
reponse variable. It uses the Ladder of Powers, and tries a bunch of differ-
ent possible transformations. The end result is a plot showing which kinds of
transformations are plausible in the light of the data.

Let’s try this out on the cars data. The R function is called boxcox, and it lives in
the MASS package, which you’ll need to install first (using install.packages("MASS"))
if you don’t already have it. See Section for more on installing packages.

The procedure for running boxcox is shown in Figure 6.53. You feed boxcox

a model formula, like you would use in regression. There are other options for
controlling things, but the default output is a plot.

The single best power transformation is where the curve is highest, marked by
the middle of the three vertical dotted lines. This is about −0.6. But the data
might tell you a lot about the power transformation, or only a little, so the

6.8. TRANSFORMATIONS 259

> library(MASS)

> boxcox(MPG~Weight)

−2 −1 0 1 2

−
11

4
−

11
2

−
11

0
−

10
8

−
10

6
−

10
4

λ

lo
g−

Li
ke

lih
oo

d

 95%

Figure 6.53: boxcox on cars data

260CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

right thing to look at is the confidence interval for the power transformation.
Here that goes from about −1.6 to about 0.4. Any power within that interval
is supported by the data.

What we are looking for out of this is a nice round number for the power trans-
formation. So 0 (log transformation) and −1 (reciprocal transformation, as we
found above) are reasonable choices. The Box-Cox method is blind to whatever
theory might guide the choice, but we found that the −1 transformation had a
physical interpretation of gallons of fuel consumed per mile, so that would seem
to be a good choice, both from the physical and Box-Cox points of view.

6.8.2 Transformations for ANOVA

I collected all the NHL (hockey) scores from January to March 2012. Is there
evidence that some teams score at a higher rate than others?

Here’s (a little of) my data:

> scores=read.csv("~/sports/nhl.csv",header=T)

> head(scores)

team goals

1 Nashville 5

2 Calgary 3

3 Philadelphia 2

4 Ottawa 3

5 New Jersey 2

6 San Jose 3

> attach(scores)

There are 30 teams in the NHL, which is too many for a nice clear analysis. So
I’m going to select 6, Philadelphia, Pittsburgh, Winnipeg, Columbus, Chicago
and Minnesota. R has a handy function called %in%. I make a list of the teams I
want, and then pick out the lines of the data frame that have one of my wanted
teams as their team. Then I print out the first few lines of team and whether
or not I selected them, to make sure I got the right ones.

> wanted.teams=c("Philadelphia","Pittsburgh","Winnipeg","Columbus","Chicago","Minnesota")

> to.select=team %in% wanted.teams

> head(data.frame(to.select,team),n=20)

6.8. TRANSFORMATIONS 261

to.select team

1 FALSE Nashville

2 FALSE Calgary

3 TRUE Philadelphia

4 FALSE Ottawa

5 FALSE New Jersey

6 FALSE San Jose

7 FALSE Vancouver

8 FALSE Edmonton

9 TRUE Chicago

10 FALSE Colorado

11 FALSE Los Angeles

12 FALSE Buffalo

13 FALSE Edmonton

14 FALSE Toronto

15 FALSE Tampa Bay

16 FALSE Washington

17 FALSE Calgary

18 FALSE Carolina

19 FALSE St. Louis

20 FALSE Phoenix

Every time to.select is true, the team in the original data frame is one of the
ones I want to select. So that’s good. Now I can use to.select to create a
new data frame with just the teams I want. At the same time, I’ll detach the
original data frame, which I don’t need any more, and attach the new one:

> detach(scores)

> scores2=scores[to.select,]

> head(scores2)

team goals

3 Philadelphia 2

9 Chicago 3

26 Winnipeg 3

28 Minnesota 0

34 Winnipeg 0

36 Philadelphia 5

> attach(scores2)

> scores2$team=factor(as.character(team))

The row numbers in scores2 are the ones that were selected from the original
data frame scores.

262CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

I’m going to use my mystats function to find the mean and SD of each team’s
goalscoring. I want to array all the goals scored by team before I do that, which
is what the unstack command does. This takes two things: a data frame, and
a model formula saying how things are to be collected together (numerical on
the left, categorical on the right)

> mylist=unstack(scores2,goals~team)

> head(mylist)

$Chicago

[1] 3 4 0 2 5 5 2 4 6 3 2 1 2 4 1 2 3 0 2 4 6 3 2 1 0 1 5 2 2 1 4 2 4 4 5 5 2 1

[39] 1 4 5

$Columbus

[1] 1 1 4 2 4 1 4 0 2 1 2 0 2 3 3 2 3 3 2 1 2 6 0 2 2 2 5 3 3 1 1 0 3 2 1 5 3 2

[39] 4 4 5

$Minnesota

[1] 0 1 5 2 2 1 1 5 3 4 1 1 1 2 1 1 3 0 2 3 1 4 0 4 0 0 1 3 3 0 3 2 3 1 0 2 3 4

$Philadelphia

[1] 2 5 3 4 2 3 2 5 1 4 5 3 1 4 4 2 0 4 2 3 7 4 5 0 5 0 6 1 3 5 1 1 3 3 2 3 1 2

[39] 4 3 7 3

$Pittsburgh

[1] 1 1 1 0 4 6 2 4 5 4 3 5 0 2 2 2 8 4 1 6 2 2 8 4 4 5 2 3 2 5 5 5 2 8 5 4 5 3

[39] 3 5

$Winnipeg

[1] 3 0 2 3 0 1 2 1 4 3 1 0 2 2 1 0 2 3 5 1 4 4 5 4 4 2 3 7 3 2 3 5 3 3 4 4 1 4

[39] 2 4 2

Now we work out the mean and SD of goals scored for each team, by using
sapply on the list we just created. Then we extract the means and SDs, and
plot them against each other.

> msd=sapply(mylist,mystats)

> msd

Chicago Columbus Minnesota Philadelphia Pittsburgh Winnipeg

n 41.000000 41.000000 38.000000 42.000000 40.000000 41.000000

Mean 2.804878 2.365854 1.921053 3.047619 3.575000 2.658537

SD 1.691442 1.495929 1.477426 1.780002 2.061708 1.590751

6.8. TRANSFORMATIONS 263

Median 2.000000 2.000000 2.000000 3.000000 4.000000 3.000000

IQR 2.000000 2.000000 2.000000 2.000000 3.000000 2.000000

> xbar=msd[2,]

> sd=msd[3,]

> plot(xbar,sd)

> text(xbar,sd,dimnames(msd)[[2]],pos=4)

●

●
●

●

●

●

2.0 2.5 3.0 3.5

1.
5

1.
6

1.
7

1.
8

1.
9

2.
0

xbar

sd

Chicago

Columbus
Minnesota

Philadelphia

Pittsburgh

Winnipeg

It’s pretty clear that a higher mean number of goals per game goes with a higher
SD, which indicates that a transformation of goals is called for.

The standard procedure for counts is to try square roots first, so we do that and
repeat the above:

> mylist=unstack(scores2,sqrt(goals)~team)

> msd=sapply(mylist,mystats)

> msd

Chicago Columbus Minnesota Philadelphia Pittsburgh Winnipeg

n 41.0000000 41.0000000 38.0000000 42.0000000 40.0000000 41.0000000

264CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

Mean 1.5560961 1.4142601 1.2056269 1.6280334 1.7791249 1.5041545

SD 0.6269203 0.6122623 0.6929299 0.6378184 0.6482437 0.6371477

Median 1.4142136 1.4142136 1.4142136 1.7320508 2.0000000 1.7320508

IQR 0.5857864 0.7320508 0.7320508 0.5857864 0.8218544 0.5857864

That could barely have worked better. The standard deviations of goals scored
for the six teams are almost identical.

Now we can do a one-way ANOVA to answer the question we had way back at
the beginning:

> scores.aov=aov(sqrt(goals)~team)

> anova(scores.aov)

Analysis of Variance Table

Response: sqrt(goals)

Df Sum Sq Mean Sq F value Pr(>F)

team 5 7.452 1.49049 3.6124 0.003618 **

Residuals 237 97.788 0.41261

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

So there is definitely a difference in mean goals scored per game among the
teams. Which ones are different? Tukey again:

> scores.tukey=TukeyHSD(scores.aov)

> scores.tukey

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov.default(formula = sqrt(goals) ~ team)

$team

diff lwr upr p adj

Columbus-Chicago -0.14183602 -0.549454941 0.26578290 0.9176723

Minnesota-Chicago -0.35046915 -0.766055316 0.06511702 0.1525307

Philadelphia-Chicago 0.07193732 -0.333248033 0.47712267 0.9957550

Pittsburgh-Chicago 0.22302886 -0.187129769 0.63318748 0.6241674

Winnipeg-Chicago -0.05194159 -0.459560509 0.35567733 0.9991324

Minnesota-Columbus -0.20863313 -0.624219295 0.20695304 0.7010352

Philadelphia-Columbus 0.21377334 -0.191412012 0.61895869 0.6544045

6.8. TRANSFORMATIONS 265

Pittsburgh-Columbus 0.36486488 -0.045293747 0.77502350 0.1125458

Winnipeg-Columbus 0.08989443 -0.317724488 0.49751335 0.9883899

Philadelphia-Minnesota 0.42240647 0.009206944 0.83560599 0.0418572

Pittsburgh-Minnesota 0.57349801 0.155420530 0.99157548 0.0014783

Winnipeg-Minnesota 0.29852756 -0.117058606 0.71411373 0.3099427

Pittsburgh-Philadelphia 0.15109154 -0.256648678 0.55883175 0.8948555

Winnipeg-Philadelphia -0.12387891 -0.529064260 0.28130644 0.9513582

Winnipeg-Pittsburgh -0.27497045 -0.685129073 0.13518818 0.3887667

Only Pittsburgh-Minnesota and Philadelphia-Minnesota are signficant; that is,
based on this sample of games, Pittsburgh and Philadelphia score more goals
per game than Minnesota, but there is no evidence of any difference in mean
scoring rates between any of the other teams.

6.8.3 Mathematics of transformations

Sometimes, theory will suggest a particular shape of relationship, and by taking
logs you can make it linear and use a linear regression.

Examples, with x being your explanatory variable, y being your response, and
a and b being parameters you are trying to estimate. My logs are natural logs:

� Relationship is y = axb. Logs gives log y = log a+b log x. Use log y as your
transformed response and log x as your transformed explanatory variable.
The intercept of your regression is log a and the slope is b.

� Relationship is y = abx (exponential growth or exponential decay). Logs
gives log y = log a + x log b. Take logs of y but don’t take logs of x. The
intercept of your regression is log a and the slope is log b.

Here’s an example (I made this one up):

> eg

x y

1 0 1.0

2 1 1.5

3 2 2.2

4 3 3.0

5 4 4.7

6 5 7.0

7 6 10.0

266CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

> plot(eg)

> lines(lowess(eg))

●

●

●

●

●

●

●

0 1 2 3 4 5 6

2
4

6
8

10

x

y

That looks like exponential growth to me. (Plotting the data frame worked
because it has two numeric variables. If you feed plot a data frame, it works
hard to find a suitable way of plotting the things in it.)

So we need to take logs of y but not x:

> logy=log(eg$y)

> eg.lm=lm(logy~eg$x)

> summary(eg.lm)

Call:

lm.default(formula = logy ~ eg$x)

Residuals:

1 2 3 4 5 6 7

-0.003969 0.017648 0.016792 -0.056901 0.008201 0.022700 -0.004473

Coefficients:

6.8. TRANSFORMATIONS 267

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.003969 0.020327 0.195 0.853

eg$x 0.383848 0.005638 68.088 1.29e-08 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.02983 on 5 degrees of freedom

Multiple R-squared: 0.9989, Adjusted R-squared: 0.9987

F-statistic: 4636 on 1 and 5 DF, p-value: 1.294e-08

In our exponential growth relationship, log a = 0.00397 and log b = 0.384, so
(exp is the inverse of log):

> ec=exp(coefficients(eg.lm))

> ec

(Intercept) eg$x

1.003976 1.467923

> exp(fitted.values(eg.lm))

1 2 3 4 5 6 7

1.003976 1.473760 2.163365 3.175653 4.661613 6.842887 10.044828

That means that the values start at 1, and each one is 1.47, or about 1.5, times
bigger than the one before. (I actually made up the data so that each value was
“about” 1.5 times the value before.)

268CHAPTER 6. ANALYSIS OF STANDARD EXPERIMENTAL DESIGNS

Chapter 7

Rolling your own

7.1 Do you need to roll your own?

There is a huge number of add-ons for R. Because R is an open-source endeavour,
there is a large community sharing functions and data of all kinds. The unit
of adding to R is the package. There are packages covering subject areas
(such as ape, for analyses of phylogenetics and evolution), textbooks (such as
AER, “Applied Econometrics with R”), statistical methods (such as leaps, which
does regression subset selection) and data sets (such as datasets, surprisingly
enough).

When attempting something that isn’t in the “base” of R, your first port of call
should be to find out whether there’s a package that does what you want. There
is a whole website of R packages at http://cran.r-project.org/web/packages/.
If a web search lands you there, that’s where you want to be.

For example, I was looking for a package that implements the Theil slope es-
timator. This is a way of estimating the slope of a regression line that is not
affected by outliers. I did a web search for “theil slope R CRAN” and found it
in several packages, including one called zyp.

I clicked on the Packages tab in the bottom-right window, then clicked Install
Packages at the top left. In the dialog box that popped up, I typed zyp in the
Packages line and left everything else as is. Once you click Install, you’ll see a
whole lot of red text in the Console window, finishing with the word DONE. I
saw DONE (zyp) on mine.

Now we have to start up the package we downloaded, and figure out what
function we need from it. In the Packages window, scroll down through the list
of packages until you find the one you want. Mine, of course, is right at the

269

270 CHAPTER 7. ROLLING YOUR OWN

bottom. Click the checkbox to the left of its name to make it available (the
command-line command is called library), and click the blue package name to
go to its help. You’ll see the names of a lot of functions. Going to the name of
the package gives you a description of the whole package, which might give you
a clue as to which function you need. You can go back to the “front page” of
the package help using the back arrow at the top left of what has now become
a Help window.

I think I want zyp.sen, so I click on its name to read its help, and find that it
works a lot like lm. Let’s test it out. First, some data and a scatterplot:

> x=1:6

> y=c(2,4,7,13,11,12)

> plot(x,y)

●

●

●

●

●

●

1 2 3 4 5 6

2
4

6
8

10
12

x

y

You see that the y-value for x = 4 seems way off. What effect will that have on
the line estimated this way? We’ll also fit a regular regression line for compari-
son:

> xy.zs=zyp.sen(y~x)

> xy.zs

7.1. DO YOU NEED TO ROLL YOUR OWN? 271

Call:

NULL

Coefficients:

Intercept x

0.5 2.0

> xy.lm=lm(y~x)

> xy.lm

Call:

lm.default(formula = y ~ x)

Coefficients:

(Intercept) x

0.4667 2.2000

The regular regression line starts off a bit lower, but is a bit steeper.

Also, a plot with both lines on it. Note the use of lty to plot the lines differently.
Also, zyp.sen only gives me the estimated intercept and slope, and not the fitted
values, so I have to calculate those first:

> b=xy.zs$coefficients

> fit.zs=b[1]+b[2]*x

> fit.lm=fitted.values(xy.lm)

> plot(x,y)

> lines(x,fit.zs,lty="solid")

> lines(x,fit.lm,lty="dashed")

272 CHAPTER 7. ROLLING YOUR OWN

●

●

●

●

●

●

1 2 3 4 5 6

2
4

6
8

10
12

x

y

The help for lty is in the help for par, where you can find the legitimate values
for lty. In our case, the Theil-Sen line is solid, and the regression line is dashed.
You can see that the regression line has been pulled upwards by the fourth point
(the regression line tries to go close to all the points), but the Theil-Sen line
seems to completely ignore that point, going close to the other five.

7.2 The function

The basic unit of code that you build yourself is the function. This is a way
of putting together your ideas in a form that they can be re-used. Here’s an
example:

> twostats=function(x)

+ {

+ xbar=mean(x)

+ s=sd(x)

+ c(xbar,s)

+ }

7.2. THE FUNCTION 273

The anatomy of a function is this:

� It all starts with the function line. Here, this says that you are defining
a function called twostats (it can be anything you choose, except names
that R already knows), and after that, in brackets, the things you’ll feed
into the function. In this case, there’s just one thing, a variable’s worth
of data. What you call this is up to you.

� An open curly bracket. Anything from here up to the close curly bracket
is part of the function. (If your function has only one line of stuff, the
curly brackets are optional, but I tend to put them in anyway so as not
to forget them when they are needed.)

� Some R statements, using your variable name(s) from the function line
to refer to the input. I called my input x, so I’m referring to that when I
calculate my mean and standard deviation.

� The last line of the function just appears to be printing out something.
That something is what comes back from the function. In my case it’s a
vector of two numbers: the mean and SD glued together.

� Finally, a close curly bracket to balance the open one from earlier. This
ends the definition of the function. As long as there are no errors, R will
happily accept this, and the function is now defined and can be used.

Some examples of using the function below. It will find the mean and SD of
anything you throw at it:

> twostats(cars$MPG)

[1] 24.760526 6.547314

> twostats(1:5)

[1] 3.000000 1.581139

> twostats(c(120,115,87,108))

[1] 107.50000 14.52584

> s=twostats(1:10)

> s

274 CHAPTER 7. ROLLING YOUR OWN

[1] 5.50000 3.02765

Notice that you can store the results in a variable, or even use the function you
defined in an apply-type thing:

> cars.numeric[1:5,]

MPG Weight Cylinders Horsepower

1 28.4 2.67 4 90

2 30.9 2.23 4 75

3 20.8 3.07 6 85

4 37.3 2.13 4 69

5 16.2 3.41 6 133

> apply(cars.numeric,2,twostats)

MPG Weight Cylinders Horsepower

[1,] 24.760526 2.8628947 5.394737 101.73684

[2,] 6.547314 0.7068704 1.603029 26.44493

This shows the mean and SD of the numeric variables in our cars data frame.
Next, we’ll find the mean and SD of MPG for each number of Cylinders:

> attach(cars.numeric)

The following object(s) are masked from 'cars (position 27)':

Cylinders, Horsepower, MPG, Weight

The following object(s) are masked from 'cars (position 28)':

Cylinders, Horsepower, MPG, Weight

> mylist=split(MPG,Cylinders)

> mylist

$`4`

[1] 28.4 30.9 37.3 31.9 34.2 34.1 30.5 26.5 35.1 31.5 27.2 21.6 31.8 27.5 30.0

[16] 27.4 21.5 33.5 29.5

$`5`

[1] 20.3

7.3. THE POWER OF FUNCTIONS 275

$`6`

[1] 20.8 16.2 18.6 22.0 28.8 26.8 18.1 20.6 17.0 21.9

$`8`

[1] 16.9 19.2 18.5 17.6 18.2 15.5 16.5 17.0

> sapply(mylist,twostats)

4 5 6 8

[1,] 30.021053 20.3 21.080000 17.425000

[2,] 4.182447 NA 4.077526 1.192536

> detach(cars.numeric)

These are the mean (top) and SD (bottom) MPG values for each number of
cylinders. (You can see that if I’d given the result of my mystats function a
names attribute, I wouldn’t have had to remember which was the mean and
which the SD.)

7.3 The power of functions

The power of using functions is that you can encapsulate a whole complicated
calculation into one“bundle”, and then use the function you defined to repeat the
whole complicated thing over again without having to worry about its innards.

Here’s an example of that. Here’s a skewed distribution, which I’m drawing a
sample of 20 values from:

> set.seed(457299)

> x=rexp(20,1)

> hist(x)

276 CHAPTER 7. ROLLING YOUR OWN

Histogram of x

x

F
re

qu
en

cy

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4
5

6

Drawing a histogram of this sample reveals how skewed it is.

Now, suppose I want to see what kind of means I might get if I draw random
samples (repeatedly) from this distribution. So first I define a function to draw
a random sample of size nn from this distribution and return the mean. Having
written it, I test it a few times:

> exp.mean=function(nn)

+ {

+ x=rexp(nn,1)

+ mean(x)

+ }

> exp.mean(20)

[1] 1.040792

> exp.mean(20)

[1] 0.9468177

> exp.mean(20)

7.3. THE POWER OF FUNCTIONS 277

[1] 1.19596

> exp.mean(20)

[1] 1.103339

A rule of programming is to write the most general thing you think you might
need. Here I let the sample size be input to the function, so if I want a sample
size other than 20, I don’t have to rewrite the function.

Here you see that the sample means vary a bit, because by random sampling
you’re going to get different members of the population every time, so the sample
mean is going to be (a bit) different.

Having defined our function to return the mean of one random sample, it’s no
problem to have it return 100 sample means and draw a histogram of them.
There are actually two ways to do it. The first uses a “loop”, which you might
be familiar with if you’ve ever done any programming:

> ans=numeric(0)

> for (i in 1:100)

+ {

+ m=exp.mean(20)

+ ans=c(ans,m)

+ }

> ans

[1] 0.5953901 0.7307934 0.9525824 1.6137642 0.7524616 1.1137032 0.9765812

[8] 1.4119415 0.5974550 0.9124757 1.0699372 0.9505348 0.9222793 1.3680092

[15] 0.8006096 0.7144267 0.8558708 1.0886128 1.4352454 0.9389111 0.9393441

[22] 1.0957610 1.1482924 0.9526408 0.9004013 1.1681222 0.9544354 1.0444964

[29] 1.0916456 0.9978768 1.3425093 0.6907574 0.8646838 0.7536693 1.0122495

[36] 1.1136691 1.1365984 1.1487547 0.9507187 0.6081595 0.8252231 0.9020131

[43] 1.4331116 1.0429275 0.9642786 0.8598349 0.9810133 1.0846337 1.0230059

[50] 0.8728306 1.1340795 1.1464560 0.9134928 1.0513848 0.9010568 0.6627840

[57] 1.2432685 1.1283063 1.2159073 0.8719889 1.0591415 1.0294409 1.0025213

[64] 0.8845995 1.1100575 0.6199469 0.8608528 1.3606431 1.0278700 0.7397541

[71] 1.0891893 1.1737105 1.2101996 1.0549312 1.0148108 1.5922892 0.9374209

[78] 1.0165927 0.6533772 0.8379020 0.6216183 1.3011871 0.8544172 1.0176961

[85] 1.0849363 1.0959883 0.8100988 1.0634409 0.7917569 0.9176847 0.8928590

[92] 1.2463448 1.2642569 1.3123927 0.6834713 1.5867340 0.8413346 0.9662048

[99] 1.0623588 0.7816818

First we initialize the variable ans, which is going to hold our results. The
numeric(0) thing says that the variable is initialized to be empty, but “if there

278 CHAPTER 7. ROLLING YOUR OWN

was anything in it, they would be numbers”. Then the loop: “do the following
100 times”, enclosed in curly brackets. Call our function to get a mean of a
random sample from this skewed population (notice how the innards of the
function are irrelevant to us here), and then glue the result onto the end of ans.
Finally, display our results.

Eyeballing the results, you can see that even though the individual values in the
sample might be quite a bit bigger than 1, the sample means are all somewhere
near 1. Before we look at the shape of the distribution of sample means, though,
let’s have a look at a non-loop way of doing this, which, in R, is cleaner (and
actually quite a bit quicker). replicate is a variant of sapply that will do the
same thing as many times as you ask, which is ideal for simulations like this:

> ans=replicate(100,exp.mean(20))

> ans

[1] 1.3943454 1.0094177 0.7623067 1.0895621 0.8797796 1.2504372 0.8224480

[8] 1.4293340 0.8162799 0.8985124 0.6823115 1.4664997 1.0021541 0.7739709

[15] 1.1292508 0.9969465 1.0242879 1.1791911 0.8603585 0.9837684 0.9236030

[22] 0.8585515 1.3936862 1.3998916 0.8551937 0.6590934 1.0599416 0.8677731

[29] 0.7769904 1.0798930 0.6050184 0.9666763 1.2383593 1.1578533 1.4298924

[36] 1.0373164 0.9608770 1.0629154 1.3359719 0.9773096 0.9405015 0.8510367

[43] 1.2117225 0.9608114 1.0536352 0.9998788 0.9753906 0.6705000 0.9312135

[50] 0.8899296 0.9802517 0.8522665 0.7121971 1.3353620 0.7285403 0.8767662

[57] 1.3971567 0.7000580 1.1044345 1.0163699 1.1503674 0.9767239 0.8036265

[64] 0.9151995 1.1805739 1.0211275 1.2110536 1.3961973 1.1133059 0.9384418

[71] 0.9363415 0.7841919 1.0460548 0.7467652 1.5394018 0.7525785 1.0731557

[78] 1.1980688 1.3522068 1.3650985 1.0756254 0.7786717 0.8419265 0.9600557

[85] 0.8368524 0.8740481 0.8713538 1.5844980 1.1846367 0.7259034 1.1165755

[92] 1.0112292 0.7135493 1.0440840 1.3413771 0.8946160 0.8159957 1.2545248

[99] 0.7803344 0.9586299

The answers are not the same, of course, but they are qualitatively similar
(meaning, they look almost the same). The original population was seriously
skewed. How about these sample means? Look at a histogram:

> hist(ans)

7.3. THE POWER OF FUNCTIONS 279

Histogram of ans

ans

F
re

qu
en

cy

0.6 0.8 1.0 1.2 1.4 1.6

0
5

10
15

This distribution is a good bit less skewed than the population was. In fact, it
looks almost symmetric.

What happens if we want to take samples of size 200 instead of 20? No problem:
change 20 to 200 in the call to replicate, is all:

> ans2=replicate(100,exp.mean(200))

> hist(ans2)

280 CHAPTER 7. ROLLING YOUR OWN

Histogram of ans2

ans2

F
re

qu
en

cy

0.8 0.9 1.0 1.1 1.2

0
5

10
15

20
25

30
35

What does that look like? Take a chocolate-chip cookie if you said “normal
distribution”. The skewness has pretty much gone away.

This is the reason that we can use trhings like t-tests for means even if the
population is far from normal: what matters is how normal the distribution of
the sample means is.

There is a mathematical result saying that if you draw a sample from any
population at all (of the kind that you might encounter in practice), and you
have a “large” sample, the distribution of sample means will be approximately
normal. It’s called the Central Limit Theorem. In our example, samples of size
20 were on the edge but samples of size 200 were definitely large enough for the
normality to work.

This is emphasized in normal QQ plots for the sample means. First, the samples
of size 20:

> qqnorm(ans)

> qqline(ans)

7.3. THE POWER OF FUNCTIONS 281

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

which is maybe a bit skewed, and then the samples of size 200:

> qqnorm(ans2)

> qqline(ans2)

282 CHAPTER 7. ROLLING YOUR OWN

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●
●

−2 −1 0 1 2

0.
85

0.
90

0.
95

1.
00

1.
05

1.
10

1.
15

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

which is pretty darn normal.

The power of functions, in summary: define a function to do a simple thing,
and then call that function to do complicated things. Which then becomes a
simple thing if you define a function to do it. Rinse and repeat.

7.4 Lists

You may have noticed that some of R’s functions return a bunch of things. For
example, lm returns regression coefficients, test statistics, P-values, residuals
and the like. These are not all the same kinds of things: the residuals are a
vector as long as you have data points; the coefficients are a vector as long as
you have explanatory variables, the F -statistic is a number, and so on. A data
frame requires everything to be the same size, so these cannot be represented
in a data frame. What R does, and what you can do as well, is to use a data
structure called a list.

Figure 7.1 shows the basic procedure. I invented a variable called x which is
just the numbers 1 through 10, and I found the mean and standard deviation
of x. Then I make a list consisting of those two numbers. The resulting list,

7.4. LISTS 283

> x=1:10

> mean(x)

[1] 5.5

> sd(x)

[1] 3.02765

> mylist=list(mean(x),sd(x))

> mylist

[[1]]

[1] 5.5

[[2]]

[1] 3.02765

> mylist[[2]]

[1] 3.02765

> mybetterlist=list(xbar=mean(x),s=sd(x))

> mybetterlist

$xbar

[1] 5.5

$s

[1] 3.02765

> mybetterlist$s

[1] 3.02765

Figure 7.1: mean and standard deviation in a list, part 1

284 CHAPTER 7. ROLLING YOUR OWN

called mylist, has two things in it, numbered [[1]] and [[2]]. The next line
pulls out the standard deviation.

My second attempt gives the things in the list names. The definition of mybetterlist
shows how it goes. It’s the same way you construct a data frame where the things
in it (variables) have names. The names show up when you print the list, and
you can access the elements individually by referring to them by name.

So when you want to return a bunch of disparate things from a function, you
can do that using a list as well. Let’s make a function that returns the mean,
SD and five-number summary of a list of numbers, and test it on the variable
x that we defined in Figure 7.1. The procedure is shown in Figure 7.2. First
we obtain the things we need (remember that the quantile function obtains
percentiles), and then we put them together into a list, with the components of
the list having names. Then we test it on our x, and also illustrate pulling out
just one thing.

The last line gives the “structure” of our list object; that is, what it has in it.
There are three things in our list: xbar and s, which are numbers (num), and
also five, which is a vector of 5 numbers (hence the 1:5) that has a names
attribute (there are also 5 names, with the first few being shown).

So when you do fit$coefficients to get the regression coefficients out of a
fitted model object, you are actually accessing a list. As an illustration of this
on a two-sample t-test, see Figure 7.3. Most of these you can guess. chr means
“character string”. So the last line pulls out the string describing the alternative
hypothesis, which is the default since we didn’t change it.

This means that if you just need one piece of a complicated object, such as
for example the P-value, as for example when you’re doing a power analysis
by simulation, you now know how to get it. (It seems wasteful to do a whole
two-sample t-test and just pull out one part of the result, but better to have the
computer waste some electrons than to have you waste brain power!)

Elements of lists can even be lists themselves. One of the parts of an lm model
fit is like that. To illustrate on the same data as we used for the two-sample
t-test, see Figure 7.4.

Lists are R’s most flexible data structure. Data frames are a special case of lists;
they are lists in which all the elements are vectors of the same length. Data
frames have some special “stuff” — for example, when you print a data frame it
looks different from when you print a list — but the notation for examining one
variable from a data frame is the same as for examining one (named) element
from a list.

One more advantage to returning a list from a function is shown in Figure 7.5.
If you want to apply a function on all the variables in a data frame, sapply will
then make you a nice table of the results.

7.4. LISTS 285

> list.stats=function(x)

+ {

+ m=mean(x)

+ sdev=sd(x)

+ q=quantile(x,c(0,0.25,0.5,0.75,1))

+ list(xbar=m,s=sdev,five=q)

+ }

> st=list.stats(x)

> st

$xbar

[1] 5.5

$s

[1] 3.02765

$five

0% 25% 50% 75% 100%

1.00 3.25 5.50 7.75 10.00

> st$five

0% 25% 50% 75% 100%

1.00 3.25 5.50 7.75 10.00

> str(st)

List of 3

$ xbar: num 5.5

$ s : num 3.03

$ five: Named num [1:5] 1 3.25 5.5 7.75 10

..- attr(*, "names")= chr [1:5] "0%" "25%" "50%" "75%" ...

Figure 7.2: Mean, standard deviation and five-number summary in a list, part
2

286 CHAPTER 7. ROLLING YOUR OWN

> x=factor(c(1,1,1,1,2,2,2,2))

> y=c(5,7,8,10,9,11,13,14)

> fit=t.test(y~x)

> str(fit)

List of 9

$ statistic : Named num -2.79

..- attr(*, "names")= chr "t"

$ parameter : Named num 5.98

..- attr(*, "names")= chr "df"

$ p.value : num 0.0315

$ conf.int : atomic [1:2] -7.975 -0.525

..- attr(*, "conf.level")= num 0.95

$ estimate : Named num [1:2] 7.5 11.8

..- attr(*, "names")= chr [1:2] "mean in group 1" "mean in group 2"

$ null.value : Named num 0

..- attr(*, "names")= chr "difference in means"

$ alternative: chr "two.sided"

$ method : chr "Welch Two Sample t-test"

$ data.name : chr "y by x"

- attr(*, "class")= chr "htest"

> fit$alternative

[1] "two.sided"

Figure 7.3: Structure of t.test model object

> fit1=lm(y~x)

> fit1$model$x

[1] 1 1 1 1 2 2 2 2

Levels: 1 2

> fit1$model$y

[1] 5 7 8 10 9 11 13 14

Figure 7.4: Part of an lm model fit

7.4. LISTS 287

> q=function(x)

+ {

+ list(xbar=mean(x),s=sd(x),m=median(x),iqr=IQR(x))

+ }

> x=1:10

> y=15:24

> d=data.frame(x=x,y=y)

> sapply(d,q)

x y

xbar 5.5 19.5

s 3.02765 3.02765

m 5.5 19.5

iqr 4.5 4.5

Figure 7.5: Returning a list from a function

288 CHAPTER 7. ROLLING YOUR OWN

Chapter 8

R Studio, and serious work
with it

8.1 R Studio

******** folders

You may have been trying out R Studio by using the “console” at the bottom
left to enter commands. This works, but it’s no advance over the unadorned R
interface, and doesn’t let you save your commands or output or graphs. The R
Studio interface has four parts. Let’s take them in turn.

Top left is a Notepad-like editor window. You can use this for a couple of things:

� a place to save (text) output from the bottom-left Console window that
you would like to keep.

� a place to put commands that you might want to run again. I use this a
lot, as a record of what I’ve done so that I can do it again.

To create a new window here, select File and New, and choose Text File for the
first kind of file, and R Script for the second. (You can also use a text file as a
place to make notes.)

R Studio has all kinds of commands to make an R Script window useful. Some
are:

� Move the cursor to a line and press Control-Enter to run the R code on
that line.

289

290 CHAPTER 8. R STUDIO, AND SERIOUS WORK WITH IT

� Select a block of text and press Control-Enter to run the code you selected.

� Select the Source button at the top right of an R Script window to execute
the commands in the whole file. This is an easy way to re-do a whole
analysis.

Bottom left is the console window, where R commands actually get run, and
textual output appears. You can enter R commands at the prompt in the
Console window, or run them from an R Script window using Control-Enter
or Source. To navigate between windows (usually an R Script window and the
Console), click on the place you want to be. I often find myself trying to type
a command in the Console window that I wanted to go in an R Script window,
and vice versa.

The console window has a command history. Use the up and down arrows to
scroll through commands that you ran previously. There is also“tab-completion”;
type part of a command and then press the TAB key. You’ll get a list of possi-
ble completions of commands that begin with what you typed. You can use the
up and down arrows to move between the possible completions. Further to the
right is a brief description of what the currently selected completion does. If
you want to know more, you can press F1 and the help for this function appears
in the bottom right window.

The top right window has a dual purpose. By default (Workspace tab) it holds a
list of all the variables you have in your R workspace. If the variable has a single-
number value like ”7”, the value will appear in this window. If a variable contains
a collection of values (an R vector), you’ll see something like numeric[5], mean-
ing a vector with 5 numbers in it. R Studio seems to distinguish between “data”
(matrices and data frames) and “values” (vectors). Either way, double-clicking
on a variable will display its value(s).

The other purpose of the top right window (History tab) is to show the R
commands you’ve typed, run or otherwise constructed. The commands are
listed with the most recent at the bottom. You can also search for commands
matching something you type (using the magnifying glass box at the top right
of this window). You can select one or more or these commands and run them
again (by clicking on To Console) or send them to your top-left code window
(click on To Source).

The bottom-right window is a kind of grab-bag for everything else. Let’s take
the tabs in turn:

Files lists the files in your current folder/directory. Clicking on a file opens it:
in the top-left Files window if it’s a text file, in its own window if it’s a
picture. You can navigate up a folder, or click on the folder names above
the list of files to navigate to another directory entirely. Plus the usual
stuff: create a new folder, delete files, rename files and so on.

8.2. PROJECTS 291

Plots Whenever you make a graph (histogram, scatter plot or whatever), it
appears in the bottom right window on the Plots tab. When you create a
new plot, the Plots tab pops to the front and shows you your new graph.
You can use the arrows at the top left of this window to cycle through
your previous graphs (R Studio appears to keep about 30 of them around).
The Export button allows you to save a graph to a file, or to copy it to
the clipboard for pasting into something else.

Packages are libraries of R code (functions, data and so on) that people have
created and shared on the Comprehensive R Archive Network. There are
all kinds of packages to do all kinds of things: some that are subject-area
specific, and some that have not-quite-mainstream stuff that hasn’t made
it into the “base” part of R. By clicking on the name of a package here you
can access its help files, for the package itself and for any functions (or
other objects) contained within it. This is a nice way to get to the help
for a package you’ve installed. Installing and using packages is described
in Section 7.1. There’s a button at the top left of this window that helps
you install packages.

Help What it says. Any time you access a help file, either by something like
?lm from the Console window, or by navigating through package help files,
you’ll find your way here. There is also a help search, with completion: if
you type part of a function name, all the functions that start with those
letters are shown, and you can use the mouse or the up/down arrows
to select one, whose help is then displayed. The search only matches
the beginnings of function names, though; I haven’t been able to find a
subject-based search here. In that case, you can fire up your favourite
search engine and enter something like multiple regression r, which
usually turns up something useful: a name of a function or a package or
something.

8.2 Projects

If you are doing a serious piece of work with R and you want to keep everything
together, R Studio provides a mechanism to do that, by means of its “Project”
feature. This will help you keep your commands, variables and so on together.
All the stuff you need is in the Project menu.

To start a new project, select New Project from the Project menu. It’s sensible
to keep all the stuff for a project together in one folder. To this end, R Studio
offers you the choice of creating a new folder or using an existing one.

292 CHAPTER 8. R STUDIO, AND SERIOUS WORK WITH IT

Chapter 9

Literate programming and
Sweave

9.1 Introduction

One of the hazards of using statistical software is that you have to copy and
paste your results into whatever you are using to write up your results. It is
altogether too easy to have the “wrong” version of an analysis in your document,
because you changed your mind about which data to use, or which version of
an analysis to conduct, and these can be very hard to catch.

If you use LATEX , as I am right now, you can combine LATEX with R using
software called Sweave. R Studio makes this (relatively) painless. The idea is
that you embed specially marked pieces of text called code chunks into your
document. Then R is run on your code chunks, and the code and resulting
output are embedded into your document. (This is configurable on a per-chunk
basis; you can choose not to show the commands or output. See below.)

To kick things off, you need to create a LATEX document. (I’m assuming you
know something about LATEX for this, and have it installed on your computer.)
In R Studio, select File and New, and select“R Sweave”, which, on my R Studio,
is the top one of the bottom block of four choices. This gives you a skeleton
LATEX document that looks like this, with some blank lines excised:

\documentclass{article}

\begin{document}

293

294 CHAPTER 9. LITERATE PROGRAMMING AND SWEAVE

<<>>=

@

Figure 9.1: Empty code chunk

\end{document}

After the SweaveOpts line, you can enter any text or LATEX commands you
choose. R Studio makes the latter easier for you; find the Format button above
the window you’re typing in, click it, and that pops down a menu of LATEX
things you might want to do. In the case of our example document, we can do
something like this:

\documentclass{article}

\begin{document}

\section{Introduction}

This is some random text here.

\end{document}

9.2 Code chunks

Now, we can add a code chunk. Let’s add some data (two variables) and cal-
culate summaries for them. To insert a code chunk, find the Chunks button
top right of where you are typing, and, from its pop-down menu, select Insert
Chunk. If you like the keyboard better, pressing control-alt-I will insert a code
chunk as well. You’ll see something like Figure 9.1 appear in your document.
The first line marks the beginning of your code chunk, and the @ marks the end.
In between you can put any R commands you like.

Let’s invent some data, print it out and produce a summary. That will come
out looking like Figure 9.2.

You can imagine code chunks as being linked together. That is, if you now have
another code chunk that refers to x and y, they’ll be the same x and y that you
created before. Let’s make a scatter plot of our two variables. That produces
Figure 9.3.

9.2. CODE CHUNKS 295

<<>>=

x=1:10

y=c(4,5,8,11,12,14,15,16,21,21)

x

y

summary(y)

@

> x=1:10

> y=c(4,5,8,11,12,14,15,16,21,21)

> x

[1] 1 2 3 4 5 6 7 8 9 10

> y

[1] 4 5 8 11 12 14 15 16 21 21

> summary(y)

Min. 1st Qu. Median Mean 3rd Qu. Max.

4.00 8.75 13.00 12.70 15.75 21.00

Figure 9.2: Code chunk and output to define data, print, and summarize

296 CHAPTER 9. LITERATE PROGRAMMING AND SWEAVE

<<fig=TRUE>>=

plot(x,y)

@

> plot(x,y)

●

●

●

●

●

●

●

●

● ●

2 4 6 8 10

5
10

15
20

x

y

Figure 9.3: Plot of y vs. x

9.2. CODE CHUNKS 297

In between the angle brackets at the start of a code chunk, there are some
options you can place. If you are making a plot, you must put the fig=TRUE

in there. If not, you must not. Getting this wrong produces some hard-to-find
errors. (I know, from painful personal experience!)

Also, there can be only one plot per code chunk. If you have more than one,
you need to put them in separate code chunks. Sometimes, as when you make
a plot of a regression object (to get those residual plots), one command makes
more than one plot. If you don’t take special measures, you’ll only see the first
of the plots. What you have to do is to get them all (in that case there are four
plots) is to issue a command like par(mfrow=c(r,c)) before you call for the
plot. This produces an array of plots all on one page, where you replace r by
the number of rows you want in your array, and c by the number of columns.
In the case of the four regression plots, you probably want a 2 by 2 array; doing
something else, like the code chunk and output in Figure 9.4, will look silly.

Note that when you type fig=, RStudio will offer you a choice of TRUE and
FALSE. The page of plots looks silly because we made a 3-by-3 array to hold our
plots, and then there were only four of them.

What happens if we draw another plot now? As shown in Figure 9.5, this
“undoes” the mfrow thing and starts a new plot. That is, mfrow only lasts for
the current code chunk, but it will keep filling with plots during the current
code chunk. Example of that is shown in Figure 9.6.

This is the exception to “one plot per code chunk”. The rule is really “one page
of plots per code chunk.” I’m not sure I really want the plots as elongated as
that, but that’s how they came out. If you flip the things fed into mfrow around,
you get Figure 9.7 instead. I think I like this even less.

A squarish collection of plots seems to work best, as shown in Figure 9.8.

There are lots of options you can specify for a code chunk. Let’s imagine a code
chunk that just prints x and y. This is in Figure 9.9.

Nothing special here. But you might want to hide the code that produced the
output, which happens like this, as shown in Figure 9.10.

Or you might want to show the code and hide the output (if, for example, you’re
talking about your programming strategy, admittedly a daft idea in this case),
with the results shown in Figure 9.11:

Or, if you’re really crazy, you can do this, with code chunk and “results” shown
in Figure 9.12:

298 CHAPTER 9. LITERATE PROGRAMMING AND SWEAVE

<<fig=TRUE>>=

par(mfrow=c(3,3))

test.lm=lm(y~x)

summary(test.lm)

plot(test.lm)

@

> par(mfrow=c(3,3))

> test.lm=lm(y~x)

> summary(test.lm)

Call:

lm.default(formula = y ~ x)

Residuals:

Min 1Q Median 3Q Max

-1.53333 -0.55000 0.06667 0.31667 1.53333

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.0667 0.6716 3.077 0.0152 *

x 1.9333 0.1082 17.861 9.89e-08 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9832 on 8 degrees of freedom

Multiple R-squared: 0.9755, Adjusted R-squared: 0.9725

F-statistic: 319 on 1 and 8 DF, p-value: 9.893e-08

> plot(test.lm)

5 10 15 20

−
1.

5
0.

0
1.

5

Fitted values

R
es

id
ua

ls

●

●

●

●

● ●

●

●

●

●

Residuals vs Fitted

8

9
4

●

●

●

●

● ●

●

●

●

●

−1.5 −0.5 0.5 1.5

−
1

0
1

2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s Normal Q−Q

9

8

4

5 10 15 20

0.
0

0.
6

1.
2

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●

●

●

●
●

●

● ●

●

Scale−Location
98

4

0.00 0.10 0.20 0.30

−
2

0
1

2

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

●

●

●

●

●●

●

●

●

●

Cook's distance
1
0.5

0.5
1

Residuals vs Leverage
9

8
2

Figure 9.4: Plot array with silly choice of rows and columns

9.2. CODE CHUNKS 299

<<fig=TRUE>>=

qqnorm(y)

qqline(y)

@

> qqnorm(y)

> qqline(y)

●

●

●

●

●

●

●

●

● ●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

5
10

15
20

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 9.5: Another plot after par(mfrow=c(3,3))

300 CHAPTER 9. LITERATE PROGRAMMING AND SWEAVE

<<fig=TRUE>>=

par(mfrow=c(1,2))

boxplot(y)

qqnorm(y)

qqline(y)

@

> par(mfrow=c(1,2))

> boxplot(y)

> qqnorm(y)

> qqline(y)

5
10

15
20

●

●

●

●

●

●

●

●

● ●

−1.5 −0.5 0.5 1.5

5
10

15
20

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 9.6: Multiple plots of different types

9.2. CODE CHUNKS 301

> par(mfrow=c(2,1))

> boxplot(y)

> qqnorm(y)

> qqline(y)

5
10

20

●
●

●

●
●

●
●

●

● ●

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

5
10

20

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 9.7: 2-by-1 array of plots

302 CHAPTER 9. LITERATE PROGRAMMING AND SWEAVE

> par(mfrow=c(2,3))

> for (i in 1:6)

+ {

+ zzz=rnorm(100,10,3)

+ qqnorm(zzz)

+ qqline(zzz)

+ }

●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 0 1 2

5
10

15

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 0 1 2

4
6

8
10

12
14

16

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●
●

●

●●●

●

●

●

−2 0 1 2

0
5

10
15

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

−2 0 1 2

5
10

15

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●

−2 0 1 2

5
10

15

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

−2 0 1 2

4
6

8
10

12
14

16

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 9.8: A rectangular array of plots

9.2. CODE CHUNKS 303

<<>>=

x

y

@

> x

[1] 1 2 3 4 5 6 7 8 9 10

> y

[1] 4 5 8 11 12 14 15 16 21 21

Figure 9.9: x and y

<<echo=FALSE>>=

x

y

@

[1] 1 2 3 4 5 6 7 8 9 10

[1] 4 5 8 11 12 14 15 16 21 21

Figure 9.10: Hiding the code

<<eval=FALSE>>=

x

y

@

> x

> y

Figure 9.11: Output hidden

<<echo=FALSE,eval=FALSE>>=

x

y

@

Figure 9.12: Hiding the code and the results

304 CHAPTER 9. LITERATE PROGRAMMING AND SWEAVE

9.3 More code chunk options

Code chunks have have a label, so that you can refer to them again later.
Specifying a label is easy: any code chunk option without an = in it is considered
to be a label. Below, A is a label:

<<A>>=

x+1

@

> x+1

[1] 2 3 4 5 6 7 8 9 10 11

You can re-use labelled code chunks inside another code chunk like this:

<<>>=

<<A>>

y+3

@

> x+1

[1] 2 3 4 5 6 7 8 9 10 11

> y+3

[1] 7 8 11 14 15 17 18 19 24 24

whereby x+1 gets printed out again. Note that code chunk A was replaced by
what it produced.

You can also refer to an R variable in your text. What you do is to include
\Sexpr{} in your text, and inside your curly brackets you can put anything
that evaluates to a number, for example:

� a piece of arithmetic, like \Sexpr{1/7}, which comes out as 0.142857142857143.

� a “scalar” variable, that is, one that has only a single number in it. I have
a variable called p floating around, so \Sexpr{p} gives 0.00390625. This
is as opposed to a “vector” like my y above, which has several numbers in
it.

9.3. MORE CODE CHUNK OPTIONS 305

� an element of a vector, like the 4th value in vector y above: \Sexpr{y[4]},
which gives 11.

� A single value from a data frame. For example, let’s pull out the name and
weight of the 15th car using \Sexpr{cars[15,]$Car} and \Sexpr{cars[15,]$Weight}:
the 15th car is Dodge Colt and it weighs 1.915 tons.

You’ll notice that numbers printed out this way often contain too many digits.
The R command format is your friend here. It has two options that are often
useful, digits to specify the number of significant digits, and scientific=F to
suppress printing of things in the E notation (for very small numbers). You can
either use the call to format inside your \Sexpr, like this:

Pi is close to \Sexpr{format(3+1/7,digits=4)} produces “Pi is close to
3.143”.

Or you can use a “hidden” code chunk, and do all the hard work in R, like this.
It’s best to assign the intermediate results to variables so that they don’t get
printed out by mistake:

<<echo=FALSE>>=

nearpi=3+1/7

appx=format(nearpi,digits=4)

@

and then say “The approximate answer is 3.143”, using \Sexp{appx}.

With very small numbers, like P-values, you might end up with something like
1.030928e-04. Not only does this have too many digits, but the scientific notation
does not (unless you are used to reading it) give you too good of a sense of how
small the number really is. (The number is actually one divided by 9700.) To
forbid scientific notation and print the number out starting with a bunch of
zeros, if that’s what it starts with, you can do this:

One over 9700 is approximately

\textbackslash Sexpr{format(1/9700,digits=3,scientific=F)}.

which gives:

One over 9700 is approximately 0.000103.

Or, again, you can do the format work in an R hidden code chunk, as above,
saving the result in a variable pval, say:

<<echo=FALSE>>=

r=1/9700

306 CHAPTER 9. LITERATE PROGRAMMING AND SWEAVE

pval=format(r,digits=3,scientific=F)

@

and then \Sexpr{pval} gives 0.000103.

9.4 Producing a document

There are two steps to turning your LATEX and code chunks into a document.
The first step is to let R loose on your code chunks and produce some output.
This is done by an R function called Sweave, which creates chunks of LATEX in
your document in place of those code chunks. Then the second step is to run
LATEX on the result. Fortunately, R Studio automates this all for you. All you
need to do is to click on the Compile PDF button above the document window,
or, if you prefer keys, control-shift-i. R Studio then goes through the above
two steps, and, if all goes well, it will pop up a PDF file with your compiled
document.

If all doesn’t go well, there will be errors. The first thing to figure out is whether
you have an R error or a LATEX error.

Recall the x and y from above, which are the same length, and think about the
code below:

<<>>=

z=c(y,1)

lm(z~x)

@

z is a vector with one more number in it than x, and the response and explana-
tory variables have to have the same length in regression (the x’s and y’s have
to be paired up). So this is an R error.

When you try to produce a PDF with this in it, in the bottom left window, under
the “Compile PDF” tab, you’ll get a line beginning with a red X telling you that
“variable lengths differ” and the first line of the chunk where it happened. That
has to be fixed before you get a PDF. You might also get an R warning, which is
an X on a yellow background. This won’t stop things running, but you should
probably understand why it happening. (If you know that you’re getting a
warning but it won’t affect your results, then you can leave it be.)

This is an R error too:

<<>>=

m=1:5

9.4. PRODUCING A DOCUMENT 307

sd(m,opption=7)

@

because sd doesn’t have an option by that name (there is not even an “option”
spelled properly). The error is unused argument(s) (opption=7) with the
line number (the start of the chunk), so that ought not to be too hard to find
in your code.

If all is well with your R, you’ll see, flashing past in the bottom left window,
Sweave processing your code chunks. If at the end of this you see “You can now
run (pdf) latex on. . . ”, your file with code chunks ran successfully through R,
and there should be a .tex file containing the output from those code chunks.

In the bottom left window you’ll see whether LATEX ran on this document. There
are two parts to the “compile PDF” tab (with buttons to switch between them
at the top right of the window). The Output tab will show you your LATEX
document being processed. If there’s an error, the Issues part will pop up, and
your error(s) will appear, again with X’s on a red background. (You might have
to scroll past a bunch of warnings to see them. I always get “overfull hbox” and
“underfull vbox” warnings when I run LATEX. This just means that some lines
came out too long or a page ought to have been filled up with more blocks of
stuff, but putting anything else in would have made the page too long.) The
line numbers referred to here are in the LATEX file, which you may have to open
to check. For example, my text and code chunks are in r-howto.Rnw, so my
processed code chunks are in r-howto.tex, a file I never normally need to look
at. But if there are LATEX errors, I might need to.

LATEX errors can come from two sources: the process of obtaining the R output
(usually a missing or superfluous fig=TRUE), or a mistake by you in the LATEX.
When you’ve found out where in the LATEX the errors are, you can go back to
your .Rnw file and correct them there.

If a PDF file pops up, everything worked. Now you have the task of proofreading
to make sure that the document says what you wanted it to say. (I am typing
this on a GO bus, and when there is a bump in the road, there might be a typo,
and I might catch it later, or not.)

308 CHAPTER 9. LITERATE PROGRAMMING AND SWEAVE

Chapter 10

Logistic regression

10.1 Introduction

Regression has as its aim to predict a response variable from one or more ex-
planatory variables. The response variable there is typically something mea-
sured. But what if the response variable is something categorized, for example,
something like this:

dose status

0 lived

1 died

2 lived

3 lived

4 died

5 died

Each of 6 rats were given some dose of a particular poison, and the response
recorded was whether each rat lived or died (after a certain time period). This
reponse falls into one of two categories (“lived” or “died”), so an ordinary regres-
sion is not appropriate.

Enter logistic regression. In its basic incarnation, logistic regression works
on a two-level response like this one, and predicts the probability of one of the
levels, as it depends on the explanatory variable(s).

309

310 CHAPTER 10. LOGISTIC REGRESSION

10.2 Odds and log-odds

You can skip this section on a first reading, though it’s worth studying if you
want to know what’s really going on in logistic regression.

Probabilities are awkward things to predict, because they have to be between 0
and 1, and a prediction from an ordinary regression could be anything.

What turns out to be easier to work with is the odds. What’s that? Well,
suppose you have something that has probability 3

4 of happening. Gamblers
don’t think in terms of probabilities: they say “this thing has 3 chances to
happen and 1 chance not to, so the odds are 3 to 1 (on)”. Likewise, something
of probability 1

10 has 1 chance to happen against 9 chances not to, so the odds
are 1 to 9 (usually called “9 to 1 against”).

Speaking mathematically for a moment, if p is a probability, the corresponding
odds d are

d =
p

1− p
.

You can check that p = 3
4 corresponds to d = 3/1 = 3, and p = 1

10 goes with
d = 1/9 = 0.11.

We can even go a step further, and take the logarithm of the odds (usually the
natural logarithm). This means that when p > 0.5, the odds will be greater
than 1, and so the log-odds will be positive. When p < 0.5, the odds are less
than 1, and so the log-odds will be negative.

The advantage of this for a modelling point of view is that every possible value
for the log-odds, no matter how positive or negative, corresponds to a legitimate
probability. So if you model the log-odds of the probability in terms of explana-
tory variables, you will always get a plausible predicted probability. This is
what logistic regression does.

Handy formulas, with u denoting the log odds:

u = ln

(
p

1− p

)
= ln p− ln(1− p)

and

p =
eu

1 + eu
= 1/[(1 + exp(−u)].

For example, p = 3/4 = 0.75 goes with u = 1.1, and p = 1/10 = 0.1 goes with
u = −2.2.

So when you have a logistic regression, you get the intercept and slope(s) for
the log-odds of the success probability. R has a handy function plogis for con-

10.3. EXAMPLE 1: THE RATS 311

> x=1:3

> u=-0.1+0.5*x

> u

[1] 0.4 0.9 1.4

> plogis(u)

[1] 0.5986877 0.7109495 0.8021839

> exp(0.5)

[1] 1.648721

Figure 10.1: Calculations of estimated probabilities from a logistic regression

verting a log-odds to a probability, and also qlogis for converting a probability
to a log-odds. Figure 10.1 shows some example calculations. Suppose a logistic
regression has intercept −0.1 and slope 0.5. Then the predicted log-odds are
shown as u. Note that, because the slope is 0.5, the log-odds increase by 0.5
each time x increases by 1. The predicted probabilities are shown underneath u.
They are not equally spaced out; indeed, if they were, they would soon go over
1.

The steady 0.5 increase in log-odds is kind of hard to interpret. But if you add
something to a log, you are multiplying by e-to-that-something. In our example,
that means that every time you increase the log-odds by 0.5, you are multiplying
the odds themselves by exp(0.5) = 1.65. This provides a way of interpreting
slopes in logistic regression.

10.3 Example 1: the rats

Let’s see if we can produce an analysis of the data in Section 10. With only
five rats, and a categorical lived/died response, we shouldn’t expect to be able
to conclude much, however. Figure 10.2 shows the result of plotting the rat
data. This is surprisingly uninformative, given R’s usual efforts at making
plots. Status 1 is “died” and status 2 is “lived”, so that with a little effort you
can make out that higher doses tend to go with dying. I put a lowess curve
on, which suggests the trend. Don’t worry about it not being straight, because
linearity is in log-odds, not in probabilities.

Another way of making a plot (for data like this) is to flip explanatory and
response around and make a boxplot of dose as it depends on status. This is
shown in Figure 10.3. A pause for consideration reveals that those rats who

312 CHAPTER 10. LOGISTIC REGRESSION

> rats=read.table("rat.txt",header=T)

> rats

dose status

1 0 lived

2 1 died

3 2 lived

4 3 lived

5 4 died

6 5 died

> attach(rats)

> plot(dose,status)

> lines(lowess(dose,status))

●

●

● ●

● ●

0 1 2 3 4 5

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

dose

st
at

us

Figure 10.2: Plot 1 of rat data

10.3. EXAMPLE 1: THE RATS 313

> boxplot(dose~status)

died lived

0
1

2
3

4
5

Figure 10.3: Plot 2 of rat data

died tended to get larger doses than those who lived. If the poison really is a
poison, you’d expect more of it to tend to go with death, which is what the plot
shows. In other words, you’d expect a larger dose to have a decreasing effect on
the chances of survival.

All right, to the analysis. This is shown in Figure 10.4. First off, notice that we
are now using glm instead if lm. A logistic regression is a so-called generalized
linear model instead of a plain old linear model. (The family="binomial"

thing on the first line gets a logistic regression as opposed to some other kind
of generalized linear model; there are several.) But the output looks the same:
there is an intercept and a slope, with a significance test for the slope. The slope
is negative, but not significantly different from zero. But what are we actually
predicting the probability of? From looking in the Details section of the help
for glm, you find out a lot of things, including that in the response variable, the
first category is considered to be failure and the other(s) are considered success,
and R predicts the probability of success. The levels command shows that
the first category is died, so we are predicting the probability of living. The

314 CHAPTER 10. LOGISTIC REGRESSION

> rats.lr=glm(status~dose,data=rats,family="binomial")

> levels(status)

[1] "died" "lived"

> summary(rats.lr)

Call:

glm(formula = status ~ dose, family = "binomial", data = rats)

Deviance Residuals:

1 2 3 4 5 6

0.5835 -1.6254 1.0381 1.3234 -0.7880 -0.5835

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.6841 1.7979 0.937 0.349

dose -0.6736 0.6140 -1.097 0.273

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 8.3178 on 5 degrees of freedom

Residual deviance: 6.7728 on 4 degrees of freedom

AIC: 10.773

Number of Fisher Scoring iterations: 4

> rats.lr$fitted

1 2 3 4 5 6

0.8434490 0.7331122 0.5834187 0.4165813 0.2668878 0.1565510

> detach(rats)

Figure 10.4: Logistic regression analysis of rat data

10.4. EXAMPLE 2: MORE RATS 315

dose lived died

0 10 0

1 7 3

2 6 4

3 4 6

4 2 8

5 1 9

Figure 10.5: Consolidated data for the 60 rats

slope being negative indicates that the probability of surviving goes down as the
dose increases, but its large P-value indicates that this trend is not statistically
significant. This latter is hardly surprising given that we only have five data
points. This is all you need to know, but if you want to know more you can go
back and read Section 10.2.

You can get the fitted values the same way as you would from an lm object.
These are shown in the last line of Figure 10.4, and you can see how the predicted
survival probabilities go down from 0.84 at dose 0 to 0.16 at dose 5.

If you read Section 10.2, you’ll realize that the predicted log-odds for a dose of
4 in the model above is about u = 68 − 0.67(4) = −1.01. Then we turn the
log-odds into a probability by the formula p = 1/(1 + exp(−u)), which here
gives p = 1/(1 + 2.78) = 0.27. Also, the slope of −0.67 means that the odds of
survival become exp(−0.67) = 0.51 times greater, that is about 2 times smaller,
each time the dose increases by 1. This is something that is interpretable.

10.4 Example 2: more rats

In the previous example, we said that it was hard to get a statistically significant
relationship out of only 5 observations. So how about if we had 10 rats for each
dose? We have a choice about how we lay out the data for this: we could have
one rat on each line, with a “lived” or “died” on the end of each line, and 60 lines
in the data file (and get very tired of typing “lived” or “died” each time.) Or, we
could collect together all the rats that had the same dose, and say something
like “out of the 10 rats that got dose 1, 7 of them lived and 3 died”. This allows
you to condense the data for the 60 rats into 6 lines, one for each dose, as shown
in Figure 10.5. For R, the two columns of response are successes and failures.

The easiest way to get a plot for condensed data like this is to work out the
proportion of rats surviving at each dose, and plot that against dose. I’ve drawn
a lowess curve on this one as well, but the pattern is pretty clear. My lprop

or “living proportion” is the number of survivors at each dose divided by the

316 CHAPTER 10. LOGISTIC REGRESSION

> rat2=read.table("rat2.txt",header=T)

> attach(rat2)

> lprop=lived/(lived+died)

> plot(dose,lprop)

> lines(lowess(dose,lprop))

●

●

●

●

●

●

0 1 2 3 4 5

0.
2

0.
4

0.
6

0.
8

1.
0

dose

lp
ro

p

Figure 10.6: Plot for Example 2

10.4. EXAMPLE 2: MORE RATS 317

total number of rats at that dose. (R makes this kind of thing easy because
when you add or divide two vectors it adds or divides them element by element,
which is usually exactly what you want.) Note that lprop can’t go below zero,
so that the trend has to curve once the dose gets big enough, even though it
looks pretty straight here.

Now for the analysis, shown in Figure 10.7. We’re using glm again, but now we
have a twist in the way we specify the response: it’s in two variables lived and
died, so we have to cbind them together on the left side of the model formula.
(Putting lived+died on the left doesn’t work.) This combined response then
depends on dose. The summary of the fitted model object indicates that dose

once again has a negative slope, so that the survival probability does indeed go
down as the dose increases, but this time the P-value is tiny, so that there is a
definite effect of dose on survival probability, and it’s not just chance.

You might recall that for plain-jane regression, there is an F-test for the regres-
sion as a whole, which is identical to the t-test for the slope when there is only
one slope. There is something similar here, except that it is no longer identical.
To get the test for the model as a whole, we first fit a model with just an inter-
cept. This is what rat2.lr0 is. The notation 1 on the right side of the model
formula means “the intercept”. Since there is nothing else here, the intercept
has to be specified explicitly. Then we compare the fit of the two models using
anova, just as we did in regression. Here we’re asking “does a model which has
the survival probability depending on dose fit better than one in which the sur-
vival probability is the same, regardless of dose?”. In the context of glm, anova
won’t do you a test unless you tell it which one; Chisq is a good choice. You
see that the P-value for the significance of “everything”, ie. dose, is very small,
but it’s not identical with the test for the slope of dose. Usually, however, the
conclusions are similar (and if they’re not, there’s usually a reason!).

Lastly, the fitted probabilities. These go down from 0.91 at dose 0 to 0.09 at
dose 5.

Suppose we now want to use our model to predict survival probabilities at
some different doses, say the ones halfway between the doses for which our
observations were made. We do this in two steps: first, we make a data frame
containing the new doses to predict for (the first two lines in Figure 10.8), and
then we call on predict to do the actual predictions. Something to keep in
mind here is that unless you say otherwise, you’ll get predicted log-odds instead
of predicted probabilities. Hence the type="response".

You see that the predicted survival probability at dose 2.5 is a half. Dose 2.5
(in this case) is sometimes called the “median lethal dose” (even when you’re
not actually killing things): the prediction is that half the rats getting this dose
will survive and half will not.

Sometimes you want to give a sense of how accurate your predictions are. For

318 CHAPTER 10. LOGISTIC REGRESSION

> rat2.lr=glm(cbind(lived,died)~dose,family="binomial")

> summary(rat2.lr)

Call:

glm(formula = cbind(lived, died) ~ dose, family = "binomial")

Deviance Residuals:

1 2 3 4 5 6

1.3421 -0.7916 -0.1034 0.1034 0.0389 0.1529

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.3619 0.6719 3.515 0.000439 ***

dose -0.9448 0.2351 -4.018 5.87e-05 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 27.530 on 5 degrees of freedom

Residual deviance: 2.474 on 4 degrees of freedom

AIC: 18.94

Number of Fisher Scoring iterations: 4

> rat2.lr0=glm(cbind(lived,died)~1,family="binomial")

> anova(rat2.lr0,rat2.lr,test="Chisq")

Analysis of Deviance Table

Model 1: cbind(lived, died) ~ 1

Model 2: cbind(lived, died) ~ dose

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 5 27.530

2 4 2.474 1 25.056 5.568e-07 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> cbind(dose,rat2.lr$fitted)

dose

1 0 0.9138762

2 1 0.8048905

3 2 0.6159474

4 3 0.3840526

5 4 0.1951095

6 5 0.0861238

Figure 10.7: Analysis for Example 2

10.5. MULTIPLE LOGISTIC REGRESSION 319

> newdose=seq(0.5,4.5,1)

> rat2.new=data.frame(dose=newdose)

> p=predict(rat2.lr,rat2.new,type="response")

> cbind(rat2.new,p)

dose p

1 0.5 0.8687016

2 1.5 0.7200609

3 2.5 0.5000000

4 3.5 0.2799391

5 4.5 0.1312984

Figure 10.8: Predictions for different doses

example, you might want to make a plot. This requires you to add the se.fit ar-
gument to predict, returning you a list with two components, fit and se.fit.
With a reasonable amount of data, going up and down from the fit by twice the
standard error will make you a confidence interval for each prediction. Then
you can plot the results. Figure 10.9 shows you how.

First, we calculate the lower and upper limits of the confidence intervals, by
going down and up by twice the standard errors. Then we plot the fitted prob-
abilities against the dose, using points and lines. I explicitly made the y-axis
go from 0 to 1, because otherwise our confidence limits might go off the bottom
or top of the plot. Then we add lines for the confidence limits, upper and then
lower. I’m joining the values by lines (hence type="l") and making the lines
dashed (hence lty).

10.5 Multiple logistic regression

Multiple logistic regression is to logistic regression as multiple regression is to
regression: you still have one (category of) response, but you have more than
one explanatory variable.

Let’s proceed to an example. Our data set consists of 107 patients with blood
poisoning severe enough to warrant surgery. We want to relate survival to other
variables (usually called “risk factors” in this kind of work). Most of these are
labelled 1 for “present” and 0 for “absent”:

� death from sepsis (response)

� shock

� malnutrition

320 CHAPTER 10. LOGISTIC REGRESSION

> p2=predict(rat2.lr,rat2.new,type="response",se.fit=T)

> lcl=p2$fit-2*p2$se.fit

> ucl=p2$fit+2*p2$se.fit

> plot(newdose,p2$fit,ylim=c(0,1),type="b")

> lines(newdose,ucl,type="l",lty="dashed")

> lines(newdose,lcl,type="l",lty="dashed")

> detach(rat2)

●

●

●

●

●

1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

newdose

p2
$f

it

Figure 10.9: Confidence intervals for predictions

10.5. MULTIPLE LOGISTIC REGRESSION 321

� alcoholism

� age (numerical, years)

� bowel infarction

With multiple explanatory variables, it isn’t easy to draw pictures, so we’ll leap
into an analysis and draw some pictures afterwards.

To start with, I read in the data (one patient per line) and then listed some
of the rows (the rows that would have been produced by head weren’t very
interesting). Patients 7, 9, and 12 had none of the risk factors and survived.
Patient 10 was old and had malnutrition but survived, and the two patients here
that died both had alcoholism (patients 8 and 11). All the variables except age
are really factors, but treating them as numerically 1 and 0 is fine (and actually
makes interpretation easier). For the response, R treats the first “category”, 0,
of death as a failure and 1 and a success, so we will be modelling the probability
of death.

As with multiple regression, we can start by including everything in the model
and taking out what doesn’t seem to have anything to add.

The output from glm indicates that everything is significant except for malnut

(and even that is close). Let’s try taking malnut out and confirming that the
fit is not significantly worse.

This is model sepsis.lr2, shown in Figure 10.11. The P-value from anova is
indeed very similar to the summary table from sepsis.lr (Figure 10.10), and
confirms at the 0.05 level that malnut has nothing to add.

So model sepsis.lr2 is the one we’d like to use. Let’s eyeball the summary
table. All of the coefficients are positive, which means that having any of the
risk factors increases the probability of death from sepsis (which is rather what
you’d expect).

In the spirit of Section 10.2, we can interpret the slopes by taking e-to-them
and saying that they have this multiplicative effect on the odds. This is shown
in Figure 10.12, done so that we can just read off the answers. The numbers
are quite scary: being in shock increases the odds of death from sepsis by 40
times, being an alcoholic increases them by 24 times, having a bowel infarction
increases the odds by 11 times, and being one year older increases the odds by
1.1 times. This last may not seem like much, but it compounds: being 40 years
older increases the odds by 1.140 = 35 times.

When an explanatory variable is 0 or 1 like this, the slope coefficient measures
how much effect the presence (as opposed to the absence) of the risk factor
on the log-odds of the probability of death. There is really nothing to check
here assumptions-wise. But the numerical variable age is a different story: the

322 CHAPTER 10. LOGISTIC REGRESSION

> sepsis=read.table("sepsis.txt",header=T)

> sepsis[7:12,]

death shock malnut alcohol age bowelinf

7 0 0 0 0 21 0

8 1 0 0 1 69 0

9 0 0 0 0 57 0

10 0 0 1 0 76 0

11 1 0 0 1 66 1

12 0 0 0 0 48 0

> sepsis.lr=glm(death~shock+malnut+alcohol+age+bowelinf,data=sepsis,family=binomial)

> summary(sepsis.lr)

Call:

glm(formula = death ~ shock + malnut + alcohol + age + bowelinf,

family = binomial, data = sepsis)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.3277 -0.4204 -0.0781 -0.0274 3.2946

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.75391 2.54170 -3.838 0.000124 ***

shock 3.67387 1.16481 3.154 0.001610 **

malnut 1.21658 0.72822 1.671 0.094798 .

alcohol 3.35488 0.98210 3.416 0.000635 ***

age 0.09215 0.03032 3.039 0.002374 **

bowelinf 2.79759 1.16397 2.403 0.016240 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 105.528 on 105 degrees of freedom

Residual deviance: 53.122 on 100 degrees of freedom

AIC: 65.122

Number of Fisher Scoring iterations: 7

Figure 10.10: Analysis of sepsis data

10.5. MULTIPLE LOGISTIC REGRESSION 323

> sepsis.lr2=glm(death~shock+alcohol+age+bowelinf,data=sepsis,family=binomial)

> anova(sepsis.lr2,sepsis.lr,test="Chisq")

Analysis of Deviance Table

Model 1: death ~ shock + alcohol + age + bowelinf

Model 2: death ~ shock + malnut + alcohol + age + bowelinf

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 101 56.073

2 100 53.122 1 2.9504 0.08585 .

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> summary(sepsis.lr2)

Call:

glm(formula = death ~ shock + alcohol + age + bowelinf, family = binomial,

data = sepsis)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.26192 -0.50391 -0.10690 -0.04112 3.06000

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -8.89459 2.31689 -3.839 0.000124 ***

shock 3.70119 1.10353 3.354 0.000797 ***

alcohol 3.18590 0.91725 3.473 0.000514 ***

age 0.08983 0.02922 3.075 0.002106 **

bowelinf 2.38647 1.07227 2.226 0.026039 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 105.528 on 105 degrees of freedom

Residual deviance: 56.073 on 101 degrees of freedom

AIC: 66.073

Number of Fisher Scoring iterations: 7

Figure 10.11: Analysis of sepsis data, part 2

324 CHAPTER 10. LOGISTIC REGRESSION

> exp(coef(sepsis.lr2))

(Intercept) shock alcohol age bowelinf

1.371288e-04 4.049560e+01 2.418914e+01 1.093990e+00 1.087502e+01

> 1.093^40

[1] 35.05956

Figure 10.12: Assessing effect of variables on odds

> plot(sepsis.lr2)

−6 −4 −2 0 2 4

−
1

0
1

2
3

Predicted values

R
es

id
ua

ls

●

●

●

●
●

●

●

●

●

●

●

●
●

●
● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●
●

●●

●

●

●

●

●

●

●●

●

●
●●

●

●

●
●

●

● ●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●

●

●

●

●

●

glm(death ~ shock + alcohol + age + bowelinf)

Residuals vs Fitted

98

58

54

Figure 10.13: Multiple logistic regression: residuals vs. fitted values

10.5. MULTIPLE LOGISTIC REGRESSION 325

> plot(sepsis$age,residuals(sepsis.lr2))

●

●

●

●
●

●

●

●

●

●

●

●
●

●
● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●
●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

20 40 60 80

−
1

0
1

2
3

sepsis$age

re
si

du
al

s(
se

ps
is

.lr
2)

Figure 10.14: Multiple regression: residuals against age

326 CHAPTER 10. LOGISTIC REGRESSION

> sepsis[98,]

death shock malnut alcohol age bowelinf

98 1 0 0 0 47 0

> fitted.values(sepsis.lr2)[98]

98

0.009262298

> residuals(sepsis.lr2)[98]

98

3.060001

Figure 10.15: Patient 98

assumption is one of “proportional odds”: that is, that each year increase in age
is associated with the same change in log-odds, no matter what increase you
start from. This is something that ought to be checked.

The garden-variety regression plot is of residuals against fitted values, looking
for any overall problems with the model. Our plot is shown in Figure 10.13.
Just plotting the fitted model object gets this. (These are fitted values on the
log-odds scale.) With logistic regression, you have two “strands” of residuals,
positive ones corresponding to deaths (successes) and negative ones correspond-
ing to survivals (failures). This makes it hard to check the plot for pattern-
lessness. (The residuals close to 0 on the left are for actual survivors who had
a large estimated chance of surviving; the ones close to 0 on the right are for
actual deaths who had a large estimated chance of dying. The interesting points
are the ones at the opposite ends of the strands: for example, patient 98 died,
but was predicted to have a very small chance of doing so.)

Now, to assess whether the assumed proportional-odds relationship between age
and survival was good enough, we should look at a plot of the residuals against
age. The plot looks a bit odd because of the line of points through the middle
of it. These are the patients who had no risk factors and survived. There are
quite a few of these; 63, in fact, out of 107. The downward curve of the “line”
is showing the age effect; as patients get older, their chance of dying increases
even if they have no risk factors, so if they survive, their residuals start at 0 and
become more negative. Anyway, the acid test of this plot is the question “if you
know age, but nothing else, can you predict the residual?”. I don’t think you
can, so I think the proportional-odds assumption for age is good.

Patient 98 rather stands out, so we ought to take a look. See Figure 10.15. This
is a patient of age 47, with no risk factors, who nonetheless died. The estimated

10.6. MULTIPLE RESPONSE CATEGORIES: ORDERED RESPONSE 327

Figure 10.16: Miners’ lung disease data

probability of death is just under 1%. The residuals in this case are not just
observed minus expected, but something more complicated. Even so, 3.06 is
large for a residual here, but perhaps not so large, given that we have over 100
patients.

10.6 Multiple response categories: ordered re-
sponse

What if we have more than two response categories? Well, what we do depends
on whether the categories have a natural order to them, like severity of a disease,
or grade in a course, or whether they don’t (preferred political party, favourite
colour).

Let’s tackle the ordered response case first. Coal miners are susceptible to lung
disease, in particular pneumoconiosis. It is believed that exposure to coal dust
is what causes the disease, so that miners who are exposed longer are more likely
to have a more severe case of the disease. The data are shown in Figure 10.16.
These are frequencies, the number of miners in each exposure group that were
suffering disease of the severity shown. Do the data support the hypothesis that
longer exposure is associated with more severe disease?

A cursory look at the data suggests that the data do support the hypothesis.
None of the miners exposed for 5.8 years had any disease, whereas there are
a notable number of Severe cases for the miners exposed longer than, say, 30
years.

I copied the data as you see in Figure 10.16 into a file (actually, I scanned it and
OCRed it). So reading it in the obvious way will work, as shown in Figure 10.17.

328 CHAPTER 10. LOGISTIC REGRESSION

> miners=read.table("miners-tab.txt",header=T)

> miners

Exposure None Moderate Severe

1 5.8 98 0 0

2 15.0 51 2 1

3 21.5 34 6 3

4 27.5 35 5 8

5 33.5 32 10 9

6 39.5 23 7 8

7 46.0 12 6 10

8 51.5 4 2 5

Figure 10.17: Reading in the miners data

Just so you know that I get things wrong too: I scanned these data in from a
book and used OCR to get the values. I wondered why read.table was reading
them in as text, even after I tried to persuade it that they were integers. After
some time and head-scratching, I realized that the two 0’s had been OCRd as
letter O’s rather than number 0’s. A “D’oh” moment.

By way of plots, I would like to plot the proportions of None, Moderate and
Severe for each exposure group, against exposure, so that we can see any trends.
This turns out to be a bit fiddly to accomplish, so we’ll do it in two steps. The
first part is in Figure 10.18. First we pull out the exposures (the first column
of miners) and the observed frequencies (everything except the first column).
Then we pull off the names of the severity categories and save them for later.
Now comes the actual calculation. We want to find the row totals of our matrix
of frequencies, and divide each row by them. “Row total” or “column total” is a
job for apply. Feed it the matrix for which you want something calculated, a 1
for rows (or a 2 for columns), and what you want calculated (the sum of each
row). You see that we have 8 totals, one for each row (and you can quickly check
them to make sure they’re about right). Now, here’s where R is smart. If you
divide the matrix of frequencies by the row totals, R will figure out (because
you have 8 things to divide by and there are 8 rows) that you want to divide
each row by the corresponding row total1.

Then we want to plot exposure against category proportion for each severity
category. My strategy for this is to draw an empty plot (type="n") with axes
set up properly (I make sure the vertical scale goes from 0 to 1). Then I use
lines (or I suppose points would also work) to draw the lines for each severity
group. I use type="b" to draw points connected by lines, and I use different

1R isn’t actually mind-reading here. It has rules for figuring out what to do when you
divide a matrix by a vector. If there are fewer things in one, here 24 in the matrix and 8 in
the vector of totals, it re-uses the smaller one, in this case working down the columns.

10.6. MULTIPLE RESPONSE CATEGORIES: ORDERED RESPONSE 329

> exposures=miners[,1]

> freqs=miners[,-1]

> sev=colnames(freqs)

> totals=apply(freqs,1,sum)

> totals

[1] 98 54 43 48 51 38 28 11

> obsprop=freqs/totals

> obsprop

None Moderate Severe

1 1.0000000 0.00000000 0.00000000

2 0.9444444 0.03703704 0.01851852

3 0.7906977 0.13953488 0.06976744

4 0.7291667 0.10416667 0.16666667

5 0.6274510 0.19607843 0.17647059

6 0.6052632 0.18421053 0.21052632

7 0.4285714 0.21428571 0.35714286

8 0.3636364 0.18181818 0.45454545

Figure 10.18: Calculating observed proportions

plotting characters (pch) and colours (col) to distinguish the lines. Finally, the
plot was crying out for a legend. I had always been frightened by R’s legend

command, but there’s not much to it. First thing you feed in is a location or
position for the legend to go (one of the corners of the plot usually works), then
the thing making the different lines on the plot that you want to label, here
the levels of severity, then the ways in which those different lines are labelled
on the plot, which in our case was with the colours 1 through 3 and plotting
characters 1 throught 3. If you just used colours, you’d leave out pch in the
legend.

Let’s see if we can see what the plot is telling us. As exposure increases, the
proportion of “none” is dropping, and as exposure goes beyond 40 years, the
proportion of “severe” increases dramatically. The proportion of “moderate”
increases slowly up to an exposure of about 30, and then levels off; it doesn’t
really have much to say once you’ve looked at “none” and “severe”.

The contingency table representation works nicely for drawing the plot, but it
doesn’t work for fitting models. The reason is that miners is in “wide” format,
with several observations (frequencies) on one line, but for modelling we need
one observation per line, so-called “long” format. This comes up often enough
that R has a function called reshape for handling it. I describe this function in
greater detail at the end of Section 15.2.

330 CHAPTER 10. LOGISTIC REGRESSION

> plot(exposures,obsprop[,1],type="n",ylim=c(0,1))

> lines(exposures,obsprop[,1],type="b",col=1,pch=1)

> lines(exposures,obsprop[,2],type="b",col=2,pch=2)

> lines(exposures,obsprop[,3],type="b",col=3,pch=3)

> legend("topright",sev,col=1:3,pch=1:3,title="Severity")

10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

exposures

ob
sp

ro
p[

, 1
]

●

●

●

●

●
●

●

●

●

Severity

None
Moderate
Severe

Figure 10.19: Plotting category proportions against exposure

10.6. MULTIPLE RESPONSE CATEGORIES: ORDERED RESPONSE 331

> miners.long=reshape(miners,varying=c("None","Moderate","Severe"),

+ v.names="frequency",timevar="severity",direction="long")

> miners.long

Exposure severity frequency id

1.1 5.8 1 98 1

2.1 15.0 1 51 2

3.1 21.5 1 34 3

4.1 27.5 1 35 4

5.1 33.5 1 32 5

6.1 39.5 1 23 6

7.1 46.0 1 12 7

8.1 51.5 1 4 8

1.2 5.8 2 0 1

2.2 15.0 2 2 2

3.2 21.5 2 6 3

4.2 27.5 2 5 4

5.2 33.5 2 10 5

6.2 39.5 2 7 6

7.2 46.0 2 6 7

8.2 51.5 2 2 8

1.3 5.8 3 0 1

2.3 15.0 3 1 2

3.3 21.5 3 3 3

4.3 27.5 3 8 4

5.3 33.5 3 9 5

6.3 39.5 3 8 6

7.3 46.0 3 10 7

8.3 51.5 3 5 8

Figure 10.20: Converting between wide and long format

332 CHAPTER 10. LOGISTIC REGRESSION

The process here is shown in Figure 10.20. The reshape command looks a bit
complicated, but that’s because we have quite a bit of information to convey.
First, we need to say which data frame we’re talking about. Then we need
to say which columns of the “wide” data are going to be combined together
into one. These are the three columns of frequencies, and we feed them in as
varying. Those three columns are all instances of frequencies, so we’ll call the
combined column frequency. This goes in as v.names. Then, the long-format
data set is going to keep track of which row and column each original data
value (frequency) came from. The rows can be figured out by reshape (it’s the
column(s) that were not mentioned in varying), but the columns need to be
named. They are all instances of severity, so that gets fed in as timevar2.
Finally, we have a look at our new data frame miners.long. You might like to
figure out where everything went. (We don’t need id here, since we kept track
of Exposure.)

My analysis of the miners data is shown in Figure 10.21. We’re using a function
called polr, which lives in the MASS package. This works like lm, but it does
“Proportional Odds Logistic Regression”, hence the name. This is logistic re-
gression with multiple ordered response categories. The syntax is much like lm

(or glm), but the thing on the left of the model formula, here severity.fac, has
to be an ordered factor. On the right is our one explanatory variable, exposure.
The first line of code is creating the ordered factor to be the response. The
severity column of miners.long is just numbers 1, 2, 3 for “none”, “moder-
ate”, “severe”. The important thing to remember here is that if you have consol-
idated data (with explanatory-variable combinations and frequencies), you need
to specify the frequency variable in weights. Otherwise, R will assume that all
your frequencies are 1, which is probably not what you want!

I have used the data= option in polr (the same as in lm and glm) to specify a
data frame for R to find the variables in, if it can’t find them otherwise. This
saves attaching the data frame, and then having to remember to detach later.

The summary of the fitted model object is actually not very helpful. About the
only thing of value are the coefficients for the explanatory variables, and they
don’t even have P-values. There are a couple of ways of getting P-values for
them (here just exposure). One is to treat the t-value on the end of the line as
if it were normal, and say that anything larger in size than about 2 is significant
(the two-sided P-value for 2 is 0.05). Here, the t-value is 8, so this is strongly
significant. Or you can fit another model without the thing you’re testing, and
use anova with test="Chisq" to test the difference. Here, model miners.lr0
has just an intercept, and running anova on the two models gives a P-value that
is basically 0. There is an effect of exposure, without a doubt. Which is what
our plot was showing, but this puts a P-value to it.

To understand the nature of the effect, we can use predict. As before, using

2The reason for the odd name timevar becomes clearer at the very end of Section ??.

10.6. MULTIPLE RESPONSE CATEGORIES: ORDERED RESPONSE 333

> library(MASS)

> severity.fac=ordered(miners.long$severity)

> miners.lr=polr(severity.fac~Exposure,weights=frequency,data=miners.long)

> summary(miners.lr)

Call:

polr(formula = severity.fac ~ Exposure, data = miners.long, weights = frequency)

Coefficients:

Value Std. Error t value

Exposure 0.0959 0.01194 8.034

Intercepts:

Value Std. Error t value

1|2 3.9558 0.4097 9.6558

2|3 4.8690 0.4411 11.0383

Residual Deviance: 416.9188

AIC: 422.9188

> miners.lr0=polr(severity.fac~1,weights=frequency,data=miners.long)

> anova(miners.lr0,miners.lr,test="Chisq")

Likelihood ratio tests of ordinal regression models

Response: severity.fac

Model Resid. df Resid. Dev Test Df LR stat. Pr(Chi)

1 1 369 505.1621

2 Exposure 368 416.9188 1 vs 2 1 88.24324 0

Figure 10.21: Analysis of miners data

334 CHAPTER 10. LOGISTIC REGRESSION

> exp=data.frame(Exposure=exposures)

> p3=predict(miners.lr,exp,type="probs")

> preds=cbind(exp,p3)

> preds

Exposure 1 2 3

1 5.8 0.9676920 0.01908912 0.01321885

2 15.0 0.9253445 0.04329931 0.03135614

3 21.5 0.8692003 0.07385858 0.05694115

4 27.5 0.7889290 0.11413004 0.09694093

5 33.5 0.6776641 0.16207145 0.16026444

6 39.5 0.5418105 0.20484198 0.25334756

7 46.0 0.3879962 0.22441555 0.38758828

8 51.5 0.2722543 0.21025011 0.51749563

Figure 10.22: Predictions for exposures in given data set

predict on the original fitted model object will produce predictions for each
exposure in the data set, or you can make a data frame of new exposures and
feed that into predict as the second thing. Since we have a list of all the
exposures in exposures, that’s not hard to arrange (first line). Then we feed
that into predict along with the fitted model object miners.lr. If you don’t
specify the type argument, you get predicted response categories, which is likely
not what you want.

This all shows how the predicted probability of no disease drops off as exposure
increases, and the probability of severe disease increases dramatically at the
end.

As a final flourish, it would be nice to plot these fitted probabilities on the graph
that we began with. This time, let’s plot the observed proportions as points,
and the predicted probabilities as lines. My plot is shown in Figure 10.23.

This seems like a lot of work (eight lines for one plot). But there’s nothing
much new here. The plot line sets up the graph but doesn’t plot anything
(so it doesn’t matter much what I plot, as long as it contains the full range of
exposures). I’ve added a couple of things: making sure the vertical scale goes
between 0 and 1, and giving the axes proper labels. I wasn’t sure whether to
use “Probability” or “Proportion” on the vertical axis. Next, we plot the data
points, using points but otherwise borrowing from Figure ?? (and also taking
away type="both" since we only want the points). Then we plot the three lines,
one at a time, using preds that I created in Figure 10.22 (this is why I saved it
in a variable). Finally, we add a legend, stolen from Figure ??.

The plot shows how the predicted probabilities depend on exposure. They
appear to track the data pretty well. There don’t appear to be any exposure-

10.6. MULTIPLE RESPONSE CATEGORIES: ORDERED RESPONSE 335

> plot(preds[,1],preds[,2],type="n",ylim=c(0,1),xlab="Exposure",ylab="Probability")

> points(exposures,obsprop[,1],col=1,pch=1)

> points(exposures,obsprop[,2],col=2,pch=2)

> points(exposures,obsprop[,3],col=3,pch=3)

> lines(preds[,1],preds[,2],col=1,pch=1)

> lines(preds[,1],preds[,3],col=2,pch=2)

> lines(preds[,1],preds[,4],col=3,pch=3)

> legend("topright",sev,col=1:3,pch=1:3)

10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Exposure

P
ro

ba
bi

lit
y

●

●

●

●

●
●

●

●

● None
Moderate
Severe

Figure 10.23: Plot of fitted probabilities and observed proportions

336 CHAPTER 10. LOGISTIC REGRESSION

> brandpref=read.csv("mlogit.csv")

> head(brandpref)

brand sex age

1 1 0 24

2 1 0 26

3 1 0 26

4 1 1 27

5 1 1 27

6 3 1 27

> brandpref$sex=factor(brandpref$sex)

> brandpref$brand=factor(brandpref$brand)

Figure 10.24: Brand preference data

severity combinations that are predicted badly. Also, from this plot, we see that
once you get beyond an exposure of 45 or so, the most likely severity is “severe”,
having previously been “none”. And the predicted probability of “moderate”
does indeed take a downturn at the end, because the probability of “severe” is
increasing faster than the probability of “none” is decreasing. I think this would
be a great graph to put into a paper on this subject.

10.7 Multiple response categories: unordered re-
sponse

When we have several response categories that are not ordered, such as favourite
colours, political parties or brands of a product, we can’t use the ideas of the
previous section. To see what we do do, let’s think about an example of brand
preferences for a product, as they depend on gender and age. Some of the
data are shown in Figure 10.24. There are 736 individuals, with one line per
individual, so I’m not showing you the whole data frame! (sex got recorded as
1 (female) and 0 (male), so we turn that into a factor, which is really what it
is. Likewise for brand preference.)

Apart from having to use a different function from a different package, there
isn’t much to this. The function is multinom from package nnet, but it works
like polr does. So if you’ve mastered that, you’ll be all right. As ever, if you
get a complaint about nnet not existing, you’ll have to install it first (through
install.packages).

The basics are shown in Figure 10.25. You feed multinom a model formula,
saying what is to be predicted from what, and optionally a data frame containing

10.7. MULTIPLE RESPONSE CATEGORIES: UNORDERED RESPONSE337

> library(nnet)

> brands.1=multinom(brand~age+sex,data=brandpref)

weights: 12 (6 variable)

initial value 807.480032

iter 10 value 702.976983

final value 702.970704

converged

> summary(brands.1)

Call:

multinom(formula = brand ~ age + sex, data = brandpref)

Coefficients:

(Intercept) age sex1

2 -11.77469 0.3682075 0.5238197

3 -22.72141 0.6859087 0.4659488

Std. Errors:

(Intercept) age sex1

2 1.774614 0.05500320 0.1942467

3 2.058030 0.06262657 0.2260895

Residual Deviance: 1405.941

AIC: 1417.941

> head(fitted(brands.1),n=10)

1 2 3

1 0.9479582 0.05022928 0.001812497

2 0.8942963 0.09896238 0.006741279

3 0.8942963 0.09896238 0.006741279

4 0.7728764 0.20868979 0.018433857

5 0.7728764 0.20868979 0.018433857

6 0.7728764 0.20868979 0.018433857

7 0.8511463 0.13611419 0.012739473

8 0.8511463 0.13611419 0.012739473

9 0.7728764 0.20868979 0.018433857

10 0.8511463 0.13611419 0.012739473

Figure 10.25: Multinomial logistic regression for brand preferences data

338 CHAPTER 10. LOGISTIC REGRESSION

> summary(brandpref)

brand sex age

1:207 0:269 Min. :24.0

2:307 1:466 1st Qu.:32.0

3:221 Median :32.0

Mean :32.9

3rd Qu.:34.0

Max. :38.0

> brands.newdata=expand.grid(age=c(24,28,32,35,38),sex=factor(0:1))

> brands.predict=predict(brands.1,brands.newdata,type="probs")

> cbind(brands.newdata,brands.predict)

age sex 1 2 3

1 24 0 0.94795822 0.05022928 0.001812497

2 28 0 0.79313204 0.18329690 0.023571058

3 32 0 0.40487271 0.40810321 0.187024082

4 35 0 0.13057819 0.39724053 0.472181272

5 38 0 0.02598163 0.23855071 0.735467663

6 24 1 0.91532076 0.08189042 0.002788820

7 28 1 0.69561789 0.27143910 0.032943012

8 32 1 0.29086347 0.49503135 0.214105181

9 35 1 0.08404134 0.43168592 0.484272746

10 38 1 0.01623089 0.25162197 0.732147148

Figure 10.26: Predictions for brand preferences data

the data. The summary is not hugely useful. You get intercepts and slopes on
the log-odds scale. R uses the first response category as a baseline, so everything
is relative to that: you get one intercept for each non-baseline category (here
2, since there are 3 categories of response) and one slope for each variable for
each non-baseline category (here 4, 2 for age and 2 for sex). These are hard to
interpret, so looking at the fitted probabilities makes more sense. There are two
ways to do that: we can look at the fitted values from the fitted model object,
as here with fitted, or we can do predictions. Running predict on the fitted
model object will do that, only here we have rather too many lines to look at.
So let’s create a new data frame with a variety of sexes and ages, and predict

for that. This is shown in Figure 10.26.

First, by running summary on the data frame, we can see what kinds of ages
and sexes we have. There were not-dissimilar numbers overall preferring each
brand, with brand 2 being the favourite. The ages varied from 24 to 38. Look
at the values of Q1 and the median: they are both 32, which means a lot of the
people in the data set are aged 32.

10.7. MULTIPLE RESPONSE CATEGORIES: UNORDERED RESPONSE339

> brands.2=multinom(brand~age,data=brandpref)

weights: 9 (4 variable)

initial value 807.480032

iter 10 value 706.796323

iter 10 value 706.796322

final value 706.796322

converged

> anova(brands.2,brands.1)

Likelihood ratio tests of Multinomial Models

Response: brand

Model Resid. df Resid. Dev Test Df LR stat. Pr(Chi)

1 age 1466 1413.593

2 age + sex 1464 1405.941 1 vs 2 2 7.651236 0.02180495

Figure 10.27: Comparing models with and without sex

So let’s do some predictions for ages between 24 and 38 for both sexes. First,
we make a new data frame to predict from, using expand.grid to do all the
combinations. Then: if you just run predict on the fitted model object and the
data frame of new data, you’ll just get a predicted response category. This is
just the same as polr for ordered response categories. So adding type="probs"

(or just type="p") will get predicted probabilities.

Looking at the predicted probabilities in Figure 10.26, younger males prefer
brand 1, but as they get older, they prefer brand 1 less and brand 3 more. For
females (the bottom five rows with sex=1), the pattern is similar. Which might
make you wonder: is sex significant? Well, try fitting a model without sex and
see whether the fit is significantly worse. This is shown in Figure 10.27.

The strategy is the same as we have seen before: fit a model without the variable
you are testing, and use anova to compare the model fits, smaller model first.
The fit doesn’t look much worse without sex, but because we have so much
data, it is actually significant. So we ought to keep sex in the model. (There
is an argument of “practical importance” here: is the difference between sexes
worth worrying about from a marketing point of view?). There is clearly an
effect of age, so I’m not even testing that, but you could do it the same way.

Now, we assumed that the relationship between age and brand preference was
linear in log-odds. Now, you may not care for that terminology, but that results
in the predicted probabilities being constrained in terms of the way they can
behave. So we should look at a plot of the residuals against age. Except that
there are three columns of residuals, one for each response category. So we

340 CHAPTER 10. LOGISTIC REGRESSION

> plot(brandpref$age,resid(brands.1)[,1],type="n",xlab="age",ylab="residual")

> points(brandpref$age,resid(brands.1)[,1])

> points(brandpref$age,resid(brands.1)[,2])

> points(brandpref$age,resid(brands.1)[,3])

24 26 28 30 32 34 36 38

−
0.

5
0.

0
0.

5
1.

0

age

re
si

du
al

●
●●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●●

●

●

●

●●

●●●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●

●

●

●●

●

●●●●

●

●●

●

●

●●

●

●●●

●

●

●

●●

●

●●

●

●●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●●●●

●

●

●●●●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●●

●

●

●●●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●●●●●

●

●●

●

●●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●●

●●●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●●●

●●●

●●

●

●

●

●

●

●

●●●

●●

●

●●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●●●●

●

●●

●●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●●

●

●●●●

●●

●

●

●●●

●

●

●●●●●●●

●

●

●

●

●●●

●●

●●

●

●

●

●

●

●●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●●

●

●

●

●

●●

●●

●

●

●

●●

●

●●●●●●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●●●

●●●●●●●

●

●●

●

●

●●●●●●

●●

●●●●●

●●

●●

●●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●●

●

●●●

●●●

●

●

●

●

●

●●●

●

●

●●●●●●

●

●●

●

●●●●

●

●●

●

●●

●

●

●

●

●

●

●

●
●●●●●●
●●●
●●●●
●
●●●●●●●
●●
●●●●
●●●●
● ●

●
●
●
●

●●
●
●

●●●●●●●●●●●
●●

●

●
●●
●
●●●●●

●
●

●
●●●
●
●
●
●●
●
●●●
●●●●●
●
●
●
●●●
●●●

●

●
●

●

●●●
●
●●●●●
●
●
●

●

●●
●
●●●● ●●●●●●

●

●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●

●●●

●●

●

●●

●

●

●●

●●

●

●●

●●

●

●

●

●●

●●●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●●●●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●●●●

●

●

●●●

●

●

●

●●

●

●●●●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●●

●●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●●

●

●●●

●

●

●

●

●

●

●

●

●●●

●●

●

●●

●●

●●●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●

●●●●

●●

●

●●●●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●●●

●

●●●

●●

●●●●●●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●●●

●

●

●

●

●●

●●

●●●●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

● ●●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●●●●●●●

●

●●

●●

●●●●●●

●●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●●

●

●

●

●

●
●
●●

●
●●

●

●
●

●
●

●
●●

●

●
●
●

●●●●●●●

●

●
●

●

●●
●

●

●●●

●
●
●
●

●

●

●●
●
●●●●●●
●

●

●

●●

●●
●
●●●●

●

●●

●

●

●●●

●
●●●●
●

●

●
●

●
●
●●
●
●●●

●●

●

●●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●●

●
●
●

●

●●

●

●
●

●

●

●
●●

●
●●●

●

●
●

●
●

●●●
●●

●

●
●
●
●

●

●●
●
●●●●

●

●
●
●●
●

●
●
●●

●●

●●

●

●●●●●●

●●

●

●

●●●●●

●

●●

●

●

●●

●●

●●

●

●●●●

●

●

●●

●●●●●●

●

●●●●●●●●●

● ●● ●●

●

●●●●●● ●

●

●●●●●●●●

●

●

●

●●
●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●●●●●●

●

●●●●●●●●●●●

●
●

●

●
●
●

●

●
●●
●●
●
●

●
●

●
●●

●

●●
●●

●

●
●●
●

●

●
●
●●
●●●
●
●●

●
●●
●●
●●●
●
●●

●

●
●
●●●●●

●

●●●●●
●
●

●

●

●

●●●
●
●
●
●

●●

●

●

●
●●●●●●●
●●●●
●

●

●
●

●

●●

●

●

●

●
●●●
●
●
●

●

●●

●

●●

●

●●●●●●
●
●
●

●

●

●●

●●●●
●
●●
●
●
●●

●

●●
●●
●

●

●
●●●
●●

●

●●
●●
●
●
●●●
●●

●

●

●
●

●●●●
●●

●

●●●

●

●
●●
●
●●
●
●●●
●●●
●●
●

●

●●●

●

●
●
●●●

●
●

●
●
●
●●

●

●●
●●
●
●
●
●●●
●●●●
●
●●●●●

●●●

●●●
●

●●

●●
●
●
●

●

●●●●
●●
●●
●●
●
●●
●
●●
●
●
●●●

●

●

●

●
●●

●

●●●●
●

●

●●●●●●

●

●

●

●●
●●

●

●

●

●●
●
●

●

●
●●●●●
●●
●

●

●●
●

●

●
●
●
●
●
●
●
●
●
●●
●

●

●

●

●●●●
●●
●●

●

●
●
●●●●●

●

●●●●

●

●

●

●
●

●

●
●
●●●●●
●●●

●

●

●●

●
●
●

●
●

●
●

●

●
●●●●
●
●

●
●

●●

●

●●●●●●●

●
●●

●

●

●●●●●●
●●
●

●

●●

●

●

●
●

●
●●●
●

●

●

●

●

●

●

●●●●●

●

●●●●●

●

●●●

●●●●

●●●

●

●●

●●

●●●

●

●●●

●●●●●

●

●

●

●●

●

●●

●●

●

●

●

●●●●●●

●

●

●●●●●●●●

●

●

●●

●●●●●●●

●

●●

●

●

●●●

●●●●●●

●

●●

●●

●●●●

●●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●●

●

●

●●●

●●●●

●

●●

●●

●●●●●

●●

●●

●●

●●●●●●●

●

●●●

●

●

●●●●

●●

●●

●

●●●

●

●●

●●

●

●

●●●●●

●

●●

●

●

●●

●●

●●

●

●●●●

●

●

●●

●●●●●●

●

●●●●●●●●

●

Figure 10.28: Residual plots for brand data

10.7. MULTIPLE RESPONSE CATEGORIES: UNORDERED RESPONSE341

can plot these against age, one at a time. In Figure 10.28, I used my usual
strategy of creating an empty plot first, taking the opportunity to create some
meaningful axis labels (with xlab and ylab), and then plotting the three sets
of residuals one at a time with points (or I could have used a loop, but three
columns was few enough for me to copy and paste). There appear to be (and
are) some individual strings of residuals, corresponding to observed success and
failure for each age-sex group over ages, and there should be more of the closer-
to-zero residuals (resulting in the circles being darker), but it’s hard to say that,
given an age, you can predict what a randomly chosen residual would be. So
this is good. I think.

A last hurrah on this one is a fitted probability plot. I’m going to predict for
more ages, so I have a better plot. This is all shown in Figure 10.29. The
prediction is just the same as in Figure 10.26, except for more different ages.
brands.predict2 again has three columns (predicted probabilities of preferring
each brand), so we’ll plot them using different symbols and colours.

The actual plot command looks a little odd this time. This is another way to
get the x and y axes covering the right values. Since we’re not actually going
to plot anything until we get to the lines inside the loop, we can either set the
axis scales using xlim and ylim in the plot command, or we can just “plot” the
lower and upper limits of x and y.

Within the loop (I’m using a loop this time), we plot the actual predicted
probabilities, using the text in i (to plot the actual brand numbers 1, 2 and
3). I thought about using the plotting characters (ie. pch), but figured that
plotting the actual brand numbers preferred would be better. Hence the use of
text rather than points. Remember that text needs (at least) three things:
the two variables giving the locations at which some text is going to be drawn,
the variable containing the text that is going to be drawn there, and then any
optional things like colours. I had a little trouble with colours this time, so I
created a vector of colours. The syntax of ifelse is that if the logical first thing
is true (sex==1 means female), mycol should be red, otherwise mycol should be
blue. Then I used that vector of colours to tell text what colour to make the
numbers on the plot. (I had thought about using pink and blue, but the pink
didn’t show up very well.)

The conclusion is that males are slightly more in favour of brand 1 than females
all the way along, females are slightly more in favour of brand 2 all the way
along, and males and females have basically identical preferences for brand 3 for
any age. In case you were wondering from Figure 10.26, there is a small range of
ages where people of both sexes are predicted to favour brand 2, ages 32–34 or
so. (The age range is slightly wider for females, because they have a generally
more favourable attitude towards brand 2.)

The actual data layout is a bit wasteful, with one line per person, because there
are only so many combinations of age, sex, and brand-preferred.

342 CHAPTER 10. LOGISTIC REGRESSION

> brands.newdata=expand.grid(age=c(24:38),sex=factor(0:1))

> brands.predict2=predict(brands.1,brands.newdata,type="probs")

> plot(c(24,38),c(0,1),type="n",xlab="age",ylab="predicted probability")

> mycol=ifelse(brands.newdata$sex==1,"red","blue")

> for (i in 1:3)

+ {

+ text(brands.newdata$age,brands.predict2[,i],i,col=mycol)

+ }

> legend("topright",legend=levels(brands.newdata$sex),fill=c("blue","red"))

24 26 28 30 32 34 36 38

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

age

pr
ed

ic
te

d
pr

ob
ab

ili
ty

1 1
1

1
1

1

1

1

1

1

1

1
1

1 1

1
1

1
1

1

1

1

1

1

1

1
1

1 1 1
2 2

2
2

2
2

2
2

2 2 2
2

2
2

2

2
2

2
2

2

2

2
2

2 2 2
2

2
2

2

3 3 3 3 3 3
3

3

3

3

3

3

3

3

3

3 3 3 3 3 3
3

3

3

3

3

3

3

3

3

0
1

Figure 10.29: Fitted probability plot for brand preference data

10.7. MULTIPLE RESPONSE CATEGORIES: UNORDERED RESPONSE343

> attach(brandpref)

> brand.agg=aggregate(brandpref,list(sex,age,brand),length)

> detach(brandpref)

> dim(brand.agg)

[1] 65 6

> dim(brandpref)

[1] 735 3

> brand.agg[c(10,20,30,40,50,60),]

Group.1 Group.2 Group.3 brand sex age

10 1 30 1 10 10 10

20 0 36 1 4 4 4

30 1 31 2 9 9 9

40 1 36 2 19 19 19

50 0 31 3 2 2 2

60 0 36 3 16 16 16

> dimnames(brand.agg)[[2]]=c("sex","age","brand","freq","junk1","junk2")

Figure 10.30: Using aggregate on brand preference data

One way of collecting together data that is“repeats” is the aggregate command.
What this does is to calculate something like a mean or median for each group,
and then to glue everything back into a data frame, rather than leaving the
results as a table like tapply does (which would then have to be attacked via
melt as in Section 10.6).

aggregate requires three things: a data frame, a factor or list of factors3 to
divide the data up into groups, and a function to apply to each group. We
are going to be calculating frequencies, so length will count up the number of
things in each class. The process is shown in Figure 10.30. The dim command
gives the dimensions of the aggregated data set. This has only 65 rows instead
of the original 735.

The output of aggregate is a bit odd, so we’ll have to bash it into shape. The
columns with the names of the original variables are actually the frequencies,
while the columns called Group.1 etc. are the actual values of the variables.
Thus, for example, if you look at row 20 of brand.agg, you see that for males
(category 0 in Group.1) of age 36 (Group.2) and who prefer Brand 1 (Group.3),
there are 4 of these (4 appears in the last 3 columns). Likewise, there are 9
females of age 31 who prefer brand 2. The first three columns are the “factors”

3I know age isn’t in any way a factor, but here we’re treating it as if it is.

344 CHAPTER 10. LOGISTIC REGRESSION

> brand.agg.1=multinom(brand~age+sex,data=brand.agg,weights=freq)

weights: 12 (6 variable)

initial value 807.480032

iter 10 value 702.976983

final value 702.970704

converged

> summary(brand.agg.1)

Call:

multinom(formula = brand ~ age + sex, data = brand.agg, weights = freq)

Coefficients:

(Intercept) age sex1

2 -11.77469 0.3682075 0.5238197

3 -22.72141 0.6859087 0.4659488

Std. Errors:

(Intercept) age sex1

2 1.774614 0.05500320 0.1942467

3 2.058030 0.06262657 0.2260895

Residual Deviance: 1405.941

AIC: 1417.941

Figure 10.31: Multinomial logistic regression with aggregated data

(including age) as we fed them into aggregate.

These names are no good, so we need to fix them up. dimnames(brand.agg) is
a list whose second element is the column names, so the last line of Figure 10.30
sets them to be something more sensible.

I fitted the same multinomial logistic regression to the aggregated data in Fig-
ure 10.30. The one different thing is that we have to specify the frequencies in
weights=, as in Figure 10.21. But the output from summary is exactly the same
as in Figure 10.25. This is as it should be.

Chapter 11

Cluster analysis

11.1 Introduction

The idea of a cluster analysis is that you have a measure of distance or dissim-
ilarity between each pair of a set of objects, and you want to divide the objects
into groups or “clusters” so that the objects in the same cluster are similar and
the ones in different clusters are dissimilar.

You can also calculate a distance from data on a number of variables and use
that as input to a cluster analysis.

11.2 Hierarchical cluster analysis

Hierarchical cluster analysis starts with each object in a cluster by itself and
at each stage combines the two “most similar” clusters to make a new, bigger
cluster. This continues until there is only one cluster, containing all the objects.
The main interest in a hierarchical cluster analysis is the clustering “story”,
which is illustrated graphically in a plot called a dendrogram. This enables
you both to pick what looks like a reasonable number of clusters, and to find
out which objects belong in those clusters.

Let’s illustrate with an example. Figure 11.1 shows the names of the numbers
from one to ten in eleven European languages1. What we want to do is to arrange
the languages into groups of“similar”ones. How to measure similarity? We’ll do
something rather crude: we’ll just look at the first letter of each number name,

1I had to use as.is to stop R reading in the words as factors. as.is keeps them as text
strings.

345

346 CHAPTER 11. CLUSTER ANALYSIS

> lang2=read.table("one-ten.txt",header=T,as.is=1:11)

> lang2

English Norwegian Danish Dutch German French Spanish Italian Polish

1 one en en een eins un uno uno jeden

2 two to to twee zwei deux dos due dwa

3 three tre tre drie drei trois tres tre trzy

4 four fire fire vier vier quatre cuatro quattro cztery

5 five fem fem vijf funf cinq cinco cinque piec

6 six seks seks zes sechs six seis sei szesc

7 seven sju syv zeven sieben sept siete sette siedem

8 eight atte otte acht acht huit ocho otto osiem

9 nine ni ni negen neun neuf nueve nove dziewiec

10 ten ti ti tien zehn dix diez dieci dziesiec

Hungarian Finnish

1 egy yksi

2 ketto kaksi

3 harom kolme

4 negy nelja

5 ot viisi

6 hat kuusi

7 het seitseman

8 nyolc kahdeksan

9 kilenc yhdeksan

10 tiz kymmenen

Figure 11.1: One to ten in various European languages

11.2. HIERARCHICAL CLUSTER ANALYSIS 347

> lang=read.table("languages.txt",header=T)

> lang

en no dk nl de fr es it pl hu fi

en 0 2 2 7 6 6 6 6 7 9 9

no 2 0 1 5 4 6 6 6 7 8 9

dk 2 1 0 6 5 6 5 5 6 8 9

nl 7 5 6 0 5 9 9 9 10 8 9

de 6 4 5 5 0 7 7 7 8 9 9

fr 6 6 6 9 7 0 2 1 5 10 9

es 6 6 5 9 7 2 0 1 3 10 9

it 6 6 5 9 7 1 1 0 4 10 9

pl 7 7 6 10 8 5 3 4 0 10 9

hu 9 8 8 8 9 10 10 10 10 0 8

fi 9 9 9 9 9 9 9 8 9 8 0

Figure 11.2: Dissimilarities between the languages

and we’ll measure the dissimilarity between a pair of languages by how many
of the ten number names start with a different letter. For example, in English
and Norwegian, only one and en, and eight and atte, start with different letters.
The other eight number names start with the same letters. So the dissimilarity
between English and Norwegian is 2. On the other hand, all ten of the number
names in Polish and Hungarian start with different letters, so their dissimilarity
is 10.

Figure 11.2 shows the entire table of dissimilarities. I used R to work these out.
I’ll show you how a bit later.

So now we have the dissimilarities among the languages. The next problem we
face is that we have to combine “similar” clusters. We can measure similarity or
dissimilarity among languages, but how to do the same for clusters of languages?
It turns out that there is no one best way to do this, but lots of possible ways.
We’ll just look at three: single linkage, complete linkage and Ward’s method.

Imagine, for a moment, people on Facebook. You can define a dissimilarity
there to be 1 if two people are Facebook friends, else 2 if they have any friends
in common, else 3 if any of their friends have friends in common, and so on. This
makes a dissimilarity among people. But now think of each person’s Facebook
friends, which are clusters of people. How do you measure dissimilarity between
clusters?

There is no one best way to do this, but lots of plausible ways. We’ll concentrate
on three:

single linkage: dissimilarity between clusters A and B is the smallest dissim-

348 CHAPTER 11. CLUSTER ANALYSIS

ilarity between an object in A and an object in B.

complete linkage: dissimilarity between clusters A and B is the largest dis-
similarity between an object in A and an object in B.

Ward’s method: assesses the extent to which objects within clusters are simi-
lar to each other (the “within-cluster variance”), and measures the dissim-
ilarity between clusters by how much the within-cluster variance would
increase if the clusters were combined. Ward’s method is a kind of com-
promise between single linkage at one extreme and complete linkage at the
other.

To pursue the Facebook analogy: say the single-linkage distance between my
friends and yours is 0 if we have any friends in common, else 1 if any of my
friends are friends with any of yours, and so on. The complete-linkage distance is
0 if we have all our friends in common, else 1 if all of my friends are friends with
your friends (and vice versa), and so on. The distinction between single linkage
and complete linkage is the same as the distinction between “any” and “all”.
Ward’s method will describe my friends and your frie ds as worth combining if
there tends to be a small dissimilarity between the people in my friends and the
people in yours, taken as one big group of people,

Now, to actually do the clustering. Three steps: first, turn the matrix of dissim-
ilarities into a dist object, which is what the clustering function expects. If you
just type d to have a look at what d contains, you’ll see something that looks
a lot like lang, but if you bypass its own print method, using print.default,
you see something of its innards. Second, do the clustering using hclust. This
expects two things: a dist object, and the clustering method to be used. As
usual, saving the results from hclust into a variable enables you to do things
like drawing a plot. This is the third thing: the resulting plot is called a den-
drogram, which is a fancy name for “tree diagram”. All of this is illustrated in
Figure 11.3.

The dendrogram shows how the clusters were formed. In this case, Spanish,
French and Italian were joined into a cluster, and also Norwegian and Danish.
Polish got joined to the former cluster, and English, German and Dutch got
joined to the latter one. These two clusters were then joined together, and
finally the big cluster was joined up with Hungarian and Finnish, which seem
to have nothing to do with any of the other languages, or with each other.

Another way to look at the clustering process is shown in Figure 11.4. The
merge element of the clustering results shows the clustering story. (I’ve also
listed out the language labels to aid in following what’s going on.) First objects
2 and 3 (Norwegian and Danish) are formed into a cluster. Next, objects 6 and
8 (French and Italian) are joined into a cluster. Next, object 7 (Italian) is joined
onto the cluster formed at step 2 (French and Italian). Next, object 1 (English)
is joined onto the cluster formed at step 1 (Norwegian and Danish). And so on.

11.2. HIERARCHICAL CLUSTER ANALYSIS 349

> d=as.dist(lang)

> print.default(d)

[1] 2 2 7 6 6 6 6 7 9 9 1 5 4 6 6 6 7 8 9 6 5 6 5 5 6

[26] 8 9 5 9 9 9 10 8 9 7 7 7 8 9 9 2 1 5 10 9 1 3 10 9 4

[51] 10 8 10 9 8

attr(,"Labels")

[1] "en" "no" "dk" "nl" "de" "fr" "es" "it" "pl" "hu" "fi"

attr(,"Size")

[1] 11

attr(,"call")

as.dist.default(m = lang)

attr(,"class")

[1] "dist"

attr(,"Diag")

[1] FALSE

attr(,"Upper")

[1] FALSE

> lang.hcs=hclust(d,method="single")

> plot(lang.hcs)

fi

hu

pl

es fr it

nl

de

en

no dk

1
2

3
4

5
6

7
8

Cluster Dendrogram

hclust (*, "single")
d

H
ei

gh
t

Figure 11.3: Single-linkage clustering of languages data

350 CHAPTER 11. CLUSTER ANALYSIS

> lang.hcs$labels

[1] "en" "no" "dk" "nl" "de" "fr" "es" "it" "pl" "hu" "fi"

> lang.hcs$merge

[,1] [,2]

[1,] -2 -3

[2,] -6 -8

[3,] -7 2

[4,] -1 1

[5,] -9 3

[6,] -5 4

[7,] -4 6

[8,] 5 7

[9,] -10 8

[10,] -11 9

> cutree(lang.hcs,4)

en no dk nl de fr es it pl hu fi

1 1 1 1 1 2 2 2 2 3 4

Figure 11.4: The clustering process in numbers

11.2. HIERARCHICAL CLUSTER ANALYSIS 351

A negative number indicates an object (language, here), and a positive number
indicates a cluster formed at an earlier step. Thus step 5 is to add Polish to the
cluster containing French, Italian and Spanish.

The last line lists which cluster each language belongs to. The name cutree is
short for “cut the tree”. In this case, if you cut the tree at the point where you
get 4 clusters, this tells you which languages belong to which cluster.

What is rather interesting is that these results make sense from a linguistic
point of view: there is a tight cluster of Romance languages (French, Spanish,
Italian), a looser cluster of Germanic languages (English, Norwegian, Danish,
German, Dutch), and two languages that are loosely related to one another and
not to anything else (Hungarian and Finnish, which are two distantly-related
members of the Finno-Ugric language group).

Perhaps the best way to compare the clustering methods on this data set is to
look at the dendrograms together. Figure 11.5 shows how that can be done.

First, we have to actually run the other clustering methods, saving their re-
sults. My naming convention here is lang for languages data, hc for hclust (or
“hierarchical clustering”), and one more letter for the clustering method. Some
people like fit1, fit2, Whatever helps you keep track is fine.

Then we need to create a plotting region to accommodate all three of the plots.
A 2-by-2 grid seems to work all right. Then plotting all three of the dendrograms
will enable us to see them together. (You can experiment with different-sized
arrays of plots. Maybe 3 rows and 1 column will also work. I’d rather see the
plots enlarged horizontally if anything.)

The major differences seem to be:

� When (if at all) Hungarian and Finnish get joined together: not until the
very end in single linkage, late in complete linkage, and (relatively) early
in Ward’s method.

� Dutch and German: they get clustered together early in Ward, later in
complete linkage, and not at all in single linkage (they get added to the
Germanic group one at a time).

Why did things come out this way? To gain some insight, let’s take a detour to
some data arranged along a line, and see how those observations cluster.

The clusterings, in Figure 11.6, are quite different. The clusterings have in
common that they join points 1 and 2 (1 apart) and 6 and 7 (also 1 apart), so
that we now have these two clusters, plus objects 3, 4, 5 and 8 as “clusters” by
themselves. What should get joined together next? Let’s make a table, shown
in Table 11.1.

352 CHAPTER 11. CLUSTER ANALYSIS

> lang.hcc=hclust(d,method="complete")

> lang.hcw=hclust(d,method="ward")

> par(mfrow=c(2,2))

> plot(lang.hcs)

> plot(lang.hcc)

> plot(lang.hcw)

fi
hu

pl
es fr it

nl
de

en
no dk

1
3

5
7

Cluster Dendrogram

hclust (*, "single")
d

H
ei

gh
t

pl
es fr it en

no dk
nl de

hu
fi

0
2

4
6

8

Cluster Dendrogram

hclust (*, "complete")
d

H
ei

gh
t

pl
es fr it

hu
fi

en no dk
nl de0

5
10

15
20

Cluster Dendrogram

hclust (*, "ward")
d

H
ei

gh
t

Figure 11.5: Dendrograms for all three clustering methods

11.2. HIERARCHICAL CLUSTER ANALYSIS 353

> myvar=c(4, 5, 7, 9, 11, 13, 14, 16)

> d=dist(myvar)

> d

1 2 3 4 5 6 7

2 1

3 3 2

4 5 4 2

5 7 6 4 2

6 9 8 6 4 2

7 10 9 7 5 3 1

8 12 11 9 7 5 3 2

> d.s=hclust(d,method="single")

> d.c=hclust(d,method="complete")

> par(mfrow=c(1,2))

> plot(d.s)

> plot(d.c)

8
6 7

5 4 3
1 2

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

Cluster Dendrogram

hclust (*, "single")
d

H
ei

gh
t

1 2
3 4

8
5

6 7

0
2

4
6

8
10

12

Cluster Dendrogram

hclust (*, "complete")
d

H
ei

gh
t

Figure 11.6: Clustering some simple data

354 CHAPTER 11. CLUSTER ANALYSIS

Cluster 1 Cluster 2 Single Complete
1,2 3 2 3
1,2 4 4 5
1,2 5 6 7
1,2 6,7 8 10
1,2 8 11 12
3 4 2 2
3 5 4 4
3 6,7 6 7
3 8 9 9
4 5 2 2
4 6,7 4 5
4 8 7 7
5 6,7 2 3
5 8 5 5
6,7 8 2 3

Table 11.1: Inter-cluster distances

Let’s take complete linkage first. There are two candidates for the next cluster:
objects 3 and 4, and objects 4 and 5. R chose, as we see in Figure 11.6, objects
3 and 4. You would think that object 5 would get immediately joined to this
cluster. But the distance between object 5 and {3, 4} is now 4 (the largest of
the 3–5 and 4–5 distances), and so the smallest remaining inter-cluster distance
is now 3, and R chooses to join object 5 to cluster {6, 7}. You see that the
dendrogram is not unique; R could have chosen to join object 8 to cluster {6, 7}.

Now, how about single linkage? There are an awful lot of single-linkage distances
that are 2 (Table 11.1), and this winds up meaning that any cluster could be
joined to any other. For example, if we join 3 to {1, 2}, the distance from that
cluster to object 4 is now 2 (the smallest of the distances between 4 and anything
in that cluster). There is a kind of domino-toppling effect in that as soon as
you join an object to a cluster, the distance from the new cluster to another
object becomes 2, and so all the clusters end up joining together at distance 2,
as shown in Figure 11.6. In general, single-linkage tends to easily combine long
strung-out clusters, because one object in one cluster happens to be close to one
object in another cluster.

Ward’s method winds up very similar to complete linkage in this case.

Going back to our languages, there’s one more thing we can do here. One of
the aims of cluster analysis is to find a good number of clusters. That can be
done by “chopping the tree”. If you look at the dendrogram for Ward’s method
in Figure 11.5, you see that the languages seem to fall into three groups. Three
groups looks like a good choice because there is a long vertical span (between
a height of about 8 and 14) where the number of clusters stays at 3. R will

11.2. HIERARCHICAL CLUSTER ANALYSIS 355

draw boxes around a number of clusters you specify, which helps for describing
them. The function is rect.hclust; it needs two things: the output from the
appropriate hclust, and the number of clusters you want. There are other
options, which the help file will tell you about, but this is the way I use it most.
Figure 11.7 shows how it works. (rect.hclust is like lines in that you have to
draw a plot first, and then rect.hclust adds the boxes to it.) I also show the
output for cutree with three clusters, so that you can see the correspondence.

Now, how to get those dissimilarities from the number words. The first part of
the procedure is shown in Figure 11.8. Since we’re comparing only first letters,
we don’t need the other letters, so we might as well get rid of them. The substr
function does this. The first two lines of code show how it works: you supply a
character string, or a vector of character strings, and you say which character
you want to start from and which you want to finish at. These first two lines are
just to show you how it works. As you see, they extract the first two characters
of each of those Greek letters.

Now, lang2 is a matrix, with languages in the columns and the different numbers
in the rows. So we treat the matrix as a bunch of columns and apply substr

to each column. Beyond the column of the matrix that substr is working on,
we need to pass to substr the place to start and the place to stop. These are
passed to apply as shown; apply knows that any “extra” things passed to it get
handed on to the function being applied. So this apply extracts just the first
character from each column of number names and glues them back together into
a matrix of the same form. This is lang3.

Next, we have to count up how many of these first letters are different for each
pair of languages. As ever in R, if we can write a function to do this for one pair
of languages, we can use it to produce the whole thing. count.diff does this.
It takes a matrix of character strings, like lang3, and two column numbers. The
logical vector eq is TRUE everywhere the two languages being compared start
with different letters and FALSE otherwise. Since, in R, TRUE has value 1
and FALSE has value 0, summing up the things in eq will give you the number
of TRUEs, that is, the number of first letters that are different. Then we use
count.diff on English (column 1) and Norwegian (column 2) to find that their
dissimilarity is 2. Likewise, count.diff(lang3,9,10) is 10, the dissimilarity
between Polish and Hungarian.

Now, to calculate the dissimilarity matrix for all pairs of points, we have to
use count.diff repeatedly. I’m sure there is a clever way of doing that, but
the fact that it’s all possible pairs makes it difficult to see how it might work.
So I’m resorting to a loop, or, precisely, a pair of loops, one inside the other.
Figure 11.9 shows how it goes. First set up a matrix to hold the dissimilarities.
This has to be 11× 11 because there are 11 languages. We’ll fill it with zeroes
to start with. Then we loop through all the pairs of languages, and set the
[i,j] element of the matrix to be the dissimilarity between languages i and j,
calculated using the count.diff function we defined earlier. The last step is to

356 CHAPTER 11. CLUSTER ANALYSIS

> cutree(lang.hcw,3)

en no dk nl de fr es it pl hu fi

1 1 1 1 1 2 2 2 2 3 3

> plot(lang.hcw)

> rect.hclust(lang.hcw,3)

pl

es fr it

hu

fi

en

no dk

nl de

0
5

10
15

20

Cluster Dendrogram

hclust (*, "ward")
d

H
ei

gh
t

Figure 11.7: Boxes around three clusters for the Ward output

11.2. HIERARCHICAL CLUSTER ANALYSIS 357

> v=c("alpha","beta","gamma")

> substr(v,1,2)

[1] "al" "be" "ga"

> lang3=apply(lang2,2,substr,1,1)

> lang3

English Norwegian Danish Dutch German French Spanish Italian Polish

[1,] "o" "e" "e" "e" "e" "u" "u" "u" "j"

[2,] "t" "t" "t" "t" "z" "d" "d" "d" "d"

[3,] "t" "t" "t" "d" "d" "t" "t" "t" "t"

[4,] "f" "f" "f" "v" "v" "q" "c" "q" "c"

[5,] "f" "f" "f" "v" "f" "c" "c" "c" "p"

[6,] "s" "s" "s" "z" "s" "s" "s" "s" "s"

[7,] "s" "s" "s" "z" "s" "s" "s" "s" "s"

[8,] "e" "a" "o" "a" "a" "h" "o" "o" "o"

[9,] "n" "n" "n" "n" "n" "n" "n" "n" "d"

[10,] "t" "t" "t" "t" "z" "d" "d" "d" "d"

Hungarian Finnish

[1,] "e" "y"

[2,] "k" "k"

[3,] "h" "k"

[4,] "n" "n"

[5,] "o" "v"

[6,] "h" "k"

[7,] "h" "s"

[8,] "n" "k"

[9,] "k" "y"

[10,] "t" "k"

> # input columns i and j, count number of different first letters

> count.diff=function(lang3,i,j)

+ {

+ eq=(lang3[,i]!=lang3[,j])

+ sum(eq)

+ }

> # get dissimilarity of English and Norwegian

> count.diff(lang3,1,2)

[1] 2

> count.diff(lang3,9,10)

[1] 10

Figure 11.8: Getting dissimilarities from number words, part 1

358 CHAPTER 11. CLUSTER ANALYSIS

> d=matrix(0,11,11)

> for (i in 1:11)

+ {

+ for (j in 1:11)

+ {

+ d[i,j]=count.diff(lang3,i,j)

+ }

+ }

> d

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]

[1,] 0 2 2 7 6 6 6 6 7 9 9

[2,] 2 0 1 5 4 6 6 6 7 8 9

[3,] 2 1 0 6 5 6 5 5 6 8 9

[4,] 7 5 6 0 5 9 9 9 10 8 9

[5,] 6 4 5 5 0 7 7 7 8 9 9

[6,] 6 6 6 9 7 0 2 1 5 10 9

[7,] 6 6 5 9 7 2 0 1 3 10 9

[8,] 6 6 5 9 7 1 1 0 4 10 9

[9,] 7 7 6 10 8 5 3 4 0 10 9

[10,] 9 8 8 8 9 10 10 10 10 0 8

[11,] 9 9 9 9 9 9 9 9 9 8 0

> dd=as.dist(d)

Figure 11.9: Getting dissimilarities for number words, part 2

11.3. K-MEANS CLUSTER ANALYSIS 359

> vital=read.table("birthrate.dat",header=T)

> head(vital)

birth death infant country

1 24.7 5.7 30.8 Albania

2 13.4 11.7 11.3 Czechoslovakia

3 11.6 13.4 14.8 Hungary

4 13.6 10.7 26.9 Romania

5 17.7 10.0 23.0 USSR

6 13.4 11.6 13.0 Ukrainian_SSR

> summary(vital)

birth death infant country

Min. : 9.70 Min. : 2.20 Min. : 4.5 Afghanistan: 1

1st Qu.:14.50 1st Qu.: 7.80 1st Qu.: 13.1 Albania : 1

Median :29.00 Median : 9.50 Median : 43.0 Algeria : 1

Mean :29.23 Mean :10.84 Mean : 54.9 Angola : 1

3rd Qu.:42.20 3rd Qu.:12.50 3rd Qu.: 83.0 Argentina : 1

Max. :52.20 Max. :25.00 Max. :181.6 Austria : 1

(Other) :91

Figure 11.10: Birth, death and infant mortality rates

turn d into a dist object suitable for using in hclust.

11.3 K-means cluster analysis

With hierarchical cluster analysis, the focus is on the clustering story: when
do the various individuals get joined on to other clusters of individuals? A
clustering with a given number of clusters is rather a by-product of this. Another
approach is to name a number of clusters in advance, and say“give me this many
clusters; I don’t care about more or fewer”. K-means works this way: for a given
number k of clusters, it finds the“best”way of grouping the individuals into that
many clusters, for a precise definition of “best”. It works, though, for a data
matrix (containing measurements on a number of variables for each individual)
rather than dissimilarities.

Here’s an example. I have data on birth rates, death rates and infant mortality
rates for a number of countries, as shown in Figure 11.10. You can see the age
of the data from the names of these countries!

Now, we have to do some massaging before we can use these data. The infant
mortality rates are bigger and more variable than the other variables, but this

360 CHAPTER 11. CLUSTER ANALYSIS

> scale(1:4)

[,1]

[1,] -1.1618950

[2,] -0.3872983

[3,] 0.3872983

[4,] 1.1618950

attr(,"scaled:center")

[1] 2.5

attr(,"scaled:scale")

[1] 1.290994

> vital.s=scale(vital[,1:3])

> head(vital.s)

birth death infant

[1,] -0.3343913 -1.10512932 -0.5240199

[2,] -1.1685431 0.18588887 -0.9480013

[3,] -1.3014168 0.55167736 -0.8719021

[4,] -1.1537793 -0.02928083 -0.6088162

[5,] -0.8511225 -0.17989961 -0.6936125

[6,] -1.1685431 0.16437190 -0.9110388

Figure 11.11: Standardizing

11.3. K-MEANS CLUSTER ANALYSIS 361

doesn’t really mean anything; it’s just because of the units the variables are
measured in. So the right thing to do, since we want to treat these variables
on an equal footing, is to standardize them first. This means subtracting the
mean from each value and dividing by the standard deviation. This is the same
procedure as computing z-scores, if you remember that.

Figure 11.11 shows the procedure. First, I illustrate what happens if you stan-
dardize the numbers 1 through 4: the mean is 2.5, which gets subtracted off,
and the standard deviation is 1.29, and after the mean has been subtracted off,
each value is divided by the standard deviation. The result is a list of numbers
that has mean zero and SD 1.

Now to do this with our actual data. If you feed scale a matrix, it standardizes
each column, which is exactly what we want (it usually will be, since variables
are generally columns). The standardized rates are positive where the original
variable was above average, and negative when below. (Note that we don’t want
to standardize the countries, so we just feed the first three columns of vital

into scale.)

Now, k-means requires us to specify a number of clusters to find. If we did,
we would call the function kmeans with two things: our matrix of standardized
variables, and the number of clusters we want.

But we don’t have any idea what the right number of clusters might be. What
we can do instead (which seems kind of wasteful, but computing power is cheap)
is to fit every possible number of clusters, and see which one we like the best.
There’s a plot called a scree plot that helps with this. The calculation and plot
are shown in Figure 11.12. We are going to use a loop and collect up the quantity
called the “total within-cluster sum of squares” for each number of clusters from
2 to 20. If the total within-cluster sum of squares is small, that means that the
objects within each cluster are similar to each other (good), but you can always
make it smaller by taking a large number of clusters (bad). The extreme case
is when each object is in a cluster by itself, when the total within cluster sum
of squares is zero (there is no variability within clusters). So we’ll try to strike
a balance. We’ll see in a moment how to do this. Take a look at the plot in
Figure 11.12. I added a grid to make reading things easier.

A scree plot (which we will also see in conjunction with principal components
and factor analysis later) always goes downhill, like the side of a mountain.
Eventually the “mountain” gives way to the random bits of rock, or “scree”, that
have fallen off the side of the mountain. Certainly the stuff beyond 10 or so on
the horizontal axis is scree; this corresponds to a good number of clusters being
less than 10.

What we are looking for is an “elbow” or “corner” on the scree plot. There
appears to be one at 6 clusters. This happens because the drop in total within-
cluster sum of squares (wss on the y-axis) is large from 5 to 6 (from 43 to 34), but

362 CHAPTER 11. CLUSTER ANALYSIS

> wss=numeric(0)

> for (i in 2:20)

+ {

+ wss[i]=sum(kmeans(vital.s,i)$withinss)

+ }

> plot(2:20,wss[2:20],type="b")

> grid(col="black")

●

●

●

●

●
●

● ●

●
●

●
●

● ● ●
● ● ●

●

5 10 15 20

20
40

60
80

10
0

12
0

2:20

w
ss

[2
:2

0]

Figure 11.12: Scree plot for vital statistics data

11.3. K-MEANS CLUSTER ANALYSIS 363

> vital.km=kmeans(vital.s,5)

> vital.km$cluster

[1] 4 4 4 4 4 4 1 4 5 5 4 2 4 4 4 4 4 4 4 4 4 3 1 4 4 5 5 1 4 5 2 5 5 4 4 5 1 5

[39] 1 1 5 5 1 3 5 1 1 1 5 4 4 4 4 4 4 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 4

[77] 1 4 5 5 1 5 4 5 3 1 3 3 1 3 3 1 3 1 5 1 1

> vital.km$centers

birth death infant

1 1.2092406 0.7441347 1.0278003

2 -0.2199722 2.1116577 -0.4544435

3 1.3043848 2.1896567 1.9470306

4 -0.9718075 -0.4786352 -0.8960213

5 0.3856254 -0.5597569 0.2061981

> vital.km$withinss

[1] 7.802531 0.761109 2.882333 20.712315 10.713781

> vital.km$size

[1] 18 2 8 43 26

Figure 11.13: Analysis with 5 clusters

much smaller after 6 (from 34 to 32 and then gradually decreasing thereafter).
This suggests that a good number of clusters is 5, the number before the elbow.
You could also argue for an elbow at 4, and therefore three clusters would be
good. This is much an art as a science.

If the plot doesn’t seem to be shedding any light, you can always “zoom in” on
part of it by adding something like xlim=c(3,10) to the plot command to look
only at between 3 and 10, or ylim=c(10,50) to focus on wss between 10 and
50.

Now let’s find 5 clusters, as shown in Figure 11.13. There is a lot of information
in the fitted model object. Let’s have a look at some of it:

� cluster is the number of the cluster that each country belongs to. This
is the same as cutree gives, when used on output from a hierarchical
clustering.

� centers are the values of the three variables at the centre of each cluster.
Thus cluster 3 is higher than average on everything, and cluster 4 is lower
than average on everything.

364 CHAPTER 11. CLUSTER ANALYSIS

� withinss is the within-cluster sum of squares for each cluster. (The total
of these values is 43.5, which is the value for wss plotted on the scree plot,
Figure 11.12, for 5 clusters.) A cluster with a small within-cluster sum
of squares is compact (all the objects in that cluster are close together),
while a cluster with large withinss is dispersed. Cluster 2 is compact
(we’ll see in a moment why), and clusters 4 looks especially dispersed.

� size is the number of objects in each cluster. Cluster 2 had only two
countries in it, which is why it was very compact. A cluster with many
countries will have a harder time being compact, like cluster 4.

Now it would be nice to see which countries are in which cluster. This is shown
in Figure 11.14. The countries are in the 4th column of vital. They got read
in as levels of a factor, which they are not, so we’ll turn them into character
strings first. Then we want to split up the countries according to which cluster
they’re in, which is a job for split.

Let’s have a look at our clusters. Cluster 3 is easiest to characterize. With the
highest birth, death and infant mortality rates, these are countries that suffer
from civil war, famine and so on: very poor countries. Cluster 1 also has above-
average rates, but not as high as Cluster 3; these are developing countries.
Cluster 2 has only two countries in it, the seemingly unrelated Mexico and
pre-boom Korea, where birth and infant mortality rates are a little lower than
average but the death rate is a lot higher. Cluster 4 is the“first world”, including
the then Eastern Bloc countries. The countries in Cluster 5 have a slightly lower
than average death rate and slightly higher than average birth rate; these are
countries were not yet part of the “first world”, but nor yet are they as poor as
the countries in clusters 1 and 3.

A word of warning: there is random number generation involved in kmeans, so
if you repeat this analysis, you might get different answers. There is an option
nstart to kmeans; if, say, you set nstart=10, R runs K-means 10 times, from
different random starting points. The clustering it returns is the one out of these
10 that had the smallest total within-cluster sum of squares for the number of
clusters you asked for. I got different results when I ran kmeans again on my
data, which is a suggestion that using nstart might have been a good idea.
There is no guarantee, even this way, that you’ll always get the same solution,
but your chances are better using nstart.

11.3. K-MEANS CLUSTER ANALYSIS 365

> cy=as.character(vital[,4])

> split(cy,vital.km$cluster)

$`1`

[1] "Bolivia" "Iran" "Bangladesh" "Botswana" "Gabon"

[6] "Ghana" "Namibia" "Swaziland" "Uganda" "Zaire"

[11] "Cambodia" "Nepal" "Congo" "Kenya" "Nigeria"

[16] "Sudan" "Tanzania" "Zambia"

$`2`

[1] "Mexico" "Korea"

$`3`

[1] "Afghanistan" "Sierra_Leone" "Angola" "Ethiopia" "Gambia"

[6] "Malawi" "Mozambique" "Somalia"

$`4`

[1] "Albania" "Czechoslovakia" "Hungary"

[4] "Romania" "USSR" "Ukrainian_SSR"

[7] "Chile" "Uruguay" "Finland"

[10] "France" "Greece" "Italy"

[13] "Norway" "Spain" "Switzerland"

[16] "Austria" "Canada" "Israel"

[19] "Kuwait" "China" "Singapore"

[22] "Thailand" "Bulgaria" "Former_E._Germany"

[25] "Poland" "Yugoslavia" "Byelorussia_SSR"

[28] "Argentina" "Venezuela" "Belgium"

[31] "Denmark" "Germany" "Ireland"

[34] "Netherlands" "Portugal" "Sweden"

[37] "U.K." "Japan" "U.S.A."

[40] "Bahrain" "United_Arab_Emirates" "Hong_Kong"

[43] "Sri_Lanka"

$`5`

[1] "Ecuador" "Paraguay" "Oman" "Turkey" "India"

[6] "Mongolia" "Pakistan" "Algeria" "Egypt" "Libya"

[11] "Morocco" "South_Africa" "Zimbabwe" "Brazil" "Columbia"

[16] "Guyana" "Peru" "Iraq" "Jordan" "Lebanon"

[21] "Saudi_Arabia" "Indonesia" "Malaysia" "Philippines" "Vietnam"

[26] "Tunisia"

Figure 11.14: Membership of each cluster

366 CHAPTER 11. CLUSTER ANALYSIS

Chapter 12

Multi-dimensional scaling

12.1 Introduction

Some random text.

The object of multi-dimensional scaling is to produce a “map” of the individuals
starting from a collection of distances or dissimilarities. This is an alternative
to a cluster analysis. To see how the analyses compare for the languages data,
compare Section 11.2 and Section 12.3. Clustering and scaling share as their
aim to detect which individuals are “similar” (in same cluster, close together on
a map), and which are “dissimilar” (in different clusters, far apart on a map).

12.2 Metric multi-dimensional scaling

The classical example of metric multi-dimensional scaling is to start with dis-
tances between cities and see how well a map of the cities is reproduced. This is
a classical example because a pair of cities that is twice as far apart as another
pair of cities in actuality should also be twice as far apart on the map.

Metric multi-dimensional scaling has a “solution” that can be worked out. I
put “solution” in quotes because it’s not unique, but whatever solution you
get is equally good. I’ll explain more about that when we look at the multi-
dimensional scaling map for the cities.

My cities are in Europe, and the distances between them are road distances in
kilometres. See Figure 12.1. First, we read the distances in, and then we convert
them into a dist object. The -1 column selection on the cities means “select all

367

368 CHAPTER 12. MULTI-DIMENSIONAL SCALING

> cities=read.csv("europe.dat",header=T)

> dd=as.dist(cities[,-1])

> dd

Amsterdam Athens Barcelona Berlin Cologne Copenhagen Edinburgh

Athens 3082

Barcelona 1639 3312

Berlin 649 2552 1899

Cologne 280 2562 1539 575

Copenhagen 904 3414 2230 743 730

Edinburgh 1180 3768 2181 1727 1206 1864

Geneva 1014 2692 758 1141 765 1531 1536

London 494 3099 1512 1059 538 1196 656

Madrid 1782 3940 628 2527 1776 2597 2372

Marseille 1323 2997 515 1584 1208 1914 1860

Munich 875 2210 1349 604 592 1204 1743

Paris 515 3140 1125 1094 508 1329 1082

Prague 973 2198 1679 354 659 1033 1872

Rome 1835 2551 1471 1573 1586 2352 2467

Vienna 1196 1886 1989 666 915 1345 2098

Geneva London Madrid Marseille Munich Paris Prague Rome

Athens

Barcelona

Berlin

Cologne

Copenhagen

Edinburgh

Geneva

London 867

Madrid 1386 1704

Marseille 443 1192 1143

Munich 591 1075 1877 1034

Paris 546 414 1268 809 827

Prague 954 1204 2307 1397 363 1094

Rome 1093 1799 2099 856 969 1531 1370

Vienna 1055 912 2617 1414 458 1285 312 1168

Figure 12.1: Road distances between European cities

12.2. METRIC MULTI-DIMENSIONAL SCALING 369

the columns except the first”, which has the city names in it. The city names
are also the row headers, so they find their way into dd, as you see.

Now for the analysis. This is shown in Figure 12.2. The function we use is
called cmdscale, and it requires two things: a dist object, and the number of
dimensions the solution should have. A two-dimensional solution will draw a
map on a sheet of paper; it’s a little difficult to plot a three-dimensional solution!
By default, cmdscale returns just one thing: the coordinates of the points for
plotting on a map. We want to plot these points, but we want to label the
points by which city they belong to. This means a plot to plot the mapped
locations (as circles), followed by a text to add labels to those points. text

requires the points to be plotted, and the things to be plotted there (by looking
at city.mds you see that the row names of that are what we need). The last
thing, pos, positions the labels so that they don’t overwrite the circles; pos=4
positions the labels to the right of the circles.

One small annoyance is that the name “Athens” disappears off the right side
of the map. This could be fixed by extending the x-axis a bit more, eg. by
specifying xlim=c(-1500,3000) in the plot command.

Now, this is where you need to call on your knowledge of European geography.
I’ve given you a helping hand in Figure 12.3. Roughly speaking, the corners of
our region are: Edinburgh, northwest; Copenhagen, northeast; Athens, south-
east, Madrid, southwest. How does that correspond to our map? I think if you
rotate our map about 45 degrees, it’ll correspond reasonably well to the real
thing.

This brings us to a key point about multidimensional scaling: since it is only
based on distances, the map it produces could be rotated (R doesn’t know,
here, which way is north) and it could also be flipped over, for example by
having east and west reversed but north and south correct. This is what I
meant earlier when I said put “solution” in quotes; if you have one solution, any
other solution differing from it by a rotation or flipping-over is equally good in
terms of reproducing the distances. Mathematicians use the term “reflection”
for flipping-over, the idea being that if you look at a map of Europe in a mirror,
the distances will all be correct even if the orientation is wrong.

Now, how do we know the answer we got is any good? We can gain some insight
into this by choosing a non-default option in cmdscale. This adds a couple of
things to what is returned by cmdscale. Figure 12.4 shows the gory details. The
eigenvalues are generally huge numbers in scientific notation; I used format to
print them out in human-readable form. With 2 dimensions, you are looking for
the first two eigenvalues to be clearly bigger than the others; I think that’s true
here. The second eigenvalue is over three times bigger than the third, so adding
a third dimension doesn’t reproduce the distances much better. Also, the GOF

component of the result gives a couple of R-squared-like measures of fit (with
a maximum of 1). Here they are over 70%. The last two lines of code make a

370 CHAPTER 12. MULTI-DIMENSIONAL SCALING

> city.mds=cmdscale(dd,2)

> city.mds

[,1] [,2]

Amsterdam -348.162277 528.26574

Athens 2528.610410 -509.52081

Barcelona -695.970779 -984.60927

Berlin 384.178025 634.52387

Cologne 5.153446 356.72299

Copenhagen -187.104072 1142.59261

Edinburgh -882.179667 893.77411

Geneva -161.260754 -330.09391

London -433.798179 427.08450

Madrid -1364.334083 -1068.80684

Marseille -389.700778 -706.25599

Munich 345.259974 -66.83890

Paris -556.152364 64.86436

Prague 531.887973 253.60513

Rome 380.950521 -870.47195

Vienna 842.622605 235.16435

> plot(city.mds)

> text(city.mds,row.names(city.mds),pos=4)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1000 0 1000 2000

−
10

00
−

50
0

0
50

0
10

00

city.mds[,1]

ci
ty

.m
ds

[,2
]

Amsterdam

Athens

Barcelona

Berlin

Cologne

Copenhagen

Edinburgh

Geneva

London

Madrid

Marseille

Munich
Paris

Prague

Rome

Vienna

Figure 12.2: Multi-dimensional scaling for the cities

12.2. METRIC MULTI-DIMENSIONAL SCALING 371

Figure 12.3: Map of Europe

> city2.mds=cmdscale(dd,2,eig=T)

> format(city2.mds$eig,scientific=F)

[1] "11754342.065788399428129" " 6960876.237940214574337"

[3] " 2034973.310557601274922" " 1408540.947581887012348"

[5] " 457252.591273685451597" " 356301.402791602537036"

[7] " 136423.478899375768378" " 18248.147736219922081"

[9] " -0.000000001164153" " -3109.639123534318060"

[11] " -70994.260254319757223" " -82323.289817726705223"

[13] " -108940.313708261819556" " -377200.258322515059263"

[15] " -747384.564129272825085" "-1184037.419713367009535"

> city2.mds$GOF

[1] 0.7281918 0.8092382

> city3.mds=cmdscale(dd,3,eig=T)

> city3.mds$GOF

[1] 0.8073707 0.8972296

Figure 12.4: Non-default option in cmdscale

372 CHAPTER 12. MULTI-DIMENSIONAL SCALING

> dp=dist(city.mds)

> r=dd-dp

> sort(r)

[1] -378.7685159 -200.7729778 -136.7718022 -124.6497268 -124.2528790

[6] -124.1037948 -123.8724512 -117.4144115 -112.7580840 -110.9463691

[11] -110.3495996 -105.9980075 -104.5780586 -98.4417012 -97.0845032

[16] -91.0088573 -87.1657601 -83.9829586 -79.0451207 -64.7924180

[21] -57.7003036 -54.5551578 -47.3590489 -45.6458549 -38.9711566

[26] -38.7745569 -30.3266519 -30.1538927 -27.5024862 -25.7656428

[31] -21.5240875 -17.7761109 -12.5082066 -10.2892981 -7.9428931

[36] -7.8293167 -5.4240311 -4.8026517 -3.8488260 0.7186579

[41] 2.2173926 2.9059699 7.0622939 7.0853433 8.8175231

[46] 20.1193235 20.1528663 23.7616186 25.4784737 25.5547419

[51] 31.6729483 32.8524823 35.9111676 42.7795843 42.8747028

[56] 47.8213623 48.7899807 51.0852032 52.6085091 53.6040691

[61] 54.0842566 57.8019412 58.0037358 58.0867429 58.3097247

[66] 59.8226410 60.4168603 62.2666375 66.2535356 66.3388146

[71] 68.0007178 68.0467602 68.7547070 72.0649708 74.0537140

[76] 76.1679253 79.8126971 85.9694590 86.6593404 87.7796398

[81] 91.7738556 93.4448620 101.1378739 103.1186612 105.0713273

[86] 115.5856179 121.4797941 122.2667738 135.5277697 152.5619679

[91] 164.5747991 168.7999424 184.3514099 185.8937344 189.8359082

[96] 191.2782786 206.9849577 215.1302441 222.8553438 235.2291860

[101] 235.8344943 251.7308706 257.6374569 260.3224543 266.8550393

[106] 268.9116169 293.4095070 297.1930835 302.5550740 319.7746224

[111] 327.4926539 342.4821154 351.0603952 361.4437810 373.2193114

[116] 388.0471783 434.3776676 439.1579786 532.8748594 1125.7312636

Figure 12.5: Comparing actual and predicted distances

three-dimensional map; we’re not going to look at the map itself, but just see
whether it fits any better. It does, a little; both measures are now over 80%.

Another way to understand how well the actual distances match up with the
predicted distances is to calculate the predicted distances from the scaling co-
ordinates, and calculate the residuals (observed minus predicted). Any resid-
uals that are large (positively or negatively) indicate city pairs that are not
well reproduced on the map. This turns out to be ludicrously simple to ar-
range (Figure 12.5): run dist on the coordinates that come out of (the default)
cmdscale, then calculate the residuals as the difference between the measured
road distances and the predicted ones. The last line produces the residuals
sorted by size; residuals less than −350 (just one of these) and bigger than 350
look a bit sizeable. Eyeballing the residual matrix produces Table 12.1.

12.2. METRIC MULTI-DIMENSIONAL SCALING 373

City City residual
Edinburgh Amsterdam 532
Copenhagen London 439
Edinburgh Berlin 434
Barcelona Rome 388
Vienna London -378
Athens Rome 373
London Amsterdam 361
Madrid Athens 351

Table 12.1: Table of residuals sorted by absolute size

If you look at the large positive residuals, they generally have to do with cities
at the extremes of the map (Edinburgh, Copenhagen, Athens). But some of the
map distances from these cities are reproduced not so badly. It’s not just being
extreme; look back at the map, Figure 12.3. The distances in the data sets
are road distances, but the most direct route between the pairs of cities with
large positive residuals is over water. So the road distances are not accurate
representations of where things should end up on a map. (This is perhaps why
a three-dimensional representation was a bit better than a two-dimensional one.)

As another example, let’s use our vital statistics data (our example for K-means
clustering). We had data on birth rates, death rates and infant mortality rates
for a large number of countries. Because these variables had different means
and SDs, we decided to scale them to have the same mean and SD, so that
no one variable had a disproportionate influence on the result. We’ll use that
standardized data, vital.s, again here.

The first thing we have to do is to calculate a distance matrix. R has a function
dist that converts data to distances. There are different ways in which this
can be done; here we’ll use the default, Euclidean distance. This is shown in
Figure 12.6. Next, we run cmdscale to get map coordinates for the countries.
We’re asking for the default two dimensions, so we don’t need to specify that.
Plotting the object returned from cmdscale gives the map, to which we add the
country names, abbreviated.

We want to plot a few letters to represent each country. How are we going to
get those? We can use a handy command called abbreviate, designed for just
such a thing. This function requires two things: a vector of names to abbreviate
(here the countries, in the fourth column of vital), and the minimum length of
the abbreviations produced. The abbreviations are guaranteed to be different
for each country. If two letters are enough to distinguish a country from the
others, R will use two letters; if not, R will use more. The first few abbreviations
are shown. The USSR is rather interestingly labelled US!

Now, to plot the abbreviations instead of the circles we would otherwise get,

374 CHAPTER 12. MULTI-DIMENSIONAL SCALING

> vital.s=scale(vital[,1:3])

> vital.d=dist(vital.s)

> vital.map=cmdscale(vital.d)

> plot(vital.map)

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●

●

●
●

● ●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

−2 −1 0 1 2 3

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

vital.map[,1]

vi
ta

l.m
ap

[,2
]

Figure 12.6: Metric MDS for vital statistics data

12.2. METRIC MULTI-DIMENSIONAL SCALING 375

> head(vital[,4])

[1] Albania Czechoslovakia Hungary Romania USSR

[6] Ukrainian_SSR

97 Levels: Afghanistan Albania Algeria Angola Argentina Austria ... Zimbabwe

> ca=abbreviate(vital[,4],2)

> head(ca)

Albania Czechoslovakia Hungary Romania USSR

"Alb" "Cz" "Hn" "Rm" "US"

Ukrainian_SSR

"U_S"

> plot(vital.map,type="n")

> text(vital.map,ca,cex=0.5)

−2 −1 0 1 2 3

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

vital.map[,1]

vi
ta

l.m
ap

[,2
]

Alb

Cz

Hn

Rm

US

U_S

Blv

Chl

Ec

Prg

Ur

Mx

Fn

Fr
GrcIt

Nr

Sp

Swt

AsCnd

Af

Irn

Is

Kw

Om

Tr

Bn

Chn Indi

Kr

Mn
Pk

Sn

Th

Alg

Bt
Eg

Gb

Gh

Lby

Mr

Nm

Srr_L

St_A

Swz

Ug
Zr

Zmbb

Blgr

F_

Pl

Yg
B_

Ar

Br

Cl
Gy

Per

Vn

Blgm

Dn
Grm

IrlNt

Prt

Swd
U.K

Jp U.S

Bh
IrqJr

Lbn

Sd_A

U_A

Cm

H_

Indn

Mly

Np

Ph

Sr_Ln Vt

An

Cng

Et

Gm

Kn

Mlw

Mz

Ng

Sm

Sd

Tns

TnzZamb

Figure 12.7: Better map of vital statistics data

376 CHAPTER 12. MULTI-DIMENSIONAL SCALING

we plot nothing (which merely sorts out the axes), and then use text on the
resulting empty graph to put the country abbreviations in the right places. One
more thing: with regular-sized text, the names will be too crowded, so we’ll
make the text smaller by “expanding” it to half its normal size, using cex. The
abbreviations are now a bit small, but some of them still overlap, so this is
probably about as well as we’re going to do.

Most of the countries on the map in Figure 12.7 lie on a kind of horseshoe with
the first world on the left and the third world on the right. You can see Mexico
and Korea off by themselves at the bottom.

It’s interesting to compare the arrangement of countries on this map with the
results of the K-means cluster analysis on the same data. You can see why
Mexico and Korea came out in a cluster by themselves, and there seem to be
four (or maybe five) groups of countries arranged along the horseshoe, with the
third-world group on the right being more dispersed than the others. (Is that
one group or two?) You can check for yourself how well the groups that appear
to be formed on this map correspond to the K-means clustering. Or to any of
the different results that K-means clustering produces.

*********** cube example, how 3 dimensions much better than 2

12.3 Non-metric multidimensional scaling

***** languages again

Sometimes the dissimilarity matrix is not metric, in that on our map we don’t
want places twice as far apart in reality to be twice as far apart on the map. We
would be happy for places that are farther apart just to be farther apart on the
map. In other words, dissimilarity in that case is an ordinal scale, not a ratio
one. An example of data that we would want to treat ordinally is the languages
data, shown in Figure 12.8. Languages whose dissimilarity is 4 rather than 2
are not “twice as dissimilar” in the same way that cities 400 km apart are twice
as far from each other as cities 200 km apart.

For the languages data, therefore, we only want languages whose dissimilarity
is high to be farther apart from those whose dissimilarity is low.

Unlike metric multidimensional scaling, there is no exact solution to this. In-
deed, we wouldn’t expect there to be, because the two farthest-apart individuals
could be moved farther apart on the map, and the map would be equally good.
The process, therefore, is to start with a guess at the locations of the individuals,
see where the order of the dissimilarities fails to match the order of the distances
on the map, re-locate points, and try again. Repeat until no improvement is
possible.

12.3. NON-METRIC MULTIDIMENSIONAL SCALING 377

> lang

en no dk nl de fr es it pl hu fi

en 0 2 2 7 6 6 6 6 7 9 9

no 2 0 1 5 4 6 6 6 7 8 9

dk 2 1 0 6 5 6 5 5 6 8 9

nl 7 5 6 0 5 9 9 9 10 8 9

de 6 4 5 5 0 7 7 7 8 9 9

fr 6 6 6 9 7 0 2 1 5 10 9

es 6 6 5 9 7 2 0 1 3 10 9

it 6 6 5 9 7 1 1 0 4 10 9

pl 7 7 6 10 8 5 3 4 0 10 9

hu 9 8 8 8 9 10 10 10 10 0 8

fi 9 9 9 9 9 9 9 8 9 8 0

Figure 12.8: Languages data: dissimilarities

The quality of the map is described by a stress quantity that measures how
the observed dissimilarities correspond with map distances. This is rather the
opposite of the GOF measure that came out of metric multi-dimensional scaling.

********** scale for good, adequate etc. stress

The R function that does this is called isoMDS, which lives in the MASS pack-
age. The first step is to install that package, if you don’t already have it (by
install.packages("MASS")). isoMDS is used like cmdscale: you feed it a dis-
tance matrix (eg. from dist) and a desired number of dimensions, typically 2
(called k).

The process is shown in Figure 12.9. First we have to use the MASS package.
Then we turn the dissimilarity matrix into a dist object, and feed it into isoMDS,
saving the result. The result is a list with two components, one of which is
the stress value, and the other is a list of coordinates. The stress here is 5.3
(percent), which is nice and small. Now we make a plot. We can plot the points,
but that won’t make much sense without the languages attached. The language
abbreviations are the row.names attribute of lang.nmds$points, so we’ll pull
those out and save them in a variable with a short name. Then we plot the
points, and label each one with the name of the language it belongs to. You
recall (don’t you?) that pos=4 prints the text just to the right of the point that
it belongs to.

Looking at the map, you see a tight group of Romance languages (French,
Spanish, Italian), an even tighter group of Scandinavian languages (English,
Norwegian, Danish), with Dutch and German somewhere near the Scandinavian
languages, Polish somewhere near the Romance languages, and Hungarian and
Finnish off by themselves. Note the similarity in conclusion from the cluster

378 CHAPTER 12. MULTI-DIMENSIONAL SCALING

> library(MASS)

> dd=as.dist(lang)

> lang.nmds=isoMDS(dd,k=2)

initial value 12.404671

iter 5 value 5.933653

iter 10 value 5.300747

final value 5.265236

converged

> lang.nmds

$points

[,1] [,2]

en 0.02229429 -0.29368916

no -0.63766804 -0.96290425

dk -0.25008532 -0.54313754

nl -3.77093517 -3.19707086

de -0.92214625 -3.61145509

fr 3.55647800 -1.14723538

es 3.47737980 -0.61672972

it 3.24133841 0.08015195

pl 5.21156555 1.02530833

hu -7.92390808 2.54182929

fi -2.00431320 6.72493243

$stress

[1] 5.265236

> n=row.names(lang.nmds$points)

> plot(lang.nmds$points)

> text(lang.nmds$points,n,pos=4)

●

●

●

●

●

●

●

●

●

●

●

−8 −6 −4 −2 0 2 4

−
4

−
2

0
2

4
6

lang.nmds$points[,1]

la
ng

.n
m

ds
$p

oi
nt

s[
,2

]

en

no
dk

nl
de

fr
es

it

pl

hu

fi

Figure 12.9: Non-metric scaling using isoMDS

12.3. NON-METRIC MULTIDIMENSIONAL SCALING 379

analyses.

One small annoyance is that we see only half of pl (for Polish). The reason for
this is that when R lays out the scales for the plot, it only considers where the
points are going to go (since it doesn’t know we’re about to plot some labels
to the right of the points). The right-most point is going to have its label not
quite fit. We can fix this by looking at the plot, and then realizing that if the
x-axis stretched as far as 6, we’d have enough room for the label. Then we try
again by specifying xlim in the call to plot, as

plot(lang.nmds$points, xlim = (c(−8, 6)))

which makes the x-axis go from −8 to 6. (There are cleverer approaches that
involve finding the maximum x coordinate of all the points, and setting xlim to
go from the minimum x coordinate to the maximum one plus a little bit, but
looking at the plot and fixing it up is the most you’re likely to want to do.)

A final remark about the languages. If you look at Figure 11.1, you’ll see that
the Dutch and German number words are very similar structurally. They just
happen not to begin with the same letter all that often! With Dutch, German
and what I just called the Scandinavian languages, you can see that the number
words are similar but begin with different but similar-sounding letters like t and
d, f and v. So the crudeness of our measure of dissimilarity got us in the end,
but I think you’ll agree that we were able to draw some good conclusions along
the way.

380 CHAPTER 12. MULTI-DIMENSIONAL SCALING

Chapter 13

Discriminant analysis

13.1 Introduction

Cluster analysis is all about finding groups when you have no prior knowledge
about what they might be (or you do, but you want to see whether the groups
you have in mind correspond to what comes out of the analysis). Discriminant
analysis starts from the idea that you have known groups and a number of
variables, and you want to see what it is about those variables that go with the
individuals being in different groups.

13.2 Example: two groups

Our example is shown in Figure 13.1. Eight plants were grown; four of them
were given a high dose of fertilizer, and the other four were given a low dose.
There were two response variables; seed yield, and weight per seed.

There are a couple of possible research questions. One is the ANOVA kind of
question: does the amount of fertilizer affect the seed yield or weight or both?
This is the domain of Chapter 15. Another kind of question is “how would you
characterize the difference between the groups, in terms of the other variables
measured?”. This is what discriminant analysis does.

The plot in Figure 13.1 shows the two quantitative variables plotted against
each other, with the two groups shown by symbols of different colour (col=fno)
and different shape (pch=fno). We had to do a little fiddling beforehand: the
fertilizer fert is a factor, not a number, so we had to turn it into a number
using as.integer first.

381

382 CHAPTER 13. DISCRIMINANT ANALYSIS

> fertilizer=read.table("fertilizer.txt",header=T)

> fertilizer

fert yield weight

1 low 34 10

2 low 29 14

3 low 35 11

4 low 32 13

5 high 33 14

6 high 38 12

7 high 34 13

8 high 35 14

> fno=as.integer(fertilizer$fert)

> plot(fertilizer$yield,fertilizer$weight,col=fno,pch=fno)

●

●

●

●

30 32 34 36 38

10
11

12
13

14

fertilizer$yield

fe
rt

ili
ze

r$
w

ei
gh

t

Figure 13.1: Fertilizer data

13.2. EXAMPLE: TWO GROUPS 383

> library(MASS)

> f.lda=lda(fert~yield+weight,data=fertilizer)

> f.lda

Call:

lda(fert ~ yield + weight, data = fertilizer)

Prior probabilities of groups:

high low

0.5 0.5

Group means:

yield weight

high 35.0 13.25

low 32.5 12.00

Coefficients of linear discriminants:

LD1

yield -0.7666761

weight -1.2513563

Figure 13.2: Discriminant analysis for fertilizer groups

R’s function for doing discriminant analysis is called lda (“linear discriminant
analysis”) and it lives in the package called MASS.

The basic analysis is shown in Figure 13.2. This contains the group means on
the two variables. Our analysis shows that high fertilizer had a slightly higher
yield and weight than low fertilizer. But this is not the whole story, as the plot
in Figure 13.1 shows: when the yield and weight are high together the fertilizer
is high, and when they are low together the fertilizer is low.

How does this come out of the discriminant analysis? Well, a clue is in “coef-
ficients of linear discriminant”, where the cofficients are of the same sign. This
suggests that when the two variables are both high, the observation is in one
group, and when they are both low, the observation is in the other.

The key calculation is of the discriminant scores for each observation (plant).
This shows where each plant comes on the overall high-low scale, and thus gives
a hint about which group it belongs to. R chooses the discriminant function
(or functions, here only one) to best separate out the groups. The easiest way
to see the discriminant scores is to plot the fitted lda object. This shows, for
each group separately, how the discriminant scores stack up. You can see that
the plants in the high fertilizer group have a negative discriminant score, and
the plants in the low fertilizer group have a positive one. It seems pretty clear

384 CHAPTER 13. DISCRIMINANT ANALYSIS

> plot(f.lda)

−3 −2 −1 0 1 2 3

0.
0

0.
6

1.
2

group high

−3 −2 −1 0 1 2 3

0.
0

0.
6

1.
2

group low

Figure 13.3: Plot of discriminant scores

13.2. EXAMPLE: TWO GROUPS 385

> f.pred=predict(f.lda)

> f.pred$class

[1] low low low low high high high high

Levels: high low

> table(fertilizer$fert,f.pred$class)

high low

high 4 0

low 0 4

> round(f.pred$posterior,4)

high low

1 0.0000 1.0000

2 0.0012 0.9988

3 0.0232 0.9768

4 0.0458 0.9542

5 0.9818 0.0182

6 0.9998 0.0002

7 0.9089 0.0911

8 0.9999 0.0001

> f.pred$x

LD1

1 3.0931414

2 1.9210963

3 1.0751090

4 0.8724245

5 -1.1456079

6 -2.4762756

7 -0.6609276

8 -2.6789600

> cbind(fertilizer,round(f.pred$posterior,4),f.pred$x)

fert yield weight high low LD1

1 low 34 10 0.0000 1.0000 3.0931414

2 low 29 14 0.0012 0.9988 1.9210963

3 low 35 11 0.0232 0.9768 1.0751090

4 low 32 13 0.0458 0.9542 0.8724245

5 high 33 14 0.9818 0.0182 -1.1456079

6 high 38 12 0.9998 0.0002 -2.4762756

7 high 34 13 0.9089 0.0911 -0.6609276

8 high 35 14 0.9999 0.0001 -2.6789600

Figure 13.4: Discriminant scores and posterior probabilities

386 CHAPTER 13. DISCRIMINANT ANALYSIS

which are the high and low fertilizer plants just from their yield and weight, as
they go to make up the discriminant score.

You can do prediction on lda objects, as shown in Figure 13.4. This produces
several things of interest. First, the predicted group membership of each ob-
servation. The best way to display this is to tabulate it with the actual group
memberships; here, we see that all eight plants got classified into the correct
group. Second, the “posterior probabilities”. These are R’s best guess at how
likely each observation is to come from each group. You can see from this how
clear-cut it is to judge which group each observation came from. Here, the prob-
abilities are all close to 0 or 1, so it was pretty clear-cut. The only plant for
which there was any doubt was #7, but even than it was rated more than 90%
“high”. I used round to display only a few decimal places, and, as a side effect,
to get rid of the scientific notation that R often uses. Third, the discriminant
scores. It’s nice to have these for plotting, as we see later.

The last cbind just puts everything together. This shows that all the plants
with negative discriminant score were correctly predicted to be high fertilizer,
and all those with positive discriminant score were correctly predicted to be low.
For example, plant 1 has a middling yield but the lowest weight, which makes
it a “low” beyond all reasonable doubt.

predict, by default, is run on the original data. But you can predict for new
data as well. One reason to do that is to produce some nicer plots that illustrate
what the discriminant analysis is doing.

Our procedure is shown in Figure 13.5. We’re going to predict for a bunch of
combinations of yield and weight values that reflect the data values we had.
We’ll generate a bunch of new yield values that go from 29 to 38 in steps of 0.5
(yy), and a bunch of new weight values that go from 10 to 14 in steps of 0.5
(ww). The “steps of” values don’t matter very much; we need enough new points
to get the idea, but not so many that they overwhelm the plot. Then we make
a data frame containing all combinations of yield and weight, which is what
expand.grid does. Some of the data frame is shown next. In expand.grid,
the first variable changes fastest, and the last slowest. You see that we have all
the yields for weight 10, then all the yields for weight 10.5, and so on. I didn’t
have to use expand.grid; any way that got me the yield/weight combinations I
wanted would have worked. Note that I used the same names yield and weight

in my new data frame that I had in the original one; this is important because
predict has to be able to match up the variables to know what to predict for.

Obtaining predictions for these new yields and weights is a piece of cake: just
call predict on the fitted lda object, and give the data frame of new values
second. The predictions, in f.pred, have class (group) predictions for the new
values, posterior predicted probabilities for the new values, and discriminant
scores x for the new values.

13.2. EXAMPLE: TWO GROUPS 387

> yy=seq(29,38,0.5)

> ww=seq(10,14,0.5)

> f.new=expand.grid(yield=yy,weight=ww)

> f.new[16:25,]

yield weight

16 36.5 10.0

17 37.0 10.0

18 37.5 10.0

19 38.0 10.0

20 29.0 10.5

21 29.5 10.5

22 30.0 10.5

23 30.5 10.5

24 31.0 10.5

25 31.5 10.5

> f.pred=predict(f.lda,f.new)

Figure 13.5: Predicting for new data

I can think of three nice plots that one might draw for these data. Each of these
is overlaid on the plot of the original yield and weight values (and thus depend
on our only having two variables).

First is a plot showing the predicted group membership, as shown in Figure 13.6.
We begin by plotting the data using different colours and symbols, just as before.
Now we’ll extract the predicted group memberships from f.pred and abbreviate
them to H for high and L for low, uppercase (which is what toupper does). In
other people’s R code, you’ll see a lot of one function applied to the result of
another function. I’m trying to avoid it in this book, because I think it’s con-
fusing, but if you start from the inside you should be OK: get the abbreviations
first, and then convert them to uppercase.

Now we add the one-letter uppercase predicted group memberships to our plot.
points adds points to a plot without starting a new plot (which plot would
do). I’m adding two wrinkles here. The first two things fed in to points are
the places you want to plot something. The col argument plots the points a
different colour for each (predicted) group, as in the original plot, but I don’t
want to use the same colours as the data points, since then you won’t be able
to see them! The values of g are actually “high” and “low”, so we turn them
into numbers; colours number 1 and 2 (black and red) are in the original plot,
and colours 3 and 4 (green and blue) are used for the points we’re adding. The
other wrinkle is cex, or “character expansion”: we want to make the array of
green and blue points smaller than the data points so that we can still see them.

388 CHAPTER 13. DISCRIMINANT ANALYSIS

> plot(fertilizer$yield,fertilizer$weight,col=fno,pch=fno)

> g=f.pred$class

> ga=toupper(abbreviate(g,1))

> points(f.new$yield,f.new$weight,col=as.numeric(g)+2,cex=0.3)

●

●

●

●

30 32 34 36 38

10
11

12
13

14

fertilizer$yield

fe
rt

ili
ze

r$
w

ei
gh

t

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Figure 13.6: Plot of predicted group membership

13.2. EXAMPLE: TWO GROUPS 389

You might (or might not) guess that the boundary between the predicted-highs
and predicted-lows is actually a straight line (the resolution of the plot doesn’t
make it clear). The data points look pretty firmly within their respective areas,
with the possible exception of the point with yield 34 and weight 13. This is
the observation whose posterior probability of being a “high” was only 0.91, the
least clear-cut of the lot. You can see how it is closest to the boundary.

The second and third plots involve contours. This is a little awkward to do in
R, so we’ll take a digression first.

Figure 13.7 shows some x and y values and a function, the innards of which
don’t need to concern you. outer evaluates the function for each value of x and
each value of y, in all combinations, rather like expand.grid, but storing the
results in a matrix. I’ve listed the values of x, y and z below the outer call so
that you can see what happened. There are 8 values of x, shown in the rows,
and 9 values of y, in the columns. In the 4th row, the 3rd value of z is 4. This
is the result of evaluating the function at the 4th value of x, 1.0, and the 3rd
value of y, −1.0. If you care to, you can evaluate (1 − y)2 + 100(x − y2)2 for
this x and y and verify that you really do get 4.

Anyway, the purpose of getting the function evaluated at a number of points,
and arranging them in a matrix, is to produce a plot. If you feed x, y and z

into persp, you get a 3D or wireframe plot. Here, you see that the function
increases dramatically to the left and less dramatically to the right, with a kind
of curving river valley from the back right to the middle left to the front right.
This is one way to look at a function of two variables.

Another way to look at this is shown in Figure 13.8. This is a contour plot. The
numbers on the contours show the height of the function at that point, and the
contours, or “level lines”, connect up all the points that have the same value of
the function. Once again you see the rapid increase of the function to the top
left and bottom left (the contours are close together, indicating a rapid change),
a more modest increase to the right, and something like a curving river valley.
If you look carefully, you’ll see that x and y have come out on unexpected axes.
This is so that the stories from persp and contour come out the same. You
can flip things back by calling contour as contour(y,x,z) if you prefer.

Figure 13.9 shows a variation on this contour plot. I wanted to get a better
picture of the “river valley”, so I chose the heights myself at which I wanted the
contours drawn. This is done by specifying levels= a vector of heights. If you
follow the 50 contour all the way around (it goes off the left side of the graph for
a moment), you’ll see why this is called “Rosenbrock’s banana function”. (The
minimum of the function is 0 at x = ±1, y = 1, but at x = 0, y = 0 the function
value is only 1. This explains the three little areas enclosed by height-5 contours
in the river valley.)

All right, now we have what we need to draw contour plots for our fertilizer

390 CHAPTER 13. DISCRIMINANT ANALYSIS

> x=seq(-0.5,3,0.5)

> y=seq(-2,2,0.5)

> banf=function(x,y)

+ {

+ (1-y)^2+100*(x-y^2)^2

+ }

> z=outer(x,y,FUN="banf")

> x

[1] -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

> y

[1] -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

> z

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 2034 762.5 229 58.5 26 56.5 225 756.5 2026

[2,] 1609 512.5 104 8.5 1 6.5 100 506.5 1601

[3,] 1234 312.5 29 8.5 26 6.5 25 306.5 1226

[4,] 909 162.5 4 58.5 101 56.5 0 156.5 901

[5,] 634 62.5 29 158.5 226 156.5 25 56.5 626

[6,] 409 12.5 104 308.5 401 306.5 100 6.5 401

[7,] 234 12.5 229 508.5 626 506.5 225 6.5 226

[8,] 109 62.5 404 758.5 901 756.5 400 56.5 101

> persp(x,y,z)

x

y

z

Figure 13.7: Rosenbrock’s banana function in 3D

13.2. EXAMPLE: TWO GROUPS 391

> contour(x,y,z)

 200

 200

 200
 400

 400

 400

 600

 600

 600

 800

 800

 800

 1400

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
2

−
1

0
1

2

Figure 13.8: Rosenbrock’s banana function, contours

392 CHAPTER 13. DISCRIMINANT ANALYSIS

> contour(x,y,z,levels=c(0,5,50,100,200,400,800))

 5

 5

 50

 100

 100

 100

 200

 200

 200

 400

 400

 400

 800

 800

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
2

−
1

0
1

2

Figure 13.9: Contours by specifying levels

13.2. EXAMPLE: TWO GROUPS 393

> plot(fertilizer$yield,fertilizer$weight,col=fno,pch=fno)

> yy=seq(29,38,0.5)

> ww=seq(10,14,0.5)

> z=matrix(f.pred$x,length(yy),length(ww),byrow=F)

> contour(yy,ww,z,add=T)

●

●

●

●

30 32 34 36 38

10
11

12
13

14

fertilizer$yield

fe
rt

ili
ze

r$
w

ei
gh

t

 −4

 −3
 −2

 −1
 0 1

 2

 3

 4

 5 6

Figure 13.10: Contour plot of discriminant function

data. We are going to overlay contours on our original plot of the data: first,
of the discriminant function, and second of the posterior probability of being a
high-fertilizer plant.

Figure 13.10 shows how to do that. First we plot the original data, and then
remind ourselves of the new yield and weight values we were predicting for. The
discriminant function values are in f.pred$x, but they are in one long string.
We need them to be in a matrix, as for the contour example above. A little bit
of thinking reveals that they need to go down the columns of a properly-sized
matrix. The size of the matrix is that it has as many rows as we have yield

values (the first variable) and as many columns as we have weight values (the
second variable). R has a function matrix that turns a vector into a matrix this
way, but by default it goes along the rows instead of down the columns. But R

394 CHAPTER 13. DISCRIMINANT ANALYSIS

> plot(fertilizer$yield,fertilizer$weight,col=fno,pch=fno)

> z=matrix(f.pred$posterior[,1],length(yy),length(ww),byrow=F)

> contour(yy,ww,z,add=T)

●

●

●

●

30 32 34 36 38

10
11

12
13

14

fertilizer$yield

fe
rt

ili
ze

r$
w

ei
gh

t

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

Figure 13.11: Contour plot of posterior probability of High

being R, we can fix that, by setting byrow=F.

Now we can draw the contours of the discriminant function. One thing: if we
do contour as before, the original plot of the data values will be overwritten.
Setting add=T adds the contours to the current plot, in the same way that lines
or points work.

What is perhaps striking in Figure 13.10 is that the contours of the discriminant
function are equally spaced straight lines. This is where the “linear” of “linear
discriminant analysis” comes from. The discriminant function is negative in the
top right, where a plant is declared to be “high fertilizer”, and positive in the
bottom left, where the “low fertilizer” plants live. The lines are slanted in such
a way as to “best” separate the groups (see how the 0 contour has highs on
one side and lows on the other). Contour lines that were horizontal or vertical
wouldn’t separate the highs from the lows, which is why looking just at yield or
just at weight didn’t tell the whole story.

13.2. EXAMPLE: TWO GROUPS 395

> plot(fertilizer$yield,fertilizer$weight,col=fno,pch=fno)

> contour(yy,ww,z,add=T,levels=0.50,col="red")

> contour(yy,ww,z,add=T,levels=c(0.001,0.01,0.1,0.25,0.75,0.9,0.99,0.999))

●

●

●

●

30 32 34 36 38

10
11

12
13

14

fertilizer$yield

fe
rt

ili
ze

r$
w

ei
gh

t

 0.5

 0.001

 0.01

 0.1

 0.25

 0.75

 0.9

 0.99

 0.999

Figure 13.12: Revised contour plot of posterior probabilities

Another contour plot we can draw is of the posterior probability of “high”. This
is in the output from predict in f.pred$posterior[,1]. (The first column is
prob. of high, the second of low.)

The procedure, shown in Figure 13.11, is really just the same as in Figure 13.10,
so I hope you can follow the steps. We construct a matrix from the posterior
probabilities, then feed that into contour.

The plot shows a “river” of contours (no longer linear) running in between the
four highs and the four lows. Which side of the river a plant is determines
whether it is high or low fertilizer, and, if you will, the distance from the middle
of the river determines how clear-cut the decision is. The plant with yield 34
and weight 13 is on the “edge” of the river drawn with these contours.

Actually, the contour of interest is really 0.5 (a plant on this contour would be
equally well classified as high or low). So let’s change the contours from R’s

396 CHAPTER 13. DISCRIMINANT ANALYSIS

> jobs=read.table("profile.txt",header=T)

> jobs

job reading dance tv ski

1 bellydancer 7 10 6 5

2 bellydancer 8 9 5 7

3 bellydancer 5 10 5 8

4 bellydancer 6 10 6 8

5 bellydancer 7 8 7 9

6 politician 4 4 4 4

7 politician 6 4 5 3

8 politician 5 5 5 6

9 politician 6 6 6 7

10 politician 4 5 6 5

11 admin 3 1 1 2

12 admin 5 3 1 5

13 admin 4 2 2 5

14 admin 7 1 2 4

15 admin 6 3 3 3

Figure 13.13: Jobs and leisure activities data

default, to replace the moderate probabilities with more extreme ones. This
is done with levels, as shown in Figure 13.12. I’ve also plotted the key 0.5
contour in red, by first plotting the level 0.50 contour with col="red", and then
plotting all the other contours in the default colour of black.

This plot shows just how clear-cut some of the decisions are.

13.3 Example: three groups

Having seen how discriminant analysis works with two groups, let’s try it with
three. Our example is a fictitious one about people in three occupational groups
(politicians, administrators and bellydancers), who are each asked to rate how
much they like four different leisure activities: reading, TV watching, dancing
and skiing. The data are shown in Figure 13.13. The ratings are on a scale of
0–10, higher is better.

Can we use the scores on the different activities to distinguish the jobs? Let’s see
what a discriminant analysis produces, as in Figure 13.14. The model formula
in the lda line looks like a regression but “predicting” the group from the other
variables (separated by plusses).

13.3. EXAMPLE: THREE GROUPS 397

> library(MASS)

> jobs.lda=lda(job~reading+dance+tv+ski,data=jobs)

> jobs.lda

Call:

lda(job ~ reading + dance + tv + ski, data = jobs)

Prior probabilities of groups:

admin bellydancer politician

0.3333333 0.3333333 0.3333333

Group means:

reading dance tv ski

admin 5.0 2.0 1.8 3.8

bellydancer 6.6 9.4 5.8 7.4

politician 5.0 4.8 5.2 5.0

Coefficients of linear discriminants:

LD1 LD2

reading -0.01297465 0.4748081

dance -0.95212396 0.4614976

tv -0.47417264 -1.2446327

ski 0.04153684 0.2033122

Proportion of trace:

LD1 LD2

0.8917 0.1083

> plot(jobs.lda)

−4 −2 0 2 4

−
4

−
2

0
2

4

LD1

LD
2

bellydancer

bellydancer

bellydancer

bellydancer

bellydancer

politician

politician

politicianpolitician

politician

admin

admin

admin

admin

admin

Figure 13.14: Discriminant analysis for jobs data

398 CHAPTER 13. DISCRIMINANT ANALYSIS

For the output: first up, the means on each activity for each job. The highest
mean is 9.4, showing that the bellydancers love dancing (surprise). The lowest
scores are 1.8 and 2.0, showing that the administrators hate dancing and TV-
watching. If you were going to suggest a good way to separate the groups,
you might look at dancing scores, which would separate the bellydancers from
(especially) the administrators. The skiing scores don’t have much to add,
since they separate the groups in the same way as the dancing scores, only less
dramatically. You might look at the TV-watching scores, since they distinguish
the politicians from the administrators better than anything else.

The coefficients of linear discriminants tell you what lda came up with for
separating the groups. You’re looking for coefficients far away from zero, either
plus or minus. On LD1, reading and skiing have nothing to say, but LD1 will
be most negative when the dance score is high (especially) or when the TV-
watching score is high (not so much). This is about what we said above. On
LD2, the most influential score is the TV one (negatively), with everything else
having a small positive influence.

How come we got two discriminants? The number you can get comes from one
less than the number of groups (here 2) and the number of variables (here 4).
Take the smaller of those. That explains why we got two discriminants here and
one before.

There are 4 variables here, so we can’t plot them in any useful way. Plotting
the lda model object does one of several things: if there’s only one discriminant,
it plots histograms of the discriminant scores by group (as we saw above). With
two discriminants, it plots the discriminant scores against each other (as here),
and with more than two, it plots each one against each other one.

On the plot, you see the bellydancers on the left, the administrators on the right,
and the politicians at the bottom. The groups look pretty well separated. LD1
actually separates all 3 of the groups, but LD2 helps to distinguish the politicians
from the rest. (If you look back at the means, even though the TV-watching
ratings for bellydancers and politicians are about the same, the bellydancers’
other ratings are higher, and the politicians’ are about the same. This is how
LD2 distinguishes bellydancers from politicians. For the administrators, it’s the
difference in TV-watching ratings that dominates LD2.)

Now, let’s have a look at the predictions, shown in Figure 13.15. First, a sum-
mary of how well the jobs were predicted from the activity scores. This is done
by tabulating the actual jobs against the ones that jobs.pred predicted. I’ve
added one extra thing here: feeding in a list for dnn labels the rows and columns
of the table. Here, we see that all 15 individuals were correctly classified: the
groups seem pretty distinct.

The last line gives the data, the discriminant scores (rounded to 2 decimals), and
the posterior probabilities (rounded to 4 decimals), all side by side. The only

13.3. EXAMPLE: THREE GROUPS 399

> jobs.pred=predict(jobs.lda)

> table(jobs$job,jobs.pred$class,dnn=list("actual","predicted"))

predicted

actual admin bellydancer politician

admin 5 0 0

bellydancer 0 5 0

politician 0 0 5

> pp=round(jobs.pred$posterior,4)

> ds=round(jobs.pred$x,2)

> cbind(jobs,ds,pp)

job reading dance tv ski LD1 LD2 admin bellydancer politician

1 bellydancer 7 10 6 5 -5.24 0.58 0.0000 1.0000 0.0000

2 bellydancer 8 9 5 7 -3.74 2.25 0.0000 1.0000 0.0000

3 bellydancer 5 10 5 8 -4.61 1.49 0.0000 1.0000 0.0000

4 bellydancer 6 10 6 8 -5.10 0.72 0.0000 1.0000 0.0000

5 bellydancer 7 8 7 9 -3.64 -0.77 0.0000 0.9973 0.0027

6 politician 4 4 4 4 1.42 -1.33 0.0028 0.0000 0.9972

7 politician 6 4 5 3 0.88 -1.83 0.0001 0.0000 0.9999

8 politician 5 5 5 6 0.06 -1.23 0.0000 0.0000 1.0000

9 politician 6 6 6 7 -1.33 -1.33 0.0000 0.0021 0.9979

10 politician 4 5 6 5 -0.44 -3.15 0.0000 0.0000 1.0000

11 admin 3 1 1 2 5.63 0.14 1.0000 0.0000 0.0000

12 admin 5 3 1 5 3.82 2.62 1.0000 0.0000 0.0000

13 admin 4 2 2 5 4.32 0.44 1.0000 0.0000 0.0000

14 admin 7 1 2 4 5.19 1.20 1.0000 0.0000 0.0000

15 admin 6 3 3 3 2.78 0.20 0.9821 0.0000 0.0179

Figure 13.15: Predictions for jobs data

400 CHAPTER 13. DISCRIMINANT ANALYSIS

> plot(jobs.lda)

> jobs.new=expand.grid(reading=1:10,dance=1:10,tv=1:10,ski=1:10)

> jobs.pred2=predict(jobs.lda,jobs.new)

> gg=as.numeric(jobs.pred2$class)

> points(jobs.pred2$x,col=gg,cex=0.3)

−4 −2 0 2 4

−
4

−
2

0
2

4

LD1

LD
2

bellydancer

bellydancer

bellydancer

bellydancer

bellydancer

politician

politician

politicianpolitician

politician

admin

admin

admin

admin

admin

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 13.16: Group membership regions

individual about whom there is any doubt at all is number 15, who is reckoned
to have a 2% chance of being a politician. So the groups really are clear-cut.

Why is individual 15 less surely an administrator than the others? Well, this
person likes dancing as much as any of the administrators, and likes watching
TV more than any of their colleagues. So this means that LD1 should be lower
than their colleagues’ (higher scores for negative things on LD1), and that LD2
should also be lower, because that’s based mostly on TV-watching. (Individual
11 scores even lower on LD2 because they hate everything!) So individual 15 is
more like a politician than any of the other administrators, but not very much.

Let’s see whether we can make a plot of the regions, by LD1 and LD2, that
favour each job. We do this in the same way that we made the other plots for
the fertilizer data, but with a small twist given that we can’t actually plot the

13.4. CROSS-VALIDATION 401

data, only the discriminant scores.

First, we plot the fitted model object (which plots the discriminant scores, la-
belling the individuals). Then our strategy is to add a whole bunch of coloured
circles to the plot, with colour according to the predicted job.

To make that strategy happen, we first need to construct a new data frame of
activity ratings to predict from. I’ve used expand.grid again. The observed
scores were all whole numbers from 1 to 10, so I’ve used that as the basis. (Recall
that 1:10 means the numbers 1 through 10 in order.) The data frame jobs.new
is huge (it has 104 = 10000 rows), but we don’t need to worry about that. Then
we feed jobs.new into predict as the second thing. I called the prediction
object jobs.pred2, though perhaps jobs.pred.new would have been better.
jobs.pred2 has the same things in it as jobs.pred: class has predicted group
membership, posterior has the posterior probabilities of membership in each
group, and x has the two columns of discriminant scores.

Now we need to plot the discriminant scores in jobs.pred2 on the plot, with
each point being an appropriate colour according to which group it’s predicted to
be in. First we turn the predicted group membership into numbers (saved in gg),
and then we plot the points that are the discriminant scores for our multitude
of predictions, in a colour according to predicted group, and making the plotted
circles smaller (so they don’t interfere with the labels for the individuals in our
data set). The final plot is shown in Figure 13.16. The administrator region
appears in black, the bellydancer region in red, and the politician region in a
very non-partisan green. The boundaries of the regions are again straight lines.

What surprised me what that the politician region extended up so far: as long
as LD1 is close to 0, LD2 can be up to about 3. But in any case, you can see the
administrator that is more politician-like than the others, and one bellydancer
who is more politician-like than the rest (though that posterior probability was
only 0.0027).

13.4 Cross-validation

We have been assessing how well a discriminant analysis is performing by seeing
how well the data get classified into their own groups. But this is cheating,
really: the same data that are being used to estimate the discriminant functions
are also being used to see how well they work.

Using the data in this way (sometimes called “resubstitution”) tends to give an
optimistically good assessment of how well the analysis is doing. What can we
do that is more honest? One way is called “leave-one-out cross-validation”. In
our jobs data set we had 15 observations. We could use 14 of them to estimate
the posterior probabilities for the 15th, repeating for each of the observations

402 CHAPTER 13. DISCRIMINANT ANALYSIS

> jobs.cv=lda(job~reading+dance+tv+ski,data=jobs,CV=T)

> table(jobs$job,jobs.cv$class,dnn=list("actual","predicted"))

predicted

actual admin bellydancer politician

admin 5 0 0

bellydancer 0 4 1

politician 0 0 5

> post=round(jobs.cv$posterior,4)

> cbind(jobs,jobs.cv$class,post)

job reading dance tv ski jobs.cv$class admin bellydancer politician

1 bellydancer 7 10 6 5 bellydancer 0.0000 1.0000 0.0000

2 bellydancer 8 9 5 7 bellydancer 0.0000 1.0000 0.0000

3 bellydancer 5 10 5 8 bellydancer 0.0000 1.0000 0.0000

4 bellydancer 6 10 6 8 bellydancer 0.0000 1.0000 0.0000

5 bellydancer 7 8 7 9 politician 0.0000 0.0006 0.9994

6 politician 4 4 4 4 politician 0.0060 0.0000 0.9940

7 politician 6 4 5 3 politician 0.0008 0.0000 0.9992

8 politician 5 5 5 6 politician 0.0000 0.0000 0.9999

9 politician 6 6 6 7 politician 0.0000 0.0087 0.9913

10 politician 4 5 6 5 politician 0.0000 0.0000 1.0000

11 admin 3 1 1 2 admin 1.0000 0.0000 0.0000

12 admin 5 3 1 5 admin 1.0000 0.0000 0.0000

13 admin 4 2 2 5 admin 0.9999 0.0000 0.0001

14 admin 7 1 2 4 admin 1.0000 0.0000 0.0000

15 admin 6 3 3 3 admin 0.8188 0.0000 0.1812

Figure 13.17: Cross-validation for the jobs data set

(so there is 15 times as much work, but R can handle it). This is honest, because
each prediction has nothing to do with the observation it is predicting for.

Let’s see how this works out for our jobs data. Is it still true that the three
groups of individuals are very well separated? The analysis is in Figure 13.17.
Cross-validation is requested by feeding CV=T into the call to lda. What comes
back from lda in this case is kind of like an abbreviated version of what would
have come back from predict: it’s a list with predicted groups class and
predicted posterior probabilities posterior.

To see how good a job the classification has done now, we can tabulate the actual
jobs and the predicted ones. The table shows now that one of the bellydancers
has been classified as a politician! To see what happened, let’s print out the
data, predicted job and (rounded) posterior probabilities side by side and take

13.4. CROSS-VALIDATION 403

a look.

The individual getting misclassified is #5. The posterior probabilities say that
this person is almost certainly a politician. How did the cross-validation make
such a difference? Well, when we came to predict for #5, there were only the
other 4 bellydancers left, and they have very similar rating profiles. So the
bellydancers were considered to be a very tight-knit group, and #5 was quite
different from this. This meant that it didn’t look as if #5 was a bellydancer
at all.

Also #15 was “potentially” a politician. This individual liked TV and dancing
the most out of the administrators, with a profile somewhat like that of the
politicians.

One snag of doing lda this way is that you don’t get any discriminant scores or
plots. So you would do this to see whether it changes the posterior probabilities
noticeably from the default way. If it doesn’t, the plots, discriminant scores and
so on from the default analysis can be trusted.

******** remote sensing

404 CHAPTER 13. DISCRIMINANT ANALYSIS

Chapter 14

Survival analysis

14.1 Introduction

There are some regression-type analyses, where you have one or more explana-
tory variables that might predict a response variable that is:

� counted or measured: regression (or possibly ANOVA)

� categorical: logistic regression (logistic regression, or one of the variants
for multiple categories).

A logistic regression might be used, as in Section 10.5, to predict whether or not
a person will survive having some disease. But a more nuanced analysis would
also take into account how long that person survived. This is where survival
analysis comes into the picture. Survival analysis can also handle the common
situation where the event (eg. death) has not happened by the end of the study
(the person might be still alive and you don’t know when they might die).
But knowing that a patient has survived for six months (say) without dying is
informative, even if you don’t know how long they survived altogether. So such
people (known in the jargon as “censored”) need to be included in the analysis.

We’ll be using a model called the Cox proportional hazards model. This
has a lot of nice features, including the ability to handle censored data, and
there is some sophisticated mathematics behind it — which we don’t need to
worry about! As far as we are concerned, it all looks like a kind of regression
model.

405

406 CHAPTER 14. SURVIVAL ANALYSIS

> library(survival)

> dance=read.table("dancing.txt",header=T)

> dance

Months Quit Treatment Age

1 1 1 0 16

2 2 1 0 24

3 2 1 0 18

4 3 0 0 27

5 4 1 0 25

6 5 1 0 21

7 11 1 0 55

8 7 1 1 26

9 8 1 1 36

10 10 1 1 38

11 10 0 1 45

12 12 1 1 47

> attach(dance)

> mth=Surv(Months,Quit)

> mth

[1] 1 2 2 3+ 4 5 11 7 8 10 10+ 12

Figure 14.1: The dancing data

14.2 Example 1: still dancing?

We begin with a frivolous example. Imagine that you are the owner of a dance
studio, and you want to know how long women tend to stick with dance lessons
until they quit. (So the event of interest is “quit”, the survival time is “time
until quitting” and “censored” corresponds to “hasn’t quit yet”.)

Figure 14.1 shows the data. We need to use the package survival, so we’ll
get hold of that first. There are four columns: the number of months a dancer
was observed dancing, an indication of whether the dancer actually quit (1)
or was still dancing at the end of the study, a “treatment” (a visit to a dance
competition, which might have an inspirational effect) and the age of the dancer
at the start of the study.

If you think about it, you’ll see that Months and Quit are a kind of combined
response: you need to know them both to have a proper sense of what was being
measured (how long was the woman observed dancing for, and do we know that
she quit?). This needs to go into the model somehow. This is what the Surv

statement does: it creates the appropriate response variable. The last line shows

14.2. EXAMPLE 1: STILL DANCING? 407

> dance.1=coxph(mth~Treatment+Age)

> summary(dance.1)

Call:

coxph(formula = mth ~ Treatment + Age)

n= 12, number of events= 10

coef exp(coef) se(coef) z Pr(>|z|)

Treatment -4.44915 0.01169 2.60929 -1.705 0.0882 .

Age -0.36619 0.69337 0.15381 -2.381 0.0173 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

exp(coef) exp(-coef) lower .95 upper .95

Treatment 0.01169 85.554 7.026e-05 1.9444

Age 0.69337 1.442 5.129e-01 0.9373

Concordance= 0.964 (se = 0.125)

Rsquare= 0.836 (max possible= 0.938)

Likelihood ratio test= 21.68 on 2 df, p=1.956e-05

Wald test = 5.67 on 2 df, p=0.0587

Score (logrank) test = 14.75 on 2 df, p=0.0006274

Figure 14.2: Cox proportional-hazards model for dance data

you what it does: a number is a number of months which went with the event
(quitting), and a number with a plus sign is a censored observation (that had
no quitting observed). You see the two dancers that were not observed to quit:
one that was observed for three months and one for ten.

Next, in Figure 14.2, comes the model-fitting. Instead of lm or glm, we are
using coxph. The response is the Surv object, and the explanatory variables
are whatever they are, on the right side of the squiggle, glued together with plus
signs. As usual, the way to look at the model with with summary.

Since we don’t have much data, let’s use α = 0.10 to assess significance of things.

The test(s) of whether anything has an effect on survival time are at the bottom.
There are actually three tests, that test slightly different things, but usually they
will be in broad agreement. They are all significant here, though in the case of
the Wald test, only just.

As to what has an effect on survival time: the table under “number of events” is
the one to look at. The P-value for treatment is 0.0882 (marginal, but significant
at the 0.10 level), and for age is 0.0173 (definitely significant).

408 CHAPTER 14. SURVIVAL ANALYSIS

> dance.new=expand.grid(Treatment=c(0,1),Age=c(20,40))

> dance.new

Treatment Age

1 0 20

2 1 20

3 0 40

4 1 40

> s=survfit(dance.1,newdata=dance.new)

> t(dance.new)

[,1] [,2] [,3] [,4]

Treatment 0 1 0 1

Age 20 20 40 40

> summary(s)

Call: survfit(formula = dance.1, newdata = dance.new)

time n.risk n.event survival1 survival2 survival3 survival4

1 12 1 8.76e-01 9.98e-01 1.00e+00 1.000

2 11 2 3.99e-01 9.89e-01 9.99e-01 1.000

4 8 1 1.24e-01 9.76e-01 9.99e-01 1.000

5 7 1 2.93e-02 9.60e-01 9.98e-01 1.000

7 6 1 2.96e-323 1.70e-04 6.13e-01 0.994

8 5 1 0.00e+00 1.35e-98 2.99e-06 0.862

10 4 1 0.00e+00 0.00e+00 3.61e-20 0.593

11 2 1 0.00e+00 0.00e+00 0.00e+00 0.000

12 1 1 0.00e+00 0.00e+00 0.00e+00 0.000

Figure 14.3: Using survfit to predict survival times

Now, having found out that both variables have at least some effect on survival
time, it would be nice to do some predictions of probability of surviving until
certain times under various conditions of age and treatment. The function is
called survfit, though it actually works rather like predict. The details are
shown in Figure 14.3.

First we create a new data frame of treatments (yes and no) and ages (20 and
40) to predict, using expand.grid to do all the combinations. We take a look
at the new data frame. Then we run survfit in the same kind of way that
we’d run predict, feeding it a fitted model object and a data frame of values
to predict for.

The complicated thing about this is that we don’t have just one prediction for

14.2. EXAMPLE 1: STILL DANCING? 409

> plot(s)

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 14.4: Basic plot of survfit object

each treatment-age combo, we have a bunch: one for each of ten different times,
in fact. By using summary on the survfit object, we see the four “survival
curves” in columns, one for each of the four rows of dance.new. Above the
summary of s, I’ve “transposed” the dance.new data frame, so you can see what
those four columns refer to. There is undoubtedly a slicker way of doing this,
but this’ll do for now.

This all isn’t especially intuitive, so let’s see whether we can plot the survival
curves. The obvious idea looks like Figure 14.4. It has four survival curves all
right, but we can’t tell them apart! So we have to try again. Plotting a survfit

object allows you to tinker with the line type and colour of the survival curves,
so we’ll take advantage of that to get a better plot.

The process is shown in Figure 14.5. First we remind ourselves of how we made
the dance.new data frame, since we’re going to mimic that for the colours and
line types. My plan is to use colours to distinguish the treatments, and line
types to distinguish the ages. So first I set up the colours: red is going to be
for no-treatment, and blue for treatment. A dashed line is going to be for age

410 CHAPTER 14. SURVIVAL ANALYSIS

> dance.new=expand.grid(Treatment=c(0,1),Age=c(20,40))

> colours=c("red","blue")

> line.types=c("dashed","solid")

> draw.new=expand.grid(colour=colours,linetype=line.types,stringsAsFactors=F)

> cbind(dance.new,draw.new)

Treatment Age colour linetype

1 0 20 red dashed

2 1 20 blue dashed

3 0 40 red solid

4 1 40 blue solid

> plot(s,col=draw.new$colour,lty=draw.new$linetype)

> legend(x=10.1,y=1.04,legend=c(20,40),title="Age",lty=line.types)

> legend(x=10.1,y=0.83,legend=0:1,title="Treatment",fill=colours)

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Age

20
40

Treatment

0
1

Figure 14.5: Better plot of survfit object

14.3. EXAMPLE 2: LUNG CANCER 411

Figure 14.6: Lung cancer data

20, and a solid line for age 40. Now I set up another expand.grid to mimic the
one that I used to make dance.new: colour where I had treatment, line type
where I had age. Note that expand.grid, like read.csv, turns text strings into
factors by default, and we don’t want that here, so I turn it off. (The line types
and colours have to be text strings when we eventually feed them into plot.)
Then I list out dance.new and draw.new side by side to make sure I have the
correspondence right. I do.

Finally, I actually draw the plot, setting col to the colours I carefully set up
and lty to the line types. Breathing a large sigh of relief (and yes, I didn’t get
this right the first time either), we see the plot at the bottom of Figure 14.5. I
added two legends, one for treatment and one for age, so that it is clear what the
line types and colours mean. An alternative way to do the treatment (colour)
legend is

legend(x=10.5,y=0.8,legend=0:1,title="Treatment",pch="+",col=colours)

which displays the different coloured crosses. I explain at the end of Section 14.3
how the x and y arguments to legend compare with something like topright.

As time (the horizontal scale) passes, the predicted survival probability drops
from 1 (top left) towards zero (bottom right). A survival curve that stays higher
longer is better, so treatment is better than not (the blue curves are to the right
of the same-line-type red ones) and being older is better than being younger
(the solid curves are to the right of the same-colour dashed ones). This plot is
much the easiest way to see what has what kind of effect on survival.

412 CHAPTER 14. SURVIVAL ANALYSIS

14.3 Example 2: lung cancer

Here is a rather more realistic example of survival data. When you load in
an R package, you also tend to get data sets to illustrate the functions in the
package. One such is lung. This is a data set measuring survival in patients with
advanced lung cancer. Along with survival, a number of “performance scores”
are included, which measure how well patients can perform daily activities.
Sometimes a high score is good, but sometimes it is bad! The list of variables
is shown in Figure 14.6, which comes directly from the help file for the data set
(just type ?lung).

Figure 14.7 shows some of the data, the creation of our response variable (status
2 is “dead”, the event of interest) and the result of fitting a proportional hazards
model to all the variables (except inst, which I think I forgot). The summary
shows that something is definitely predicting survival time (the three tests at
the bottom of the output). As to what is, sex and ph.ecog definitely are, age,
pat.karno and meal.cal are definitely not, and the others are in between. So
let’s take out the three variables that are definitely not significant, and try again.
(I’m skipping some steps that you would definitely want to carry out here, like
checking residuals, proportionality of hazards and so on.)

Our second model is shown in Figure 14.8. The summary shows that those
variables we weren’t sure about are not significant after all, so they can come
out too. This leaves only sex and ph.ecog, which are both strongly significant,
as shown in Figure 14.9.

We seem to have reached a good model. So now we can make a plot of the
predicted survival curves. The last line shows that even though ph.ecog scores
can theoretically go up to 5, they only went up to 3 in our data set (and there
was only one person at that). So we need four colours to represent the possible
ph.ecog scores, and two line types to represent sexes. (The line types can be
hard to distinguish, so I’d rather use four different colours than four different
line types.)

The process is shown in Figure 14.10. There is a lot to it, but we can take it one
step at a time. We need four colours to represent ph.ecog, so we’ll set them
up as blue, red, green and black. Also, we need two line types for sex, so we’ll
make them solid and dashed. Now we use expand.grid twice, once to set up
the sexes and ph.ecog values for prediction, and then something exactly the
same but with line.types for sex and colours for ph.ecog. Then I list them
out side by side for checking. Everything matches up where it should.

Now I run survfit to get the predicted survival curves, using our lung.new

data frame to predict from. Then I plot it, using our carefully organized colours
and line types. The last two steps are to make legends explicating the colours
and line types. You can use something like topright to position the legend,

14.3. EXAMPLE 2: LUNG CANCER 413

> head(lung)

inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss

1 3 306 2 74 1 1 90 100 1175 NA

2 3 455 2 68 1 0 90 90 1225 15

3 3 1010 1 56 1 0 90 90 NA 15

4 5 210 2 57 1 1 90 60 1150 11

5 1 883 2 60 1 0 100 90 NA 0

6 12 1022 1 74 1 1 50 80 513 0

> attach(lung)

> resp=Surv(time,status==2)

> lung.1=coxph(resp~age+sex+ph.ecog+ph.karno+pat.karno+meal.cal+wt.loss)

> summary(lung.1)

Call:

coxph(formula = resp ~ age + sex + ph.ecog + ph.karno + pat.karno +

meal.cal + wt.loss)

n= 168, number of events= 121

(60 observations deleted due to missingness)

coef exp(coef) se(coef) z Pr(>|z|)

age 1.065e-02 1.011e+00 1.161e-02 0.917 0.35906

sex -5.509e-01 5.765e-01 2.008e-01 -2.743 0.00609 **

ph.ecog 7.342e-01 2.084e+00 2.233e-01 3.288 0.00101 **

ph.karno 2.246e-02 1.023e+00 1.124e-02 1.998 0.04574 *

pat.karno -1.242e-02 9.877e-01 8.054e-03 -1.542 0.12316

meal.cal 3.329e-05 1.000e+00 2.595e-04 0.128 0.89791

wt.loss -1.433e-02 9.858e-01 7.771e-03 -1.844 0.06518 .

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

exp(coef) exp(-coef) lower .95 upper .95

age 1.0107 0.9894 0.9880 1.0340

sex 0.5765 1.7347 0.3889 0.8545

ph.ecog 2.0838 0.4799 1.3452 3.2277

ph.karno 1.0227 0.9778 1.0004 1.0455

pat.karno 0.9877 1.0125 0.9722 1.0034

meal.cal 1.0000 1.0000 0.9995 1.0005

wt.loss 0.9858 1.0144 0.9709 1.0009

Concordance= 0.651 (se = 0.031)

Rsquare= 0.155 (max possible= 0.998)

Likelihood ratio test= 28.33 on 7 df, p=0.0001918

Wald test = 27.58 on 7 df, p=0.0002616

Score (logrank) test = 28.41 on 7 df, p=0.0001849

Figure 14.7: The data and model 1

414 CHAPTER 14. SURVIVAL ANALYSIS

> lung.2=coxph(resp~sex+ph.ecog+ph.karno+wt.loss)

> summary(lung.2)

Call:

coxph(formula = resp ~ sex + ph.ecog + ph.karno + wt.loss)

n= 213, number of events= 151

(15 observations deleted due to missingness)

coef exp(coef) se(coef) z Pr(>|z|)

sex -0.623193 0.536229 0.176389 -3.533 0.000411 ***

ph.ecog 0.753428 2.124270 0.194168 3.880 0.000104 ***

ph.karno 0.013814 1.013910 0.009908 1.394 0.163241

wt.loss -0.009008 0.991032 0.006511 -1.383 0.166516

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

exp(coef) exp(-coef) lower .95 upper .95

sex 0.5362 1.8649 0.3795 0.7577

ph.ecog 2.1243 0.4707 1.4519 3.1080

ph.karno 1.0139 0.9863 0.9944 1.0338

wt.loss 0.9910 1.0090 0.9785 1.0038

Concordance= 0.64 (se = 0.027)

Rsquare= 0.136 (max possible= 0.998)

Likelihood ratio test= 31.06 on 4 df, p=2.97e-06

Wald test = 30.6 on 4 df, p=3.701e-06

Score (logrank) test = 30.99 on 4 df, p=3.083e-06

Figure 14.8: Model 2

14.3. EXAMPLE 2: LUNG CANCER 415

> lung.3=coxph(resp~sex+ph.ecog)

> summary(lung.3)

Call:

coxph(formula = resp ~ sex + ph.ecog)

n= 227, number of events= 164

(1 observation deleted due to missingness)

coef exp(coef) se(coef) z Pr(>|z|)

sex -0.5530 0.5752 0.1676 -3.300 0.000967 ***

ph.ecog 0.4875 1.6282 0.1122 4.344 1.4e-05 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

exp(coef) exp(-coef) lower .95 upper .95

sex 0.5752 1.7384 0.4142 0.7989

ph.ecog 1.6282 0.6142 1.3067 2.0288

Concordance= 0.642 (se = 0.026)

Rsquare= 0.12 (max possible= 0.999)

Likelihood ratio test= 29.05 on 2 df, p=4.91e-07

Wald test = 28.96 on 2 df, p=5.145e-07

Score (logrank) test = 29.41 on 2 df, p=4.104e-07

> table(ph.ecog)

ph.ecog

0 1 2 3

63 113 50 1

Figure 14.9: Model 3

416 CHAPTER 14. SURVIVAL ANALYSIS

> colours=c("blue","red","green","black")

> line.types=c("solid","dashed")

> lung.new=expand.grid(sex=c(1,2),ph.ecog=0:3)

> plot.new=expand.grid(lty=line.types,col=colours,stringsAsFactors=F)

> cbind(lung.new,plot.new)

sex ph.ecog lty col

1 1 0 solid blue

2 2 0 dashed blue

3 1 1 solid red

4 2 1 dashed red

5 1 2 solid green

6 2 2 dashed green

7 1 3 solid black

8 2 3 dashed black

> s=survfit(lung.3,newdata=lung.new)

> plot(s,col=plot.new$col,lty=plot.new$lty)

> legend(x=900,y=0.8,legend=0:3,fill=colours,title="ph.ecog")

> legend(x=900,y=1,legend=1:2,lty=line.types,title="Sex")

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ph.ecog

0
1
2
3

Sex

1
2

Figure 14.10: Plotting the survival curves

14.3. EXAMPLE 2: LUNG CANCER 417

or you can use x and y coordinates on the plot instead. Since I have two
legends, I’m using coordinates so that they don’t overwrite each other. I had
to experiment a bit to get the locations right. After the coordinates for where
to place the legend go the quantities to put in the legend (the sex one could be
c("Male","Female") instead of 1:2), then what symbols to put in the legend,
fill for coloured blobs, lty for line types, and finally a title to distinguish the
legends from each other.

Another way to do a legend is to list out all eight combinations of colour and
line type. But I haven’t figured that out yet.

Figure 14.10 is the typical look of a set of survival curves. In this case, you
can compare the two curves of the same colour to see that females (dashed)
have better survival than males (solid), and comparing curves of the same type
you can see that predicted survival gets progressively worse as ph.ecog score
increases. This is not surprising since a lower score is better.

Something curious: the difference between males and females is almost exactly
equivalent in survival to one point on the ph.ecog scale. For instance, the
females with ph.ecog score of 2 (green dashed) are almost equivalent in survival
to males with an ph.ecog score of 1 (red solid). I think this is because the
coefficients in Figure 14.9 for sex and ph.ecog are almost equal in size.

418 CHAPTER 14. SURVIVAL ANALYSIS

Chapter 15

Multivariate ANOVA and
repeated measures

15.1 Multivariate analysis of variance

The ANOVA models we have seen so far have one key thing in common: they
have a single response variable. Consider, however, the data shown in Fig-
ure 15.1. Both seed yield and seed weight are responses to the amount of
fertilizer applied to each of the 8 plants.

One thing we can try is to do one ANOVA for each response, as shown in
Figure 15.2. In our case we find that neither variable is significantly different
between the two fertilizer types.

But this is not the end of the story. If we plot yield against weight, with the
points labelled according to whether they were high or low fertilizer, something
interesting appears. See Figure 15.3. The high-fertilizer plants, in black, are all
at the top right, while the low-fertilizer plants, in red, are relatively speaking
at the bottom left. This seems like a difference between high and low fertilizer
that should be detectable by a test.

If you just look at yield, the highest yield (38) is a high-fertilizer and the lowest
two yields (32 and 29) are low-fertilizer, but the ones in the middle are mixed
up. Likewise, if you look just at weight, the lowest two (10 and 11) are low
fertilizer, but the ones in the middle are mixed up. So the problem is that
looking at either variable individually doesn’t tell the whole story. You have to
look at them in combination to explain what’s going on. The story of the plot
seems to be “high yield and high weight both go with high fertilizer”.

419

420CHAPTER 15. MULTIVARIATE ANOVAANDREPEATEDMEASURES

> hilo=read.table("manova1.txt",header=T)

> hilo

fertilizer yield weight

1 low 34 10

2 low 29 14

3 low 35 11

4 low 32 13

5 high 33 14

6 high 38 12

7 high 34 13

8 high 35 14

Figure 15.1: Data for MANOVA

> attach(hilo)

> hilo.y=lm(yield~fertilizer)

> anova(hilo.y)

Analysis of Variance Table

Response: yield

Df Sum Sq Mean Sq F value Pr(>F)

fertilizer 1 12.5 12.5000 2.1429 0.1936

Residuals 6 35.0 5.8333

> hilo.w=lm(weight~fertilizer)

> anova(hilo.w)

Analysis of Variance Table

Response: weight

Df Sum Sq Mean Sq F value Pr(>F)

fertilizer 1 3.125 3.125 1.4706 0.2708

Residuals 6 12.750 2.125

Figure 15.2: ANOVAs for seed yield and weight data

15.1. MULTIVARIATE ANALYSIS OF VARIANCE 421

> plot(yield,weight,col=fertilizer)

> lv=levels(fertilizer)

> legend("topright",legend=lv,fill=c(1,2))

●

●

●

●

●

●

●

●

30 32 34 36 38

10
11

12
13

14

yield

w
ei

gh
t

high
low

Figure 15.3: Plot of yield and weight, labelled by fertilizer

422CHAPTER 15. MULTIVARIATE ANOVAANDREPEATEDMEASURES

> response=cbind(yield,weight)

> hilo.1=manova(response~fertilizer)

> summary(hilo.1)

Df Pillai approx F num Df den Df Pr(>F)

fertilizer 1 0.80154 10.097 2 5 0.01755 *

Residuals 6

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Figure 15.4: MANOVA of yield and weight data

> library(car)

> hilo.2.lm=lm(response~fertilizer)

> hilo.2=Manova(hilo.2.lm)

> hilo.2

Type II MANOVA Tests: Pillai test statistic

Df test stat approx F num Df den Df Pr(>F)

fertilizer 1 0.80154 10.097 2 5 0.01755 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Figure 15.5: MANOVA another way

The appropriate analysis is shown in Figure 15.4. This is a multivariate analysis
of variance or MANOVA, and it asks “does fertilizer amount influence either
response singly, or a combination of them?” Since the P-value is small, the
answer is “yes”, and the explanation is what we described as “the story of the
plot” above.

A significant “Pillai” value, as in the example above, means the same kind of
thing as the F test in an ordinary ANOVA: the factor (here fertilizer) has
some kind of effect on the responses.

Another way to do the MANOVA is to use the capital-M Manova function
from the car package. This is shown in Figure 15.5. There’s a little more
setup involved here: first you run your multivariate response through lm, and
then you feed that fitted model object into Manova. Just listing the result
gives you the same thing as summary does in Figure 15.4. You could also run
summary(hilo.2), which gives you more detail, in this case four different tests
with identical P-values. (I’m showing you this variant because that’s what we’ll
use for repeated measures later.)

Now, to figure out what kind of effect fertilizer has on the responses, we no

15.1. MULTIVARIATE ANALYSIS OF VARIANCE 423

> peanuts=read.table("peanuts.txt",header=T)

> attach(peanuts)

> loc.fac=factor(location)

> var.fac=factor(variety)

> response=cbind(y,smk,w)

> peanuts.1=lm(response~loc.fac*var.fac)

> peanuts.2=Manova(peanuts.1)

> peanuts.2

Type II MANOVA Tests: Pillai test statistic

Df test stat approx F num Df den Df Pr(>F)

loc.fac 1 0.89348 11.1843 3 4 0.020502 *

var.fac 2 1.70911 9.7924 6 10 0.001056 **

loc.fac:var.fac 2 1.29086 3.0339 6 10 0.058708 .

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Figure 15.6: MANOVA of peanut data

longer have anything like Tukey. With two responses, we were able to draw a
plot (labelling the points by group), which indicated why the MANOVA was
significant. With, say, three responses, we would not be able to draw a graph.
A useful technique is discriminant analysis (see Chapter 13). This answers the
question of “what combination of responses best separates the groups”, thinking
about how you might guess which group an observation belongs to based on the
values for its response variables. (Yes, this is kind of backwards.)

A multivariate analysis of variance can have any number of response variables,
which might be (and probably are, in practice) correlated with each other. On
the right of the squiggle can be any combination of main effects and interactions,
as you would find in any ANOVA. You get a test for each main effect and
interaction on the right.

As an example of that, consider a study of peanuts. Three different varieties
of peanuts (labelled, mysteriously, 5, 6 and 8) were planted in two different
locations. Three response variables were measured, which we’ll call y, smk and
w. The analysis is shown in Figure 15.6.

After reading in the data, we note that location and variety are both num-
bers, so we create the variables loc.fac and var.fac which are those numbers
as factors (so that R doesn’t think those numbers are meaningful as numbers).
Then we create our response matrix by gluing together the three columns of re-
sponse variables. I’m using Manova this time (to warm us up for Section 15.2),
so I do the two-step process, first making an lm which actually contains our
model (with location and variety, and their interaction, as factors on the right,

424CHAPTER 15. MULTIVARIATE ANOVAANDREPEATEDMEASURES

and the combined response on the left). Then we get the multivariate tests we
want by running Manova.

The MANOVA indicates that the interaction is not quite significant (P-value
0.058), but the main effects both are. The next step might be to fit a model
without the interaction, or, since we have only 12 observations, to collect some
more data. Anyway, we might think of locations as a blocking variable, so that
the significance of fac.loc is not a surprise. So then the principal interest is
in how the varieties are different. One simple idea is the individual ANOVAs of
the three responses, although as we saw with the seed yield and weight example,
this can be too simple-minded (when what makes a difference is a combination
of the responses). Nonetheless, these come almost for free from the MANOVA,
so it would be silly not to look at them (Figure 15.7). Bearing in mind that we
are looking for variety differences, all three responses seem to have something
to say, with smk and w having the smallest P-values. (After we adjust, say by
Bonferroni or Holm, for having looked at three P-values at once, the largest one,
0.041, might not even be significant.) The apparently significant interactions
are a mild concern also, but I’m going to ignore that.

15.2 Repeated measures

Another kind of experiment that can be handled by MANOVA is the “repeated
measures” design. This happens when all your response variables are the same
thing measured under different conditions. Typically the different conditions
are different times. This requires slightly different handling than a regular
MANOVA.

Let’s exemplify. Imagine you have three groups of people: some politicians, some
administrators and some bellydancers (yes, really). They each try a number of
different activities, and rate each one out of 10. The question is, do people
with different jobs tend to prefer different activities? The data are shown in
Figure 15.8.

Figure 15.9 shows the setup. We need to use Manova for this, so the first things
to do are to set up the response matrix by gluing together the four responses
(activity scores). Then we run lm, using our combined response as the response,
and the job as explanatory (it is already a factor).

Now we have to tell Manova that those four responses are all activity scores.
We’ll use the generic name activity for this (often time is what links the
responses together, if they are measurements taken at different times). First,
we have to make a list of the activities, which is often most easily done by pulling
off the column names of the response matrix (which is what colnames does).
Also, we need to make a data frame of the activities, rather as you would do for
predict.

15.2. REPEATED MEASURES 425

> summary.aov(peanuts.1)

Response y :

Df Sum Sq Mean Sq F value Pr(>F)

loc.fac 1 0.701 0.701 0.0404 0.84743

var.fac 2 196.115 98.058 5.6460 0.04177 *

loc.fac:var.fac 2 205.102 102.551 5.9048 0.03824 *

Residuals 6 104.205 17.367

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Response smk :

Df Sum Sq Mean Sq F value Pr(>F)

loc.fac 1 162.07 162.07 2.7617 0.14761

var.fac 2 1089.02 544.51 9.2786 0.01459 *

loc.fac:var.fac 2 780.69 390.35 6.6517 0.03003 *

Residuals 6 352.11 58.68

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Response w :

Df Sum Sq Mean Sq F value Pr(>F)

loc.fac 1 72.521 72.521 4.5882 0.07594 .

var.fac 2 284.102 142.051 8.9872 0.01567 *

loc.fac:var.fac 2 85.952 42.976 2.7190 0.14435

Residuals 6 94.835 15.806

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> smk.aov=aov(smk~loc.fac*var.fac)

> smk.tukey=TukeyHSD(smk.aov,"var.fac")

> smk.tukey

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov.default(formula = smk ~ loc.fac * var.fac)

$var.fac

diff lwr upr p adj

6-5 17.325 0.7046688 33.94533 0.0426394

8-5 22.200 5.5796688 38.82033 0.0150114

8-6 4.875 -11.7453312 21.49533 0.6599956

Figure 15.7: Individual ANOVAs of peanut data

426CHAPTER 15. MULTIVARIATE ANOVAANDREPEATEDMEASURES

> active=read.table("profile.txt",header=T)

> active

job reading dance tv ski

1 bellydancer 7 10 6 5

2 bellydancer 8 9 5 7

3 bellydancer 5 10 5 8

4 bellydancer 6 10 6 8

5 bellydancer 7 8 7 9

6 politician 4 4 4 4

7 politician 6 4 5 3

8 politician 5 5 5 6

9 politician 6 6 6 7

10 politician 4 5 6 5

11 admin 3 1 1 2

12 admin 5 3 1 5

13 admin 4 2 2 5

14 admin 7 1 2 4

15 admin 6 3 3 3

Figure 15.8: Activities data

> attach(active)

> response=cbind(reading,dance,tv,ski)

> active.1=lm(response~job)

> activity=colnames(response)

> activity.df=data.frame(activity)

Figure 15.9: Setting up the repeated measures analysis

> active.2=Manova(active.1,idata=activity.df,idesign=~activity)

> active.2

Type II Repeated Measures MANOVA Tests: Pillai test statistic

Df test stat approx F num Df den Df Pr(>F)

(Intercept) 1 0.98545 812.60 1 12 2.156e-12 ***

job 2 0.88035 44.14 2 12 2.935e-06 ***

activity 1 0.72086 8.61 3 10 0.004017 **

job:activity 2 1.43341 9.28 6 22 4.035e-05 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Figure 15.10: Repeated measures by MANOVA for the activities data

15.2. REPEATED MEASURES 427

job reading dance tv ski

1 bellydancer 7 10 6 5

6 politician 4 7 3 2

11 admin 3 6 2 1

Figure 15.11: Interaction not significant

Now to put that preparation to work. See Figure 15.10. When you have a
repeated measures experiment, Manova expects two extra things to be fed to it.
The first is the data frame of response variable names, here activity.df, which
goes with idata=. The second, idesign, specifies the “within-subject design”.
We don’t have anything complicated beyond activity, so what you do is to
specify a “one-sided model formula”, which is a squiggle followed by the variable
containing the list of repeated-measures variables (here activity). Don’t forget
the squiggle, or else you and R will get very confused.

The output is rather more complicated than before, because not only do we
have a test for job (that is, whether the activity scores, as a foursome, depend
on job), but also a test for activity and an interaction between activity and
job. The test for activity is asking whether there is a trend over activities,
regardless of job, and the interaction is asking whether that trend is different
for the different jobs. As ever, since the interaction is significant, that’s where
we stop. There is definitely a trend of scores over activities, and that trend is
different for each job.

If you go back and look at the original data in Figure 15.8, you’ll see that this
hardly comes as a surprise. The bellydancers love dancing, more than TV-
watching, while the people in the other jobs like dancing less, and about the
same as TV-watching. The administrators don’t care for anything much, except
perhaps reading. Notice that the three jobs have about the same attitudes
towards reading, but are very different on everything else.

These test results are rather confusing, so let me see if I can make up some data
where things are not significant, so we can see why.

Figure 15.11 shows what would happen if the job:activity interaction were
not significant. Although the scores differ by jobs (so you would expect to see
a job effect), the pattern is always the same: dancing is highest and skiing is
lowest. Also, the politicians are consistently 3 points lower than the bellydancers
(and the administrators one point lower than that), regardless of activity.

Figure 15.12 shows what would happen if there were no activity effect. The
scores on all the activities are the same for each activity (if not for each job, so
there is still a job effect).

Lastly, Figure 15.13 shows what would happen if job were not significant (but

428CHAPTER 15. MULTIVARIATE ANOVAANDREPEATEDMEASURES

job reading dance tv ski

1 bellydancer 7 7 7 7

6 politician 4 4 4 4

11 admin 2 2 2 2

Figure 15.12: Activity not significant

job reading dance tv ski

1 bellydancer 7 8 5 3

6 politician 7 8 5 3

11 admin 7 8 5 3

Figure 15.13: Job not significant

activity still is significant). Each job has the same score on a particular
activity, but the activities differ one from another.

Let’s have a look at another example. 8 dogs are randomized to one of two
different drugs. The response variables are the log of the blood histamine con-
centration of the dogs 0, 1, 3 and 5 minutes after being given the drug. Does
the drug affect the histamine concentration, and how does this effect play out
over time?

Figure 15.14 shows the data. We have four measurements of the same thing at
different times for each dog, so this is genuine repeated measures over time. So
we’ll tackle this via MANOVA as in the last example. See figure 15.15.

The process is: create a response variable matrix by gluing together the (here
four) response variables. Then run that through lm, the four-variable response
possibly depending on drug. Then we create the stuff for the Manova that
describes the repeated measures: make a list of the four responses and call
them collectively time. Make that into a data frame. Feed the lm model object
into Manova, along with our data frame of variable names (in idata=) and our
“within-subjects design” idesign=, not forgetting the squiggle since this is a
one-sided model formula.

The results are at the bottom of Figure 15.15. The drug by time interaction is
significant, so the effect of the drug on the histamine level depends on time, and
vice versa. We should try to understand the interaction before we think about
analyzing the main effects.

The nicest way to understand an interaction is via interaction.plot. Unfor-
tunately, that requires data in “long” format (with one observation per line, and
thus 32 lines), but we have “wide” format: as in Figure 15.14, there are only 8
lines but four data values per line.

15.2. REPEATED MEASURES 429

> dogs=read.table("dogs.txt",header=T)

> dogs

drug x lh0 lh1 lh3 lh5

1 Morphine N -3.22 -1.61 -2.30 -2.53

2 Morphine N -3.91 -2.81 -3.91 -3.91

3 Morphine N -2.66 0.34 -0.73 -1.43

4 Morphine N -1.77 -0.56 -1.05 -1.43

5 Trimethaphan N -3.51 -0.48 -1.17 -1.51

6 Trimethaphan N -3.51 0.05 -0.31 -0.51

7 Trimethaphan N -2.66 -0.19 0.07 -0.22

8 Trimethaphan N -2.41 1.14 0.72 0.21

> attach(dogs)

Figure 15.14: Dog histamine data

> response=cbind(lh0,lh1,lh3,lh5)

> dogs.lm=lm(response~drug)

> times=colnames(response)

> times.df=data.frame(times)

> dogs.manova=Manova(dogs.lm,idata=times.df,idesign=~times)

> dogs.manova

Type II Repeated Measures MANOVA Tests: Pillai test statistic

Df test stat approx F num Df den Df Pr(>F)

(Intercept) 1 0.76347 19.3664 1 6 0.004565 **

drug 1 0.34263 3.1272 1 6 0.127406

times 1 0.94988 25.2690 3 4 0.004631 **

drug:times 1 0.89476 11.3362 3 4 0.020023 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Figure 15.15: MANOVA analysis of dog data

430CHAPTER 15. MULTIVARIATE ANOVAANDREPEATEDMEASURES

> detach(dogs)

> d2=reshape(dogs,varying=c("lh0","lh1","lh3","lh5"),sep="",direction="long")

> head(d2,n=12)

drug x time lh id

1.0 Morphine N 0 -3.22 1

2.0 Morphine N 0 -3.91 2

3.0 Morphine N 0 -2.66 3

4.0 Morphine N 0 -1.77 4

5.0 Trimethaphan N 0 -3.51 5

6.0 Trimethaphan N 0 -3.51 6

7.0 Trimethaphan N 0 -2.66 7

8.0 Trimethaphan N 0 -2.41 8

1.1 Morphine N 1 -1.61 1

2.1 Morphine N 1 -2.81 2

3.1 Morphine N 1 0.34 3

4.1 Morphine N 1 -0.56 4

Figure 15.16: Reshape on dogs data

There is, fortunately, a function called reshape that will turn data from one
format into the other. The process is shown in Figure 15.16. reshape needs
three (or more) things: a data frame, a list of variables that are repeated mea-
surements of something, and which shape of data you’d like to get.

First, we detach the dogs data frame, since we’re going to be creating a new
one and attaching it, and we don’t want to get variable names confused. Then
comes the actual reshape: first the data frame, then varying is a list of variables
that are measurements of the same thing under different circumstances (here,
the log-histamine measurements at the four different times) that are going to
be combined into one. Last comes direction, which is the shape of data frame
you want to get: we want “long”, since we had “wide”. Now, if your repeated
measurements have the right kind of names, this is almost all you need. Our
responses are lh followed by a number (the number representing the time),
separated by nothing. Thus, if we tell R that our separator is nothing, by
sep="", we’ll get the right thing. We might have named our variables lh.0,
lh.1 etc., in which case sep="." would have been the right thing.

Finally, the first 12 lines of the “long” data frame are shown. See how all the
log-histamine values have been collected into one column lh, and a new column
time has been created with the values 0, 1, 3 and 5. We also have a column id

saying which dog each measurement came from. Thus the line labelled 2.1 is
dog number 2 (id) who took Morphine, measured at time 1, with a log-histamine
of −2.81.

15.2. REPEATED MEASURES 431

> attach(d2)

The following object(s) are masked from 'package:datasets':

lh

> interaction.plot(time,drug,lh)

−
3.

0
−

2.
5

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

time

m
ea

n
of

 l
h

0 1 3 5

 drug

Trimethaphan
Morphine

Figure 15.17: Interaction plot for dogs data

432CHAPTER 15. MULTIVARIATE ANOVAANDREPEATEDMEASURES

> detach(d2)

> attach(dogs)

> response=cbind(lh1,lh3,lh5)

> dogs.lm=lm(response~drug)

> times=colnames(response)

> times.df=data.frame(times)

> dogs.manova=Manova(dogs.lm,idata=times.df,idesign=~times)

> dogs.manova

Type II Repeated Measures MANOVA Tests: Pillai test statistic

Df test stat approx F num Df den Df Pr(>F)

(Intercept) 1 0.54582 7.2106 1 6 0.036281 *

drug 1 0.44551 4.8207 1 6 0.070527 .

times 1 0.85429 14.6569 2 5 0.008105 **

drug:times 1 0.43553 1.9289 2 5 0.239390

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Figure 15.18: Repeated measures analysis ignoring time 0

This format is ideal for feeding into interaction.plot. In fact, I was surprised
to discover, after struggling with reshape, that getting an interaction plot could
now hardly be simpler, as shown in Figure 15.17. I put time first, since we are
used to seeing time on the horizontal scale. The two traces are for the two
different drugs. There is a similar pattern, in that for both drugs. lh starts low,
increases sharply to time 1, and then decreases slowly after that. But the lines
are not parallel, since the increase from time 0 to time 1 is much greater for
trimethaphan. That is undoubtedly the reason for the significant interaction.

The next step is blatant“cherrypicking”, but I’m going to do it anyway. Suppose
we ignore the time 0 measurements. Then the interaction plot would contain
two basically parallel lines, and the significant interaction should go away. We’d
also expect to see a significant drug effect, and maybe a significant time effect
as well.

The analysis is presented, without comment, in Figure 15.18. There’s nothing
new here. The analysis shows that the interaction is indeed nonsignificant, the
time effect is significant, and the drug effect is nearly significant. (There’s a
lot of variability between dogs and within drugs, which doesn’t show up in the
interaction plot.)

I skimmed over part of reshape above, because the dogs data frame was in good
shape to be turned into long format. Figure 15.19 shows how you might turn
the jobs and leisure activities data frame into long format. The new things are:
v.names, which gives a name for the column to contain the combined repeated

15.2. REPEATED MEASURES 433

> detach(dogs)

> activity.list=c("reading","dance","tv","ski")

> active.long=reshape(active,varying=activity.list,v.names="score",

+ timevar="activity",direction="long")

> head(active.long,n=20)

job activity score id

1.1 bellydancer 1 7 1

2.1 bellydancer 1 8 2

3.1 bellydancer 1 5 3

4.1 bellydancer 1 6 4

5.1 bellydancer 1 7 5

6.1 politician 1 4 6

7.1 politician 1 6 7

8.1 politician 1 5 8

9.1 politician 1 6 9

10.1 politician 1 4 10

11.1 admin 1 3 11

12.1 admin 1 5 12

13.1 admin 1 4 13

14.1 admin 1 7 14

15.1 admin 1 6 15

1.2 bellydancer 2 10 1

2.2 bellydancer 2 9 2

3.2 bellydancer 2 10 3

4.2 bellydancer 2 10 4

5.2 bellydancer 2 8 5

Figure 15.19: Turning jobs data frame into long format

responses (scores, over the different activities) and timevar, which is a name
for what is being repeated over (this defaults to time, but here is activities).
Now, if you wish, you can make an interaction plot here too. The interaction
was significant, so the lines should not be parallel. This is, as they say, left as
an exercise for the reader.

434CHAPTER 15. MULTIVARIATE ANOVAANDREPEATEDMEASURES

Chapter 16

Principal components

435

436 CHAPTER 16. PRINCIPAL COMPONENTS

Chapter 17

Factor analysis

437

438 CHAPTER 17. FACTOR ANALYSIS

Chapter 18

Time series

439

440 CHAPTER 18. TIME SERIES

Chapter 19

Spatial data and kriging

441

