
There are many “standard” tests like the t-tests and analyses of variance that are commonly used. They 
rest on assumptions like normality, which can be hard to assess: for example, if you have small 
samples, how do you assess that the population(s) they came from are normal, when all you have to go 
on is your small samples? Also, the various kinds of analysis of variance require equal spreads of the 
observations within each group, and it is hard to be sure whether unequal sample variances mean that 
the population variances could be equal or not.

Historically, there was also a desire for tests where the calculation was easy (in the days before 
computers), so various so-called “non-parametric” tests were devised, which carried fewer assumptions 
than the standard tests. If the data really were normal, these tests would be less powerful than the 
standard ones, but if the data were sufficiently non-normal to make the standard tests invalid, the non-
parametric tests would still be good. Many of these tests, instead of using the original data, rank the 
data values first in some way, then use the ranks, which obviously reduces the influence of outliers, and 
usually makes the data distributions less non-normal.

In many situations, there is a non-parametric test that corresponds to the standard test, as described 
below:

Situation Standard test Non-parametric test
One sample, matched pairs One-sample t-test Sign test, signed rank test
Two independent samples Two-sample t-test Rank sum test
Two samples, comparing spread F-test Siegel-Tukey test
One-way ANOVA F-test Kruskal-Wallis test, median test
Randomized block design F-test Friedman test
Ordered alternative in ANOVA - Terpstra-Jonckheere test
Correlation Pearson correlation Spearman, Kendall correlation
Regression Regression Iman-Conover regression

Also, these are all tests, whereas we might be looking for confidence intervals. There is a standard 
procedure that can obtain a confidence interval from a test result, which can be applied to non-
parametric tests as well.

Since we are using SAS, simplicity of computation is not an issue for us, but the easy-to-compute (by 
hand) tests often perform surprisingly well. Where possible, we will compare the standard test with the 
non-parametric one.



To start with single-sample tests for location: here are some data on time spent by orders in the 
administration department of a company (in working hours). Interest is in how the “typical” time 
compares to 8 hours.

16.5 4.3 10.1 10.7 14.0 7.9 7.5 8.3 5.7 10.3 9.3 10.2 9.2 7.8 11.9 11.8 16.1 9.4

SAS's PROC UNIVARIATE does all of the one-sample tests, standard and non-parametric. We have to 
tell it that the null-hypothesis mean is 8, like this:

data admin;
  infile "admin.dat";
  input x @@;

proc univariate plot mu0=8;

The data values are all on one line, hence the @@. Looking at the plots first is probably helpful:

                         Stem Leaf                     #             Boxplot
                           16 15                       2                |
                           14 0                        1                |
                           12                                           |
                           10 123789                   6             +--+--+
                            8 3234                     4             *-----*
                            6 589                      3             +-----+
                            4 37                       2                |
                              ----+----+----+----+

                                          Normal Probability Plot
                         17+                                      *    *++++++
                           |                                    * ++++++
                           |                                ++++++
                         11+                         +**+**+**
                           |                   +**+**
                           |             +*++**
                          5+       *++++*
                            +----+----+----+----+----+----+----+----+----+----+
                                -2        -1         0        +1        +2

The data are mildly non-normal and seem skewed to the right, so maybe the median is a better measure 
of location than the mean. The sign test and signed-rank test are both testing the median, but the 
signed-rank test has the extra assumption that the distribution is symmetric, which is questionable here. 
The test results are:

                                    Tests for Location: Mu0=8

                         Test           -Statistic-    -----p Value------

                         Student's t    t  2.727938    Pr > |t|    0.0143
                         Sign           M         4    Pr >= |M|   0.0963
                         Signed Rank    S        55    Pr >= |S|   0.0142

The t-test and the signed-rank test both give significant results (very similar P-values), but we have 
doubts about both normality and symmetry, so maybe we should be looking at the non-significant sign 



test.

The sign test just looks at how many observations are above 8 (13) and below 8 (5), without 
considering how far above or below. The signed-rank test is essentially a t-test on the ranked data.

[The by-hand procedure: subtract the null-hypothesis mean from each observation, and rank the 
differences from smallest to largest without considering whether they are plus or minus. Then add up 
the ranks that correspond to the plusses or minuses, whichever is smaller.]

Matched-pair data (for example, before and after measurements on a number of subjects) are handled 
as above: in the DATA step, calculate the differences between the two measurements for each subject, 
and then test the null hypothesis that the mean (median) is zero for the differences.

Next, we have some data on the percentage of Japanese and British cars that break down in their first 
year (8 Japanese models and 12 British ones):

japan 3
japan 7
japan 15
japan 10
japan 4
japan 6
japan 4
japan 7
britain 19
britain 11
britain 36
britain 8
britain 25
britain 23
britain 38
britain 14
britain 17
britain 41
britain 25
britain 21

Are Japanese cars more reliable than British ones? The t-test is testing that the mean proportions are 
equal, but the test is ignoring that some of the British cars appear much less reliable than the rest 
(outliers). The rank sum test is based on this idea: if you pick a Japanese car and a British car at 
random, is it likely that the Japanese car's reliability will be better than the British one's (the answer 
appears to be “yes”).

SAS has to do the two tests in two different PROCs. SAS's name for the rank sum test is “Wilcoxon”:



data cars;
  infile "cars.dat";
  input type $ breakdowns;

proc ttest;
  class type;
  var breakdowns;

proc npar1way wilcoxon st;
   class type;
   var breakdowns;

(the ST thing I'll explain in a minute), with this output:

                                       The TTEST Procedure

                                      Variable:  breakdowns

          type            N        Mean     Std Dev     Std Err     Minimum     Maximum

          britain        12     23.1667     10.5816      3.0546      8.0000     41.0000
          japan           8      7.0000      3.9279      1.3887      3.0000     15.0000
          Diff (1-2)            16.1667      8.6270      3.9377

  type          Method               Mean       95% CL Mean        Std Dev      95% CL Std Dev

  britain                         23.1667     16.4435  29.8899     10.5816      7.4959  17.9662
  japan                            7.0000      3.7162  10.2838      3.9279      2.5970   7.9944
  Diff (1-2)    Pooled            16.1667      7.8939  24.4394      8.6270      6.5187  12.7579
  Diff (1-2)    Satterthwaite     16.1667      9.0150  23.3184

                   Method           Variances        DF    t Value    Pr > |t|

                   Pooled           Equal            18       4.11      0.0007
                   Satterthwaite    Unequal      15.009       4.82      0.0002

                                      Equality of Variances

                        Method      Num DF    Den DF    F Value    Pr > F

                        Folded F        11         7       7.26    0.0148

The equality of variances fails, so we should look at the Satterthwaite version of the test. The P-value is 
very small, so we'd reject the hypothesis that the means are equal.

                                      The NPAR1WAY Procedure

                       Wilcoxon Scores (Rank Sums) for Variable breakdowns
                                   Classified by Variable type

                                    Sum of      Expected       Std Dev          Mean
             type          N        Scores      Under H0      Under H0         Score
             ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
             japan         8          40.0          84.0     12.946855      5.000000
             britain      12         170.0         126.0     12.946855     14.166667

                               Average scores were used for ties.



                                    Wilcoxon Two-Sample Test

                                  Statistic             40.0000

                                  Normal Approximation
                                  Z                     -3.3599
                                  One-Sided Pr <  Z      0.0004
                                  Two-Sided Pr > |Z|     0.0008

                                  t Approximation
                                  One-Sided Pr <  Z      0.0016
                                  Two-Sided Pr > |Z|     0.0033

                            Z includes a continuity correction of 0.5.

                                       Kruskal-Wallis Test

                                  Chi-Square            11.5499
                                  DF                          1
                                  Pr > Chi-Square        0.0007

Compare the “sum of scores” with “expected under H0” to see that the Japanese figures are on average 
quite a bit lower than the British ones. All the approximations say that the P-value is very small, so the 
null is rejected again.

In PROC TTEST, SAS gives two-sided P-values. We were doing a one-sided test (are the Japanese cars 
more reliable?), so we check that the sample means were the correct way around (they were) and then 
divide the P-value given by SAS, 0.0002, by 2. In PROC NPAR1WAY, the one-sided P-values are 
given; they are both small.

[By hand: rank all the data, then sum up the ranks of the values that came from the first sample, or the 
second sample, whichever is smaller.]

The Kruskal-Wallis test is used for one-way ANOVA situations, but just as you can also do ANOVA 
when comparing only 2 means, so you can use Kruskal-Wallis in the same situation. It gives a similar 
P-value here.

As we just saw, PROC TTEST does a 2-sample test for spread based on the sample variances. This 
could be questionable if variances are not the thing to use: if you have outliers, or if your population 
distributions are not normal. There is a non-parametric equivalent, which might be better for our car 
data (we were concerned about outliers), called the Siegel-Tukey test, which PROC NPAR1WAY will 
also do. (That's what the ST was.) The output looks like the rank sum test; in fact, the Siegel-Tukey test 
is just like the rank-sum test except that instead of assigning ranks to data values up from the smallest, 
it does so from the highest and lowest to the middle, so that if the two samples of the same size have 
the same spread, their Siegel-Tukey rank sums will be the same. (If they are not the same size, their 
rank means will be the same if the spreads are the same.)



                                      The NPAR1WAY Procedure

                           Siegel-Tukey Scores for Variable breakdowns
                                   Classified by Variable type

                                    Sum of      Expected       Std Dev          Mean
             type          N        Scores      Under H0      Under H0         Score
             ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
             japan         8          74.0          84.0     12.868566      9.250000
             britain      12         136.0         126.0     12.868566     11.333333

                               Average scores were used for ties.

                                  Siegel-Tukey Two-Sample Test

                                  Statistic             74.0000
                                  Z                     -0.7382
                                  One-Sided Pr <  Z      0.2302
                                  Two-Sided Pr > |Z|     0.4604

                            Z includes a continuity correction of 0.5.

                                  Siegel-Tukey One-Way Analysis

                                  Chi-Square             0.6039
                                  DF                          1
                                  Pr > Chi-Square        0.4371

This test says that there is no evidence of a difference in spreads, in contrast to the F-test. This surprises 
me, because the British values are “obviously” more spread out, however you measure spread – for 
example, the interquartile ranges are 15 and 4.5, hardly equal.

PROC NPAR1WAY will also do standard and non-parametric one-way ANOVA. Another study of the 
reliability of cars, this time from 4 different countries, gave this:

britain 21
britain 33
britain 12
britain 28
britain 41
britain 39
britain 24
britain 29
britain 30
britain 19
britain 27
britain 38
britain 23
japan 9
japan 13
japan 6
japan 3
japan 5
japan 10
japan 4



germany 18
germany 35
germany 8
germany 17
germany 22
germany 20
germany 37
germany 11
italy 41
italy 41
italy 48
italy 34

The differences in location seem to be pretty obvious, but there are also differences in spread that we 
need to worry about: the British and German values seem more spread out than the others. We'll do a 
standard ANOVA as well as the Kruskal-Wallis test (called, confusingly, “wilcoxon” by PROC 
NPAR1WAY) and the Mood median test (called “median” in PROC NPAR1WAY; the “mood” option 
there is something else! Thus, this code:

data cars;
  infile "cars2.dat";
  input country $ percent;

proc npar1way anova wilcoxon median;
  var percent;
  class country;

produces this output:

                                      The NPAR1WAY Procedure

                            Analysis of Variance for Variable percent
                                 Classified by Variable country

                            country             N                Mean
                            ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                            britain            13           28.000000
                            japan               7            7.142857
                            germany             8           21.000000
                            italy               4           41.000000

               Source    DF    Sum of Squares    Mean Square     F Value    Pr > F
               ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
               Among      3       3410.017857    1136.672619     17.9523    <.0001
               Within    28       1772.857143      63.316327

                        Wilcoxon Scores (Rank Sums) for Variable percent
                                 Classified by Variable country

                                    Sum of      Expected       Std Dev          Mean
             country       N        Scores      Under H0      Under H0         Score
             ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
             britain      13         262.0        214.50     26.052870     20.153846
             japan         7          33.0        115.50     21.929368      4.714286
             germany       8         117.0        132.00     22.969826     14.625000
             italy         4         116.0         66.00     17.543494     29.000000



                               Average scores were used for ties.

                                       Kruskal-Wallis Test

                                    Chi-Square         20.4582
                                    DF                       3
                                    Pr > Chi-Square     0.0001

                                      The NPAR1WAY Procedure

               Median Scores (Number of Points Above Median) for Variable percent
                                 Classified by Variable country

                                    Sum of      Expected       Std Dev          Mean
             country       N        Scores      Under H0      Under H0         Score
             ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
             britain      13          10.0          6.50      1.411359      0.769231
             japan         7           0.0          3.50      1.187977      0.000000
             germany       8           2.0          4.00      1.244342      0.250000
             italy         4           4.0          2.00      0.950382      1.000000

                               Average scores were used for ties.

                                     Median One-Way Analysis

                                    Chi-Square         16.2452
                                    DF                       3
                                    Pr > Chi-Square     0.0010

The standard ANOVA produces a small P-value, but we should treat this with caution because of the 
unequal spreads within the groups. The Kruskal-Wallis test also produces a small P-value, which is 
more trustworthy because it is (essentially) a one-way ANOVA on the ranked data, which shouldn't be 
troubled by outliers. 

Mood's median test is the easiest one to do by hand: work out the overall median (of all the data), and 
count how many values are above and below the median in each group. If the groups are all about the 
same, the observations should be about 50-50 above and below the overall median in each group. Here 
the overall median is 22.5; all the Japan figures are below this, and all the Italy figures are above. The 
counts of below-median and above-median for each country form a two-way table, which is then 
analyzed using a chi-squared test. Mood's median test is a lot like the sign test generalized to two or 
more groups.

In the one-way ANOVA situation, you might know the order in which the groups should lie, if the null 
hypothesis is not true. A test that assesses the evidence against the null, while allowing for the 
alternative order, should be more powerful (should give you a greater chance of rejecting the null in 
favour of that specific alternative) than, say, the Kruskal-Wallis test. Such a test is the Jonckheere-
Terpstra test; it is really a rank sum test done on each pair of groups, so that if the ordering is as 
claimed, there will be a bunch of small rank sum test statistics to add together.



Some data: these are lifetimes of light bulbs of three different brands. Brand A is bought in a discount 
store, brand B in a grocery store, and brand C in a hardware store. We might expect brand C lightbulbs 
to last longer on average than brand B, which in turn last longer than brand A. We can test an 
alternative that the lifetimes go A, B, C in that order. 

a 619
a 35
a 126
a 2031
a 215
b 343
b 2437
b 409
b 267
b 1953
b 1804
c 3670
c 2860
c 502
c 2008
c 5004
c 4782

These lifetimes are obviously not normal (lifetimes of things are usually skewed to the right) so that 
even if we had a “standard” test to use against the ordered alternative, it wouldn't apply here, and we 
would want to use something non-parametric, which the Jonckheere-Terpstra test is.

SAS doesn't make it that easy to do this test: it is hiding as an option of the TABLES command in 
PROC FREQ (which is usually for making contingency tables, doing chi-squared tests and the like). 
Also, it is a good idea to arrange your labels (here a, b, c) in the order that they appear in the alternative 
hypothesis (SAS can understand which order you want, but I wasn't able to get it working reliably).

Here is my code:

data light;
  infile "lightbulbs.dat";
  input brand $ lifetime;

proc freq;
  tables brand*lifetime / jt;

Never mind that “lifetime” isn't in any sense a categorical variable, so that making a contingency table 
of it with “brand” seems kind of pointless. Here's what you get (which is SAS's best effort at making a 
contingency table anyway):



                                    Table of brand by lifetime

brand     lifetime

Frequency‚
Percent  ‚
Row Pct  ‚
Col Pct  ‚      35‚     126‚     215‚     267‚     343‚     409‚     502‚     619‚    1804‚  Total
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
a        ‚      1 ‚      1 ‚      1 ‚      0 ‚      0 ‚      0 ‚      0 ‚      1 ‚      0 ‚      5
         ‚   5.88 ‚   5.88 ‚   5.88 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   5.88 ‚   0.00 ‚  29.41
         ‚  20.00 ‚  20.00 ‚  20.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚  20.00 ‚   0.00 ‚
         ‚ 100.00 ‚ 100.00 ‚ 100.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚ 100.00 ‚   0.00 ‚
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
b        ‚      0 ‚      0 ‚      0 ‚      1 ‚      1 ‚      1 ‚      0 ‚      0 ‚      1 ‚      6
         ‚   0.00 ‚   0.00 ‚   0.00 ‚   5.88 ‚   5.88 ‚   5.88 ‚   0.00 ‚   0.00 ‚   5.88 ‚  35.29
         ‚   0.00 ‚   0.00 ‚   0.00 ‚  16.67 ‚  16.67 ‚  16.67 ‚   0.00 ‚   0.00 ‚  16.67 ‚
         ‚   0.00 ‚   0.00 ‚   0.00 ‚ 100.00 ‚ 100.00 ‚ 100.00 ‚   0.00 ‚   0.00 ‚ 100.00 ‚
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
c        ‚      0 ‚      0 ‚      0 ‚      0 ‚      0 ‚      0 ‚      1 ‚      0 ‚      0 ‚      6
         ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   5.88 ‚   0.00 ‚   0.00 ‚  35.29
         ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚  16.67 ‚   0.00 ‚   0.00 ‚
         ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚ 100.00 ‚   0.00 ‚   0.00 ‚
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
Total           1        1        1        1        1        1        1        1        1       17
             5.88     5.88     5.88     5.88     5.88     5.88     5.88     5.88     5.88   100.00
(Continued)

                                    Table of brand by lifetime

brand     lifetime

Frequency‚
Percent  ‚
Row Pct  ‚
Col Pct  ‚    1953‚    2008‚    2031‚    2437‚    2860‚    3670‚    4782‚    5004‚  Total
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
a        ‚      0 ‚      0 ‚      1 ‚      0 ‚      0 ‚      0 ‚      0 ‚      0 ‚      5
         ‚   0.00 ‚   0.00 ‚   5.88 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚  29.41
         ‚   0.00 ‚   0.00 ‚  20.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚
         ‚   0.00 ‚   0.00 ‚ 100.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
b        ‚      1 ‚      0 ‚      0 ‚      1 ‚      0 ‚      0 ‚      0 ‚      0 ‚      6
         ‚   5.88 ‚   0.00 ‚   0.00 ‚   5.88 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚  35.29
         ‚  16.67 ‚   0.00 ‚   0.00 ‚  16.67 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚
         ‚ 100.00 ‚   0.00 ‚   0.00 ‚ 100.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚   0.00 ‚
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
c        ‚      0 ‚      1 ‚      0 ‚      0 ‚      1 ‚      1 ‚      1 ‚      1 ‚      6
         ‚   0.00 ‚   5.88 ‚   0.00 ‚   0.00 ‚   5.88 ‚   5.88 ‚   5.88 ‚   5.88 ‚  35.29
         ‚   0.00 ‚  16.67 ‚   0.00 ‚   0.00 ‚  16.67 ‚  16.67 ‚  16.67 ‚  16.67 ‚
         ‚   0.00 ‚ 100.00 ‚   0.00 ‚   0.00 ‚ 100.00 ‚ 100.00 ‚ 100.00 ‚ 100.00 ‚
ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ
Total           1        1        1        1        1        1        1        1       17
             5.88     5.88     5.88     5.88     5.88     5.88     5.88     5.88   100.00



                            Statistics for Table of brand by lifetime

                                    Jonckheere-Terpstra Test
                                   ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
                                   Statistic           81.0000
                                   Z                    2.9055
                                   One-sided Pr >  Z    0.0018
                                   Two-sided Pr > |Z|   0.0037

                                         Sample Size = 17

The table suggests that most of the short lifetimes went with Brand A and most of the long ones with 
Brand C, which is confirmed by the test: the P-value is very small, so we reject a null hypothesis that 
the “average” lifetimes are equal in favour of the alternative A, B, C.

You could do an ordinary ANOVA here, like this, with some trepidation:

proc glm;
  class brand;
  model lifetime=brand;

with the following output:

                                        The GLM Procedure

Dependent Variable: lifetime

                                               Sum of
       Source                      DF         Squares     Mean Square    F Value    Pr > F

       Model                        2     19879674.56      9939837.28       6.27    0.0114

       Error                       14     22203092.97      1585935.21

       Corrected Total             16     42082767.53

                      R-Square     Coeff Var      Root MSE    lifetime Mean

                      0.472395      73.65824      1259.339         1709.706

       Source                      DF       Type I SS     Mean Square    F Value    Pr > F

       brand                        2     19879674.56      9939837.28       6.27    0.0114

       Source                      DF     Type III SS     Mean Square    F Value    Pr > F

       brand                        2     19879674.56      9939837.28       6.27    0.0114

This P-value of 0.0114 is bigger than we had from Jonckheere-Terpstra, for a couple of reasons: one, 
we shouldn't really have done an ordinary ANOVA here (the data are far from normal), and two, the 
ANOVA alternative is just “the means are not all the same”, which is not really the alternative that we 
want: we'd have to go on and do multiple comparisons to verify that the means came out in the right 
order. 



The next step beyond one-way ANOVA is a randomized blocks design. An example: we want to see 
whether people's pulse measurements vary during the day. We have three patients available, and we 
measure each one's pulse at 6 and 10 am and pm. We could just think of the three patients as replicates 
and do a one-way ANOVA (or Kruskal-Wallis), but some people have “typically” different pulse rates 
than others, which means that an observed pulse rate could depend both on time of day and patient. 
This can be handled by treating patients as “blocks”, which means we are taking it for granted that 
patients will be different, and allowing for patient differences in assessing the time-of-day effect (like 
including a second variable in a multiple regression not because we care about it, but because we want 
to allow for its effect).

In the non-parametric world, we can use Friedman's test (named after Milton Friedman the economist, 
who was apparently doing some moonlighting). The idea is to use ranks within blocks. Here's some 
data:

      Patient
Time  K  F  R
0600 60 62 55
1000 65 66 65
1800 70 80 75
2200 65 72 68

Patient F had the highest pulse at all the times, but we don't really care about that: what appears to be 
happening is that pulse rates rise to a maximum at 6 pm and then drop. Ranking within columns makes 
this clear:

      Patient
Time  K  F  R
0600  1  1  1
1000 2.5 2  2
1800  4  4  4
2200 2.5 3  3

Even though the actual pulse rates are not the same, the rankings over time of day are almost identical, 
and certainly way more similar than you'd expect by chance.

SAS claims to be able to do the Friedman test, but it is a very obscure process, and I prefer to construct 
a “home-brew” test by obtaining the ranks and doing a randomized-blocks ANOVA (a two-way 
ANOVA without interaction) on the ranks.



Here are the data for SAS purposes:

0600 K 60
0600 F 62
0600 R 55
1000 K 65
1000 F 66
1000 R 65
1800 K 70
1800 F 80
1800 R 75
2200 K 65
2200 F 72
2200 R 68

We first need to obtain the ranks of the pulse rates within each patient, and to do that we need the data 
sorted by patient first. Once we've done that, we run the ANOVA on the ranks using PROC GLM. 
Here's all the code:

data pulse;
  infile "pulse.dat";
  input time $ patient $ pulse;

proc sort;
  by patient;

proc rank;
  by patient;
  var pulse;
  ranks rpulse;

proc print;
proc glm;
  class patient time;
  model rpulse=time patient;

PROC RANK produces a new data set that contains the ranked pulse values within each patient, with 
the stored ranks in the variable “rpulse”. I then do a PROC PRINT so that you can see what the output 
of PROC RANK looks like, and then I run it through PROC GLM using the ranked-within-patient 
pulse rates as the response. 

Here is the output from PROC RANK:



                            Obs    time    patient    pulse    rpulse

                              1    0600       F         62       1.0
                              2    1000       F         66       2.0
                              3    1800       F         80       4.0
                              4    2200       F         72       3.0

                              5    0600       K         60       1.0
                              6    1000       K         65       2.5
                              7    1800       K         70       4.0
                              8    2200       K         65       2.5

                              9    0600       R         55       1.0
                             10    1000       R         65       2.0
                             11    1800       R         75       4.0
                             12    2200       R         68       3.0

where you can compare the ranked pulse values for each patient with the table above. (Patient K had 
two values 65, which share the 2nd and 3rd ranks.) The ranks are very consistent over time, which should 
show up in the ANOVA of ranks:

                                        The GLM Procedure

Dependent Variable: rpulse   Rank for Variable pulse

                                               Sum of
       Source                      DF         Squares     Mean Square    F Value    Pr > F

       Model                        5     14.16666667      2.83333333      51.00    <.0001

       Error                        6      0.33333333      0.05555556

       Corrected Total             11     14.50000000

                       R-Square     Coeff Var      Root MSE    rpulse Mean

                       0.977011      9.428090      0.235702       2.500000

       Source                      DF       Type I SS     Mean Square    F Value    Pr > F

       time                         3     14.16666667      4.72222222      85.00    <.0001
       patient                      2      0.00000000      0.00000000       0.00    1.0000

       Source                      DF     Type III SS     Mean Square    F Value    Pr > F

       time                         3     14.16666667      4.72222222      85.00    <.0001
       patient                      2      0.00000000      0.00000000       0.00    1.0000

as indeed it does. The P-value for a difference due to times is as small as it could be. (We organized the 
ranks so that ranks 1, 2, 3, 4 appear once for each patient, apart from the tied values, so that even if 
there is a patient effect with the original data, there isn't with the ranks.)



If you hadn't allowed for differences between patients, you would have done Kruskal-Wallis and gotten 
this:

                                      The NPAR1WAY Procedure

                          Wilcoxon Scores (Rank Sums) for Variable pulse
                                   Classified by Variable time

                                   Sum of      Expected       Std Dev          Mean
               time       N        Scores      Under H0      Under H0         Score
               ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
               0600       3           6.0         19.50      5.370373      2.000000
               1000       3          17.0         19.50      5.370373      5.666667
               1800       3          32.0         19.50      5.370373     10.666667
               2200       3          23.0         19.50      5.370373      7.666667

                                Average scores were used for ties.

                                       Kruskal-Wallis Test

                                    Chi-Square         9.2837
                                    DF                      3
                                    Pr > Chi-Square    0.0257

for which the P-value is also small. The P-value from Friedman's test is smaller, because it allows for 
differences due to patients as well. (In less fortunate circumstances, the Kruskal-Wallis test might not 
have been significant at all because the difference between patients might have overwhelmed the 
difference due to time of day.)

[There aren't specific non-parametric tests for two-way ANOVA and above, but you can always replace 
the data by their ranks and see whether it makes any difference. You rank all the data, and then look to 
see whether the mean ranks are significantly different.]

Our final procedure is correlation. There is the usual “Pearson” correlation, but there are also two kinds 
of non-parametric correlation. SAS PROC CORR handles them all. As an example: a company is 
trying to see what its sales staff can do to increase sales. One kind of visit a sales rep can do is a 
“demo”, where the sales rep goes to a potential customer and demonstrates how the product works (and 
answers questions about it). A record is kept of the number of demos and number of sales for each sales 
rep. The data look like this, with demos in the first column and sales in the second:
96 17
104 25
113 33
115 34
126 36
135 41
137 42
142 42
143 43
145 43
149 44
151 44
156 45
161 45
175 46



The first step with this kind of data is to draw a scatterplot to get a sense of the relationship. Then we 
have SAS calculate the correlations, the usual one called “Pearson”, and the two non-parametric ones 
called “Spearman” and “Kendall”. The code looks like this:

data demos;
  infile "demos.dat";
  input demos sales;

proc plot;
  plot sales*demos;

proc corr pearson spearman kendall noprob;
  var sales demos;

SAS by default does a test that each correlation is zero. A look at the plot reveals that there is obviously 
a relationship, so we skip the tests (with “noprob”):

                     Plot of sales*demos.  Legend: A = 1 obs, B = 2 obs, etc.

sales ‚
      ‚
   46 ˆ                                                                                     A
   45 ˆ                                                                  A    A
   44 ˆ                                                           A A
   43 ˆ                                                     A A
   42 ˆ                                               A    A
   41 ˆ                                             A
   40 ˆ
   39 ˆ
   38 ˆ
   37 ˆ
   36 ˆ                                    A
   35 ˆ
   34 ˆ                         A
   33 ˆ                       A
   32 ˆ
   31 ˆ
   30 ˆ
   29 ˆ
   28 ˆ
   27 ˆ
   26 ˆ
   25 ˆ              A
   24 ˆ
   23 ˆ
   22 ˆ
   21 ˆ
   20 ˆ
   19 ˆ
   18 ˆ
   17 ˆ      A
      ‚
      Šˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆ
      90        100       110       120       130       140       150       160       170      180

                                                  demos



The trend is clearly upward, but it appears to level off about about 140 demos, so there is a 
“diminishing returns” thing happening here. Recall that the usual Pearson correlation is only good for 
straight-line relationships, so we shouldn't trust it here. However, the Spearman and Kendall 
correlations are good for any “monotonic” relationship: one that keeps going up (like this one) or keeps 
going down, even if the trend is a curve.

The Spearman correlation uses the ranked demos and sales; it is the ordinary correlation but of the 
ranks. So it will be high if a low rank on one variable goes with a low rank on the other, and high with 
high: here, the smallest number of demos goes with the smallest number of sales, and the largest with 
the largest, so the Spearman correlation will be high even though the trend is curved.

The Kendall correlation is even “more non-parametric” than the Spearman one: take a pair of points, 
say the two at the bottom left. For the one where the demos is higher, is the number of sales higher? 
Here, the answer is “yes”; this pair is called “concordant”. This is then repeated for all pairs of points, 
and here almost all of them are concordant, so the Kendall correlation should also be close to 1:

                                        The CORR Procedure

                                 2  Variables:    sales    demos

                                        Simple Statistics

    Variable           N          Mean       Std Dev        Median       Minimum       Maximum

    sales             15      38.66667       8.33809      42.00000      17.00000      46.00000
    demos             15     136.53333      22.03525     142.00000      96.00000     175.00000

                             Pearson Correlation Coefficients, N = 15

                                              sales         demos

                                sales       1.00000       0.92124

                                demos       0.92124       1.00000

                            Spearman Correlation Coefficients, N = 15

                                              sales         demos

                                sales       1.00000       0.99642

                                demos       0.99642       1.00000

                          Kendall Tau b Correlation Coefficients, N = 15

                                              sales         demos

                                sales       1.00000       0.98077

                                demos       0.98077       1.00000



The correlations are: Pearson 0.921, Spearman 0.996, Kendall 0.981. The two non-parametric ones are 
higher because the trend isn't a straight line. (Spearman usually comes out closer to 1 than Kendall 
does).

SAS does tests that all 3 correlations are zero; for Pearson and Spearman, you can also test a specific 
value in the null, say 0.9, like this:

proc corr pearson spearman fisher(rho0=0.9);
  var sales demos;

with this output:

                    Pearson Correlation Statistics (Fisher's z Transformation)

                With                         Sample                        Bias    Correlation
    Variable    Variable           N    Correlation    Fisher's z    Adjustment       Estimate

    sales       demos             15        0.92124       1.59718       0.03290        0.91611

                   Pearson Correlation Statistics (Fisher's z Transformation)

                       With                                     ------H0:Rho=Rho0-----
           Variable    Variable       95% Confidence Limits           Rho0     p Value

           sales       demos           0.760959      0.972153      0.90000      0.7478

                                        The CORR Procedure

                   Spearman Correlation Statistics (Fisher's z Transformation)

                With                         Sample                        Bias    Correlation
    Variable    Variable           N    Correlation    Fisher's z    Adjustment       Estimate

    sales       demos             15        0.99642       3.16218       0.03559        0.99616

                   Spearman Correlation Statistics (Fisher's z Transformation)

                       With                                     ------H0:Rho=Rho0-----
           Variable    Variable       95% Confidence Limits           Rho0     p Value

           sales       demos           0.988138      0.998760      0.90000      <.0001

Look at the second of each pair of lines. The Pearson correlation is not significantly different from 0.9, 
and the 95% confidence interval includes 0.9, but the Spearman correlation is significantly different 
from 0.9, and the confidence interval shows that it is significantly higher.


